azo-functionalized microporous organic … microporous organic polymers: synthesis and applications...

33
1 Azo-functionalized microporous organic polymers: Synthesis and applications in CO 2 capture and conversion Zhenzhen Yang, Hongye Zhang, Bo Yu, Yanfei Zhao, Zhishuang Ma, Guipeng Ji, Buxing Han & Zhimin Liu* Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Tel: (+) 86-10-62562852; E-mail: [email protected] Table of contents 1. General experimental methods ........................................................................................ 2 2. Synthetic procedures......................................................................................................... 2 Figure S1. ................................................................................................................................... 7 Figure S2. ................................................................................................................................... 8 Figure S3. ................................................................................................................................... 9 Figure S4. ................................................................................................................................. 10 Figure S5. ................................................................................................................................. 11 Figure S6. ................................................................................................................................. 11 Figure S7. ................................................................................................................................. 13 Figure S8. ................................................................................................................................. 14 Figure S9. ................................................................................................................................. 15 Figure S10. ............................................................................................................................... 16 Figure S11. ............................................................................................................................... 19 Figure S12. ............................................................................................................................... 19 Table S1. .................................................................................................................................. 20 Figure S13. ............................................................................................................................... 21 Scheme S1. .............................................................................................................................. 21 3. Characterization (NMR) of the methylamine products ................................................... 22 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Upload: lenhi

Post on 28-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

1

Azo-functionalized microporous organic polymers:

Synthesis and applications in CO2 capture and conversion

Zhenzhen Yang, Hongye Zhang, Bo Yu, Yanfei Zhao, Zhishuang Ma, Guipeng Ji,

Buxing Han & Zhimin Liu*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid,

Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences,

Beijing 100190, PR China; Tel: (+) 86-10-62562852; E-mail: [email protected]

Table of contents

1. General experimental methods ........................................................................................ 2

2. Synthetic procedures ......................................................................................................... 2

Figure S1. ................................................................................................................................... 7

Figure S2. ................................................................................................................................... 8

Figure S3. ................................................................................................................................... 9

Figure S4. ................................................................................................................................. 10

Figure S5. ................................................................................................................................. 11

Figure S6. ................................................................................................................................. 11

Figure S7. ................................................................................................................................. 13

Figure S8. ................................................................................................................................. 14

Figure S9. ................................................................................................................................. 15

Figure S10. ............................................................................................................................... 16

Figure S11. ............................................................................................................................... 19

Figure S12. ............................................................................................................................... 19

Table S1. .................................................................................................................................. 20

Figure S13. ............................................................................................................................... 21

Scheme S1. .............................................................................................................................. 21

3. Characterization (NMR) of the methylamine products ................................................... 22

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

2

1. General experimental methods

Materials

All reagents and solvents were purchased from commercial sources and were used without further

purification, unless indicated otherwise. Tetrakis(4-aminophenyl)methane (A-1) and

2,6,14-triaminotriptycene (A-2) were prepared following procedures reported in the literature.

Instrumentation

Liquid 1H NMR spectra was recorded in CDCl3 as internal reference (7.26 ppm) on Bruck 400

spectrometer. Liquid 13

C NMR was recorded at 100.6 MHz in CDCl3 as internal reference (77.0

ppm). Solid-state NMR experiments were performed on a Bruker WB Avance II 400 MHz

spectrometer. The 13

C CP/MAS NMR spectra were recorded with a 4-mm double-resonance MAS

probe and with a sample spinning rate of 10.0 kHz; a contact time of 2 ms (ramp 100) and pulse

delay of 3 s were applied. FTIR spectra of the samples were collected on a TENSOR 27 FTIR at a

resolution of 2 cm-1

. The nitrogen adsorption and desorption isotherms were measured at 77 K

using a Micromeritics ASAP 2020M system. The samples were outgassed at 120 oC for 8 h before

the measurements. Surface areas were calculated from the adsorption data using Langmuir and

Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from

the adsorption branches using non-local density functional theory (NLDFT) method. Field

emission scanning electron microscopy (SEM) observations were performed on a Hitachi S-4800

microscope operated at an accelerating voltage of 15.0 kV. Transmission electron microscopy

(TEM) images were obtained with a JEOL JEM-1011 instrument operated at 200 kV. The thermal

properties of the materials were evaluated using a thermogravimetric analysis (TGA) instrument

(STA PT1600 Linseis) over the temperature range of 25 to 800 °C under air atmosphere with a

heating rate of 10 °C/min. X-ray photoelectron spectroscopy (XPS) was performed on an ESCAL

Lab 220i-XL spectrometer at a pressure of ~3×10-9

mbar (1 mbar = 100 Pa) using Al Ka as the

excitation source (hn=1486.6 eV) and operated at 15 kV and 20 mA. The binding energies were

referenced to the C1s line at 284.8 eV from adventitious carbon. The loading content of Ru in the

catalysts was determined by ICP-AES (VISTA-MPX). ESI-MS were recorded on a Thermo

Finnigan LCQ Advantage spectrometer in ESI mode with a spray voltage of 4.8 kV.

2. Synthetic procedures

(1) Synthesis of tetrakis(4-aminophenyl)methane (A-1)

Ref.: Macromolecules 2013, 46, 3058-3066; J. Org. Chem. 2006, 71, 6626-6629.

3

Tetrakis(4-nitrophenyl)methane was first synthesized as follows. Tetraphenylmethane (23 mmol)

was added into fuming nitric acid (40 mL) at -40 oC under vigorous stirring. Then acetic

anhydride (12.5 mL) and acetic acid (25 mL) were slowly added and stirred for 10 h. After

filtration, the precipitate was washed with H2O and dried at 60 oC under vacuum for 10 h. The

resultant yellow solid was used directly for the next step without further purification.

For the synthesis of tetrakis(4-aminophenyl)methane (A-1), hydrazine monohydrate (1.5 mL)

and Raney Ni (~1.0 g) were added to a solution of tetrakis(4-nitrophenyl)methane (2 mmol) in

THF (20 mL). After heating at 60 oC until all hydrazine was quenched, the mixture was cooled to

room temperature and then filtered. The filtrate was concentrated by rotary evaporation to remove

the solvent, and tetrakis(4-aminophenyl)methane (A-1) was obtained as a white solid in

quantitative yield. 1H NMR (d6-DMSO, 400 MHz) δ 4.84 (s, 8H), 6.33-6.42 (m, 8H), 6.66-6.73 (m,

8H); 13

C NMR (d6-DMSO, 100.6 MHz) δ 61.09, 112.55, 131.01, 135.82, 145.63; ESI-MS calcd

for C25H24N4 380.2, found 381.1 [M+H]+.

4

(2) Synthesis of 2,6,14-triaminotriptycene (A-2)

Ref.: Macromolecules 2013, 46, 3058-3066; J. Org. Chem. 2006, 71, 6626-6629.

2,6,14-Trinitrotriptycene was first synthesized as follows. To triptycene (1 mmol) was added

concentrated HNO3 (10 mL), and the mixture was heated at 75 oC for 24 h. The brown solution

was cooled to R.T., then poured into H2O (100 mL) and stirred. The precipitate was collected,

washed with cold water, and then dried at 60 oC under vacuum for 10 h. The crude products were

separated by column chromatography on silica gel with dichloromethane/petroleum ether (1:1) as

eluent to afford the desired 2,6,14-trinitrotriptycene.

2,6,14-Triaminotriptycene (A-2) was prepared by a procedure similar to that for except that the

precursor compound is 2,6,14-trinitrotriptycene. 1H NMR (CDCl3, 400 MHz) δ 4.81 (s, 6H), 4.88

(s, 2H), 6.05-6.09 (m, 3H), 6.55-6.62 (m, 3H), 6.87-6.94 (m, 3H). 13

C NMR (d6-DMSO, 100.6

MHz) δ 51.25, 52.42, 108.18, 108.43, 108.66, 109.81, 110.18, 110.55, 122.51, 122.90, 123.26,

133.17, 134.08, 135.05, 145.06, 145.28, 145.47, 146.17, 146.95, 147.78. ESI-MS calcd for

C20H17N3 299.1, found 300.2 [M+H]+.

5

(3) Synthesis of Azo-MOP-N

To a mixture of aromatic amine (A-N, N=1~4, 0.5 mmol) and NaI (4 mmol for A-1, 3 mmol for

A-2~A-4) in an appropriate solvent (30 mL) was added t-BuOCl (4 mmol for A-1, 3 mmol for

A-2~A-4) under N2 atmosphere at room temperature. The mixture was stirred for 1 h and

quenched with aqueous Na2S2O3 (1.0 M, 30 mL). The precipitate was filtered off and washed with

distilled H2O, THF, CH3OH and acetone. Subsequently, it was dried at 120 oC under vacuum for

6

48 h to yield Azo-MOP-N. Yields were 95%, 97%, 96%, 95% for Azo-MOP-1, Azo-MOP-2,

Azo-MOP-3 and Azo-MOP-4, respectively. Elemental analysis data: Azo-MO-1 (C 65.86%, H

4.24%, N 11.33%), Azo-MO-2 (C 69.64%, H 4.45%, N 8.52%), Azo-MO-3 (C 68.99%, H 4.41%,

N 8.48%), Azo-MO-4 (C 57.23%, H 4.00%, N 11.99%).

(4) Synthesis of Azo-MOP-N-Ru

RuCl3·3H2O (130 mg) was dissolved in 25 mL of EtOH, and then Azo-MOP-N (1 g) was added.

The mixture was kept stirring for 24 h at room temperature. The resulting solid was isolated by

filtration and washed with EtOH, and then purified using Soxhlet extraction (EtOH) for 24 h.

Azo-MOP-N-Ru was obtained as a brown powder after drying at 100 oC under vacuum for 12 h.

(5) Typical procedure of the methylation of amines catalyzed by Azo-MOP-N-Ru

A stainless steel autoclave with a Teflon tube (25 mL inner volume) was purged with CO2 to

evacuate air, and then Azo-MOP-3-Ru (42.6 mg), PPh3 (0.1 mmol, 26.2 mg), N-methylaniline

(0.5 mmol, 53.6 mg) PhSiH3 (4 mmol, 432.8 mg) and THF (2 mL) were added successively. CO2

(0.5 MPa) was charged in the reactor at room temperature. The autoclave was stirred at 120 oC for

24 h. After reaction, the autoclave was cooling to 0 oC then the excess of gas was vented. The

product yields were determined by GC with a flame ionization detector using dodecane as an

internal standard and were further identified using GC-MS by comparing retention times and

fragmentation patterns with authentic samples. For the substrate scope investigation, the products

were isolated by column chromatography on silica gel (eluent: petroleum and dichloromethane)

and identified by NMR spectra as shown in ESI. For catalyst recycling, the catalyst was recycled

by filtration, washed with THF and ethanol, and then dried under vacuum at 60 oC for 24 h,

followed by being reused for the next run.

7

Figure S1. Yield and BET plot (P/P0 = 0.06-0.2) from N2 isotherms at 77 K of Azo-MOP-1

obtained by adopting various solvents. The yield of Azo-MOP-1 was 23% and 5% with acetone

and THF as solvent, respectively.

0.000434

0.000634

0.000834

0.001034

0.001234

0.001434

0.001634

0.001834

0.002034

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

CH3CN

0.000434

0.005434

0.010434

0.015434

0.020434

0.025434

0.030434

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

CHCl3

0.000434

0.002434

0.004434

0.006434

0.008434

0.010434

0.012434

0.014434

0.016434

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

CH3OCH2OCH3

0.000434

0.005434

0.010434

0.015434

0.020434

0.025434

0.030434

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

CH3CH2OCH2CH3

Yield: 95%BET surface area: 456 m2 g-1

Yield: 70%BET surface area: 34 m2 g-1

Yield: 58%BET surface area: 62 m2 g-1

Yield: 43%BET surface area: 31 m2 g-1

8

Figure S2. SEM (left) and TEM (right) images of Azo-MOP-1 obtained by adopting various

solvents.

200 nm

CH3CN CH3CN

200 nm

Acetone Acetone

CHCl3

200 nm

CHCl3

200 nm

CH3OCH2OCH3

200 nm

CH3OCH2OCH3

CH3CH2OCH2CH3

CH3CH2OCH2CH3

9

Figure S3. FTIR spectra of Azo-MOP-N. The spectra were recorded as KBr pellets. 3437 (free

N-H), 3200 (hydroen-bonded N-H), 1447 and 1403 (N=N), 1280 (C-N), 1600, 1580, 1500 and

1450 (aromatic C=C) cm-1

. NH2PhNH2: p-phenylenediamine, PhNNPh: azobenzene.

0

0.5

1

800 1300 1800 2300 2800 3300 3800标题

标题

NH2PhNH2

0.5

0.7

0.9

800 1300 1800 2300 2800 3300 3800

标题

标题

PhNNPh

0.55

0.75

0.95

800 1300 1800 2300 2800 3300 3800Tran

smit

tan

ce

Wavenumber/cm-1

A-1

0.65

0.75

0.85

0.95

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-CMP-1

0.5

0.7

0.9

800 1300 1800 2300 2800 3300 3800

标题

标题

A-2

0.6

0.7

0.8

0.9

1

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-CMP-2

0.45

0.65

0.85

800 1300 1800 2300 2800 3300 3800

标题

标题

A-3

0.6

0.7

0.8

0.9

1

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-CMP-3

0.1

0.6

800 1300 1800 2300 2800 3300 3800

标题

标题

A-4

0.65

0.75

0.85

0.95

800 1300 1800 2300 2800 3300 3800

标题

Wave number/cm-1

Azo-CMP-4

3437 cm-1

3200 cm-1

1403 cm-1

1447 cm-1

1280 cm-1

10

Figure S4. FTIR spectra of RuCl3·3H2O and Azo-MOP-N-Ru (N = 1~4). The spectra were

recorded as KBr pellets. 1609 (H2O bending vibration), 1076 (Ru-Cl).

0.2

0.4

0.6

0.8

1

800 1300 1800 2300 2800 3300 3800

标题

标题

RuCl3 3H2O

0.6

0.7

0.8

0.9

1

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-MOP-1-Ru

0.65

0.75

0.85

0.95

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-MOP-2-Ru

0.6

0.7

0.8

0.9

1

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-MOP-3-Ru

0.2

0.4

0.6

0.8

1

800 1300 1800 2300 2800 3300 3800

标题

标题

Azo-MOP-4-Ru

0.2

0.4

0.6

0.8

1

800 1300 1800 2300 2800 3300 3800

标题

Wave number/cm-1

Azo-MOP-4-Ru

1609 cm-1

1076 cm-1

11

Figure S5. CP/MAS 13

C NMR spectra of Azo-MOP-N. Azo-MOP-1: δ = 64.2, 116.3, 129.3,

143.2, 150.0; Azo-MOP-2: δ = 53.9, 113.3, 123.3, 145.6, 149.8; Azo-MOP-3: δ = 123.3, 127.4,

142.1, 152.1; Azo-MOP-4: δ = 129.5, 143.9, 148.4.

Figure S6. Thermogravimetric analysis (TGA) of Azo-MOP-N under air up to 800 oC at a

ramping rate of 10 oC min

-1.

Azo-MOP-1

Azo-MOP-2

Azo-MOP-3

Azo-MOP-4

0

20

40

60

80

100

0 200 400 600 800

Re

sid

ual

we

igh

t/%

Temperature/oC

Azo-MOP-1

Azo-MOP-2

Azo-MOP-3

Azo-MOP-4

12

200 nmAzo-MOP-1Azo-MOP-1

Azo-MOP-2Azo-MOP-2

200 nm

200 nm

Azo-MOP-3Azo-MOP-3

200 nm

Azo-MOP-4Azo-MOP-4

13

Figure S7. SEM (left) and TEM (right) images of Azo-MOP-N and Azo-MOP-N-Ru.

100 nm

100 nm

100 nm

100 nm

Azo-MOP-1-Ru Azo-MOP-1-Ru

Azo-MOP-2-RuAzo-MOP-2-Ru

Azo-MOP-3-RuAzo-MOP-3-Ru

Azo-MOP-4-RuAzo-MOP-4-Ru

14

Figure S8. XPS spectra of Azo-MOP-3-Ru (A and B) and RuCl3 (C and D).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

292.

02

291

.07

290.

12

289

.17

288.

22

287.

27

286.

32

285.

37

284.

42

283.

47

282

.52

281.

57

280

.62

279.

67

Co

un

ts/s

Binding Energy/eV

(A)

Ru3d5/2

281.42 eV

C1s284.67 eV

C1s, Ru3d3/2

285.12 eV

C1s288.82 eV

9080

9180

9280

9380

9480

9580

9680

9780

9880

998049

0.07

487.

17

484.

27

481.

37

478.

47

475.

57

472

.67

469

.77

466

.87

463

.97

461

.07

458.

17

455.

27

452.

37

Co

un

ts/s

Binding Energy/eV

Ru3p1/2

484.67 eV

Ru3p3/2

462.67 eV

(B)

0

10000

20000

30000

40000

50000

60000

70000

292

.03

29

0.9

8

28

9.9

3

288

.88

28

7.8

3

28

6.7

8

28

5.7

3

284

.68

28

3.6

3

28

2.5

8

281

.53

28

0.4

8

27

9.4

3

27

8.3

8

Co

un

ts/s

Binding Energy/eV

Ru3d5/2

282.28 eV

Ru3d3/2

286.13 eV

(C)

7100

7300

7500

7700

7900

8100

8300

8500

8700

8900

9100

496

.03

492.

7348

9.43

486.

1348

2.83

479

.53

476

.23

472.

9346

9.63

466.

3346

3.03

459

.73

456

.43

453.

13

Co

un

ts/s

Binding Energy/eV

Ru3p1/2

486.08 eV

Ru3p3/2

463.73 eV(D)

15

Figure S9. Adsorption (filled) and desorption (empty) isotherms of N2 at 77 K for Azo-MOP-N

(A) and Azo-MOP-N-Ru (C); CO2 adsorption (filled) and desorption (empty) isotherms of

measured at 273 K for Azo-MOP-N (B) and Azo-MOP-N-Ru (D).

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

bed

(cm

3ST

P/g

)

Relative pressure (P/P0)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

CO

2u

pta

ke (

wei

ght%

)

Relative pressure (P/P0)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

bed

(cm

3ST

P/g

)

Relative pressure (P/P0)

(A) (B)

(C)

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

CO

2u

pta

ke (

wei

ght%

)

Relative pressure (P/P0)

(D)

16

Figure S10. BET plot (P/P0 = 0.06-0.2) from N2 isotherms at 77 K of Azo-MOP-N and

Azo-MOP-N-Ru (N = 1~4). Correlation coefficient R and C constant was 0.999999, 456.231

(Azo-MOP-1), 0.999998, 781.987 (Azo-MOP-2), 0.999996, 376.241 (Azo-MOP-3), 0.999905,

0.000434

0.000634

0.000834

0.001034

0.001234

0.001434

0.001634

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

0.000434

0.000634

0.000834

0.001034

0.001234

0.001434

0.001634

0.001834

0.06 0.16 0.26

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

0.000434

0.200434

0.400434

0.600434

0.800434

1.000434

1.200434

1.400434

1.600434

0.06 0.16 0.26 0.36

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

0.000434

0.000634

0.000834

0.001034

0.001234

0.001434

0.001634

0.001834

0.002034

0.06 0.11 0.16 0.21

1/[

Q(P

o/P

-1)]

Relative pressure/(P/Po)

BET surface area: 456 m2 g-1

BET surface area: 706 m2 g-1

BET surface area: 523 m2 g-1

BET surface area: 335 m2 g-1

Azo-MOP-1 Azo-MOP-2

Azo-MOP-3 Azo-MOP-4

4.00E-04

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

4.00E+00

2.00E-02 7.00E-02 1.20E-01 1.70E-01

1 /

[ W

((P

o/P

) -

1)

]

Relative pressure (P/P0)

Azo-MOP-1-Ru

BET surface area:154 m2 g-1

4.00E-04

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

2.00E-02 1.20E-01 2.20E-01 3.20E-01

1 /

[ W

((P

o/P

) -

1)

]

Relative pressure (P/P0)

Azo-MOP-3-Ru

BET surface area:370 m2 g-1

4.00E-04

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

2.00E+01

2.00E-02 1.20E-01 2.20E-01 3.20E-01

1 /

[ W

((P

o/P

) -

1)

]

Relative pressure (P/P0)

Azo-MOP-4-Ru

BET surface area:61 m2 g-1

4.00E-04

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

2.00E-02 1.20E-01 2.20E-01 3.20E-01

1 /

[ W

((P

o/P

) -

1)

]

Relative pressure (P/P0)

Azo-MOP-2-Ru

BET surface area:326 m2 g-1

17

133.243 (Azo-MOP-4), 0.999993, 288.920 (Azo-MOP-1-Ru), 0.999963, 789.426

(Azo-MOP-2-Ru), 0.999988, 539.287 (Azo-MOP-3-Ru) and 0.999918, 63.272

(Azo-MOP-4-Ru).

0

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbed

(cm

3ST

P/g

)

Relative pressure (P/P0)

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbe

d (

cm3

STP

/g)

Relative pressure (P/P0)

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbe

d (

cm3

STP

/g)

Relative pressure (P/P0)

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbe

d (

cm3

STP

/g)

Relative pressure (P/P0)

Azo-MOP-2

Azo-MOP-3

Azo-MOP-4

Azo-MOP-1

0 1 2 3 4 5 6 7 8 9 10Pore width/nm

0.79 nm

0 1 2 3 4 5 6 7 8 9 10Pore width/nm

0.79 nm

0 1 2 3 4 5 6 7 8 9 10Pore width/nm

1.11 nm

0 5 10 15 20 25 30Pore width/nm

1.78 nm

18

Figure S11. Adsorption (filled) and desorption (empty) isotherms of N2 at 77 K (left) and pore

size distribution (right) for Azo-MOP-N and Azo-MOP-N-Ru.

0

40

80

120

160

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbed

(cm

3ST

P/g

)

Relative pressure (P/P0)

Azo-MOP-4-Ru

0 4 8 12 16 20Pore width/nm

1.69 nm

0

40

80

120

160

200

240

280

320

360

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbed

(cm

3ST

P/g

)

Relative pressure (P/P0)

Azo-MOP-3-Ru

0 4 8 12 16 20Pore width/nm

0.82 nm

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbed

(cm

3ST

P/g

)

Relative pressure (P/P0)

Azo-MOP-2-Ru

0 4 8 12 16 20Pore width/nm

0.82 nm

0

40

80

120

160

200

0 0.2 0.4 0.6 0.8 1

Am

ou

nt

adso

rbed

(cm

3ST

P/g

)

Relative pressure (P/P0)

Azo-MOP-1-Ru

0 4 8 12 16 20Pore width/nm

1.11 nm

19

Figure S12. Recyclability of Azo-MOP-3-Ru for the methylation reaction of N-methylaniline

(1a).

Figure S13. TEM images of Azo-MOP-3-Ru (A) fresh; (B) after reused for five times.

0

20

40

60

80

100

1 2 3 4 5

Co

nve

rsio

n a

nd

Yie

ld/%

Cycle

1a Conversion

2a Yield

50 nm50 nm

(A) (B)

20

Table S1. Substrate scope for the methylation of amines catalysed by Azo-MOP-3-Ru/PPh3a

Entry Substrate Product Yield/%b

1

99

2

99

3

93

4

99

5

99

6

98

7

99

8

99

9

99

10

99

11

92

12

99

a Reaction conditions: substrate 0.5 mmol, catalyst loading (Azo-MOP-3-Ru) 4 mol% Ru based

on the substrate, additive PPh3 0.1 mmol, organosilane PhSiH3 4 mmol, CO2 pressure 0.5 MPa,

solvent THF 2 mL, 120 oC, 24 h.

b Isolated yield.

21

Figure S14. 1H and

15N NMR in CDCl3 of N-methylaniline (1a) before (above) and after

(bottom) mixing with azobenzene (molar ratio 1: 1).

Scheme S1. Proposed reaction mechanism for the methylation of amines with CO2 catalyzed

by Azo-MOP-3-Ru/PPh3. Firstly, Azo functionality-activated N-methylaniline could coordinate

with CO2 to afford the carbamate salt, which was then attacked by the hydrosilane, affording the

1H NMR 2.76 ppm

3.61 ppm

2.80 ppm

3.58 ppm

1

2

3

4

5

1

2

3

4

5

6, 78

15N NMR 51.32 ppm

52.75 ppm

*

*

22

formylation intermediate in the presence of Ru species. Subsequent hydrosilation of the

formamide afforded the methylamine product.

3. Characterization (NMR) of the methylamine products

1H NMR (CDCl3, 400 MHz) δ 2.93 (s, 6H), 6.70-6.75 (m, 3H), 7.24 (t,

3J = 8.4 Hz, 2H);

13C NMR

(CDCl3, 100.6 MHz) δ 40.59, 112.66, 116.63, 129.04, 150.65.

23

1H NMR (CDCl3, 400 MHz) δ 2.36 (s, 3H), 2.73 (s, 6H), 6.97 (t,

3J = 7.2 Hz, 1H), 7.06 (t,

3J = 8

Hz, 1H), 7.18 (t, 3J = 7.2 Hz, 2H);

13C NMR (CDCl3, 100.6 MHz) δ 18.33, 44.21, 118.34, 122.52,

126.40, 131.12, 132.10, 152.75.

24

1H NMR (CDCl3, 400 MHz) δ 2.36 (s, 3H), 2.97 (s, 6H), 6.59-6.61 (m, 3H), 7.17 (t,

3J = 7.6 Hz,

1H); 13

C NMR (CDCl3, 100.6 MHz) δ 21.85, 40.65, 109.93, 113.47, 117.63, 128.89, 138.66,

150.77.

25

1H NMR (CDCl3, 400 MHz) δ 2.28 (s, 3H), 2.92 (s, 6H), 6.72 (d,

3J = 8.8 Hz, 2H), 7.08 (d,

3J =

8.4 Hz, 2H); 13

C NMR (CDCl3, 100.6 MHz) δ 20.21, 41.05, 113.21, 126.11, 129.56, 148.82.

26

1H NMR (CDCl3, 400 MHz) δ 2.88 (s, 6H), 3.78 (s, 3H), 6.76-6.79 (m, 2H), 6.85-6.87 (m, 2H);

13C NMR (CDCl3, 100.6 MHz) δ 41.81, 55.71, 114.58, 114.90, 145.69, 151.98.

27

1H NMR (CDCl3, 400 MHz) δ 2.90 (s, 6H), 6.67-6.70 (m, 2H), 6.93-6.97 (m, 2H);

13C NMR

(CDCl3, 100.6 MHz) δ 41.37, 113.8 (d, 3J = 7.3 Hz), 115.36 (d,

3J = 22.0 Hz), 147.52, 154.47,

28

156.81.

1H NMR (CDCl3, 400 MHz) δ 2.92 (s, 3H), 6.59 (d,

3J = 8.8 Hz, 2H), 7.28 (d,

3J = 9.2 Hz, 2H);

29

13C NMR (CDCl3, 100.6 MHz) δ 40.55, 108.53, 114.11, 131.67, 149.53.

1H NMR (CDCl3, 400 MHz) δ 2.81 (s, 1H), 6.91-6.95 (m, 1H), 7.05-7.07 (m, 1H), 7.13-7.24 (m,

1H), 7.33-7.35 (m, 1H); 13

C NMR (CDCl3, 100.6 MHz) δ 43.72, 119.96, 123.15, 127.36, 130.62,

30

144.94, 150.36.

1H NMR (CDCl3, 400 MHz) δ 2.95 (s, 1H), 6.58-6.60 (m, 1H), 6.67-6.69 (m, 2H), 7.14 (t,

3J = 8.4

31

Hz, 1H); 13

C NMR (CDCl3, 100.6 MHz) δ 40.34, 110.44, 112.17, 116.14, 129.91, 134.94, 151.47.

1H NMR (CDCl3, 400 MHz) δ 2.93 (s, 6H), 6.64 (d, 3J= 8.8 Hz, 2H), 7.17 (d, 3J = 9.2 Hz, 2H);

32

13C NMR (CDCl3, 100.6 MHz) δ 40.64, 113.64, 121.44, 128.78, 149.19.

1H NMR (CDCl3, 400 MHz) δ 2.27 (s, 6H), 3.45 (s, 2H), 7.29-7.35 (m, 5H);

13C NMR (CDCl3,

100.6 MHz) δ 45.31, 64.36, 126.98, 128.17, 129.05, 138.80.

33