avalanche photodiodes arrays - rit scholar works

274
Rochester Institute of Technology Rochester Institute of Technology RIT Scholar Works RIT Scholar Works Theses 2004 Avalanche photodiodes arrays Avalanche photodiodes arrays Daniel Ma Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Recommended Citation Ma, Daniel, "Avalanche photodiodes arrays" (2004). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected].

Upload: others

Post on 10-May-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Avalanche photodiodes arrays - RIT Scholar Works

Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

2004

Avalanche photodiodes arrays Avalanche photodiodes arrays

Daniel Ma

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation Ma, Daniel, "Avalanche photodiodes arrays" (2004). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected].

Page 2: Avalanche photodiodes arrays - RIT Scholar Works

Avalanche Photodiodes Arrays

By

Daniel Ma

B.S. College of Engineering, Rochester Institute of Technology (1998)

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science of the College of Science Rochester Institute of Technology

August 2004

Signature of the Author __ D_a_n_i e_1 _M_a _______ _ Harvey E. Rhody .y/h~~s-

) Accepted by

Coordinator, M.S. Degree Program Date

Page 3: Avalanche photodiodes arrays - RIT Scholar Works

CHESTERF.CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Daniel Ma has been examined and approved by the thesis committee as satisfactory for the

thesis requirement for the Master of Science degree

Zoran Ninkov Dr. Zoran Ninkov, Thesis Advisor

Lynn Fuller Dr. Lynn Fuller

Jonathan S. Arney Dr. Jon Arney

Date

ii

Page 4: Avalanche photodiodes arrays - RIT Scholar Works

THESIS RELEASE PERMISSION

ROCHESTER INSTITUTE OF TECHNOLOGY

COLLEGE OF SCIENCE

CHESTER F. CARLSON

CENTER FOR IMAGING SCIENCE

Title of Thesis: Avalanche Photodiode Arrays

I, Daniel Ma, hereby grant permission to theWallace Memorial Library ofR.I.T. to reproduce my thesis in whole or in part. Any reproduction will not

be for commercial use or profit.

Page 5: Avalanche photodiodes arrays - RIT Scholar Works

Avalanche Photodiode Arrays

By

Daniel Ma

Submitted to the Chester F. Carlson Center for ImagingScience College of Science in partial fulfillment of the

requirements for the Master of Science Degree at the

Rochester Institute of Technology

Abstract

This research investigates the performance of avalanche photodiode (APD) arrays that

were designed, fabricated, and tested at Rochester Institute of Technology. The APD

devices, based on the"reach-through"

structure, were designed with various array sizes

and dimensions in order to investigate the optimal design. An explanation of the

operating principle and device theory is presented, along with the testing methods used

in determining the performance of the APD arrays. The results and the reasons behind

the performance of the devices are discussed. Suggestions and solutions to problems

found are presented as a guide for any future research.

IV

Page 6: Avalanche photodiodes arrays - RIT Scholar Works

Table of Contents

1. Introduction 1

1.1. Scope ofWork / Objectives 1

1.2. APD History and Background 1

1 .2.1 Advantages of APDs Compared to Other Detectors 3

1 .3. Thesis Background 5

2. Device Theory and Design 6

2.1 . Device Structure and Operating Principles 6

2.1.1 Depletion Region Concept 7

2.1.2 Absorption Region 12

2.1.2.1 Photon Absorption / Electron-Hole Generation 14

2.1.3 Multiplication Region / P-N Junction 19

2.1.3.1 Avalanche Mechanism 23

2.1.4 Guard Ring 28

2.2. Supporting Electronics 30

2.2.1 Quenching Circuit 30

2.2.2 Transimpedance Amplifier 31

2.3. Problems with Arrays of APDs 33

2.3.1 Cross-Talk 33

2.3.2 Non-Uniformity 34

2.3.3 Pixel Latching 35

3. Implementation 36

3.1. Design 36

3.1.1 Wafer Variations 36

3.1.2 Die Layout 37

3.1.3 Device Cross-Section 40

3.2. Calculations 41

3.2.1 Oxide Thickness 42

3.2.2 Ion Implant 43

Page 7: Avalanche photodiodes arrays - RIT Scholar Works

3.2.3 Drive-In 44

3.3. Fabrication 46

3.4. Test Set-up 47

3.5. Deviation of Fabricated Devices from Ideal 49

4. Test Results 52

4.1. Figures of Merit 52

4.1.1 Breakdown Voltage 52

4.1.2 Dark Current 54

4.1.3 Gain 56

4.1.4 Responsitivity 57

4.1.5 Crosstalk Plot 58

4.2. Single APD Results and Comparison to Commercial Devices 59

4.2.1 l-V Curve 61

4.2.2 Breakdown Voltage 63

4.2.3 Dark Current 66

4.2.4 Gain 67

4.2.5 Spectral Response 70

4.2.6 Responsitivity 72

4.2.7 Noise Equivalent Power 73

4.3. APD Array Results 74

4.4. Problems of Non-Working Devices 77

4.4.1 No Signal 77

4.4.2 Uncontrolled Voltage Breakdown 79

4.4.3 Low responsitivity 80

4.4.4 Performance Uniformity 83

4.5. Solutions for Improvement 85

4.5.1 Lower Doping Levels / Correct P Layer Doping 85

4.5.2 Fabrication Control and Uniformity 86

5. Conclusion 87

6. Appendix 89

6.1. Oxide Thickness Calculation 89

VI

Page 8: Avalanche photodiodes arrays - RIT Scholar Works

6.2. Ion Implant and Drive-In Calculation 90

6.3. Fabrication Steps 99

6.4. Third-Order Polynomial Fit Algorithm in Microsoft Visual Basic 6.0 102

6.5. Responsitivity to Quantum Efficiency Conversion Calculation 106

6.6. Depletion Width and Built-in Voltage Calculation 107

6.7. Photodiode Test Data 109

6.7.1 Raw l-V Graphs 109

6.7.2 Raw l-V Data 156

6.7.3 Figures of Merit Analysis of Selected Photodiodes 170

6.7.4 Raw Crosstalk Data 243

6.7.5 Crosstalk Analysis of Selected Photodiodes 256

7. Bibliography 259

VII

Page 9: Avalanche photodiodes arrays - RIT Scholar Works

Table of Figures

Figure 1 .2.1 : Cross-Section of a PIN Photodiode 3

Figure 2.1.1: Cross-Section of a Reach-Through Avalanche Photodiode and

Corresponding Electric Field Strength 7

Figure 2.1 .2: Doping Profile of a P-N Step Junction 8

Figure 2.1 .3: Charge Density Profile of a P-N Step Junction 8

Figure 2.1 .4: Electric Field Profile of a P-N Step Junction 9

Figure 2.1.5: Layer Profile of a Reach-Through APD 11

Figure 2.1.6: Doping Profile of a Reach-Through APD 11

Figure 2.1.7: Charge Density Profile of a Reach-Through APD 11

Figure 2.1.8: Electric Field Profile of a Reach-Through APD 12

Figure 2.1.9: Carrier Mobilities as a Function of Dopant Concentration in Silicon [Pierret,

1996] 14

Figure 2.1.10: E-k Plots of Recombination of Direct and Indirect Semiconductor 15

Figure 2.1.1 1: Absorption Coefficient as a Function of Wavelength at 300K [Schroder,

1990] 17

Figure 2.1.12: Spectral Response of Silicon P-N Junction Photodiode [Pierret, 1996].... 18

Figure 2.1.13: Doping Profile of a P-N Junction 20

Figure 2.1 .14: Energy Band Diagram of a P-N Junction 21

Figure 2.1 .15: Electrostatic Potential of a P-N Junction 21

Figure 2.1 .16: Electric Field of a P-N Junction 22

Figure 2.1.17: Typical Diode l-V Curve 24

VIII

Page 10: Avalanche photodiodes arrays - RIT Scholar Works

Figure 2.1.18: Breakdown Voltage Versus Nondegenerate-side Doping Concentration for

Ge, Si, and GaAs semiconductors [Pierret, 1996] 28

Figure 2.1.19: Exaggerated Detail of the Curvature Effect 29

Figure 2.1 .20: Curvature Effect - Implant and Diffusion Spread 29

Figure 2.2.1: Passive Quenching Circuit 31

Figure 2.2.2: Transimpedance Amplifier Circuit 32

Figure 2.2.3: Quench and Transimpedance Amplifier Circuit 33

Figure 2.3.1 : Photocurrent Output of a Diode 35

Figure 3.1.1: Die Layout 38

Figure 3.1 .2: Die Layout with Labeled Areas 39

Figure 3.1 .3: Cross-Section of a Reach-Through APD with Contacts 41

Figure 3.2.1 : Silicon Consumption From Oxide Growth 43

Figure 3.2.2: Ion Implant Range and Straggle - Longitudinal Axis [Cheung, 2003] 44

Figure 3.2.3: Ion Implant Drive-In 46

Figure 3.4.1: Test Set-Up Diagram 47

Figure 3.4.2: Test Set-Up Picture 48

Figure 3.5.1: Doping, Depletion, and Electric Field Diagram of a Standard APD 49

Figure 3.5.2: Doping, Depletion, and Electric Field Diagram of Fabricated Reach-Through

APD 51

Figure 4.1 .1 : Breakdown Voltage via Interpolation Method 53

Figure 4.1 .2: Breakdown Voltage via Threshold Method 54

Figure 4.1 .3: Defined Dark Current 55

Figure 4.1 .4: Theoretical Crosstalk Plots 58

Figure 4.2.1: Acceptable and Unacceptable APD Current-Voltage Curves 59

Figure 4.2.2: l-V Plot (W4 C7,3 D200,20,300,Y) 61

IX

Page 11: Avalanche photodiodes arrays - RIT Scholar Works

Figure 4.2.3: l-V Plot (Mitsubishi PD8XX2 Series Photodiode) [Mitsubishi, 1997] 62

Figure 4.2.4: l-V Plot (W4 C7,3 D200,30,400,N) 63

Figure 4.2.5: l-V Plot with Breakdown Voltage Interpolation Lines (W4 C7,3

D200,20,300,Y) 64

Figure 4.2.6: l-V Plot with Breakdown Voltage Interpolation Lines (W5 C9.10

D400,20,500,N) 65

Figure 4.2.7: Dark Current (W4 C7,3 D200,30,400,N) 66

Figure 4.2.8: Gain (W4 C7.3 D200,20,300,Y) 67

Figure 4.2.9: Gain (Perkin Elmer) 68

Figure 4.2.10: Gain (W4 C7,3 D200,30,400,N) 69

Figure 4.2.11: Responsitivity vs. Wavelength (W4 C7,3 D200,20,300,Y) 70

Figure 4.2.12: Responsitivity vs. Wavelength (W5 C9,10 D400,20,500,N) 71

Figure 4.2.13: Responsitivity @ M=1 (W4 C7,3 D200,20,300,Y) 72

Figure 4.2.14: Practical Silicon Photodiode Responsitivity [Kruger, 2002] 73

Figure 4.2.15: Noise Equivalent Power (NEP) (W4 C7,3 D200,20,300,Y) 74

Figure 4.3.1 : Crosstalk Plot 76

Figure 4.4.1 : Metal Discontinuity Example A 78

Figure 4.4.2: Metal Discontinuity Example B 78

Figure 4.4.3: Responsitivity @ M=1 (W5 C9.10 D400,20,500,N) (@ 0.01u.m Depletion

Width) 82

Figure 4.4.4: Responsitivity @ M=1 (W5 C9,10 D400,20,500,N) (@ 0.1 ^im Depletion

Width) 83

Figure 4.4.5: [W4 C7,3 D200,20,300,N] and [W4 C10,9 D200,20,300,N] Comparison @

100% Illumination 84

Page 12: Avalanche photodiodes arrays - RIT Scholar Works

Table 3.1: Wafer Design Variations 36

Table 3.2: Pixel Geometry Variations in Die Design 37

Table 3.3: Photodiode Nomeclature 40

Table 4.1: Tested Photodiodes Results 60

XI

Page 13: Avalanche photodiodes arrays - RIT Scholar Works

Table of Equations

Equation 2.1: Charge Density Equation [Pierret, 1996] 9

Equation 2.2: Electric Field Equation [Pierret, 1996] 10

Equation 2.3: n-side / p-side Depletion Width [Pierret, 1996] 10

Equation 2.4: Built-in Potential Equation [Pierret, 1996] 10

Equation 2.5: Majority Carrier Mobility Equation [Pierret, 1996] 13

Equation 2.6: Photogeneration Rate [Pierret, 1996] 16

Equation 2.7: Photocurrent Due to Incident Light 17

Equation 2.8: Wavelength Energy at Band Gap Energy 18

Equation 2.9: Depletion Width at Zero Bias [Pierret, 1996] 23

Equation 2.10: Gain, M, Theoretical [Zeghbroeck, 2001] 26

Equation 2.11: Gain, M, Empirical [McKay and Chynoweth, 1956] 26

Equation 2.12: Voltage Breakdown Proportion to Doping 27

Equation 2.13: Transimpedance Amplifier Voltage Output 32

Equation 3.1 : Oxide Thickness Calculation 42

Equation 3.2: Implanted Ion Concentration 43

Equation 3.3: Fick's Second Law of Diffusion 44

Equation 3.4: Impurity Profile after Implant and Diffusion 45

Equation 4.1: Photodiode Gain, M 56

Equation 4.2: Primary Photocurrent, lP 56

Equation 4.3: Responsitivity, R 57

Equation 4.4: Functions of Responsitivity 57

Equation 4.5: Noise Equivalent Power (NEP) 73

Equation 4.6: Reprint of Equation 4.4 80

XII

Page 14: Avalanche photodiodes arrays - RIT Scholar Works

Equation 4.7: Depletion Width, Linearly Graded Junction 80

Equation 4.8: Built-in Voltage, Linearly Graded Junction 81

XIII

Page 15: Avalanche photodiodes arrays - RIT Scholar Works

1. Introduction

1 .1 . Scope ofWork / Objectives

The primary objective of this research is to design, fabricate, and test avalanche photodiode

(APD) arrays. The design is an array of planar reach-through APD structures on a single wafer.

The performance of the photodiodes and photodiode arrays are investigated using figures of

merit calculations. The feasibility of fabricating APD arrays in an academic lab environment is

determined by comparing the performance of the devices in this research to other commercially

available APDs. An analysis of improving the devices is discussed. The devices were designed

and fabricated in Rochester Institute of Technology's Microelectronic Department using

semiconductor processes.

1.2.APD History and Background

An avalanche photodiode (APD) is a solid-state photodetector that is typically fabricated using

silicon (Si), germanium (Ge), or combinations of lll-V materials from the periodic table such as

gallium arsenide (GaAs), indium gallium arsenide (InGaAs), and InGaAs/lnP. The device is

commonly described as being similar to a p-n junction photodiode with a multiplication region.

Known as a device that has an own internal gain, caused by operating in high reverse bias and

utilizing the avalanche mechanism within the semiconductor. The internal multiplication gives the

PD a high signal to noise ratio, giving signal amplification without amplification of the noise.

Page 16: Avalanche photodiodes arrays - RIT Scholar Works

Because of its sensitivity, APDs are used in low light level applications such astronomy, optical

fiber communication, spectrometry, laser radar, orwhere photon counting and/or

correlation

information is needed [MacGregor, 1991]. Also, because an APD's gain is a function of the

reverse bias voltage, it can be gain modulated by adjusting the reverse biasvoltage.

The first publication of avalanche photodiodes was in 1966 by R. J. Mclntyre, using silicon as the

device material [Mclntyre, 1966]. Research into using other materials, such as Ge, GaAs,

InGaAs, and InGaAs/lnP has been performed since. Different structures such as the planar

reach-through and the MESA structure have been studied. Other areas of research include

improving performance and uniformity of APDs. Since APDs have been popular due to their

small size and high sensitivity, APDs of different varieties are also commercially available.

Although avalanche photodetectors (APD) have existed for many years, arrays of APD on a

single chip are not widely commercially available. Arrays of APD present unique problems, such

as preventing cross-talk between pixels and controlling the uniformity of the device. The

applications for APD arrays are similar to single APDs such as astronomy, optical fiber

communication, etc. Its usage can be comparable to CCD arrays, but with a higher sensitivity

due to using APD technology as its photosensing mechanism.

One interesting application in using APD arrays versus a single APD is for the reception of optical

communications from space. Signals suffer degradation of the optical phase front due to

atmospheric turbulence, leading to random fluctuations of the point-spread function in the focal

plane. To simply have a larger detector area to collect the entire signal would also increase

background radiation noise, decreasing the noise to signal ratio. An optical detector array would

Page 17: Avalanche photodiodes arrays - RIT Scholar Works

be able to adaptively select areas of higher signal while ignoring areas with high background

noises [Mclntyre, 1966].

1.2.1 Advantages of APDs Compared to Other Detectors

Compared to similar devices such as PIN photodiodes and photomultiplier tubes (PMT), APDs

are more sensitive, robust, and compact. APDs are a derivative of PIN diodes and are similar in

structure. PIN diodes have an intrinsic region sandwiched between a heavily doped p+ and n+

layers, creating a depletion region where electron-hole pairs are generated from incident photons:

j n Doped Impurities j j Oxide

\/A p Doped Impurities Metal Contacts

n

n+

^^^^^^^^^^^^^^^^^^^^^^^^^^

Figure 1.2.1: Cross-Section of a PIN Photodiode

The advantages of PINs over most photodetectors are that they are highly customizable in terms

of spectral response and have a greatly enhanced frequency response. Because photons are

absorbed in the intrinsic region (7t-region) of the PIN, the peak wavelength response can be

tailored by changing the thickness of the 7t-region. This is done by making the rc-layer thickness

equal to the inverse of the absorption coefficient (1/a) for the desired wavelength. PINs have a

Page 18: Avalanche photodiodes arrays - RIT Scholar Works

higher frequency response also due to the 7t-region. The highelectric field within the depleted

tc-

region leads to rapid collection of the photogenerated carriers [Pierret, 1 996]

The major difference between PIN diodes and APDs are that APDs have an additional

avalanching multiplication region. Consequently, PIN diodes are not as sensitive.

There are other devices that are as sensitive to photon detection as APDs. Photomultiplier tubes

(PMT) are very sensitive and have a fast response, but the quantum efficiency drops significantly

at wavelengths longer than 400nm [MacGregor, 1991]. Also, PMTs are susceptible to moisture,

have a high dark current, and delicate, making it unsuitable for portability [Proudfoot, 1 997]. In

addition, trying to collect spatial information by having an array of PMTs is simply not possible or

feasible due to its bulk size. A Multi-Anode MicroChannel Array (MAMA) detector is possibly the

closest equivalent to APD arrays, where MAMA detectors have the high sensitivity and can

collect spatial information. Unfortunately their physical size and operation, where a

photocathode, microchannel plate, anode array, and supporting electronics are needed, is still too

delicate for portability.

Silicon APDs have useable quantum efficiency between wavelengths from around 200nm to

1 100nm and hence, are sensitive between those wavelengths. Other materials have been

investigated, especially lll-V compounds such as GaAs, InGaAs, Ge, etc. which have better

quantum efficiencies at higher wavelengths. Although lll-IV compounds can have a higher

sensitivity beyond 1 100nm up to 1300nm, the advantage of silicon APDs is that it has a much

lower noise due to having only one carrier, namely electrons, which initiate the avalanche

process. The electron/hole ionization rate (a/p) of silicon is around 50, compared to ratios of

near unity for other lll-IV compounds [Ridley, 1985].

Page 19: Avalanche photodiodes arrays - RIT Scholar Works

1.3.Thesis Background

The original scope of work was to design and fabricate APD arrays along with onboard

discriminator circuits. The array would be read in by a computer via a multi-channel I/O card, with

the intended application is to have this device somewhat portable for in-the-field use. The

devices were to be designed and fabricated at Rochester Institute of Technology's

Microelectronic Department.

In order to achieve that final goal, several successful steps were needed: have working individual

APDs, working APD arrays, working discriminator circuits onboard, and a practical interface to the

computer.

Because avalanche photodiodes have never been fabricated at the Microelectronic Department,

knowledge of the design and fabrication needed to be gained. In doing so, successful individual

APDs, especially with uniform characteristics, were difficult to fabricate. The result is that only a

handful of arrays (array sizes of only four pixels) were able to exhibit successfully working

characteristics.

This thesis will discuss the theory and design of the avalanche photodiode, fabrication process,

and test results. It will also discuss the problems of the devices and provide an analysis of

improving the design and fabrication.

Page 20: Avalanche photodiodes arrays - RIT Scholar Works

2. Device Theory and Design

APDs are solid-state devices that are fabricated using silicon (Si), germanium (Ge), and

combinations of lll-V materials from the periodic table such as gallium arsenide (GaAs), indium

gallium arsenide (InGaAs), and InGaAs/lnP

APDs are essentially a p-n junction photodiode with a multiplication region. Common tomost

optoelectronic devices, there is a lightly doped layer that serves as a photo absorption region.

What is unique to the avalanche photodiode is an extra multiplication region, giving the device its

internal signal gain.

Ill-V compounds are sensitive up to wavelengths approximately 1600nm versus about 1 100nm

for silicon. But silicon APDs are much less noisy due to the high electron-hole ionization rate of

about 50 versus close to unity for the other materials. This mechanism is important for the device

operation and will be described in detail later. Also, another reason silicon technology is used is

because it is much more widely used and therefore has more advanced fabrication techniques,

which leads to better uniformity and control that is critical to device performance.

2.1. Device Structure and Operating Principles

The standard design of an avalanche photodiode consists of an intrinsically doped region for

photo-absorption, a multiplication region that has a high electric field presence, and a guard ring

Page 21: Avalanche photodiodes arrays - RIT Scholar Works

to minimize edge breakdown voltage problems. Here is a cross-sectional diagram of the

standard design, and it's known as the planar reach-through structure:

Incoming Light

Multiplication

Region Electric Field

n+

guard

rings

Absorption

Region 71 (intrinsic)

p+ contact

OCD

y

Figure 2.1.1: Cross-Section of a Reach-Through Avalanche Photodiode and

Corresponding Electric Field Strength

The pixel shape of an APD is round, to achieve a uniform edge junction and preventing current

crowding. That can lead to early voltage breakdown.

2.1.1 Depletion Region Concept

Because the planar reach-through APD structure consists of several layers of elements,

combined with the criticalness of the APD of needing a high internal electric field for carrier

multiplication, the doping of the device along with the concept of the depletion region is critical.

Page 22: Avalanche photodiodes arrays - RIT Scholar Works

Avalanche multiplication of the carriers happens that the point of the highest electric field within

the device. Ideally, this should occur in the designed multiplication area, around the top p-n

junction area. As a review, the following is the conceptual idea of how the electric field is affected

by the charge density and doping profile:

Nd-Na

Nr

-N.

Figure 2.1.2: Doping Profile of a P-N Step Junction

P

i

qND

qN,

Figure 2.1.3: Charge Density Profile of a P-N Step Junction

Page 23: Avalanche photodiodes arrays - RIT Scholar Works

Figure 2.1.4: Electric Field Profile of a P-N Step Junction

For the purpose of the review, a step junction approximation is used for simplicity.

The following are equations that help form the above graphs. The charge density equation is

given by:

P =

qNA

qND

0

-

xp< x < 0

0<x<xn

x<-x andx>x

Equation 2.1: Charge Density Equation [Pierret, 1996]

Where q is the electron charge, NA and ND are the acceptor and donor doping concentration,

respectively. xn and xp are the n-side and p-side width of the depletion region, respectively.

The electric field is given by:

Page 24: Avalanche photodiodes arrays - RIT Scholar Works

E(X):

3i^(Xp+x) ...-xp<x<0

qND

Ks 0(xn+x) ... 0<x<xr

Equation 2.2: Electric Field Equation [Pierret, 1996]

Where Ks is the dielectric constant and e0 is the permittivity of freespace. To determine xp and

xn:

*n=

2KS0NAv

qND(NA+ND)b

xp=

2Ksg0ND^

qNA(NA+ND)b

Equation 2.3: n-side / p-side DepletionWidth [Pierret, 1996]

Where Vbi is the built-in potential, determined by:

Vbi=^lnKT . fNA ND

n>

Equation 2.4: Built-in Potential Equation [Pierret, 1996]

Applying the above concept to the structure of the reach-through APD, the doping profile, charge

density, and corresponding electric field is:

10

Page 25: Avalanche photodiodes arrays - RIT Scholar Works

n+ 71 p+

-* X

Figure 2.1.5: Layer Profile of a Reach-Through APD

ND-NA

Nr

-> x

-N,

Figure 2.1.6: Doping Profile of a Reach-Through APD

qND

-qNA

-> X

Figure 2.1.7: Charge Density Profile of a Reach-Through APD

11

Page 26: Avalanche photodiodes arrays - RIT Scholar Works

*- X

Figure 2.1.8: Electric Field Profile of a Reach-Through APD

Because of the unique shape of the electric field throughout the device, there are two regions of

interest, the Absorption region, which is essentially the intrinsic (/) region of the device, and the

Multiplication region, which is the p-n junction with the high electric field.

It is also pointed out here that, since it is desired to have the depletion region be extended into

the intrinsic region and stop at the p+ layer, the middle p and i layers should be doped

accordingly.

2.1.2 Absorption Region

As the name implies, the purpose of this region is to absorb the incoming photons. As photons

are collected, electron-hole pairs are generated from the photon energy via photogeneration.

Photogeneration is when electrons in the valence band are directly excited into the conduction

band from the energy of the incoming photon [Pierret, 1 996]. The mechanism of photogeneration

is discussed in detail in Section 2.1 .2.1 . Once electron-hole pairs are generated, the mild electric

field present in this region sweeps one carrier, either holes or electrons depending on device

design, into the multiplication region.

12

Page 27: Avalanche photodiodes arrays - RIT Scholar Works

Another characteristic of this region is in having a light doping to facilitate high carrier mobility.

Since the goal of the absorption region is to collect photons and generate electron-hole pairs,

recombination of carriers or collisions between the free carriers and the lattice is not desired. At

the weak electric field that is present in the absorption region, any collisions with the lattice would

not result in impact ionization and would in fact, impede the sensitivity of the device by the

scattering of the carriers from the lattice vibration. Instead, this layer is to have a weak electric

field sweep the carriers into the multiplication region, where the high electric field there would

create the desired impact ionization.

The relationship between doping density and mobility is:

M= Mmin+-

Mo

1 +'N

^

Nref

Equation 2.5: Majority Carrier Mobility Equation [Pierret, 1996]

Where:

Parameter

Values at 300K

Electron Carrier Hole Carrier

Nref [cm3] 1.3MO17

2.35MO17

u.mln [cm3A/-sec] 92 54.3

u-o [cm3/V-sec] 1268 406.9

a 0.91 0.88

[Pierret, 1 996]

13

Page 28: Avalanche photodiodes arrays - RIT Scholar Works

The graph is:

* i--.<{;-a-*<

:

< <....(...*...>.(.<*

( j ^ i V-<".^. i-

Electrons HI!:

-i ^ ; i i.i-4-^

Silicon : ;T;

7=300Khfi

1000

:-. -.- ~

-::t : ;:;

: l ::\'-~-

f--^H44tf:::::q:::4:::p:pf^;:|

' A'a or Nx> (cm-3 . >, fh

-

Holes -i-ffftr...;.n....|.44.ji;

100

1 lxlO'4. ...: 2

:;:::-"t 1 x IOl!....

2

1358 461

1357 460

1352 459

1345 458 ?

1332 455"

1298 448 -.j.

1248 437 :!

1165 419 ?v

986 378

801 331

"~""f~4~f~iTuf1 j~4444J4

''-,"*": ~-.-^j 1 X 10"\...

"'] 2

10

i i x io" ....

1014 10'5 10'6 1017

NAor/VD(cm-3)

10'8

Figure 2.1.9: Carrier Mobilities as a Function of Dopant Concentration in Silicon [Pierret,

1996]

2.1 .2.1 Photon Absorption / Electron-Hole Generation

When light is transmitted into semiconductor material, electron-hole pairs are generated if the

incident photon energy is greater than the band gap energy. These generated electron-hole pairs

in turn generate current. This is known as photogeneration and the current from this process is

the photocurrent.

To understand how an absorbed photon generates electron-hole pairs, E-k plots (electron-energy

band vs. electron crystal momentum) are used to visualize the process. There are two general

categories of E-k plots in regards to semiconductor materials, direct semiconductor and indirect

14

Page 29: Avalanche photodiodes arrays - RIT Scholar Works

semiconductor. The difference being that direct semiconductors have the minimum conduction

band energy and the maximum valence band energy both at k=0, while indirect semiconductors

have the conduction band minimum shifted off from k=0:

Direct Semiconductor Indirect Semiconductor

Figure 2.1.10: E-k Plots of Recombination of Direct and Indirect Semiconductor

Silicon is an indirect semiconductor. When a photon with certain energy (hv) is absorbed into the

silicon, it is essentially a vertical transition of an electron on the E-k plot, since photons are

massless entities and carry no momentum. In contrast, momentum generated from lattice

vibrations, known as phonons, translate to a horizontal movement on the E-k plot [Pierret, 1996].

To generate an electron-hole pair from an incident photon, the photon need to have energy

greater than the band gap energy and have some assistance from lattice vibrations in order to

make the electron jump from valence to conduction band.

Because of the polarity of the electric field of the absorption region and the depletion region it

creates, the photogenerated electron-hole pairs add a reverse current to the overall reverse

15

Page 30: Avalanche photodiodes arrays - RIT Scholar Works

current generated from the avalanching mechanism. Hence, the reverse current increase when

light is present.

To determine the current generated from the incident light, the photogeneration rate (GL) needs to

be determined first:

aP,

G, = *-L Ahu

Equation 2.6: Photogeneration Rate [Pierret, 1996]

Where a is the absorption coefficient in [1/cm], P| is the incident optical power in [W], A is the

illuminated area in [cm2], and hv is the photon energy in [eV]. Photogeneration rate GL is in [cm

3*sec"1] units. The absorption coefficient is a function of wavelength and temperature and is

different for each type of semiconductor:

16

Page 31: Avalanche photodiodes arrays - RIT Scholar Works

105

104r

103

10

1

\ \S1 1 1 1 z

1 { \-

:

GaAs

\ GeV1 \ Si >

~

InP _ \~

: GaP

\\"

1

1 \\, , ,

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure 2.1.11: Absorption Coefficient as a Function ofWavelength at 300K [Schroder,

1990]

Assuming a constant photogeneration rate throughout the semiconductor, the photocurrent due to

incident light (lL) is:

"2

lL =-qA Jgl dx

Equation 2.7: Photocurrent Due to Incident Light

17

Page 32: Avalanche photodiodes arrays - RIT Scholar Works

Where A is the illuminated area, x, and x2 are the boundary locations of thethickness of the

illuminated area.

The photocurrent generated from a semiconductor is also dependent on the wavelength, or

spectral response. At the same incident optical power across all wavelengths, the photocurrent is

expected to be:

0.8

j 0.6

0.4

02

0

0.4 0.5 0.6 0.7 0.8 OS 1.0 1.1 1.2

Wavelength (/an)

Figure 2.1.12: Spectral Response of Silicon P-N Junction Photodiode [Pierret, 1996]

The decrease in the longer wavelength region of the spectral response graph is due to the band

gap of the silicon material. Since electron-hole pairs are generated only when the incident

photons have more energy than the band gap, the upper wavelength limit essentially cuts off at:

K =

1.24

Equation 2.8: Wavelength Energy at Band Gap Energy

18

Page 33: Avalanche photodiodes arrays - RIT Scholar Works

Where EG is the energy band gap of the material. For silicon, the EG is 1 .12eV at 300K and the

effective wavelength limit is about 1.1p.m.

The decrease of the spectral response at shorter wavelengths is due to two reasons. First,

photon energy increases at shorter wavelengths. Since the incident optical power is held

constant, the flux of the incident photon decreases as compared to longer wavelengths.

Therefore, the decrease in spectral response is partially due to the decrease of the number of

incident photons absorbed. Second, as shown in Figure 2.1 .1 1,the absorption coefficient

increases rapidly at shorter wavelengths. Taking the inverse of the absorption coefficient (1/a),

the light being absorbed in the material, on average, takes place increasingly closer to the

surface at shorter wavelengths. Since the p-n junction is at a set depth into the material, the

photogenerated carriers from the light absorption recombine before they can diffuse into the

depletion region. It is noted that Figure 2.1.12 is a typical representation of spectral response;

the peak can be tailored by changing the depth of the p-n junction in the device.

2.1.3 Multiplication Region / P-N Junction

The first two layers of the"front"

side of an APD are the n+ and p layers. Together they form a p-

n junction and its characteristics behave exactly as a classical p-n junction diode. In the case of

the APD device, the p-n junction serves as the multiplication region. As photons are collected in

the absorption region and electron-hole pairs are generated, the electron or hole carriers,

depending on the device design, are swept into this multiplication region. The carriers are then

multiplied via the avalanche mechanism, a condition created by applying a high reverse voltage

bias on the p-n junction.

19

Page 34: Avalanche photodiodes arrays - RIT Scholar Works

As a review, the doping profile, energy band, electrostatic potential, and electric field diagrams of

a p-n junction under equilibrium, forward bias (VA>0), and reverse bias (VA<0) are [Pierret, 1996]:

A

ND

"NA

Figure 2.1.13: Doping Profile of a P-N Junction

20

Page 35: Avalanche photodiodes arrays - RIT Scholar Works

Equalibrium (VA = 0)

E,

Forward Bias (VA > 0)

Figure 2.1.14: Energy Band Diagram of a P-N Junction

Figure 2.1.15: Electrostatic Potential of a P-N Junction

21

Page 36: Avalanche photodiodes arrays - RIT Scholar Works

V. > 0

Figure 2.1.16: Electric Field of a P-N Junction

It is noted that the above diagrams are using a step junction profile for simplicity.

Notice in Figure 2.1 .14 the energy band diagrams have a section where the bands are"bent"

,or

band bending. Band bending is due to a connection made between the p-type and n-type

materials. Charge carriers from both materials diffuse from regions of high concentration to low

concentrations. Specifically, holes from the higher p-doped side would diffuse into the n region

and electrons from the heavier n-doped side would diffuse into the p region. When the carriers

diffuse away from their original location, they leave behind an unbalance of charges, or ionization.

The p-side would have ionized acceptors and the n-side would have an equal number of ionized

donors [Torres, et. al., 2002]. This section of the diode, where the p-doped and n-doped layers

meet, is known as the depletion region.

The width of this depletion region is mainly a function of doping concentrations and is calculated

by:

22

Page 37: Avalanche photodiodes arrays - RIT Scholar Works

w =

2KC (s "-0 NA+NC

NANDVh

Equation 2.9: Depletion Width at Zero Bias [Pierret, 1996]

Where Ks is the semiconductor dielectric constant, e0 is the permittivity of free space (8.85* 10"14

[farad/cm]), q is the electronic charge (1 .6* 10'19

[coul]), NA and ND is the acceptor and donor

doping concentration in [cm-3] respectively, and Vb, is the voltage breakdown in [V]. This equation

is assuming that the junction is a perfect step function and no voltage bias is applied.

As suggested by Figure 2.1 .15 and Figure 2.1.16,

an increase of the electrostatic potential by

having a reverse voltage bias can increase the magnitude of the electric field. As discussed in

Section 2.1 .3.1,a"good"

avalanche mechanism is mainly dependent on having a high electric

field.

2.1.3.1 Avalanche Mechanism

When reverse biasing a p-n junction, where current is flowing from the n-doped region of the

semiconductor to the p-doped region, current flow is limited to a few milliamps and is independent

to the magnitude of the reverse bias. If the reverse bias is continually increased beyond a certain

point, known as the breakdown voltage, a large current will flow. This is a completely reversible

process and does not damage the diode, except for overheating concerns if there is excessive

current flow.

23

Page 38: Avalanche photodiodes arrays - RIT Scholar Works

4+ I

Voltage

Breakdown

T-l

Figure 2.1.17: Typical Diode l-V Curve

Two processes cause this large current flow occurring beyond the voltage breakdown. One is the

Zener process and the other more predominant process is the avalanche mechanism [Pierret,

1996].

The Zener process is where the particle, instead of gaining enough kinetic energy to overcome

the potential energy barrier to move, tunnels through the barrier without any change in the particle

energy. This phenomenon is rare compared to the avalanche process. It happens when the

width of the potential energy barrier is very thin (less than 100A) and can only happen when there

are filled states on one side of the barrier and empty states on the other side of the barrier

[Pierret, 1996].

24

Page 39: Avalanche photodiodes arrays - RIT Scholar Works

The dominant process in contributing to the breakdown current is the avalanche process. When

the diode is in reverse bias past the breakdown voltage, the current flow is due to minority

carriers entering the depletion region and accelerated to the other side of the junction. The

movement of the minority carriers is caused by the internal electric field. When minority carriers

cross the depletion region, it collides with the semiconductor lattice. The mean free path is about

~10nm between collisions and depletion widths are around the order of magnitude of microns. At

small reverse biases the energy losses from the collisions are small and only cause lattice

vibrations. The result is just localized heating from friction vibrations.

At high reverse biases, beyond the reverse breakdown voltage, impact ionization occurs. The

minority carriers accelerate through the depletion region with enough energy that when it collides

with the lattice, it ionizes a semiconductor atom, freeing a valence electron from the atom and

giving it enough energy to jump into the conduction band. This creates an electron-hole pair.

Because of the high electric field present, these newly generated carriers are then immediately

accelerated and consequently collide with the lattice for more impact ionization. The result is a

multiplication of carriers and the reverse current essentially peaks off into infinity [Pierret, 1 996].

As a note, the avalanche mechanism does not occur sharply at the breakdown voltage. Because

collisions, mean free path, and energy of each carrier is a random variable distributed around a

mean value, there are avalanching events happening far below breakdown and conversely, not

all free carriers participate in the avalanche effect at voltages beyond breakdown. Below

breakdown, there may be a few free carriers that have enough energy to cause impact ionization

to start, but because of the low electric field, it does not permeate. It is only at higher reverse

biases that this phenomenon becomes significant and leads to high reverse current [Pierret,

1996]. The result of this statistical distribution is that there is not a sharp edge at the voltage

25

Page 40: Avalanche photodiodes arrays - RIT Scholar Works

breakdown, but a sloping approach and a slightly gentle bend to the curve as depicted in Figure

2.1.17.

When the device is in avalanche breakdown, the increase in current is expressed by a carrier

multiplication factor, or gain:

M = L

1- [ordx

xi

Equation 2.10: Gain, M, Theoretical [Zeghbroeck, 2001]

Where x, and x2 are the boundaries of the depletion layer region and a is the ionization

coefficient. This theoretical equation assumes that the electrical field is constant between the

depletion boundaries.

Empirically, the multiplication factor is expressed as:

M-'

(1-

va

vbr)

Equation 2.11: Gain, M, Empirical [McKay and Chynoweth, 1956]

Where Va is the voltage applied, Vbr is the breakdown voltage, and m is between 3 and 6

depending on the semiconductor material used.

26

Page 41: Avalanche photodiodes arrays - RIT Scholar Works

As a note, the voltage breakdown value is can be designed by controlling the doping level of the

lighter doped side of the junction. At lighter dopings, approximately below 1017/cm3, the

breakdown voltage is proportional to the doping level:

V,BR

Sp

Equation 2.12: Voltage Breakdown Proportion to Doping

Where NB is the doping concentration on the lighter doped side of the junction [Pierret, 1996].

Figure 2.1.18 shows the VBr and doping relationship for Si, Ge, and GaAs semiconductors [Sze,

1981]. At heavier dopings beyond 1017/cm3, as indicated by the dashed line in the figure, the

relationship does not follow Equation 2.12.

27

Page 42: Avalanche photodiodes arrays - RIT Scholar Works

1000

10 1015 1016

/VAorWD(cm-3)

1017 10'

Figure 2.1.18: Breakdown Voltage Versus Nondegenerate-side Doping Concentration for

Ge, Si, and GaAs semiconductors [Pierret, 1996]

2.1.4 Guard Ring

The purpose of the guard ring around the main avalanche photodiode structure is to minimize

edge breakdown and achieve a more uniform breakdown across the photodiode [Pierret, 1996].

Because planar reach-through structures are fabricated using diffusion and ion-implantation

through a mask, it always creates a curved edge from the bulk of the substrate to the edge:

28

Page 43: Avalanche photodiodes arrays - RIT Scholar Works

Impurity after implant

and diffusion ^

71 Bulk Silicon (Intrinsic)

Figure 2.1.19: Exaggerated Detail of the Curvature Effect

This is known as a "curvatureeffect"

[Sze, 1 966]. It is due to the fact that when impurities diffuse,

it diffuses in all direction; vertically and horizontally:

Impurity after implant

Impurity after implant and diffusion

Figure 2.1.20: Curvature Effect - Implant and Diffusion Spread

Since the "curvatureeffect"

presents a non-uniform edge shape between the heavily doped

multiplication region and the lightly doped absorption region, it results in a premature low voltage

breakdown at the junction periphery.

29

Page 44: Avalanche photodiodes arrays - RIT Scholar Works

One approach to eliminate this problem is to create a guard ring at the junction periphery to

reduce the electric field and minimize edge voltage breakdown. It can be thought of as a buffer

zone between the multiplication and absorption region. The guard ring is lighter doped than the

multiplication region, but is not as light as the absorption region [Matsushima, et. al., 1984].

2.2. Supporting Electronics

A complete APD array system requires supporting electronics in order for it to be functional. The

two major components are a quenching circuit and a transimpedance amplifier.

2.2.1 Quenching Circuit

A quenching circuit is needed in order to prevent pixels to latch indefinitely in the avalanche

mode. There are two main categories of quenching circuits: passive quenching and active

quenching. Both of them operate on a principle based by lowering the bias voltage when extra

current flows and restoring the voltage bias soon after to enable the photodetector to detect

another signal. Passive quenching circuits are easier to implement, but are slow in recovery from

the avalanche pulses [Cova, et. al., 1996].

Passive quenching circuits operate by developing a voltage drop on a high impedance load. It

uses resistors in a voltage divider configuration to prevent latching [Cova, et. al., 1996]:

30

Page 45: Avalanche photodiodes arrays - RIT Scholar Works

Figure 2.2.1: Passive Quenching Circuit

By selecting the right resistor values, the APD, depicted by the diode symbol in Figure 2.1 .1 , is at

the desired bias in dark conditions (no signal light input).

Because the APD is a current sourcing device, when as incoming photon triggers the APD into

avalanche and extra current is sourced, the biased voltage at the Vbias point drops, changing the

reverse bias level of the APD itself and unlatching the avalanche mechanism. Therefore the

voltage seen at Vout is at first negative (the detector is reverse biased) and spikes in the positive

direction when there is incoming light, and drops back down to starting level when it is dark again.

The passive quenching circuit is best using the APD in Geiger mode, counting photons and

requiring the output to be binary in reporting if photons are present or not.

2.2.2 Transimpedance Amplifier

Since most solid-state devices are essentially current sourcing devices, a transimpedance

amplifier is necessary for the operation of these devices. The role of a transimpedance amplifier

31

Page 46: Avalanche photodiodes arrays - RIT Scholar Works

is to both amplify the signal of the detector andconvert it from a current to a voltage signal. It

utilizes an operational amplifier (op amp) circuitry with a feedback resistor:

Figure 2.2.2: Transimpedance Amplifier Circuit

The value of the feedback resistor adjusts the voltage gain of the amplifier by using the classic

formula:

Vout ="

'in ^F

Equation 2.13: Transimpedance Amplifier Voltage Output

A common mistake to avoid is in selecting a high gain such that the voltage output is higher than

the +Vcc and -Vee rail voltage used to power the op amp; the output will be clipped.

To utilize the transimpedance amplifier along with the quenching circuit to read from an APD, the

circuit is:

32

Page 47: Avalanche photodiodes arrays - RIT Scholar Works

Figure 2.2.3: Quench and Transimpedance Amplifier Circuit

2.3. Problems with Arrays of APDs

Due to the nature of how an APD operate, creating an array of APDs has certain obstacles. The

problems involved are in having optical and electrical cross-talk, the significance of non-uniformity

within pixel and from pixel-to-pixel, and the possibility of having a pixel latched in the avalanching

state after photon detection.

2.3.1 Cross-Talk

It was first reported in the 1 950's that photons were emitted from avalanche breakdown in silicon.

During a reverse bias voltage breakdown, photon emission occurs at the p-n junction and is due

to both avalanche and Zener mechanism [McKay and Chynoweth, 1 956]. Optical cross-talk

describes the condition when the diode itself is emitting secondary photons from the avalanche

and Zener mechanism as triggered by the primary incoming photons. These photons can then be

33

Page 48: Avalanche photodiodes arrays - RIT Scholar Works

detected by surrounding pixels. In an experiment by Franco Zappa et. al., the secondary photons

emitted are proportional to the current flowing through the diode [Zappa, 1996].

Electrical cross-talk can either arise from a readout circuit, consisting of a quenching circuit and

an amplifier, or from the avalanche mechanism. The avalanche source of cross-talk is due to the

relatively high electric field and impact ionization taking place. It is possible for the ionizing carrier

to scatter into adjacent pixel and produce a false trigger. Because this is a random event, as the

pixel-to-pixel distance gets closer, the probability of having a carrier wander into adjacent pixels is

higher. Therefore, to minimize or eliminate electrical cross-talk, pixels need to be spaced out.

The tradeoff of this is that the dead space, the region between pixels where it would not sense

incoming photons, increases.

2.3.2 Non-Uniformity

The gain of an APD is dependent on the strength of the electric field across the depletion region.

The uniformity of the electric field is dictated by the doping uniformity of the n and p regions of the

ADP. Therefore, the gain of the device is dependent on the doping uniformity, which is

dependent on the fabrication process technology.

To illustrate the importance of controlling the fabrication process to control the uniformity of diode

performance, the equation of the photocurrent output of a diode is used:

34

Page 49: Avalanche photodiodes arrays - RIT Scholar Works

, Poqd-r)(1,e-ad)

Figure 2.3.1: Photocurrent Output of a Diode

Where P0 is the incident optical power, q is the charge, r is the optical reflection loss, hv is the

photon energy, a is the absorption coefficient, and d is the depletion layer width. Since d is an

exponential term, small changes in the depletion width would result in a significant change in the

photocurrent of the diode.

2.3.3 Pixel Latching

There are problems associated with single APDs in general. Besides cross-talk that generates

false triggers, thermally generated electron-hole pairs can also have the same effect. This is

known as the dark current. At relatively higher temperatures, a carrier may be able to receive

enough energy to ionize and cause the avalanche process, since the high electric field is already

present.

A second problem is that when an electron-hole pair is generated, either thermally or optically

from a photon, the device discharges and if it exceeds a certain latch current, would remain in the

avalanche state. A quenching circuit is needed to momentary lower the electric field to stop the

avalanche effect and quickly raise the electric field back in order to detect further photons.

35

Page 50: Avalanche photodiodes arrays - RIT Scholar Works

3. Implementation

3.1. Design

APD arrays were fabricated at the Rochester Institute of Technology Microelectronics

Department. Several APD array designs were fabricated and tested to see howcertain design

element changes would affect performance.

3.1 .1 Wafer Variations

One wafer was used for each design variation. The variations included using either polysilicon or

aluminum as the metal connection, having a guard ring, or eliminating the middle p layer. There

were five designs:

Wafer ID Description

APD02-01 Regular NiP structure

APD02-02 NiP structure with polysilicon contacts

APD02-03 NiP with no Guard Ring

APD02-04 NPiP Structure with no Guard Ring

APD02-05 NPiP Structure with Guard Ring

Table 3.1 : Wafer Design Variations

To find how pixel dimensions change the performance of the device, several pixel dimensions

were fabricated on the same die. Pixel diameter varied from 100 to 1500um. The guard ring

36

Page 51: Avalanche photodiodes arrays - RIT Scholar Works

lateral width was from 10 to 50um. Most pixels were replicated and placed in an array fashion at

various distances. The following table shows the different pixel dimensions available in the die:

Pixel (Active

Area) Diameter

Guard RingLateral Width

Pixel to Pixel

Distance (Center

to Center)

Ring Material

100u.m 10u.m 100|im Polysilicon

100u.m 10u.m 200|im Polysilicon

100u.m 10u.m 400u.m Polysilicon

200u.m 10u.m 400|am Polysilicon

200^m 20u.m 250|am Polysilicon

200u.m 20u.m 300u.m Polysilicon

200u.m 20u.m 300|am Aluminum

200u.m 20u.m 400u.m Polysilicon

200u.m 30n.m 400|im Polysilicon

400u.m 20u.m 500u.m Polysilicon

400^m 20u.m 750|im Polysilicon

1 500u.m 50u.m N/A Aluminum

Table 3.2: Pixel Geometry Variations in Die Design

3.1.2 Die Layout

Several pixel sizes along with a few other devices were fabricated in each die. The following

illustration shows the layout of the die:

37

Page 52: Avalanche photodiodes arrays - RIT Scholar Works

Figure 3.1.1: Die Layout

As a reference to the size of the die, all the contact pads are 100x100 urn. The die layout is

shown again but with labels to indicate each area:

38

Page 53: Avalanche photodiodes arrays - RIT Scholar Works

-r-*

:;,>j^-;'i

I;-,'. :,-

O?- :

**.<

lil

'!APD with Passive

Quench Circuits,j:i.

j,<Various APD Arrays'

>?r\. i^i -r^, ^X!*?'

W"i!W~

\J }i -1! .-.

? i.v

/<:*?'

ft-- -.1 -4 ,*.,: ;f3

if^ ^ f^ f^v

.- -*- *^ ^=

^F^-->-.

"^^

'4i?J'V^*

<t-:^'

I^ki?1

7]-

ri n q

| D1500,50,0,Y

i iD200,30,400,N i \ D200.1 0,400,N'

D 1100.10 .200,N i ;

'.":

D 1 00,1 0 .400.N

: .- jlI _j. : : -. . i

, , .1

\ ''*. S"i. *"* -i"**. , \-:~\ -A-\ j.-:-\r*~'.

D200.20.300.N'j

u:s' 1 lr :

: 1 Resistors =

:':

"1 ! 111"

-

|j1

ji

! "~*.'

tj

t

I"

t

.1

:'D200.20.306.Y

1

1

1

1

D100.10.100.N:

; D200.20.250.N ;

: ir t: m -j :

- : ^Alignment*

:;..* ->.."

:| ^ Verniers-

iYD200.20.400.N--1:,:

; j ^itPSSh-^ii

D400,20,750,N

ft ED

Figure 3.1.2: Die Layout with Labeled Areas

Photodiodes [Dddd,gg,ppp,Y/N\:

The arrays of photodiodes arranged in sets of fours are labeled with the following designation:

39

Page 54: Avalanche photodiodes arrays - RIT Scholar Works

ddd Active diameter of the photodiodes.

99 Width of the guard ring.

PPP Pixel to pixel distance measured from center to center.

Y/NIf the guard ring is fabricated of aluminum (Y) or frompolysilicon (N).

Table 3.3: Photodiode Nomeclature

Various APD Arrays:

Various APD arrays in different configurations and connections.

APD with Passive Quench Circuits:

Individual APD pixels with connected resistor as quenching mechanism.

Resistors:

Various resistors with different resist values.

Alignment Verniers:

Used for aligning the Guard Ring, N+ Region, P+ Region, and Aluminum mask levels.

3.1.3 Device Cross-Section

The general device structure used was the planar reach-through structure as described in Section

2.1 . The following figure shows the final cross-section of the device:

40

Page 55: Avalanche photodiodes arrays - RIT Scholar Works

[ _J n Doped Impurities I j Oxide

^^ p Doped Impurities f:*:j p+ Contact

Poly-Si or Aluminum Interconnectn+ Guard Ring

7t Bulk Silicon (Intrinsic)

Figure 3.1.3: Cross-Section of a Reach-Through APD with Contacts

The type of wafer used was a heavily doped p-type (boron) substrate with a 28u.m thick epitaxial

layer. The substrate had a resistivity of 0.0163 Q-cm while the epitaxial layer was around 18Q-

cm. The substrate served as the p+ contact layer while the remaining device features were in the

epitaxial layer. The impurity layers are fabricated using ion implantation at various species and

doses. The drive-in steps are done via diffusion furnaces. Traditional g-line optical lithography

was used for masking and defining device layouts.

3.2. Calculations

Three specific calculations are needed in order to fabricate the device properly: oxide growth

thickness, ion implant dose, and drive-in time.

41

Page 56: Avalanche photodiodes arrays - RIT Scholar Works

3.2.1 Oxide Thickness

The following equation is used in order to determine the oxide thickness growth:

A'

x

2h+*-l

Equation 3.1: Oxide Thickness Calculation

Where:

A =K1ekT

B = K2ekT

B/A is known as the linear rate constant and B as the parabolic rate constant. T is the process

temperature in Kelvin, t is the oxidation time in hours, and k is the Boltzmann constant in [eV/K].

Oxide thickness x is in microns. Exact values of K,, K2, E1; and E2 are shown in Appendix 6.1 .

Note that the equation used is for diffusion-rate limited regime in wet oxidation on bare silicon,

which is applicable for the devices in this research. It is also noted that approximately 46% of the

oxide grown is"consumed"

from the silicon:

42

Page 57: Avalanche photodiodes arrays - RIT Scholar Works

__

Bulk Silicon

_j

Oxide

(original silicon surface)

Oxidation

46% of silicon

"consumed"

when

growing oxide

Figure 3.2.1: Silicon Consumption from Oxide Growth

Algebraic manipulation is all that is needed in order to determine the process parameters for a

desired oxide thickness. Actual oxide calculations performed for this research are shown in

Appendix 6.1.

3.2.2 Ion Implant

To determine the implanted ion concentration as a function of depth into the wafer, the following

formula is used [Wolf and Tauber, 1986]:

N,(X):

2k dRc

Equation 3.2: Implanted Ion Concentration

Where x is the depth into the wafer,N'

is the implant dose, RP is the implant projected range, and

dRP the implant projected straggle. This calculation was needed for the guard ring, n+, and p+

device structures. Graphs and calculations of implant ion concentration are shown in detail in

Appendix 6.2.

43

Page 58: Avalanche photodiodes arrays - RIT Scholar Works

L o n g itud i n q I P r o ject o n

Projected Range, Rp

Projected Straggle, dRF

Depth -> seaen

Figure 3.2.2: Ion Implant Range and Straggle - Longitudinal Axis [Cheung, 2003]

3.2.3 Drive-In

To determine the doping profile for a diffusion step (drive-in) at a specific process parameter,

Fick's law of diffusion is used [Wolf and Tauber, 1986]:

Q ^

C(x,t) =^=e4Dt

VnDt

Equation 3.3: Fick's Second Law of Diffusion

Where x is the depth into the wafer, t is the time of diffusion, Q0 is the total quantity of impurity

present, and D is the diffusion coefficient.

44

Page 59: Avalanche photodiodes arrays - RIT Scholar Works

Since all impurity drive-in performed on the devices in this research is after ion implantation, a

simplified equation combining Equation 3.2 and Equation 3.3 can be used:

N' TT^T^"

Nd(X) =e2(dRp-+2Dt)

V2tuydRp2

+ 2 D t

Equation 3.4: Impurity Profile after Implant and Diffusion

Details of this equation are shown in detail in Appendix 6.2.

45

Page 60: Avalanche photodiodes arrays - RIT Scholar Works

Wafer Depth jam]

Figure 3.2.3: Ion Implant Drive-In

3.3. Fabrication

Appendix 6.3 outlines each step of the fabrication process and show the device profile for that

process. As mentioned in Section 3.1 .1, there were five wafers each with a slightly different

46

Page 61: Avalanche photodiodes arrays - RIT Scholar Works

design variation. Next to each process description lists the wafers that were used for that

particular step.

3.4.Test Set-up

The following diagram illustrates the test-up:

HP4145B

Light

Source

Diffraction

Grating

Fiber Optic

Microscope

Vacuum

Chuck

Electrical

Cables

-v.

/ i

Needle

Probe

Wafer Under

Test

Figure 3.4.1 : Test Set-Up Diagram

Here is a picture of the set-up:

47

Page 62: Avalanche photodiodes arrays - RIT Scholar Works

Figure 3.4.2: Test Set-Up Picture

The microscope used featured a shelf for the needle probe to rest on and is capable of moving

independently from the wafer and vacuum chuck. The microscope head also has an independent

range of movement.

A halogen light source is used as illumination, into a diffraction grating with the ability to select the

desired wavelength. The light is piped into the photodiode tested. The fiber optic has an exit

angle of approximately30

FWHM (full width half-maximum intensity).

All l-V measurements were obtained on the HP4145B parametric analyzer.

48

Page 63: Avalanche photodiodes arrays - RIT Scholar Works

3.5. Deviation of Fabricated Devices from Ideal

As mentioned in Section 2, "Device Theory and Design", of this paper, the main key in designing

a successful APD is to have the doping levels correct for each of the layers such that the

depletion region (and hence, the electric field) extends into the intrinsic layer when under

sufficient reverse bias:

n-i-

Depletion Region

A

71 P+

-> X

ND NA

"> X

-> X

Figure 3.5.1: Doping, Depletion, and Electric Field Diagram of a Standard APD

49

Page 64: Avalanche photodiodes arrays - RIT Scholar Works

Also, a more appropriate depth for each layer is usually less than 0.5pm for n+, to minimize the

participation of holes in the detection process, and around a few microns for the middle p layer

[Wegrzecka, et. al., 2004]. The depth and thickness of the intrinsic layer can be varied to adjust

the spectral characteristics of the device.

Instead, the devices fabricated in this research had incorrect doping levels. The p layer had too

high of a doping level such that the depletion region existed only between the n and p layers:

50

Page 65: Avalanche photodiodes arrays - RIT Scholar Works

Depletion Region

nn-71 P+

-* x

ND-NA

-* X

-> X

Figure 3.5.2: Doping, Depletion, and Electric Field Diagram of Fabricated Reach-Through

APD

It is stated again that the above depletion and electric field characteristics are for the device in

reverse bias state.

51

Page 66: Avalanche photodiodes arrays - RIT Scholar Works

4. Test Results

4.1. Figures of Merit

To compare the performance of the avalanche photodiodes both within this research and with

other manufactured photodiodes, four figures of merit are used: voltage breakdown, dark current,

gain, and spectral responsitivity. Two independent plots of each photodiode are needed in order

to calculate those figures of merit. A third plot is used specifically for photodiode arrays; to

compare cross-talk between photodiodes.

The following explains how each figure of merit is obtained and calculated.

4.1.1 Breakdown Voltage

The breakdown voltage is the reverse voltage at which the current flow increases dramatically

due to avalanche mechanism and Zener process (see Section 2.1.3.1 and Figure 2.1.17).

In the case of the photodiodes that tested here, the"knee"

of where voltage breakdown occurs is

not sharp enough to quote a definite number. Because of that, three definitions that are

commonly practiced within the industry were used. Human judgment was then applied to

determine which method reported the most sensible number, as some methods reported an

erroneous or illogical voltage breakdown number. The three techniques used were:

1 . Third-Order Polynomial Fit Method

2. Interpolation Method

3. Current Threshold Method

52

Page 67: Avalanche photodiodes arrays - RIT Scholar Works

The Third-Order Polynomial Fit Method defines the voltage breakdown by first fitting a third-order

polynomial to the data, finding the derivative, and determining where the maximum gradient

occurs. This method worked best when the data did not exhibit a very sharp knee at the voltage

breakdown point. Although a higher order polynomial fit would have fit that type of data better,

there were too many inflection points around the linear region of the l-V curve of a photodiode

(area between reverse bias (OV) and breakdown voltage). The computer algorithm performing

the third-order polynomial fit method was coded in Microsoft Visual Basic 6.0. The code is

reprinted in Appendix 6.4.

The Interpolation Method takes the avalanche regime of the photodiode l-V curve and

interpolates a straight line towards the voltage axis. The intercept is the breakdown voltage:

*+ 1

Calculated Voltage

Breakdown

- V + V

v-l

Figure 4.1.1: Breakdown Voltage via Interpolation Method

53

Page 68: Avalanche photodiodes arrays - RIT Scholar Works

The Current Threshold Method defines the breakdown voltage by setting a certain current

threshold. Because this research deals with different variations of device designs, this method is

only useful if comparing photodiodes that has similar magnitudes on the l-V graph:

Calculated Voltage

Breakdown

^L + v?-

v-l

Figure 4.1.2: Breakdown Voltage via Threshold Method

4.1.2 Dark Current

Dark current is the current that flows in the photodiode when no incident light is present.

Intrinsically, dark current is a function of temperature and the amount of reverse voltage. Dark

current arises due to electrons having enough energy from thermal and lattice vibrations to jump

from the valence band to the conduction band. If the reverse bias is high enough, these jumps

result in a cascading avalanche situation.

54

Page 69: Avalanche photodiodes arrays - RIT Scholar Works

Dark current can also be controlled using special device designs. One simple way to reduce dark

current is to merely reduce the size of the active area of the photodiode, reducing the number of

electrons jumping bands.

In this research, dark current is determined from the current-voltage (l-V) plot. For the l-V plot of

each photodiode tested, a voltage sweep was done with no incident light. Dark current is usually

specified at a certain reverse voltage, typically at the designed operating voltage. Since this

research consists of different designs and sizes, a dark current number will be quoted at the

defined breakdown voltage.

Figure 4.1.3: Defined Dark Current

55

Page 70: Avalanche photodiodes arrays - RIT Scholar Works

4.1.3 Gain

The definition of gain for a photodiode is the ratio of the total multiplied output current to the

primary unmultiplied photocurrent:

M = -

Equation 4.1: Photodiode Gain, M

I is the multiplied current that is output from the detector. Ip is the photocurrent that is generated

during the absorption of photons into the device. Where:

(

p ^-Vo[l-e(asW)](1-Rf)yhVj

Equation 4.2: Primary Photocurrent, lP

Where q is the electronic charge in [C], h is Planck's constant [J*s], v is the photon momentum

[Hz], P0 is the incident optical power [W], a is the absorption coefficient of the photodiode

material [1/m], w is the depletion width [m] inside the semiconductor, and Rf is the surface

reflectivity percentage.

In examining Equation 4.2, lP is already taking into account the reflectivity of the photodiode

surface, incident optical power, wavelength, and absorption into the device. Therefore, Equation

4.1, M, only deals with the gain that is produced internally inside the photodiode.

56

Page 71: Avalanche photodiodes arrays - RIT Scholar Works

Since gain is also a function of bias voltage, the gain at breakdown voltage will be used to quote

a gain specification.

4.1 .4 Responsitivity

Responsitivity is a measure of how well the photodiode converts incident light into current. A

higher responsitivity means that the photodiode is more sensitive to light and would yield a higher

electrical output than one with a lower responsitivity. Responsitivity is defined as:

R-i-

Po

Equation 4.3: Responsitivity, R

Where lP is the primary photocurrent (same as Equation 4.2) and P0 is the incident optical power.

If the equation was written out to the basic properties, responsitivity is a function of photon

energy, absorption coefficient of the material, depletion width of the p-n junction, and the optical

power loss due to reflection:

R = fj-][l-e(asW)](1-Rf)

Equation 4.4: Functions of Responsitivity

Responsitivity is a function of wavelength. As mentioned in Section 2.1 .2.1, different

semiconductor materials would have different absorption coefficients of wavelengths. For silicon,

57

Page 72: Avalanche photodiodes arrays - RIT Scholar Works

it stops absorbing light beyond 1 100nm due to the incident photons not having enough energy to

excite an electron to jump the 1 .12eV band gap. Responsitivity will be quoted at 600nm.

4.1 .5 Crosstalk Plot

The arrays of four photodiodes were used to test for crosstalk. The first photodiode was

connected to the measurement equipment while each photodiode was individually illuminated one

at a time (i.e. one through four). The current output, defined at a specific voltage bias that is

particular to the arrays tested, was compared at each illumination. Knowing the distance

between the four photodiodes, a signal output versus distance plot was obtained (see Figure

4.3.1). To have the plot meaningful, the output signals are normalized to the first photodiode.

The following figure illustrates how a perfectly isolated crosstalk and a poorly isolated crosstalk

plot should look like:

Perfectly Isolated

1 oo% -

D

Q.

o

I 50%

1_

o

0%

2 3

Pixel

1 00%

D.

O

50%

o

0%

Poorly Isolated

~i 1 r

1 2 3

Pixel

Figure 4.1.4: Theoretical Crosstalk Plots

58

Page 73: Avalanche photodiodes arrays - RIT Scholar Works

4.2. Single APD Results and Comparison to Commercial Devices

Typical to both research and manufacturing, some of the devices fabricated performed as

expected and some did not. Most of the devices suffered at least one of the following problems:

no signal, uncontrolled voltage breakdown, and low responsitivity. Those issues are discussed in

detail in Section 4.4.

Because of the number of imperfect photodiodes, a judgment needed to be made in order to

determine which photodiodes to test. Ideally, the current-voltage (l-V) plot should look similar to

the one as shown in Figure 4.2.1. That figure also shows how most photodiodes look like, where

the transition into the avalanche breakdown regime is not sharp but a gradual slope:

v-l

Acceptable l-V Curve

t-i

Unacceptable l-V Curve

Figure 4.2.1 : Acceptable and Unacceptable APD Current-Voltage Curves

59

Page 74: Avalanche photodiodes arrays - RIT Scholar Works

With each wafer containing more than 121 dies, two dies were chosen to be tested. Within each

die, five different photodiode sizes were tested, with each photodiode being randomly selected

within each size.

Of the five different device structure variations (APD02-1 through APD02-5), the fourth wafer

(APD02-4) represents the standard planar reach-through structure. Photodiode [W4 C7,3

D200,20,300,Y] will be used to discuss the analysis in detail. In addition, specifics of other

photodiodes will be shown as appropriate. Appendix 6.5 contains the complete graphs of all 42

photodiodes tested. Using the figures of merit as defined in Section 4.1 as a metric for

comparison, six photodiodes were considered acceptable. Here is the summary of the results:

CellBreakdown

Voltage [V]

Dark Current

[uA]Gain

Responsitivity

[AAV]

NEP

[HW]

W1 C5,6D1500,50,0,Y -1.244 -38.7 1513 0.199 0.195

W2C6,8C1500,50,0,Y -1.346 -73.8 2413 0.199 0.371

W3C11,10D200,20,300,Y -0.451 -3.4 1332 0.199 0.017

W4 C7,3 D200,20,300,Y -7.624 -2484 22677 0.280 8.870

W4 C7,3 D200,30,400,N -5.2 -10.4 188 0.272 0.038

W5C9,10D400,20,500,N -50.43 -63 19053 0.307 0.205

Table 4.1: Tested Photodiodes Results

60

Page 75: Avalanche photodiodes arrays - RIT Scholar Works

4.2.1 l-V Curve

Photodiode [W4 C7,3 D200,20,300,Y] has a diameter of 200um and a 20u.m width aluminum

guard ring, located on wafer 4 on die 7,3. Its l-V curve is:

I.00 -6.00

Voltage Bias [V]

2.00 0.00

Figure 4.2.2: l-V Plot (W4 C7,3 D200,20,300,Y)

Denoting lo as the full optical power used in the test set-up, it shows the curves at no light (dark),

3% light (0.03 lo), 33% light (0.33 lo), and full power (lo) as described in test set-up in Section

3.4. Full optical power (lo) was approximately 486nW/cm2.

61

Page 76: Avalanche photodiodes arrays - RIT Scholar Works

Coincidentally, this photodiode exhibited the highest current output of all tested photodiodes. The

high current output is most likely due to non-uniformity issues during fabrication and is not due to

design. This is proven because a similar photodiode on the same wafer with roughly the same

device geometry [W4 C7,3 D200,30,400,N] happen to exhibit the lowest current output of the

group.

The typical output of an APD that is commercially fabricated has the following l-V curve:

<

C

o

<DVI

>

DC

10^

10*

10^

10-'

10-

10"

10"

Input power

Pin=0.3^W

20 40 60 80 100

Reverse voltage Vh(V)

Figure 4.2.3: l-V Plot (Mitsubishi PD8XX2 Series Photodiode) [Mitsubishi, 1997]

Note that this graph shows the reverse voltage and reverse current as a positive scale. Of the

tested photodiodes in this research, one photodiode [W4 C7,3 D200,30,400,N] exhibited the

closest response:

62

Page 77: Avalanche photodiodes arrays - RIT Scholar Works

-10.00 -6.00 -4.00

Voltage Bias [V]

Figure 4.2.4: l-V Plot (W4 C7,3 D200,30,400,N)

4.2.2 Breakdown Voltage

For [W4 C7,3 D200,30,400,N], the voltage breakdown (Vbr) was determined by using the

Interpolation Method:

63

Page 78: Avalanche photodiodes arrays - RIT Scholar Works

2000

-2000

-4000

o--6000

3

o

-8000

-10000

-12000

-14000

T

-14.00 -12.00 -10.00 8.00 -6.00

Voltage Bias [V]

-4.00 -2.00

-Dark

-Dark Vbr

-0.03IO

-0.03 lo Vbr

0.33 lo

-0.33 lo Vbr

-lo

-loVbr

0.00

Figure 4.2.5: l-V Plot with Breakdown Voltage Interpolation Lines (W4 C7,3 D200,20,300,Y)

Because Vbr is slightly different depending on the light intensity, the overall Vbr number was

obtained by averaging the four curves. Ideally, Vbr should be the same at all light intensities. The

Vbr for this photodiode is at -7.624V.

As mentioned earlier that a typical diode should have a sharp transition into the avalanche

regime, of all the photodiodes tested [W5 C9.10 D400,20,500,N], showed the most defined

transition:

64

Page 79: Avalanche photodiodes arrays - RIT Scholar Works

2000

-2000

S -4000

a-6000

3

o

-10000

-12000

'VJJSWK5J.

'/

1 /4

V

)

-Dark

-Dark Vbr

- 0.03 lo

-0.03 lo Vbr

0.33 lo

-0.33 lo Vbr

-lo

-loVbr

-70.00 -60.00 -50.00 -40.00 -30.00 -20.00

Voltage Bias [V]

-10.00 0.00 10.00

Figure 4.2.6: l-V Plot with Breakdown Voltage Interpolation Lines (W5 C9,10 D400,20,500,N)

It's also noted that [W5 C9,10 D400,20,500,N], and wafer 5 in general, showed devices with the

highest breakdown voltage. Although wafer 5 devices do not have the advantage of having a

guard ring, which prevents a premature low voltage breakdown at the junction periphery, it

benefits from having a simpler design. It's also possible that wafer 5 unintentionally had a lower

doping concentration; a result of processingnon-uniformity.

Commercial avalanche photodiode devices have a much higher breakdown voltage, typically over

80V. The devices in this research were designed to have lowbreakdown voltages, but at a

65

Page 80: Avalanche photodiodes arrays - RIT Scholar Works

tradeoff of making the photodiodes perform more like a Zener diode, which is explained in

Section 4.4.2.

4.2.3 Dark Current

Using the Vbr as the operating voltage, the dark current (ldark) at Vbr is -2484u.A for [W4 C7,3

D200,30,400,N]:

5

-5

1-10

3-153Q.

3

o -20

oo

QO

1 -25

0.

-30

-35

-12.00 -10.00 -8.00 -6.00 -4.00

Voltage Bias [V]

-2.00 0.00 2.00

Figure 4.2.7: Dark Current (W4 C7,3 D200,30,400,N)

66

Page 81: Avalanche photodiodes arrays - RIT Scholar Works

The expected trend of dark current is that the higher the reverse bias voltage, more dark current

will be present. Since dark current arises from mobile electrons gaining energy from lattice

vibrations, at higher reverse bias voltages, these electrons might initiate a cascading avalanche

situation.

4.2.4 Gain

Quoting gain (M) at Vbr as the operating voltage, the gain of [W4 C7,3 D200,30,400,N] is 22677:

CD

o

o : 1 1 1 1 T 1

-14.00 -12.00 -10.00 -8.00 -6.00

Bias Voltage fV]

-4.00 -2.00 0.00

Figure 4.2.8: Gain (W4 C7,3 D200,20,300,Y)

67

Page 82: Avalanche photodiodes arrays - RIT Scholar Works

The general trend of this gain curve is similar in all the photodiodes tested. Comparing to gain

curves as released by Perkin Elmer, photodiode [W4 C7,3 D200,30,400,N] comes closest to their

data:

KHMI

ioo

10

I'iliiton ( Jiinliut:

MM)

ioo

"Standard"

Structure At*l>

200 300

ffi*(\)

400 5(10

Figure 4.2.9: Gain (Perkin Elmer)

68

Page 83: Avalanche photodiodes arrays - RIT Scholar Works

E

c

m

0 -

-12.00 -10.00 i.00 -6.00

Bias Voltage [V]

-4.00 -2.00

Figure 4.2.10: Gain (W4 C7,3 D200,30,400,N)

It is noted here again that Figure 4.2.9 shows the reverse bias voltage as a positive scale while

data generated from this research uses the convention of plotting the reverse bias voltage as a

negative scale.

The fabricated devices have higher gain output than commercial devices. This is due to the high

doping level used, which resulted in a high electric field around the p-n junction region.

69

Page 84: Avalanche photodiodes arrays - RIT Scholar Works

4.2.5 Spectral Response

Plotting the spectral response curve of photodiode [W4 C7,3 D200,20,300,Y], its peak is around

500nm:

15t>-

>*

>

to

coQ.n

rr

153- i i i i i i i i i i i i i i i i

400 450 500 550 600 650

Wavelength [nm]

700 750 800

Figure 4.2.1 1 : Responsitivity vs.Wavelength (W4 C7,3 D200,20,300,Y)

The peak of this photodiode is lower than typically measured in the rest of the photodiodes

tested. The typical response of the photodiodes are closer to photodiode [W5 C9.10

D400,20,500,N], where the peak is around 600nm:

70

Page 85: Avalanche photodiodes arrays - RIT Scholar Works

288

400 450 550 600 650

Wavelength [nm]

700 800

Figure 4.2.12: Responsitivity vs.Wavelength (W5 C9,10 D400,20,500,N)

The peak of the spectral response can be tailored by changing the impurity junction depth into the

device. As explained in Section 2.1 .2.1 ,longer wavelengths are absorbed deeper into the silicon.

If the long wavelengths are absorbed beyond the depletion region, the electron-hole pair has a

much higher chance to recombine before it is swept into the depletion region.

In comparing to commercial devices,the fabricated devices in this research tend to have the

spectral peak at a lower wavelength. Most commercial devices are around 800nm.

71

Page 86: Avalanche photodiodes arrays - RIT Scholar Works

4.2.6 Responsitivity

The responsitivity is calculated at unity gain (M = 1) is 0.2801AAV, which is equivalent to a

quantum efficiency (QE) of 0.580 electrons per photon. See Appendix 6.5 for responsitivity to QE

conversion details. The responsitivity is quoted at 600nm wavelength:

0.70

0.60

0.50

< 0.40

Q. 0.30

o

c

0.10

0.00

^

- ' -

'- 1

r-. *-i.

R@ 1.0QE

R @ 0.9QE

R @ 0.8QE

R @ 0.7QE

R @ 0.6QE

R @ 0.5QE

R @ 0.4QE

- R 0.3QE

R @ 0.2OE

R @ 0.1QE

400 450 500 550 600 650

Wavelength [nm]

700 800

Figure 4.2.13: Responsitivity @ M=1 (W4 C7,3 D200,20,300,Y)

Examining the responsitivity of commercially available photodiodes, the responsitivity should

peak close to 1000nm, near the energy band gap of silicon:

72

Page 87: Avalanche photodiodes arrays - RIT Scholar Works

1.0

0,8->-

0.6 +

0.4 +c

oQ_CO

(1)

K 0.2+

Theoretical Silicon Photodiode

Practical Silicon Photodiode

Abrupt Break

Linear tnea&&

With Wavelencth -

200 400 600 800

Wavelength (nm)

1000

Figure 4.2.14: Practical Silicon Photodiode Responsitivity [Kruger, 2002]

Section 4.4.3 will discuss the details of why the photodiodes tested have low responsitivity.

4.2.7 Noise Equivalent Power

Noise Equivalent Power (NEP) is defined as the signal power required to achieve a unitysignal-

to-noise ratio within a one second integration. For this research, the equation is:

NEP= dark

Equation 4.5: Noise Equivalent Power (NEP)

Where ldark is the dark current [A] and R is the responsitivity [AMI].

73

Page 88: Avalanche photodiodes arrays - RIT Scholar Works

The noise equivalent power (NEP) of [W4 C7,3 D200,20,300,Y] at Vbr is 0.00887W. As expected,

note that as the gain of the photodiode increases, the NEP increases somewhat linearly:

5.0E-02

4.5E-02

4.0E-02

3.0E-02

2.5E-02

2.0E-02

1.5E-02

1.0E-02

5.0E-03

O.OE+00

10000 20000 30000 40000 50000

Gain (M)

60000 70000 80000 90000 100000

Figure 4.2.15: Noise Equivalent Power (NEP) (W4 C7,3 D200,20,300,Y)

4.3. APD Array Results

In designing APD arrays, one area of concern is the crosstalk between individual elements.

Because APDs operate on the nature of internal gain, there is a higher chance of crosstalk

between pixels than compared to, as an example, regular PIN photodiode arrays. The random

74

Page 89: Avalanche photodiodes arrays - RIT Scholar Works

paths of the electrons during the avalanche mechanism may possibly wander into the adjacent

pixel and trigger a signal there instead.

The simplest solution to the problem would be to increase the distance between pixels as far as

possible. Unfortunately, this would decrease the spatial resolution of the array. Another solution,

which is beyond the scope of this research, is to use device structures that would minimize the

lateral fields of a photodiode, possibly by having the same equipotential as the pixels themselves

[Webb and Mclntyre, 1984].

From just spatially spacing the arrays of photodiodes, this research shows that the signal is not

perfectly isolated and that there is a certain level of crosstalk as a function of distance.

Since only a few arrays were found to be fully successful, data was not complete in characterizing

the APD array design. The following arrays were found to be successfully working:

Array 1:[W1 C11,10 D400,20,750,N]

Array 2:[W3 C5,8 D400,20,750,N]

Array 3:[W4 C5,6 D400,20,750,N]

Array 4:[W4 C10.9 D200,20,300,N]

In mapping the crosstalk plot as described in Section 4.1.5, this is the result:

75

Page 90: Avalanche photodiodes arrays - RIT Scholar Works

-W1 C11,10D400,20,750,N

-W3C5,8D400,20,750,N

W4 C5,6 D400,20,750,N

- W4 C10.9 D200,20,300,N

500 1000 1500

Pixel Distance (Center to Center) [um]

2000 2500

Figure 4.3.1 : Crosstalk Plot

Arrays 1 to 3 have the same pixel to pixel distance, 750u.m. Array 4 has a pixel to pixel distance

of 300u.m. Arrays 1 to 3 exhibit the same general response and are somewhat in agreement at a

distance of 750u.m. The plot also suggests that the guard ring features do lower crosstalk and

minimize lateral fields as Array 4 shows.

76

Page 91: Avalanche photodiodes arrays - RIT Scholar Works

4.4. Problems of Non-Working Devices

The major challenge of this research was to have working, uniform photodiodes to test. As

discussed in Section 3.5, the basis for the lack of performance from the fabricated devices were

due to wrong doping levels, namely for the p layer. The effect was that, although it performed

somewhat similar to true APDs, it had many"characteristics"

that were not favorable.

Specifically, the avalanche photodiodes did not perform as expected for at least one of the

following reasons:

1. No signal.

2. Low sensitivity.

3. Uncontrolled voltage breakdown.

4. Low responsitivity.

5. Performance uniformity.

4.4.1 No Signal

In order to connect to the photodiodes, the needle probes make contact to the metal pads, which

are 100u.m x 100u.m in size. When trying to connect to some photodiodes, it is apparent that the

connection could not be made, as there was no current flow at any voltage level.

The reason is simple; the metal interconnect from the metal pad to the photodiode has

discontinuities. The most likely places of discontinuities are either along the thin interconnect

from the pad to the photodiode (Figure 4.4.1), or at the junctionnear the photodiode edge (Figure

4.4.2):

77

Page 92: Avalanche photodiodes arrays - RIT Scholar Works

Figure 4.4.1 : Metal Discontinuity Example Figure 4.4.2: Metal Discontinuity Example

A B

The metal layer, fabricated using aluminum, was wet etched. Although both discontinuities are a

result of overetching, the break in the thin interconnect is a result from having too small of a

geometry in width and the junction break is from step height differences between the layers.

Referring to the cross-section of the device (Figure 3.1.3), there is a large step height from the

top of the oxide to the photodiode edge. When depositing the aluminum layer via sputtering, it is

subject to step coverage problems, where the aspect ratio from the top of the oxide to the top of

the silicon bulk may be too great. This leads to thinning of the aluminum at the edge and it would

be etched faster than the rest of the layer [Wolf and Tauber, 1 986]. The oxide thickness in these

wafers was approximately -4950A thick.

78

Page 93: Avalanche photodiodes arrays - RIT Scholar Works

4.4.2 Uncontrolled Voltage Breakdown

Most APDs tested exhibited a very soft knee during transition into the avalanche regime, as

illustrated in Figure 4.2.1. This makes determining the breakdown voltage difficult and uncertain.

This characteristic is typically known as"soft"

breakdown and is an indication that there is a

presence of tunneling current occurring [Forrest, et. al., 1980], [Laifer and Gilad, 2002].

Tunneling current occurs in a diode when both sides of the p-n junction are so heavily doped that

the depletion width is less than 10'6cm. To have such small depletion widths, the lighter doped

side of the p-n junction would still be in excess of approximately 1017/cm3. This causes the width

of the potential energy barrier to become very thin. As Section 2.1 .3.1 described, another way for

current to flow in reverse bias besides the avalanche mechanism is by the Zener process, where

the particle tunnels through the energy barrier instead of gaining additional energy to overcome it.

This is a quantum mechanical phenomenon and doesn't have a classical equivalent.

One device that utilizes the tunneling current mechanism is the Zener diode. It was found that

the devices in this research were inadvertently designed similarly to Zener diodes; the p-n

junction was degenerately doped. A low breakdown voltage was desired, which is typical of

Zener diodes. In order to achieve low breakdown voltages, heavily doped p-n junctions are

needed, which triggered the whole tunneling current situation and resulting in the"soft-

breakdown found in the l-V curves of the devices of this research.

79

Page 94: Avalanche photodiodes arrays - RIT Scholar Works

4.4.3 Low responsitivity

Responsitivity values are obtained indirectly through calculations from measured values of the

photodiodes. Compared to commercial devices, the photodiodes in this research have a much

lower responsitivity, especially at the longer wavelengths.

In this research, the depletion width of the p-n junction is what causes the low responsitivity.

Here is the responsitivity equation reprinted:

R = f-f )[i-e(-a*w)](1-Rf)

Equation 4.6: Reprint of Equation 4.4

The equation used to calculate the depletion width (w) is based on a linearly degraded junction

model:

W =

qa

Equation 4.7: Depletion Width, Linearly Graded Junction

The built-in voltage, Vbi, is solved by iteration using the following equation:

80

Page 95: Avalanche photodiodes arrays - RIT Scholar Works

.. 2kT .

vki = lnDl n

2a fl2K t VI t-

i\s CQ |hi

2n,v.

qa'bi

Equation 4.8: Built-in Voltage, Linearly Graded Junction

Where a is the grading constant. Details of Equation 4.7 and Equation 4.8 are shown in

Appendix 6.6. With the photodiodes in this research having a peak doping of 2.635*1023/cm3

at a

junction depth of 0.0731 u.m for n+ implant, and a peak doping of 1 .975*1023/cm3

at a junction

depth of 0.2801 u.m for P+ implant (see Section 3.2.2), the typical grading constant is

3.1 88*1 027/cm4. Because of the heavy doping levels of the multiplication region (namely the p

layer that was too heavily doped), the depletion width is a thin 0.00542nm at an applied voltage of

5.2V, making the responsitivity of the devices very low.

A chip designer has only two parameters to control, without changing the material used, in order

to control responsitivity: depletion width and surface reflectivity of light (Rf). A designer can

improve responsitivity by merely getting more light into the silicon. Or rather, decrease the

surface reflectivity of the light. This involves fabricating an anti-reflection coating on top of the

photodiodes and other standard practices that are not concentrated by this research.

The other is to increase the depletion width. As the depletion width is increased in Equation 4.4,

responsitivity increases. The effect is morepronounced at longer wavelengths, due to increased

absorption coefficient, lower reflectivity and higher photon energy at the longer wavelengths.

81

Page 96: Avalanche photodiodes arrays - RIT Scholar Works

As an example, if diode [W5 C9.10 D400,20,500,N] had a depletion width of 0.108p.m instead of

0.0108|im (biased at the breakdown voltage of -50.43V), the responsitivity would have increased

as such:

0.70-

^

-

'

-

-

"-

_

-

'

-

'

_-

-

~

"

--

*"

~-

~

._

-

"

"

-

-

_.-

-

_-

-

^"^-N^^

-

^^--,^'^_-

*- '

__

_-

--

-

f1-'

_-

-

"""

f-"

_- -

-**

--

-

_-

--

-"

_-

-""

0.00 - 1 1 1 1 1 1 1 1

< Responsitivity

R @ 1.0QE

R @ 0.9QE

R @ 0.8QE

R @ 0.7QE

R @ 0.6QE

R @ 0.5QE

R @ 0.4QE

- - R @ 0.3QE

R @ 0.2QE

R @ 0.1QE

400 450 500 550 600 650

Wavelength [nm]

700 750 800

Figure 4.4.3: Responsitivity @ M=1 (W5 C9.10 D400,20,500,N) (@ 0.01 \im Depletion Width)

82

Page 97: Avalanche photodiodes arrays - RIT Scholar Works

0.70

0.60

< 0.40

a- 0.30

0.20

0.10

0.00

400 450 500 550 600 650

Wavelength [nm]

700 750

? Responsitivity

R @ 1.0QE

R @ 0.9QE

R @ 0.8QE

R @ 0.7QE

- - R @ 0.6QE

R @ 0.5QE

R @ 0.4QE

R @ 0.3QE

R @ 0.2QE

R @ 0.1QE

800

Figure 4.4.4: Responsitivity @ M=1 (W5 C9,10 D400,20,500,N) (@ 0.1 nm DepletionWidth)

The depletion width is controlled by the amount of doping used.

4.4.4 Performance Uniformity

Even when the devices exhibited a general l-V curve of a photodiode, there was an issue of

having the devices performuniformly. As an example, photodiodes [W4 C7,3 D200, 20, 300, N]

and [W4 C10,9 D200, 20, 300, N] are of the same dimensionson the same wafer. Their l-V

curve is widely different:

83

Page 98: Avalanche photodiodes arrays - RIT Scholar Works

-16.00 -14.00 -12.00 -10.00 1.00 -6.00 -4.00 -2.00 0.00

-200

-400

-600

-800

-1000

-1200

-1400

1600

-W4C7.3

-W4C10,9

Voltage [V]

Figure 4.4.5: [W4 C7,3 D200,20,300,N] and [W4 C10,9 D200,20,300,N] Comparison @ 100%

Illumination

By just looking at the differences in the breakdown voltage suggests that implant doping levels in

the p-n junction are very different. Figure 2.1 .1 8 shows how doping levels affect the breakdown

voltage. At breakdown voltages of a few volts, as in the case of [W4 C7,3 D200,20,300,N] and

[W4 C10,9 D200,20,300,N], a significant change in doping is needed in order for a small amount

of voltage change.

As previous sections have described, the doping level is an integral part of the device

characteristic as it affects an avalanchephotodiodes'

responsitivity, gain, photon absorption, etc.

84

Page 99: Avalanche photodiodes arrays - RIT Scholar Works

4.5. Solutions for Improvement

The following are solutions that rectify the problems outlined in the previous sections and improve

on the design. These steps are follow-up suggestions for any future research.

4.5.1 Lower Doping Levels / Correct P Layer Doping

In order to have correct working APDs, the doping levels should be lower. Specifically, the

fabricated devices had too high of a doping for the p layer. As mentioned in Section 3.5, the

highly doped p layer had effectively contained the depletion layer to just between the n+ and p

layers. If the p layer was doped lighter, then the depletion layer could extend into the intrinsic

layer when under sufficient reverse bias. Beyond the incorrect device designed, the high doping

also made the devices exhibit a"soft"

breakdown voltage and have a low responsitivity.

The devices exhibit"soft"

breakdown due to excessive tunneling current taking place. If the

doping levels are lowered, the depletion width would increase and the width of the energy barrier

would be wider, decreasing the chance of tunneling and breakdown would occur more due to

avalanching. A wider depletion width would also increase responsitivity. As discussed in Section

4.4.3, the depletion width would be the only factor that a device designer would have easy control

over.

The original intention of the design was to have an avalanche photodiode with a low breakdown

voltage for portability reasons. In order to have low breakdown voltages high doping levels are

85

Page 100: Avalanche photodiodes arrays - RIT Scholar Works

needed. Unfortunately, a design tradeoff exists between low voltage breakdown and having the

occurrence of tunneling current.

4.5.2 Fabrication Control and Uniformity

To realize a design of an avalanche photodiode array, good fabrication control is needed. The

performance of the devices in this research was subject to fabrication problems, mainly uniformity

problems. The two fabrication processes that would improve the current devices dramatically

would be the aluminum etch process and implant process.

Devices that did not work because of no signal showed obvious problems with the aluminum

interconnect (see Figure 4.4.1 and Figure 4.4.2). The process used to etch the aluminum was a

wet etch. Because wet etch is an isotropic etch, where it etches uniformly in all directions, sharp

corners of the interconnects erode quicker due to a larger exposed surface area. A more suitable

etch to use in future research is an aluminum etch that is anisotropic.

The design variations between the five wafers are not extreme in differences. As Table 3.1 listed

out, the variations are either to have a guard ring, an extra P layer, or a different metal layer. The

only element that would affect an individual photodiode's performance would be the extra P layer.

In testing the devices, it was found that device characteristics varied widely from wafer to wafer

and even within wafer. As an example,Wafer 5 exhibited the highest breakdown voltages in

general. Yet, with the exception of having a guard ring, it is identical toWafer 4. Figure 4.4.5

illustrates the variability within wafer. The differences in breakdown voltage indicate that the

doping levels are different. The breakdown voltage change between -8V and -12V are

significant, where the doping levels are almost an order of magnitude in difference.

86

Page 101: Avalanche photodiodes arrays - RIT Scholar Works

5. Conclusion

The original direction of this research was to realize an avalanche photodiode array device with

an onboard discriminator circuit for readouts. The array would be controlled via computer I/O and

possibly be portable for in-the-field use.

To reach that stage, several intermediate steps were needed. The first step is to have working

individual APDs since that has not been designed or fabricated at the RIT Microelectronic Fab.

As this research shows, the first attempt in the design and fabrication needed improvement, as it

has been found that the doping levels were incorrect.

Individual devices did not function mainly due to design error problems. In the pursuit of

designing the devices to be usable in portable applications, low breakdown voltages were

needed. To achieve the low breakdown voltages, high doping levels were needed for the p-n

junction. In doing that, the devices ran into two major problems, current tunneling and low

responsitivity. Both problems are attributed to having too high of a doping for the p layer,

resulting in a too small of a depletion width that didn't extend into the intrinsic region. As the

device is put under increased reverse bias, current tunneling occurs, where reverse current

started trickling before the actual breakdown.This decreased the ability for the device to have a

clear on/off current output. Low responsitivity, especially at higher wavelengths, is also mainly

caused by the small depletion width.

87

Page 102: Avalanche photodiodes arrays - RIT Scholar Works

Once individual photodiodes are properly designed, fabricating arrays of working photodiodes

present another hurdle. During testing of the photodiodes in this research, it was concluded that

process uniformity, especially within wafer, need to be better controlled. The two main areas to

concentrate for improvement is the aluminum etch and implant processes.

In order to reach the ultimate goal of having an APD array with onboard discriminators, device

design and fabrication control need to be improved. After the design and fabrication issues of the

above are addressed, the next steps of research would be to either integrate the onboard

discriminators and/or enhance the performance of the APD array by increasing the spatial density

of the photodiodes.

88

Page 103: Avalanche photodiodes arrays - RIT Scholar Works

6. Appendix

6.1.Oxide Thickness Calculation

Oxide Growth Calculation [44](For Diffusion-Rate Limited Regime in Wet Oxidation on Bare Silicon)

Constants are for (100) Process parameters.

silicon in wet oxidation.

Kl := 4.0210"6

[um] t := 1.53 M

El := 1.29 [eV] T := 1273 [K]

K2:=214 [um2/hr]

E2:=0.71 [eV]

k:= 8.6175[eV/K]

El

k TA:=Kle

-E2

k T

B:=K2e

"(t)J 4B )

X = 0.4991 [urn]

89

Page 104: Avalanche photodiodes arrays - RIT Scholar Works

6.2. Ion Implant and Drive-In Calculation

Guard Ring Impurity Profile

Constants:

eV:=1.610 19J

-5eV

k:= 8.617-103

K

x :=0,0.01- 10_6m.. 1.5 10"6m

Electron Volt

Boltzmann Constant

Depth

Wafer Parameters:

Nb(x):=11014cm3

Background Doping

Implant Parameters:

Rp:= 0.073 10 m

dRp:= 0.0305 10 m

N':=1.61018-cm"2

Projected Range

Projected Straggle

Implant Dose

Diffusion Parameters:

D0:= 03.85^-

s

Ea:=3.66eV

Tl := 1273K

tl := 4.5hr

T2:=1223K

t2 := 2.3hr

Frequency Factor [Boron(0.76), Phos(3.85)]

Activation Energy [Boron(3.46), Phos(3.66)]

Diffusion Temperature 1

Diffusion Time 1

Diffusion Temperature 2

Diffusion Time 2

90

Page 105: Avalanche photodiodes arrays - RIT Scholar Works

Implant Calculation:

N'

Nxrp:=

V5c-dRp

1%= 2.093x

1023

Peak Concentration [N(x=Rp)]

Ni(x) := N^-e

2dRp2

Impurity Profile After Implant

Drive-in Calculation:

Dl:=DekTl

D2:=D0e

Nd(x) :=-

-E,

kT2

N'

Diffusion Coefficient

2J_dRp2+2(Dltl+D2t2)]

V2~7t->/dRp2+ 2(Dltl + D2t2)

Impurity Profile After Drive-in

Nd(0) = 2.795x1022 Surface Doping Concentration

xj:= i <r- 0m

19 -3

while | Nd(i) -

Nb(i)| >MO1

m

i<-i + MO m

xj= 1.417X 10 mJunction Depth

91

Page 106: Avalanche photodiodes arrays - RIT Scholar Works

Profile Graph:

Guard Ring Impurity Profile

I 10

610 810Depth 1m]

Implant Profile

Diffusion Profile

Background DopingOverall Impurity Profile

92

Page 107: Avalanche photodiodes arrays - RIT Scholar Works

N+ / P+ Impurity Profile

Constants:

eV:=1.610"19J Electron Volt

-5eV

k:= 8.617 105

K

Boltzmann Constant

x:=0,0.0110"6m.. 1.5106m Depth

Wafer Parameters:

Nb(x):=11014cm3

Background Doping

Implant Parameters:

Rp, := 0.073 10 m

dRpl:= 0.0305 10 m

N'l:=5.2-1018cm2

Projected Range

Projected Straggle

Implant Dose

Diffusion Parameters:

2cm

Dol :=03.85-

Eai:=3.66eV

Tl := 1223K

Frequency Factor [Boron(0.76), Phos(3.85)]

Activation Energy [Boron(3.46), Phos(3.66)]

Diffusion Temperature

tl := 2.3hrDiffusion Time

93

Page 108: Avalanche photodiodes arrays - RIT Scholar Works

Implant Calculation:

N'lN.xrpl

^2ridR,Pi

N^^e^xio23-^-

cm

Nil(x) := Nxrpl-e2dRD

Peak Concentration [N(x=Rp)]

Impurity Profile After Implant

Drive-in Calculation:

Dl:=Dole

-Eai

k-Tl

Dl = 3.181x 10

Ndl(x) :=

15 cm

N'l

V^-JdRp?

Diffusion Coefficient

2-(dRpl2+2Dltl)

+ 2-Dl-tl

Ndl(O) = 1.714X1023

xjl:=

cm

i <r- 0m

19 -3

while |Ndl(i) -

Nb(i)| > 110 m

i<-i+ 110 9m

xjl=5.91x 10 m

Impurity Profile After Drive-in

Surface Doping Concentration

Junction Depth

94

Page 109: Avalanche photodiodes arrays - RIT Scholar Works

P+ Impurity Profile

Implant Parameters:

Rp2:=0.28-10 m

dRp2:= 0.064 10 6m

N'2:=5.2-1018-cm2

Projected Range

Projected Straggle

Implant Dose

Diffusion Parameters:

Do2:=0.76-cm

Frequency Factor [Boron(0.76), Phos(3.85)]

E^:= 3.46 eV Activation Energy [Boron(3.46), Phos(3.66)]

T2 := 1223K Diffusion Temperature

t2 := 2.3hr Diffusion Time

95

Page 110: Avalanche photodiodes arrays - RIT Scholar Works

Implant Calculation:

N'2N.xip2

V^Tt-dR,P2

Nxrp2 = 3.241xlO23-^

cm

Ni2(x) := Nxrp2-e2dR,P2

Peak Concentration [N(x=Rp)]

Impurity Profile After Implant

Drive-in Calculation:

-Ea2

D2:=Do2ek-T2

D2 = 4.19x10"15cm

Nd2(x) :=N'2

Nd2(0) = 5.658x1021

2(dRp22+2D2t2j

dRp2 + 2D2t2

cm

xj2:= i <- 0m

19 -3

while | Nd2(i) -

Nb(i)| > 110 m

i -H 1- 10 m

xj2=9.66x 10 m

Diffusion Coefficient

Impurity Profile After Drive-in

Surface Doping Concentration

Junction Depth

96

Page 111: Avalanche photodiodes arrays - RIT Scholar Works

N+ / P+ Profile Calculations

PNJuncDepth := i < Om

while Ndl(i) > (1.001- Nd2(i)) v Ndl(i) < (0.999 Nd2(i))

-10

i < i -H 110 ium

PNJuncDepth = 1.73x 10"7m

Ndl (PNJuncDepth) = 1.176x1029

3m

Nd2(PNJuncDepth) = 1.1 76x1029

NdlPeak:= i^O

while Ndl(i) > Ndl(i- 10T10m)

i <- i + 10 10m

NdlPeak=7.31x 10"8m

Nd2Peak := i<-0

while Nd2(i) > Nd2U - 10"10m)

i+10-10m

Nd2Peak = 2.801 x 10 m

Ndl(NdlPealc) = 2.635x1029

m

Nd2(Nd2Peak) = 1.975x1029

m

(Ndl(NdlPeak)- Nd2(Nd2Peak))

NdlPeak- Nd2Peak

a = -3.188x1035

4m

Grading Constant

97

Page 112: Avalanche photodiodes arrays - RIT Scholar Works

Profile Graph:

N+ Diffusion Profile

P+ Diffusion Profile

Background DopingOverall Impurity Profile

98

Page 113: Avalanche photodiodes arrays - RIT Scholar Works

6.3. Fabrication Steps

1 . Scribe (APD02-X)1.1. APD02-1

1.2. APD02-2

1.3. APD02-3

1.4. APD02-4

1.5. APD02-5

2. RCA Clean (APD02-X)

3. Field Oxide (APD02-x)3.1. Target thickness: 5kA

3.2. Recipe #350 on Bruce Furnace

3.2.1. Push @ 800C, 12in/min., N23.2.2. Ramp up to 1 1 00C, dry 023.2.3. Soak 21Omin, wet 023.2.4. Ramp down to 800C, N23.2.5. Pull @ 12in/min.

4. Photolithography - Guard Ring (APD02-1,2,4)

5. Etch - Oxide (APD02-1,2,4)

5.1. Expected oxide thickness to etch: 5kA

5.2. EtchinBHF

5.3. Etch rate: ~1kA/min.

5.4. Etch time: ~5 min.

6. Implant - Guard Ring (APD02-1,2,4)

6.1. Target Xj: 1.4u.m

6.1.1. Energy: 60keV

6.1.2. Dose: 1.6*1018/cm2

6.1.3. Species: P31

7. Resist Strip (APD02- 1,2,4)

8. Diffusion - Guard Ring Drive-In (APD02-1,2,4)

8.1. Temp: 1000C

8.2. Time: 4.5 hours

8.2.1 . (6.5 hours would yield an Xj of 1u.m, but there is a following thermal step of 1 hour

@ 950C)

9. Photolithography- N+ Region (APD02-x)

10. Etch - Oxide (APD02-x)

99

Page 114: Avalanche photodiodes arrays - RIT Scholar Works

10.1. Expected oxide thickness to etch: 4.5kA

10.2. EtchinBHF

10.3. Etch rate: ~1kA/min.

10.4. Etch time: -4.5 min.

10.4.1. Leave ~500A oxide as sacrificial oxide during implant.

11. Implant -N+(APD02-x)

11.1. Target Xj: 0.5u.m

11.1.1. Energy: 60keV

11.1.2. Dose: 5.2* 1018/cm2

11.1.3. Species: P31

12. Resist Strip (APD02-X)

13. Photolithography- P+ Region (APD02-4,5)

14. Implant - P+ (APD02-4,5)14.1. Target Xj: 1u.m

14.2. Energy: 90keV

14.3. Dose: 5.2* 1018/cm2

14.4. Species: B

15. Resist Strip (APD02-4,5)

16. Diffusion - N+/P+ Drive-In / Anneal (APD02-x)16.1. Temp:950C

16.2. Time: 2.3 hours

17. Etch -Oxide (APD02-X)1 7.1 . Expected oxide thickness to etch: 0.5kA

17.2. Etch in BHF

17.3. Etch rate: ~1kA/min.

17.4. Etch time: -0.5 min.

18. Aluminum Sputter (APD02-1,3,4,5)18.1 . Target thickness: 2kA

18.2. Material: AI/1% Si

18.3. Power: 2kW

18.4. Time: 10min.

19. CVD - Polysilicon (APD02-2)19.1. Target thickness: 1 kA

20. Photolithography - Aluminum (APD02-x)

21. Etch - Aluminum (APD02-1,3,4,5)21.1. Standard procedure

22. Plasma Etch - Polysilicon (APD02-2)

100

Page 115: Avalanche photodiodes arrays - RIT Scholar Works

22.1 . Gases: SF6 @ 42sccm, 02 @ 7.5sccm

22.2. Pressure: 400mT

22.3. Power: 40W

22.4. Time: 40 sees.

23. Resist Strip (APD02-x)

24. Aluminum Sinter (APD02- 1,3,4,5)24.1. Standard Recipe

24.1.1.Temp:450C

24.1.2. Gas:N2/H2

24.1.3. Time: 15-30min.

101

Page 116: Avalanche photodiodes arrays - RIT Scholar Works

6.4.Third-Order Polynomial Fit Algorithm in Microsoft Visual Basic 6.0

Option Explicit

Option Base 1

Public sDatal) As Single

Public sCoeffArrO As Variant

Public Function ReadDataFile (strFileName As String)

Dim iFileNum As Integer

Dim strLinelnput As String

Dim iRow As Integer

Dim iCol As Integer

Dim iRowUB As Integer

Dim iColUB As Integer

Dim sTempArrO As Single

Dim i , j

iFileNum FreeFile

ReDim sData(50, 50)

Open strFileName For Input As #iFileNum

iRow 0

Do Until E0F(1)

Line Input ((iFileNum, strLinelnput

iRow iRow + 1

If iRow >= iRowUB Then iRowUB = iRow

'Data file should be a comma delimited file.

'Tagging line with a'

,

'

to make string parsing MUCH easier in next section.

strLinelnput strLinelnput +"

,

"

iCol 0

Do Until strLinelnput

iCol iCol + 1

If iCol >= iColUB Then iColUB iCol

sDatadCol, iRow) - Val (Left (strLinelnput , InStr (strLinelnput ,

"

,

"

) 1))

strLinelnput Mid (strLinelnput, InStr (strLinelnput ,

"

,

"

) + 1)

Loop

Loop

Close liFileNum

'Resize sDataO array to streamline memory. Swap with temp array to keep data.

ReDim Preserve sTempArr (iColUB, iRowUB)

For i 1 To iColUB

For j 1 To iRowUB

sTempArrfi, j) sDatad, j)

Next jNext i

ReDim sDatadColUB, iRowUB)

For i 1 To iColUB

For j 1 To iRowUB

sData ( i , j ) sTempArr ( i , j )

Next jNext i

End Function

Public Function CalcDataO'First col are X values, following cols are Y values for each respective curve.

Dim RegObj As New RegressionObject

Dim sIThres As Single

Dim sCalcI As Single

Dim sPrevCalcI As Single

Dim sVoltStep As Single

102

Page 117: Avalanche photodiodes arrays - RIT Scholar Works

Dim i , j , k

ReDim sCoef fArr (UBound(sData ( ) , 1), 9)

sCoeffArrd, 1) "Poly Coeff A"

sCoeffArrd, 2) "Poly Coeff B"

sCoeffArrd, 3) "Poly Coeff C"

sCoeffArrd, 4) "Poly Coeff D"

sCoeffArrd, 5) "2nd Deriv Coeff A"

sCoeffArrd, 6) "2nd Deriv Coeff B"

sCoeffArrd, 7) = "Max Grad Vbr"

SCoeffArrd, 8) "ThresVbr"

SCoeffArrd, 9) = "Vbr"

RegObj .Degree 3

'Calculate the coefficients of the 3rd order polynomial.

For i 2 To UBound(sData( ) , 1)

RegObj . Init

For j = 1 To UBound ( sData ( ) , 2)

'Add data to RegObj. When done grab coefficients from it.

RegObj . XYAdd sData ( 1 , j ) , sData ( i , j )

Next j'Grab coefficients from RegObj. will be 4 coefficients.'

[x"3 is SCoeffArrd, 1) or RegObj . Coeff (3 ) ]'[const is sCoeffArrd, 4) or RegObj .Coeff (0) ] , etc.

For k 1 To 4

sCoeffArrd, 1) = RegObj .Coeff (3)

sCoeffArrd, 2) = RegObj .Coeff (2)

sCoeffArrd, 3) = RegObj . Coeff (1)

sCoeffArrd, 4) RegObj . Coeff ( 0)

Next k

Next i

'Calculate the coefficients of 2nd derivative and voltage point of max gradient.

For i 2 To UBound ( sData ( ) , 1 )

sCoeffArrd, 5) 6 *sCoeffArrd, 1)

sCoeffArrd, 6) 2 *

sCoeffArrd, 2)

sCoeffArrd, 7) -sCoeffArrd, 6) / sCoeffArrd, 5)

Next i

End Function

Public Function WriteOutputFile (strOutputFileName As String)

Dim iFileNum As Integer

Dim i, j

iFileNum FreeFile

Open strOutputFileName For Output As #iFileNum

For j 1 To UBound(sCoeffArrl) , 2)

For i = 1 To UBound ( sData () , 1)

Print #iFileNum, sCoeffArrd, j) & ","

;

Next i

Print #iFileNum," "

Next j

Close #iFileNum

End Function

Option Explicit

Private Const MaxOi 2 5

Private GlobalOi' "Ordnung" = degree of the polynom expected

Private Finished As Boolean

Private SumX#(0 To 2 *MaxO)

Private SumYX#(0 To MaxO)

Private M#(0 To MaxO, 0 To MaxO + 1)

Private C#(0 To MaxO) 'coefficients in: Y C(0)*X~0 + C(1]'X"1 + C(2)*X~2 +...

Private Sub GaussSolve (0&)

'gauss algorithm implementation,

103

Page 118: Avalanche photodiodes arrays - RIT Scholar Works

'followingR.Sedgewick'

s "Algorithms in C", Addison-Wesley, with minor modifications

Dim ii, j&, ki, iMax&, T#, 01#

01 Otl

'first triangulize the matrix

For i = 0 To 0

iMax = i: T Abs(M(iMax, i) )

For j i + 1 To 0 'find the line with the largest absvalue in this row

If T < Abs(M(j, i)) Then iMax j: T AbslMdMax, i))

Next j

If i < iMax Then 'exchange the two lines

For k i To 01

T Md, k)

M(i, k) = M(iMax, k)

MdMax, k) T

Next k

End If

For j i + 1 To 0 'scale all following lines to have a leading zero

T M(j, i) / M(i, i)

M(j, i) 0#

For k : i + 1 To 01

M(j, k) M(j, k) Md, k)* T

Next k

Next jNext i

'then substitute the coefficients

For j 0 To 0 Step -1

T = M(j, 01)

For k = j + 1 To 0

T T M(j, k)*

C(k)

Next k

C(j) T / M(j, j)

Next jFinished True

End Sub

Private Sub BuildMatrix(Oi)

Dim ii, ki, Oli

01 0 + 1

For i = 0 To 0

For k 0 To 0

M(i, k) = SumXd + k)

Next k

M(i, 01) SumYX(i)

Next i

End Sub

Private Sub Final izeMatrix(Oi)Dim i&, Oli

01 0 + 1

For i 0 To 0

Md, 01) SumYX(i)Next i

End Sub

Private Sub SolvedDim 0&

0 GlobalO

If XYCount <= 0 Then 0 = XYCount 1

If 0 < 0 Then Exit Sub

BuildMatrix 0

On Error Resume Next

GaussSolve (0)

While (Err.Number <> 0) And (1 < 0)Err.Clear

CIO) 0#

0-0 1

FinalizeMatrix (0)Wend

On Error GoTo 0

End Sub

Private Sub Class_Initialize ( )

104

Page 119: Avalanche photodiodes arrays - RIT Scholar Works

Init

GlobalO 2

End Sub

Public Sub Initl)

Dim i&

Finished False

For i = 0 To MaxO

SumX(i) = 0#

SumX(i + MaxO) 0#

SumYX(i) = 0#

C(i) 0#

Next i

End Sub

Public Property Get Coeff # (Exponents.)

Dim Ex&, 0&

If Not Finished Then Solve

Ex Abs (Exponent )

0 = GlobalO

If XYCount <= 0 Then 0 XYCount 1

If 0 < Ex Then Coeff 0# Else Coeff C(Ex)

End Property

Public Property Get Degrees O

Degree GlobalO

End Property

Public Property Let Degree(NewVal&)

If NewVal < 0 Or MaxO < NewVal Then

Err. Raise 6000,"RegressionObject"

, NewVal &"

is an invalid property value! Use 0<= Degree <="

&

MaxO

Exit Property

End If

Init

GlobalO NewVal

End Property

Public Property Get XYCounti ( )

XYCount = CLng ( SumX ( 0 ) )

End Property

Public Function XYAddlByVal NewX# , ByVal NewY#)

Dim ii, j&, TX#, Max20i

Finished - False

Max20 2 * GlobalO

TX 1#

SumX(O) SumX(O) + 1

SumYX(O) = SumYX(O) + NewY

For i 1 To GlobalO

TX TX* NewX

SumXd) SumX(i) + TX

SumYX(i) = SumYXd) + NewY* TX

Next i

For i GlobalO + 1 To Max20

TX TX * NewX

SumXd) SumXd) + TX

Next i

End Function

Public Function RegVal#(X#)

Dim i&, 0&

If Not Finished Then Solve

RegVal 0#

0 = GlobalO

If XYCount <= 0 Then 0 XYCount 1

For i 0 To 0

RegVal RegVal + C(i)* X

"

i

Next i

End Function

105

Page 120: Avalanche photodiodes arrays - RIT Scholar Works

6.5. Responsitivity to Quantum Efficiency Conversion Calculation

Responsitivity to Electrons / Photon Conversion

Parameters: Constants:

R:= 0.2801

W

X := 60010~9m

eV_per_sec :=R W

eV

eV_per_sec = 1.751x 1018A

h:= 6.626 10 34Js

c := 2.9979245810

eV:= 1.610 19C

E:=he

E=3.311x 10 19J

photons_per_sec :=

E

photons_per_sec =3.021x1018 S

kgm

x:=-eV_per_sec

photons_per_sec

x =0.580

kgm A[electrons / photon]

106

Page 121: Avalanche photodiodes arrays - RIT Scholar Works

6.6. Depletion Width and Built-in Voltage Calculation

PN Junction Electrostatics of a Linearly Graded Junction

Constants:

eV:=1.610"19J

q:=1.610"'9C

rij:= 110 cm

T := 300K

_5eV

k:= 8.617 105

K

1 cm 1

xn:=M0_6s

up:=331-

cm |

-6

S

Ks:=ll.

-14F

e:=8.8510

Electron Volt

Charge

Intrinsic Carrier Concentration

Temperature

Boltzmann Constant

Electron Mobility (@ Nd = 10A17/cm3)

Electron Minority-Carrier Lifetime (Average)

Hole Mobility (@ Na = 10*17/0713)

Hole Minority-Carrier Lifetime (Average)

Dielectric Constant of Silicon

Permittivity of Free Space

Sub-Calculations:

( k-T^IUn"{.Tj

K

(DP MtJ

Lp =p? tp

Electron Diffusion Coefficient

Electron Diffusion Length

Hole Diffusion Coefficient

Hole Diffusion Length

Device Parameters:

N - l 9391023 Acceptor Concentration

a-

3cm

NH := 2.4841023 Donor Concentration

VA:=-5.2V Applied Voltage

: 3.188lf/W4

Grading Constant

107

Page 122: Avalanche photodiodes arrays - RIT Scholar Works

Calculations:

Vguess0:=0.5V

2-k-TVguess(f+i):= In

f:=0.. 10

2-nj

'l2-Ks-e0 VVguessf

qa )

Vbi := Vguess 10

Vbi = 1.2739V Built-in Voltage

W:=

12-Kse,

213

qa-(vbi-vA)

W = 5.4181x 10 m Depletion Width

-w

2'

f-W W "\ W

K2 20

J"

2

Q-aV(x):=-^

6-Kse0[(?)'

S(x):=q"

-

2Kse0 >-(!)]

p(x):=q-

ax

fwx-

x Electrostatic Potential

Electric Field

Charge Density

108

Page 123: Avalanche photodiodes arrays - RIT Scholar Works

6.7. Photodiode Test Data

6.7.1 Raw l-V Graphs

The following graphs are the raw l-V test results of the APD arrays constructed for this research.

109

Page 124: Avalanche photodiodes arrays - RIT Scholar Works

>>> >o o o o

o o o o

o o to oom oi 4

n

a i

svi a

.c * .. x:vl o D a o8 I 4J 1t-t l c

A B + a

8 8 C. a a *

r4 c a o o a

E_ Li. -^ *l *> 4J c

B > J (0 (fl W o >> u

^N

*o

o

to*

,!!

- -

,

i 1

J^

-

.

i ! 1*

* * ifc i

o>% i? \ !o

Tl

F - V :

i

'>

U'! \\ ; 1 i -H

r'o v\ \V ; ! TJ

CJ

CPD

'A,

\ \

W

1

!

k !

i'

!

il

o

oID

k

i

1 M \ X ! i31 u *

i, !\i\

I 1

I

i !<rs j l \

;\ "* ! N ! 1

rr ,

i

^ i i ICD | \ L- \ ! ! >

^i

s ft ! \ \i*

*

*

*

\\t

_

! \\ i%

i Vl

i \ i

o! \\ ^ \ O

*:.

! '^ 1 \ r!(D

#i i

k\ : \ i \ 1lev]~ o o> a

< o O-H o '

B O lotd inw

o *i\

u. c-i

M i

Page 125: Avalanche photodiodes arrays - RIT Scholar Works

>>>o o o

o o o

0 0(0o in w

>o

o

oo

n

a. i

B^H B |)

"S "

%i O a o (jD J * IML ca m *> s8 o Laa *t

H C 8 O B 8C lL -H4J+) 4J C8 > -J to 0) (0 O >> o

*

X1i !

i

i

i

r%-*

in

!

1

1

J

1o

;

rT

i1-

o

o

LL ru

a

CTJo

s

CJ^

iIK i

r

f 1 ! V\ t "!i

JX1--i

CL-1 wv

1

CDj

w

\ s

1

1i

* j* !

\\_ . ! \\ i'

T

i \

s

>

\

\V

!1t

io

o

<

11,

\1

X- Xv J..O

O

o

o

<

<

o

o

in

i

AJ

J

Page 126: Avalanche photodiodes arrays - RIT Scholar Works

> > > >o o o oo o o oO O 10 oO IQ CU o

ma io

t< g m...ex .. JC-h O 8 8 U

1 p in C ci a + 8

a l a a +t

<rt C 8 O 8C IC -* 4* 4*

-M c8 > J CO 01 tfl o>> a

*o

1 o

b"'

LLruCJ

COo

HnXf-:'

LXvi

a:CD'

<

E

nsr^-̂

n

o

o

o

o

N \

INN

\

\

\ \

\N1 ,

s .

>

f \

1

\\

\

\

V ^

\

A_

O

ID

i"

>

H

13

\O

o

in

>

o

OttJ

O I

in

Page 127: Avalanche photodiodes arrays - RIT Scholar Works

> >> >o o o oooo o

O O10 o

o \D oi w

to

a t

eH 8 m

.. JC 7 .. c** O 8 s u8 I h \r-l L cJQ B * 88 8 c a a. H

-rt C 8 O 8 8(.k-H*!*^ C8 > J (0 CD GO 0 >> u

%

*z

X o

*g

I

^8

CJ

LGo

I

X:J

LL^

<^

q:CD'

<

E

h

I

^

\

\\

O

o

o

o

\

^t

^V

\

V\

\

\\\

,\

^V

\

\

A

"\\:, 'l

s

VI

X\

V

K \

i V

\f

lA.

V

\

o

o

in

en

o>

i .

bJ -a

] X

? o

i SO

X

_L_Y1

li.

>

o

_!0

_J

oc\j

O I

in

Page 128: Avalanche photodiodes arrays - RIT Scholar Works

> > >o o o

o o o

O O 10o in w

8 1

8 >

>

PI

a i

883-

8

O

a

o

o

B O4J t

C

8 + B

o c a a +*

C fl O B B

JtlKfltD D >o

X .

X

l_id

GoIC

ci

fflo

-j^cj

X

CD

X

<

E

U,HI

Page 129: Avalanche photodiodes arrays - RIT Scholar Works

> >> >o o o o

O o o o

O O 10 oo a> w o

* +

CI I8

.. C 3t ..

-rt U U8 1 4J I

JQ B *J B8 8 c a a, 4i

-rf C 8 O 8 B

> J w W to o >

> o

X

X

X

I-

ij r\J

LLo

IILO

LL-1

<^

CI"

CD

X

X

X

X

X

X

E

Page 130: Avalanche photodiodes arrays - RIT Scholar Works

>ooo

o

mel :8

vl 8

.. C *-HUB

8 tM CXI 8 4*

B 8 C*- C 0

L. U. -n 4

B > -f CO>

> >o oo oo a

10 w

a ao+> 4*

to CO

oooo

en

c84<

8CO >u

X

Xo

o.1^

X

l~ '

}10

*>X .

IfH

*g

.. ..

~ .j

jr^

-----

! < >

ru

Q

1 W

.., ,

i \ \i o

i< f in

r_j:.a

Mrji

1 i

\'

;

5

1 1

\

t

V

V, jz

1

X

CD

I

\

\

\

1

't

i 1 u.

X

XV X

1.

1.

ii

5r

X

X

vv

*

\

X

.A..

>

\

1

\

X

X

\

V1_ i

<

LL

H

o

o

o

o

inn

i

ow

o i

tn

i

Page 131: Avalanche photodiodes arrays - RIT Scholar Works

> > >00 oo o ooo no to cu

0 t

III.

to

a i

o0

8

>

OoO

o

. cB U

u t

cc8 4J

8 C. Q. a +1

C 8 O 8 B-H4J*l4J C_s tn to to a >

CJ

X

X

X

5=X .

*g1

CL.oCd

r- 1 LDxa

CD

X

X

X

X

X

X

<

E

I

i\~

l\\A\

o

o

o

o

\\x\

^V

r

\

N

\

V

\

\

\

\\

\

Kxx

\

\

O

1

-\:

<

>

rl

T3

O

i tn

? to

T

\t

\

TV

V\

>

f,

\

O

m

H

ocvj

o i

tn

I

Page 132: Avalanche photodiodes arrays - RIT Scholar Works

>>> >

o o o o

o o o o

OO 10 o

O50 W o* I

to

a l8

vl 8 n

.? r 3 .. c

"rt CJ 8 B o

8 t 4J 1*-t L. c

XI 8 4 B

b b c a a 4

* C 8 O O B

L U. * 4 41 4 C

B > J CO CO to o >

> u

X

X

X

X .

xgLP

Jo-

tig

CJ lD

1

<s

Xn

X

X

X

X

X

X

M

Page 133: Avalanche photodiodes arrays - RIT Scholar Works

>>> >O O O oo o

so

O O oO ID W o

* b

(0

0. 1

t* 8 (0., 3 ? . JC^ o m 0 U8 J ** 1-l C e

xi a * 8

8 a t- n. a 4*

<rt c b a 8 8

C tl, -1 4J *J 4> C8 > J CO (0 CO o>

> o

X

X

X

X

x>

X .-:

o

in

jo

x

Hrj-i'

Xa

il.-i

X

X

X

X

X

X

X

E

LL.

Page 134: Avalanche photodiodes arrays - RIT Scholar Works

> > > >

o o o o

o o o o

o o 10 o

o Ui fu o

tnCL 18

Tl B p>

.. 3P .. JL

ri O 8 u

8 1 M Irt C C

XI 0 4> 8

0 0 c a a M

~i C 8 O 0 8

L. IL ** 4" +* + C

0 > J CO W ID 0 >

> u

r_j

X

X

X

X

X

1

Oru

Xoru

L0a

Hni

X[J

Xru<~*

X

CD

X

X

X

X

X

X

<

Page 135: Avalanche photodiodes arrays - RIT Scholar Works

> >> >oo o oo o o oo o in o

ow tu o

pitx i8

*< b m-. x; 5 ..x:

ut u0 1 4> In L CXI 0 41 80 0 c. aa 4i

ti C 8 O 8 8C U. <r* +J 4> 41 C8 > j to a> co o>> a

>-

X

X

X

X

X

o3

d.8

cj-^

Xcu

x

CD

X

X

X

X

X

X

<

E

Ij-

Page 136: Avalanche photodiodes arrays - RIT Scholar Works

>>> 2:o o o o

o o o o

O O 10 o

O 10 cu o* I +

ma i

_

< ro

M XJ 3 XJ-n 0 a b cj

el *> ift c c

XJ 8 41 B

e a xl a a +

^ C 8 O 8 B

C U. *" 41 4* 41 C

8 > J 0 CO to o >

> u

X

X

X

OS

&Xoal

MaiXa

X. cj

X

CD

X

X

X

X

X

<

E

Page 137: Avalanche photodiodes arrays - RIT Scholar Works

> > > >O o o oo oo oo o a o

o 30 w o* r -

PI

CX I8

vl B PJ... x: s .. cvl CJ 8 O8 1 41 JH L CXJ 0 4> 0b e l. a a +

n c 0 oL LL *1 4* +> +1 C0 > _J CO CO W 5 >

X

X

X

u1

o!g

CJL

Hni

:ru

Xru<^

X

CD

X

X

X

X

X

X

<

E

Page 138: Avalanche photodiodes arrays - RIT Scholar Works

>>> >

O O C o

oo o o

O O 10 o

OLD W o

PIex 18

ti a CO

. x: at ..x:

vi a e 0 o

8 1 +i i<H C c

XI 0 41

0 o c a a +1

ri C 0 o 0

t lL -rl 4J 4* + c

8 > -1 CO CO CO

>

3>

XX'

o

*f

1

* J3

*>.

X .-;

l-o

>

T3

\O

o

; - -

Xlhv-i

L'J

I- r 1

1 > '.

c -

XlJ

Xro i

X

CD j

Ux\ \ \

--VV-

\\

i

!1

1>

\

\ >

X

X

\W !> \ - i

. .

I1

1X W \

j

X

X

X

\ j4

o

o

0

WJ

_a i ..

..

1

<

a.

o

o

o

o1

i

1i

O-ri

iDX3

o

o

in

j

Page 139: Avalanche photodiodes arrays - RIT Scholar Works

X.

CJ

XI

8

C. tl.8 >>

> > >O o oo ooO O ID

o to 01

a l8

B

*B

L

0 41

8 . a. aC 0 O 0rt 4*4* +1

-J to W til

>oooo

p>

*

0 OU ]

c841

8

Ca >CJ

X

X

X

X .

xg

Xo

01

Xu

IX fu

X

CD

X

X

X

x

X

X

<

M

Page 140: Avalanche photodiodes arrays - RIT Scholar Works

V.S

8 1

C1L

8 >>

>>>

o o o

o o o

O O 10

o to tw* t

P)

a ?

8

s8

L

8 4>

e c a a

c b a BH+il4>

_1 CO CO CO

>oo

oo

PI.. c

0 CJ4> IeB4

B

C

o>

CJ

X

X - --

o

T. .

in

^>

\XgI

Xo

cnQ

\

<

\

>

O

o

Mco'

V V

VX

v \

1

j

IDtn

-

>

Xcu \ \

X

LD

\

\V t

1

X

X1

^x

\

XX i

1 \

\

i

o

o

CD

1

X

X

X

X L

w \

i^ I \ j \.

s J

\ j^ o< oE Ow

O

H

<

1

o>O-H

n-o

8

oo

in>

j

Page 141: Avalanche photodiodes arrays - RIT Scholar Works

> > > >oo o oo o o o

O O 10 oa id cw o

* *

P)a. i8

vl B m.. XT *

b5vl U 88 I 4 1M C C

n 0 4 8

0 0 c a a 4

fi C 8 O 8 8

C U. ** + 41 4) C

8> _a co to co D >

> O

X

X

X

I2

'NT

Cm

xgOJ

i0

CJ

Xcu<^

X

CD

X

X

X

X

X

X

<

E

r~

i

ft

AX

1,X

\

\ \\1 A

\

O

o

o

o

v.

&_.\

i.

o>

>

H

D

\O

O

tn

tn

LL

>

o >

LOXJ

O

O

CD

OtVJ

O I

in

Page 142: Avalanche photodiodes arrays - RIT Scholar Works

>ooo

o#

PS

a I0

Vl 8.. XJ 3t

vl O 8

8 In C

X) 8 4>

8 8 L.

f C 8

C II * 4

8 > J CO

>

>>o oo o

>ooo

o

PI

.. c

8 U4> I

c0

a a 4*

OB 04J 4* Cto co o >

o

X

X

X

*zX .

IT

o

!'

;_

o>

--

1

1t

i

1,--: I ;

'o

lJ ai

li o

V

\ \!'l ~-\

1 >

\

o

o

in

'._J ~

X"

Xcd<3

-

V vL

..

-

X

CD \ \

s.

ixIL.

X

X 1

V -

x\1. tl .J

i

' ;Xs.s

\

X

X

X

X

11

\

\

\O

o

i

\ v^ \ i.

to

<

LLM

O

O

o

o1

<

t

]

b

o

o

ID

I

CVJ

I

Page 143: Avalanche photodiodes arrays - RIT Scholar Works

> > > >o o o oo o o oO O ID o

O 10 w o

COa. l

8vi a m

.. x: 2t .. xjvi O 0 8 U

8 1 4J 1rl t cXI 0 4* 8

0 0 l a a *i

H C 0 O 0 8

L. U_ Ti + 41 4* C

e > _i oo to co O >

> u

X

X

t

11!!1

1

i

O

O

minX

1I

X

x>

!

i1

. _ . --

1

i1

. . . (i .

i

,

\\ >

- 1 sXld

\i \

o'in

\iW

Xrj

Xru v*

X

CD X'I

\

>

X

x

i \

"s.

X

X ^\

\

s

XX

O

o

X

X \, S

I

\CO

*

<

Ll.

a

c

o

o

>

o>O-rl

in -a

C

c

IT

3

>0J

1 i

1

1

Page 144: Avalanche photodiodes arrays - RIT Scholar Works

>ooooa

tn

a i

vl 8

.?XJ %vt Q 8

8 Ii- C

X> 8 4J

8 8 C

vl C 8

C li. 41

8 > -J CO>

o o

SIS

>

ooo

o

PI

.. XJ8 CJ4> 1

c0

a a 41

DO 04> 4 C

CO CO o >u

X

X

X

X .

*p.

CJO-

I HUHXG

x

CD

X

X

X

X

X

X

<

Page 145: Avalanche photodiodes arrays - RIT Scholar Works

> > >o ooo o oO O 10on

pi

a i

>o

O

oo

..XJ s*0 00 1-* i.

XI * **

8 f caavt c a a e 8

L U- 4J 4 4J C

8 > -J to CO co o>

> CJ

PI

.. x:

8 U4J Ic

84J>

X

X

X .

X

rn

I- - <*

DDU

CJ01

Mm"

Xu

Xfj<*

X

CD

X

X

X

X

X

X.

<

E

M

^\v,

4

^x

Xv^.

\s

\\

X

\

\ \X-

\

X

X

Rxo

o

o

o

o>an

UlTJ

\

\\

o

IKP5

>

>

Xo

o

in

>

1=MS

O I

in

Page 146: Avalanche photodiodes arrays - RIT Scholar Works

>>>o oo

OOPOODOIDN

>

oo

oo

p)a i

rt 0 p>

01* *

n c*

J 8 4J 0

8 8 c a a 4>*

C 8 O B 0

C U, ** 4* 4J 4 C

8 > J CO C0 CO D>

> w

X

X

X

X T^J,

X

toL_J f'l

o!sCJ

coD

(JO)

Miffx^]

<^

X

CD

X

X

X

x

X

X

<

E

Lint

Page 147: Avalanche photodiodes arrays - RIT Scholar Works

> > >o o oo o o

oogO ID W

>a

o

o

o

.. JCvl CJ0 I

ao-rl

PI

a Io0 PI* ..x:

0 BO4> I

c c

8 * 0O L. O. ti 4>

C 8 O 8 0** 41 4J 41 Cj con co o >

o

XO

X . r-

Xi

i

<

1 m

*z ti cn

X ..

xgin ->

1^

^--_...

X o \O ry V >

-Jo11 \, N.

rl

Xo

cn Xv- ..

o

o

tn

cnCJ^

\ \\MirX

wV

V,

X

Xfj\Is \ \

a:

(3 \LL

>

X

I .

\ \ \X \\ \

L

_..\

\

/-TV

\"

\ O

O

* \ 0

<

\\ ' \ .. . . .. .j

"

o

o0-- Gi 1

E o inrj in

o ^x

U.i-t

. vl

1

Page 148: Avalanche photodiodes arrays - RIT Scholar Works

vl

O Irl

XI8vf

L. tL0 >>

>>>

o o oooo

o o cO 10 w

PIa i

88at

0

L0 41

0 i, an.

C 0 9*t 41 4*

*;j to t to

>oo

oo

CO.. c

BO41 1XI

84*

0

g>CJ

X

X

X

xx>-

*o

L-O

^8a. m

cna

fJ0)

XLJ

Xfj<^

irX'

x

x

X

X

X

X

<

E

li.

Page 149: Avalanche photodiodes arrays - RIT Scholar Works

>>>oo o

oo o

OID Wft - V

PI

a i8

vi a

,, x: xvl CJ 8

8 Ir* C

XI 8 41

8 e x. a. avt C 8 O 8

C ti. -^ 4 41 4)

8 > J CO CD CO>

>o

o

oo

P)..XJ

0 O4> Ic

o>u

X

X

X:z

*oX oXn

o

L_^J

COd

ucjQ Q

Cfl2

f-U-i

1

G_cn<s

X

CD

X

X

X

X

X

X

<

LLM

Page 150: Avalanche photodiodes arrays - RIT Scholar Works

> > > >

oo o o

oo o o

x>x>jp >

o m oj o...

pja I

BfA

vl b 5

vtO b 0,9el fj 1

XI 0 41 0

b b c a a +i

v* C 0 O 8 0

L. U. v4l 4 +J CJ

B > -J CO tO 0) Q>

> o

X

X

x>

X

XoXf0

o

L_r>.j

Oo"

xS

x

a.rn<:^

X

CD

X

X

X

X

X

X

V

XX

\\\ x

AX XX\\ \

^\

x\

-s

\l

\\\^*r

J4

~L

I-

o

i

in

CO

V

\

&

>

n

CJ

o

in

X.

XlL

>

X

\

V \

\ i

8CO

<

E

O

o

o

o

ocu

o i

m

vi

I

Page 151: Avalanche photodiodes arrays - RIT Scholar Works

> > > >

o o o o

o o o o

o o c oO ID W o

* 4

PI

a 10

vl 8 CO.. XJ Xvl Q D

.. c

B O8 1 41 1rl C cX) 8 41 08 8 . Q. a 41

^t COO* 8L. Li. vi +1 4J 41 C8 > _l CO CO CO 0>> u

X

X

<

3

O

o

in

COXz

*dXoX^

CD

|_rn

^

i

"1

1i

i

i

1Go'

'x\.\x i

Xcj

rp2.

I ^rv

i

~~1

r i -

*'v-

Mv!"i f

1V \

X

X

X :

\ \\ i \

\ i

v \ 1

Xrn<"^

X

CD

i

i

\*i i

\.

X

X

V, ! -

\

X

X

x

X

\ x\*

\\

o

CVJ

> 1

\t

o

o

o

a

o>

tnxj

Cc

IT

>

rt

T3

X.o

o

tn

cn

>

Page 152: Avalanche photodiodes arrays - RIT Scholar Works

gooo o o

ogn

ODAI

>oooo

P)

a j

mvl 8 pi

*. XJ 3E ?

-HO 0 U

01 *i '

XI B 41 8

8 b c a a +

r* C 8 O 8 8

. U. vl 41 4? 4" c:

b > -J to to to a >

X

x

Xz

x-

X ox1^

o

f\1

Xq

cj

o

XLJ"

LLP)

<^

a:

CD

x

x

x

x

X

Xo

< o

e ow

o

w \

\x\

\\ \\

j...

V.XJV

o>

int?

>

o

to

ocvi

in

VI

I

Page 153: Avalanche photodiodes arrays - RIT Scholar Works

>>> >O o o oo o o oO O 10 Oo to tu o* ft ft

PIa i8

ti g P)-. Xl 3S

, jCvl CJ O B CJ

0 1 +11

rl C. C

XI 0 4> 00 Laa 41

vl C 0 O B B

C_ U. -H 4J *J +1 C

0 > J CO CO CO o>

X-

X

Xxv

X a*0-

in

o

r-

XX\\^.

XtJ

<s

LI"

CD

X

X

X

X

X

X

<E

Ll1-4

\-

1rx

IT

o

o

o

o

\\

\

w

X\

X-X

\<

\\

X \\ \

_Jv- \

\x\

\

IXI- \

\

O-rt

^x.

in

cn

o>

>

rl

T3

Xo

o

in

m

\

4

]<0

-4

"

one

o i

tn

vl

I

Page 154: Avalanche photodiodes arrays - RIT Scholar Works

>>>

O O o

o o o

o oo* 10

jo o*

a i i

>o

ooo

vi 8 P

vl o 0 0. 98i *;

XI 0+i 0

0 * c. aavf c 8 o a o

C U. v +1 4 *1 C

8 > ^> in co co a >

X

X

X

1 =

Sf o

Xot'.l

uoa

iJfQ

X:j

Xt<s

CI'

X

X

X

X

X

X

o

o

<E

Page 155: Avalanche photodiodes arrays - RIT Scholar Works

>> > >o o o oo o o oo o o o* O ID o

Aj . . 1

vi pja. i i8

vl o (0.. x: * .. XJvl CJ 8 0 u8 1 4 1n C c

XI 04* 8

0 0 c. a a **

vl C 0 O 0 8C UL vl 4* 4" 4 C0 > -1 to to to o>

> a

Page 156: Avalanche photodiodes arrays - RIT Scholar Works

>>>

o oo

o oo

SS8

>oo

o

o

PJ

a i

mvl 8 Pi

vl D B 8 U

8i *j>

rl r. c

XJ 8 41 0

e ncaa *

-* C 8 D 8 0

(. U. v 41 4 41 C

b > _J to co to o >

> o

Page 157: Avalanche photodiodes arrays - RIT Scholar Works

> > > >oo o 0o o o 0

oo o 0* K) 0COvl vl

0, 1 10

vt 8 PI.. XJ JC ..X.

** O 0 BO

0 1 41 1n C c

XI 0 4> 00 0 u tx a 41

vl C 8 O 8 8

C U. *l 4 41 4 c0 > -J CO to CO 0 >> 0

X

X

X

X*

in

1-0Org

I

rig

D;

CJn]

Mn

-p u

xn

X

X

X

X

X

X

o

o

<E

lint

Page 158: Avalanche photodiodes arrays - RIT Scholar Works

* I

vt

X*8v

L8

O o o o

OQfj gO 10 o

O * "

vl ^

a i i

vi 8 "

OB 0 U

T ?!-

B 41 8

b c a a

c 8 o 8 0

li. vi 41 4> 4 C

> _i to to n a>

X

X

X

x

Xv

*d

1

03

CJ^

MrC

XG

X^r

X

X

X

X

X

X

X

<

E

ul

Page 159: Avalanche photodiodes arrays - RIT Scholar Works

vl CJ

o i

C li.8 >>

> > >o o oo o oo oo. o JO

01 *

8

8

8

.0 4>

o c. a ac 8 o 8VI +* + +

_i to to to

>oooo

PI.. XJB U41 Ic047

0co >a

oX o

Xo

w

mXi!

I*z i

!'

X 1 i

*2 1! 1 >

tj 1

E_ .

1 .

^- o 1 t

CXu u \ >a *- t^

a 8 ll ?0J Vt o

CDa

O*5tr" X

i

o

o

M*. ^ X

x^

-

X^r V \ .

<r^

Vs\ :

X Xk\-i u_

(_D \x >

X

X

^\ \\

NX \ \

i

XXX \\ i

X \\ XXV

^N^ x _,. Jo

O

o

1

<

D> O

E o OT3 Ovl

o vl\ - |

LL* i-i

M 1

Page 160: Avalanche photodiodes arrays - RIT Scholar Works

o o o

o oo

>o

o

o

o

PI

o01 '

vi a

a t iB

* 0

viS. -5

8 I ?* I

Xt 8 *1 0

8 8 C. a tt 41

vl C 8 O 8 0

f_ It * 41 4 4> C

B > -J CO CO CO O >

> o

X

X

Xx>-

*d

*3

i o

b

Xcuo

{/la'

r 1 .

I r-l

j-*l?

<:s

x

CD

X

X

X

X

X

X

<

E

LLM

Page 161: Avalanche photodiodes arrays - RIT Scholar Works

> > >o ooo ooo o

ID Ovl vl

I I

*.s

>oO

o

o

a0

^0 COw x: s .. xjT*OI 0 O0 1 41 Ir* C CX) 041 00 0 C Q. O. 41

vf C 8 D 8 0C U. -^ 41 41 41 C8 > J to CO co o>> o

X

X

Xx^

Xd

x

I'n

XrriX .

D

COcn

C-Jd

o

o

CLs-

a:

x

X

X

X

X

X

X

<E

lLH

Page 162: Avalanche photodiodes arrays - RIT Scholar Works

>>>

o o o

o o o

o o o* O 10

AJ . *

vl GO

a i I

>oooo

PI.. XJ0 u41 I

c0

.. XJ *vl CJ 08 1n CXI 0 4*

0 0 l a ft +

vi C 0 O 0 0

0 > _i w so to >

>

X

X

Xxz

X 0

*rn

5".

X-vTCI

GDc?

udM.V!

I0

Xv<s

X

CD

X

X

X

X

X

X

3

Page 163: Avalanche photodiodes arrays - RIT Scholar Works

>>> >oo o oo o o oO O Q o* O 10 oo ?

vl *

a i i0

vf 0 PI..XJ 3 .. XJt*0 8 0 u0 1 41 ]r* t> cXI 041 00 0 c a a 41

vt C 8 O 8 0C.JL v* 41 44 c8 > J tO CD 00 o >> u

>

X

x

X

X

Xx

j_Ln

Co

MiCX--

uDlt

r i -

*-'

o

M-i

T-'J

X

X

X

X

X

X

X

X

<

E

LL

Page 164: Avalanche photodiodes arrays - RIT Scholar Works

>>>

o o o o

o o o o' o o o

o * o o

o ovl 0 vl

o. i 7

vl 8 ft

.. XJ Sv*0 0 0O

0 1 fj 1

r4 C C

Xi B + "

b 0 c a a *

v* C 8 O 8 8

(. U. vi 41 41 41 c

m > j to to to o >

X

X

X

s^X .

x0Ti

M,_:_ 0

l_J nj

-V;

Liooj

~CI

00CJN

Mmxt;

Xlf!<3

fT"

LO

X

X

X

X

X

X

<E

11

ii

t i j1

]

E . \I 1

t

i1

*

> ;

f(r1 1 1 t

1 *

Ij

1

i\

{)

F Xt

\X

L

!<

L . \ !I

'

^ v.

"vj-v

1

|X X

'

1 X. \1

F' *- r

11 NX *

1

1

t "X\

i1

1 -X > T!

^X -. |

X, X.11

1

1

^X x

j

1,

X.^

1 |x .

**--I

o

oft

-o

CD

I

73

Xo

o

oft

cu

Li.

>

o

o

o

o

o>o-*

in "a

x.

v

OO

00vl

in 1

1

Page 165: Avalanche photodiodes arrays - RIT Scholar Works

>o

oo*

o

a j0

vi 8.* Ivl CJ 08 1ri C.XI 0 41

O Lv* C 0L U. vl +i

B > .J DO>

> >o oo oooo

0viI

ft ao 0

CO to

>ooo

o

n

.. XJBO4 ICa4

8Co>u

X

X

X

*^X .

xgcn

toX f\J

o

o

uoc

CJ^

Sin"

Xin<^

a:

x

x

x

X

X

X

X

<

E

LLH

Page 166: Avalanche photodiodes arrays - RIT Scholar Works

Br-l

XI8i*

C

8

>

>>> >

o o o o

o o o o

o o o o. o o

o o

BID vi

ft I i8

*1 0

OO

m ** b

b c. o. a 4i

C 8 O 8 8

> J cO co to O >

p*

41 I

X

X

X

X

x^

*d

M

Oin

xS

DO0

X'J

Xcn<"*

x

x

X

X

X

X

X

X

<

E

LL

H

r

I I

;

! t

u

w-il

o

o

\

\ X

T

n?

o

o

o

o

o>O-rl

on

-\

C\i

a

o

o

i v*

LL

>

1ioo

oo

?CD

O IOi

I

Page 167: Avalanche photodiodes arrays - RIT Scholar Works

> > > >oo o 0oo o 0oo o 0. . o 0

co 55 *a i i8

vl o pi.. X s ..

vi CJ 8 0 CJ8 1 41 1rl C. CXI 041 00 0 c. ft a 4>

-rl C 0 O 0 0C. U. vf 41 4* v> c0 > _j to to tn>

s>

X

X

X

X

X

X

o

o

>

m

o

CJ

o

o

CO

CJ

o

X

D.

00cj-'

MenX':j

X

<

X

c

in

n

X

X

X

X.

X

X

LL

Page 168: Avalanche photodiodes arrays - RIT Scholar Works

>>>

o ooo oo

o oo. o o

o *

vl W vl

ft I8

vl 0

.. XJ *

vlO 0B Irl L

Xt 04i

0 0 c ft av C 8 8

L U. v*4l 4> 41

m> j so in to

41

c

>oooo

CO

51

c

a >o

X

X

X

X

X

X

c

o

If

M

x

Xt?

00 oo-

Ma?XCJ

Xld<^

X

CD

X

X

X

X

X

X

<

LlM

Page 169: Avalanche photodiodes arrays - RIT Scholar Works

> > >oo oo o oo o o

oa 10?*t VI

0vl O

.. XJ 5** O 00 i

XJ 8 41

o 0 c a a 41

vl C 8 D 8 8

C U. 41 41 41 CB > J tO CO CO O >> O

>oooo

p

41 |c

8

X

X

X

X

XXc

>-

o

!_m

Oo

Q

CXH

XCJ

CLiiJ<^

X

CD

X

X

X

X

X

X

<

LLM

TT

^

i v v

\\ V X

v

I

o

o

o

o

_6>O-H

OID

O

Oft

-jin

1 >

>

.rl

x.

O

O

O

vl

I

<2JO

o

otn

in

o J?*

i

Page 170: Avalanche photodiodes arrays - RIT Scholar Works

6.7.2 Raw l-V Data

The following tables are the raw numerical data from the l-V graphs of Section 6.7.1

156

Page 171: Avalanche photodiodes arrays - RIT Scholar Works

."2ZS

SSS2SS200oooi<i

nnpir-^ooiffloA^Sr-'

PSS09<=>ooooo^i-co-s-

S?Jona^oJoodmaJdricdiNT-'

s-s|2r^ <M ^ CD

SS22OOOOh--r-CDCNC0C^lO^r;0)Cg0)lD^r-SN0)S0)

tDiriirirXor^irii^tNv^T^criv^rXcNJOlCMLOCOCNinOifOCOCOCOrt-r-

CNtDtDlCTj-v^cOCNCVlT-T-' *

2 O r- O ^p

OOOOOOOOOOCOCNCNCOCOWnoDCSj(DCN|inr;^r-^(DO'd;S

rXioXrcdaitricdiriootDC\ioixSoCDCTJCNlOeOCNtOOinoiOCNJ v-

COCDiom^cotntNOJv-T- <

OOlCmOiCDCOOv-

.(OtqqtNooo

cotNU^Tfcdv^ocritd-T-v^v^ocSo_ C) ,, O.

* '-'..' >. m w .'

! i.'jt

i i I'

,) ::.. > 1

fsj CN^

CO O CMOONW^cOir1

:-ii>l

OOOOOOOOt-COCNOO'v-Ov-

roqrait(D(0(OT-r\iiflrooo

iriNtoiriooipgr-V^iiioddd

:-8>-s

OOOOOOCNTfrCNO-r-O^-COoii^v-inommh-Ti-^-ooooo

cooscdiDoriiDSroodddOT-cNnmcov-io-v-'

"

CO in^-

CO INr- r- i '

2 O (-, O ^o

o S o >- s^

^ CN^

CO^

O

OOOOOOv-v-TfrCNOT-T-COvftDcqcoTtTj-r^tDoovooooo

cooJu'iiriNcoiritDcrJddddddcocooiotN^j-con'1

LOTf

CO CO CNv- '

a> o

cn

S 2 S

S^Q

o o o o oO O O CD

t}-

CN CN

OOOOOh-Tl-COtDco<ocoir)Ti-^-co

roc^rrf?T:,?u?tp'QQc9<d.'JCOr'^IDtDtOlfi'tCOtO^T-omcricostoin^cotxiT- T

OOOOOOOOOOOOCNCOO(NTtv^COCNLpCOOOCNCOO)lOCNin

^CDfOr-'tvi^Nlo'^CDT-'fOCOfsi^incOfNtDOtKlCMinNOJOCVI <

COSStOCDin^-Tl-fOtN'-T- '

o

>

t t

o> o,

-

r-- cm' s^&

OOOOOOOOOOt-OOCDtJ-

r^cxjv-;r^tDv-;ir)0)if>f---TrrN.cNCDco

r-'LO^SLOIDCDOilOCOinX'T-'^CDvj-r^.T--vj-COtNtDOlf>OLOv- '

CDlDtO^COCOCMOJv-v- ' '

ooooooooo^T-mcoTj-cocnrgswono)S'i-riT-s(NNtN

rxisrjaisiDN^NddNdtNcotNir>0?CNCDO**01COCOTl- ' '

CD If)tJ- <^-

CO CO CN

COCNtNCNCNv-t-v-

o o o o o o

i > _

c

_ E J; a 2 E

SOOI5lS =

o

>

XI X)

ro .a O -D CD -D > > C

IT3

>c ra

^ > xi 2 m

LL

O a

2 o

1o

Oc

IfS

Page 172: Avalanche photodiodes arrays - RIT Scholar Works

CD O,

- OLO CM

COCOC0COtt3-cO,^J-'^COCNO)<D00CD

docooSoST^cN^tDO^PS-tiS(N^(OCOr-lOCOgT-C\ICV)^^^corYtDu^up^cococN-r^-vj-co^coc;

d

T-fMlOST-'tsSS

COCOCO-vJ-CNLOCMCNtJ-COSIOCOSOCDCD

TcN^Sdio'^ddO LO O CO o

^

CO

Sjwo?

^ v-

CO T-

CO

>o

CO N iq <qCD d OS LO LO O CO

O)v-

CO CD O) CN CDLO LO ^f CO CM CM

t-

CNCOfOiOO'tOJCO'^LO

T-OJh-LOh-CDOCM

<-

W > *> "* f> O' JG n-i Q CO O LO

fOv-SO)f>JC0CNSNLO^LOOOlCMCOtDCDV-T-TtO)IM'<tSv-T-

^ CM* d CO

'

CO OI O CM-^

vj-

OSOOJO^^^V^ -- W cd LOv- -r-

loTTcmlooTS1"

J; co ror-

oo o

d d

LOCNCNCOCO^CMt-v-

Oh-CNCOCNlOTrOO

lOco-r-Ttr-p^cMOO

tr'NS.CC)8r:^t,l*COT-(OlNT-(Dr-T-

"8:LO CM

CD O- O

LO CN

CO CMt- t- O

CO O O) CD CN T CD

P Z ON t

r- O) COv-

'"

^ P) r O) P)qO

i- CT> TT CO CN CD CM

O Z h

N CD IN CO CD CD <*)

dddcoddddNccJcdtN^PPCOCDCflCONO'tCOCN^lOCOCOfO.

oicor-r^cDtOLOTj-'^-cocMv-h-CM^

0)COC3)t-0)SNt-t-

OJCO-^-COIOCDCOv-t-

O Q) CO S CO O) r ' '

CO , CO _J

'

. ; CO LU 111

lO^CNv-h-CJI-f^i^vJ-v-LOv-CMCNv-'-'.

1 ' n ' ' ' '

tt

lOCMO>C3>a)C0COv-T-

v-OCMOCOOTCO-r-T-

CO f -* CO CN TT LO '

COtN"r"CT>,^a:>0^H^WtdOLOCN^i0^

*f CD CJD V7 CN

CM

h- i*-

. o o z cLO CN

NCO

(NOJT-CNntSCDNlOCNCDCOTj-lD

gaioidcoddsN^wojffl^cD

aS 7iNmrocMioo)cococoiooc\rforniftTfTtmMM^-nl vr is. fNlCO If) ^ ^ CO CM CM tv

COO>S^lDCNT-TtTtCOLOOO)SinCNCOCO

lOI^COCDTj-CjncOlOLO

lN. O CM ID t '

h- CDv- v- *

CD O (-,O

_^P

- O S O Z^

LO CN^

CO^

O

r- t- cm ^t ^coiocosiosms

wioSjoi-^inr0'^so

in rr\ l * \r\

COr-T-CNCOmCDOlCR

CDLOOCOCOCMOO)CT>

OCNT-NtrJCOCOCO

TrT-O-tCN^CNft

cdsld">^^SCDr- ^Tt ' CN O O

a> cn ' iti

CO'tNNSIDCOS'Ji-'-SOllDOincOOOOlCONSCOOCOSOr '

OCnOJCOCDlO^nCMCMr- ' ' '

O O vP

*~

o V- LO LO ^ O

h- v- to

oooooooooooT-r*-oo>

ncoT-cqcDscqsscNroONqqddcOloV'tT-'^CO^lri'tN^OJIDO)(OSCv|(DOOCDroCNSCOr-

StDCDLDLn^^COCMr-r- ' CD

Q

>

o oi-

O O ,-, s_'

h- v-

OT-COCOCDNrO)OtD0CMCO^'*v-LOCJDCOCOCOCDTj--v-r^T*CN

' v-

lO^tCOCOCNeNT-T-v- '

*~

<~> b- 3^- LO LO ^

o

OOOOOOOO^I-CMiOOtDh-Ocot^cDONcqcocqsosqioco

^ddiDtsncocDirir:tNdcj)dST-CDOLDOCDCNCOlOCOr CN^Tj-COCOCMCM-r-v-1 ' '

2 o oo S o ~z_ P

OOOOOOOOOOOOCOCMCOOOOOOCOC3)tSSSO)CO(ON

CONricoVrioCNCDCDCOCDlriLDV

CNLOCOv-LOCOOOI^CNCDt-C3)CNCOCMt-t-00)CJDCOCDIOCOCM '

:-ii-lCDOCD^lOCO^CNNO'tCDcOSNOCNlDCOrlDCDCNLOCDCOSSOJCDtONCDCDlO^'JtOCNIr- '

. ^ o 5S-

- 2 a z o^ -*

^lo co

CDlDT-lOr-cniDiqOirOlDONCDTJ;rOLOO)Tj:CNT:^6(jlcOr:(D(DXt^:

LOh-OJCNlOCOT-LOCOCOeOCO ' v-

'

- o O ^O S O Z

5s"

s-^NlD O

^NCNDCOCDtOT-(00)COCOOO)0ONLOSOCOSrlDCDlOr CMSCDlO^TftOCNCNT- ' '

Page 173: Avalanche photodiodes arrays - RIT Scholar Works

<o ..

inT-oioDo^^o^^ffljnj-

*""

*""

9

o _

diridssdsoiNT??!10?1"

"m-gS>-o l9u?^c?c?^"7T 'n^NPgg"~ "^

' oo

r-n M.I n.. __. _ p^_ ^4. rv|

, Q) (N COT~ T"

,O O O O

<d d d dlo 2

t|- v|- r^.^ CM CD

CNlOO)r-COfOCMO)CNNCDCNCDCOLOSOiNoicN^^io-jcosn

OcdlO^tDtBLOPLO

^h-T-CD-^T-^T-^CN to CO

o en :

CDIOCDt-COSIDOICJ)

lOCOlOLOCOCNCOOlO)OCDCOlOCOv-v-COCOCOlOinCNCOrtlKCOCO

Ol'-Ji-CDr-CO-rt-

I-*. V- I I I I I

COCOCM-^-CDCDCMCMCN'ttMNT-TjioCDOO

CM-^-CNIOO)COt-LOIOCO^Oi-IDCOSNN

"

! <? o <S ^ ^< <9

9^r CO COv- t-

0)'t(NC0r-Tj0)Tj-NKC0CDlD0)r'

T:CDCDr:df>i,"CSP!5CDrtQCM

COMNCDCOOfflffiCOCD

v-

LO tT O

LO fCOCMCNv-v-t-CDCOv-COO r?nr

NNOJIDfOfOCRCOO)a>r*-N.ocoLoooo*CflCDlO010)SCOSvtOOlincOST-Tj-r-

^COCO^^St-t-i-

O ' CO **' '

. s .*

el o _ 2^:- o S o z o

CO ^ ^ LO o

CO o ,-. o-

- o o :IO

Tl- ^LO

'

oCO

. o S o z oLT> "^

^LO co

CDCOCM01C\JC3)INC00)'JSCDLDLDCN

vtC0C0CMv-O^<?C0E0C0^"-^SXViVTVoi to in co t-cm^

oCOCOCDCOCMCflStNCDLO

^LOCOt-^COt-LOOt-CNVCDCOCONCDCDIO^^CO

tOr-.OCOCDO)CNCDOSCDCDIOtJ-COCOCNOJ

CDCN-r-0)CO"d-'<*v-T-

(O-v-LOCOOCMt-t-v-

o cm o CO t CD ,'. ,',

v|CM3;v-r-.lOCT!^^1 v-

-*'

CN CN O X

LOO)0)CMCOO)0)t-t-

Loa)CM^a)0)h-v-T-

CD O) v- CMt- O) CO .'.

-t-

CO LO LiJ UJ

'

CO LO v- v- CMi-

CN CO ' v-

LO ""f "T

TtLOv-COCOLOOlCOCO

OJCMCMt-CDCDCN^^OCOTrtOLOOCMLOLOcmov-cqcn^v--;-

CDLDNCMCNCOCDCOCOCOtI-S

CO O ,-. O__

vo

- o S o z o^> -*

^LO O

^OilOCMv-CMCDCM

CM^NOCOCDO)OSt-CMC3)

S-CDiOlO^-COCsjCM

O) i- lo a> LO

in oi n *. w

lO-vJ-C0CNCMC0f-O>CX>

CDi-CNlOO)(O^O)0)

lOCOCDOCOCOCNCNCMitc^soiN-ioeoco

cddtD.v^drocNtD.<D.T-o)r^- 'co-v-cmoo. i CO i.t.i

- o 2 o zCO CM ^ O

CDCOOCOT-CO^lO'rCNCOCOlO

ScS^cG^^S^^d^CMtO-W

Z"12l:l!l2ocDr-(Dv(DtSCT> hj- CO -^

>^tffl

CD O 0 O_

5?

- o 2 o z oLO CN

"* CO

(OCDrocOCDN'JCOCDCNSCOCOCMCO

S.-^^iO^J-COv-TtcDLOCNCN11?

V a>coscdlolo^cocmt-

'cn

lOCDCDCO^T-COCOCOCNTtv-vj-CN^-

J m m J J ") ij *+ ** ^

'

S CO ID O)

CO'-COCDO)CNVCOCNCDOCO"ttCLO

h- I*- CO LO ^f ^rMCMr-r-lDC|)(Or-

COCMLOCD^OlOTt-T-

CMtNCMCM-r-COOiv-v-

O CD CD rj O ^ N .'.

"loPocm^^^W

^ CO CN SCN CM

LO

lo tf> |pV7 CJD O

h

t t

t-t-COCOCO'^^'t-t-

h-CMOCOOTfOlT-v-

CD N CO CM CD t-

CO

cmlocdrioior-Liiuj

^COCOt-CTJOCM--CO to CO ' vj- v- '

''f "^

rCMCON^CDO)0)0)

vCOCDOCDCOCOCDCD

OCOCDOOSOJ't^

lOcqcjooip^cOoQV Tfr

V- CM O) TJ T ' "

r-

S CO CN CDr-

M

>

. o 2 o Z ;m cm

n -a- o

v4-cococJn_^co^-TJ-coco,-:

lOSOCMTcOflOCOCNCO

S CD CD LO CO CO CNt-

r S

COCDS^COSNvr-

OICOCOCNCOCNCOCNCNCOCDCDNCOOlT-tDCDvj-oiCDOJCD^COo-Q-

CO S ID*

O N T '

v-

CO O CO CO-v-

CM

CD O r-. Ov

. o 2 o >-

to cnN

cr>

Nr-SNCMCDLOCN'tCNNT-Tj'COTl-

^ofJjc^dcocodcN^^V^g^'^Clrtrs.rDv-LOOCOCO

CN CO

o o

d d

OK'

J \S K'J IA/ <JJ \ AtT^

_LDMDT-lfiOCDCO

VT\CJ)CONCDT|-COr-LO

O)T-cOCNtCNcOCOC0SCDIOOSCMCDtMCNOCMCOLO-flOCMLOLO

doigScdco^ddn. n R | in in ' '

CO CDCO CM

Page 174: Avalanche photodiodes arrays - RIT Scholar Works

O) CM"

TT .

OlCNT-COCOCOr-CDCNLDOlSCDCOCD

dddddddr^Tfco'cocNcb*0.^CDcNStMCOT-CDrCOOlDOLDCOtt;

CDCDLOLO'^t^COCOCMCMT-1 v- LO

CDOqO.CM - o 2 o .

O) CM" Tl-

- oCO

QNLDLDSSCOCNCDLOCOt-CNCDCO

^^^Lococd^d^cor^^^g10.NCNTCMN-CMCOCOOJAtOCO^.O

LOLO^J-COCOCNCNt-t-v-cDCOCD'-

CD O o O _S^- o 2 o Z o

O) CN"

TT CD

COCOCDCOt3-v-CNC0CNO)COO)CMt-tJ-

ddd--N^r:CDCD^^gcN<!

A-COT-CDt?CD7 7cOO)OCOl?r'TrLO if it CO CM

r* ' CD CN CN CM

,ffl.8gzgo> cm"r o

Tj-LOCOCNCNCOCOCNLO^-^Trcn^N

"?lDOlDOCDr-7cOO)l0^12"STj-

* CO CO CM CMvj-

'uptMoOOodd

CDt-CDCOCOCOCNCOCNCDi-^S^O)

^p

oSrisncNCNPJT-'v^^h^r^T:

O ^ COSO^COCMCOO^LOS^SgSj0>0 CDLOLO^tCOCOCMCM'-COCOOSsS

CO O iiiIiiiiiiii^^^v- o o o

CD O

O) CM2 > b

TflOtOCOLOCDCOOin^r-lOlOCOID

colot-^cncmcns

IT cn ^r r-- cmVnOCOS

r-'cdcoVs^jco"

t-aJCOCOSVSV

CO CO CNt-

CD0o0_ r-

Sr>r-\9>-o

CN-r-COCOOJCOLOTj-

.CM t ^ rv

^t CO CN I

^CO CO CM CM tj-

OJTt NTf - O

CO CN O) r- CM"Or-rO't

p o p od d d d

COSNCO^TrSlOCNNLOCOCDCOlO

s co o cd ^ in cncc-os^idcoo

CONCNCDT-CDr-NO1

^COCOCNCN^v-N^'o o o o

CO o ,- o

O) CM

Zo

NCN^r-OJr-S^COCD^lOOCOS

r^CNcocoLO^qi^ddr^^lSgSCO CO O) CN LO

'

20 N. N CD U)^- rj1

i

CO CO O O)

t'

o o

d d>

cowiflNP)-o)CMCMrMacooDT-in

co'c\idd2cdddiricr!h<c!S"'5(DO)NinYT-iflO)rrirto^5':"

(D 10 in * ncMt-i-oiot-^sei i i r i ,-,0 0

O O

Zo

CNCDOCDLncOCNCO

ffitv^OT-ifio^in'-inwio^nnNt-t-omjT-

^ o (O ncn

T-

CO

o o o

odd

CD OCN - O

' O _ O, - o 9 ocn cn

"co

cjcocontorooicnscMSST-ioco

cdririiridoi^mnoQQ^r

'

3 r- t-

^ CO CO t

o n o s cot- o> ^

T-

(Ot-N oCN * CN

t-

rS Q O ^

omoLooinoinoiooLOOLDOqsinNOMONOMnNONin

cocNCNCjicNT^-r^^T^dddddd

co xi o to

E ^

Ssslo -o _

=

|= I SgS E0> .2 3 * 01 3

3 O Q O Q. 5 =

O)

o

>

1

3

o

o

DcCM

Page 175: Avalanche photodiodes arrays - RIT Scholar Works

000 sS

cdS8>!

CMCOiq^-T-T-cOv-CMCOCO-ri-CM-rflOLOOa)COCNLOr;dr:oSd,"l:0i2,"

COCOSCOffiOCMTtCDSOCOT-S^

cjpcpr^coLoio-^-cocM-r-T-co ' g gd d

CDSCDCDCDNCNO)LOT-COO)SnCMwSco'd^T^doScNCOcor:COL5c2J

cmtco-S-^qcnSocncn^^S0

' ' i i t i . i 0o o o

' o o o

CflSNS

oj(oco^cjroo)T-o)^Nir)o)coco9v^a>d-a-T-:coCNiin"'a'<0'*cno

VooSjso^uJoi^giSSK

)"<,'

NCOT-cqcOCNNCNO)LOO)TtT-{OLr)cNv-ddrJTddon*i^~tri,r"'T^McO

COOCO^^COCOiDWtSJSSr^CD^-CO CMt-v- i in > I

gggodd

9 8 9 2 s

CN

CO O ,-. O

cd 8 8: - o

CO

LO CM CO CO O) LO CO^

CO CD CM t N~

CO O) Ovt-

S N CO ^ CO CD t);i-i-sdcoXX^'dCOCOOCOCDOAtOMNrTriri'

LOvfvfc?CNVTV -^'

TgS5

d P dO

COOT-COO-vfCOCOCOt-CDCOCOv-CO

COXco'dJlfi'^P^^n??^^CDCOvLOTcOCOSCO^StitjS^^ co co cm

T?TV^oSoo

d d d d

CO o- o

CD CN

COCO^OiOJCNCOCOCO^tlDSffi'JNdlriNCDCOtCIOt0SNh-SSr"

1 d d d d o

rrMAtCOSCO^OQtCOlDSi-CO

iniDincDiDCDcoT7so)'tSS22N CD IT) >t CO CN

r'

? ^ O O O O

P d d d

^o o

,

cn-jo lo

m uo>"

lOSS^J-CNCNOr-lDTtcOlOCNCNO)

v-'dTj-'cN^dcdPPPr"""^^COntCDQCNCDOJT-SSSnSCOLO^COCMY^^CO-ggggg

' d d d d

CDSCOSfflTtCOCONSCDCOCOm^KW^XCDCncOLOCD^COCO^

cocMCNv^tTSoooSS1 d d d d d

Q

>

O) ^

CDt-t-CDIONi-NO)(OCDCOCOO)CD

-ro3SS)codNd^goS

0)St-COCOSCNt-0)

COQIDt-LDIOCNCOlO O CO CO O) CM h-

lOSOncDOWOMCOCO"Tt'T^COCMCNAr-T^N.vi-vj-

t-

CMv-

CM

lOLf)COmiDCNSlOSCOO)CNO)COCO

t-\ <+

"*"i 1 rf rri m

^ Oi COi-

0> Ol *t if

Sd^s^Sd^d^sgg^

O Z o

v-TtCNNCMlOT-OJlOCNCO't^-

'" '

COr-

CM CO O) CN ID

-jO) O CO O CD CD

COC?N77r(n^T-fOg35g

d d d d d

iDfOooiocomcos'tojsssmT-

TJ-

CO I*- '-j ^J,

T-

OT-

O O O O O

d d d d d

Page 176: Avalanche photodiodes arrays - RIT Scholar Works

(DOcocnino)coi-iocoNcno>co^

"^ddddcoco'LO^og^gg2-OO7OO0iN(io"!j22TTcpsin^cjiv-^cocoioggH

d d

"-S8>|

CfllOi-COCOCOMDCD't'tCOmiOT-

CO N lO^CO -r*VinC^C?000

d P d

CNv-COCOIOCDCOCOO>COO>lOO>lOv-

mmrviOAiriK/COCDlOCDCOOCOS

r- co

10 *t coCO CO

v-

d P P P' o o o

ioioina)tNO)cocosscocNi-CN

in cnJWisJmOOOOCntOCOr^O

ID^CONCNv-CplDCNN^g^gg1 d d d d

CN - O S O .

CD ^^

LO

OO

inLOrOCDT-CD^r-CNT-COTt-lDCOCn

Atr-COCO'CO^fn-JtriOCMlDCDO)

V T \ V 05 cpcNTpupo>gc:;g

CO o,

I - oCO tf

' SZb

cncocoscocDroeo^-iDcsscocoN

Srg>d5icodsd5SSinS-

CO CO osS "cococm^-ooooo^. ,^ ^r, h^ tn ir\ n^ n^ f^i05C0N-CDLOppcOCN-Y-<|-

CO O,

CN - OCO f

SCO(D-*T-T-c'<TCDN^^T-COincoco'ddcNcdco'dTPS^SS0

scoin^nNY^tDN^gggg

d d d .

CMco o

,0 O f~. O

_^p

- O S O ZB-

CD *^

LO O

t-COLOCOp-LO-^LOLOt-LOCOCOCNCN

d^dcdr;iricocN^9JS25r3

S S E"

8 55 ? "? S2 || | |' d d d d

>

> o r~, o _ S;cm - o 9 o 2 o

CD CM"tf O

Oi-ncoi-stococoiocjcnssco

dccioidd'ri|,:NcdgLOOCO-<rT-CNUOO>lOCN<<9K?jS

odd

CM - O 9 O 2 oCD CM

"- co

COt-NN^-OCDCOCMCOt-t-'J-M-CO

i^co^dd0,r--'c90.c:D!0.!5S3;m n.i m *f rn

T"

rvi m /-vi rn"

^ CO O OCO CM CO _

CD LO^-

CO CMCN CO CN COv- N. v* V-

00 O r~, O gS

Ncd82Zo

Kr-tMCMSSi-COO)lOr-(OrKr-

dcdv-:cMv^'^cor,'tNiCD',^^'itCT>'r-

NO^COCOCDd^^g^^g^COCON^rCO^NS^ggSgS

' d d d d d

w u u

CD 8

3-cr>CDr^.coo)'^'Tj-r*.N.CMCD^'iocn

7 1"^ 7"t 'td88588

'

CN"

CO

CDCOT-COCMr~T-O0h-LTjCMU0coa)CNSS?feoiNVcDNCDN^Jg

VVV^CJSlO^CJNr-^^go

Page 177: Avalanche photodiodes arrays - RIT Scholar Works

CO .

O) o .ono 5;- o 2 o z o

LO CMn ^ O

ooocDcoocor^-iocMiov-co^-^r

TTTTTTcocD^csiN^ggg

cm^

^r

, ^ ^o Z o

SCOCNCDrJ-Tj-LOSr-T-COin^COi-

Ej^O)O>CT)O)COf^vJ-00CDS2^2TTCDCOSCDLD^COr-^Wg^g

co - o P. o Z oLO CM

"* ^

iDCNLOtJCMCDNCOCMlDlDCOCOa)^rt^^-CO^^fSCMLOTtT-CMLOCD

S^^cot^^gco^Sg^:^^CO LO COCNYCO^JgcSoO

h-COO)T-COr^COCO^tCNLOCMv-COa>

OOlCOfriKJnJrar-iOLDCDCOv-cOO

CO CM CMi-

CM CO COt-

O O O O

dodo

2>g

CDOCOOSCOSLOCDIOCMCOCNLDCM'IO^v-vj-vtv-_:_:-N:h-h.v-N.CN

1

o o o

odd

O) CO N CO ^ CM O

LO COv-

CO

CO

O) o0o sS

. o sri o >-o

LO CMN

CO CO

ttfO)OCOO)(OCOTrCOCMCD^'COLO

2SuSd2co'co'LDco,lC?^n^^^^^^CNQ^COCO^tg?VVVVp '^"P'^'^cp^ooo

odd

O) o0 P SS

- o pri O >-o

lO CM^

CO CO

NCDIDNCM'-O>COCJ)C0COt-t-CNCO

ddcMtddco'dcMoiPgSS^gCOWtCMT-T-rrr

0)2gSO

^CpNCDlD^COCN^CO^Ogg^1 odd

'tCMCMCOCOCDCMCOSO)'tCMO)LDO)

ddcM'dddcMLd^. P^rjg^tCOOONCDCDCDCOCOO^S"^QlDCOIDTfCOCNr|-Sr-gHgg5

d odd

O) o,-,o

.

co - o 2 o ;LO CM

^CO

CO . o 2 oLO CM

^COZ b

COCOOCOOCOv-cOCOOCO^lOCDCN

^COCNv-v-0^(rj0)lnT_COT_TrO)

VVV^TTCOSlD^COr-Sr-T-

CDOlr-COT-COr-CNCNCOCDSCOCOCN

rNtNgLOCO^^^dtOLO^^g"(OCDTi-^NOILDlOtCO^ *7V O) CO S CO ID lO CO CM t- ID CO CO

Q

>

CO

o> O0

O- o 2 o

LO CM^

CO

z h

T--etLOCDrOCOCOLOSCN,tCN^^O)

CO^^^^ooC^O^COCOCOCNCN

70CM'tNOCOCOTcOO)CMRirCO

h-CDLOTt^J-COCNv|-hj.COLOLO-v-

cno0o.co - o S o ,

LO CN^

CO

SCONO)CMCNNlOO)CD

^CNTfSip'cococqyfcM'cOCOroCNCOO'tCNvfCOCMCNT^-!- > v-

O) CM Tfv-

nsos

OCOm

OLOOLOOIOOLOOIOOLOOLOO

ONLOCNqNlDCMOSLDCNqCNlD

(ONCMCMN'-^rVdcioddd

E^,

?2| -

E

r

[u

d

3)n

o

>

.- E |5 E in

co "5 co 3 x a> 3

3 O Q O a. E = CO

Page 178: Avalanche photodiodes arrays - RIT Scholar Works

9>"o

COT-[OCMCOO)COCMM-tf>COCOCOtCM

IgcOOCOCOCOCOIOM-NCO^SJ'

TVcncoNcoio^coN^Noggd d

9^9

OTcqT-;coTfa)**cqcqcbcoX+rod'tdcO'tCOLOLOlOlOCDCOOCOCMh-

COSCOID'tCOCNCNr-ST-

?- lo o> a> co

O SCO CDTT

co cn a> o

o o o

odd

CO

oi-

O f~, O k

^o

. o 2 o >-

v-

CM^

CO O

NCOT-IDCOT-CDCNCOCDSCOTj-r'lD

tn n.1 in en -* J ,-*lO O CN CO O f*

tJCDCMSlDCD^T-^-

njmv-njertNt-r rT-CM^NOlD^^rSwCOr^COCO^cr)CN^vj-vvv|5ggg

d d d d

CO

ov-

o ,->o

. o 2 ov- CM

^CO

COlDCNSnOCDCDCOIDSCDCNWO)

iNt-ScoS2^S22!Icdo)cop)jj^OTcooiiflcoco^ri'noT V a> rw

p cMCM^Tggggd d d

CO

ov-

O O. o 2 o

v-

CM^

CO

C0C0T-0>^tC0O)C0C0C0^-CNLOa)LO

tCOCOOCNtCOCOCOOCDSjIISSCOSCDCDlOtrtCMr-^iN^SSA

0>IOCN^t-COIDCNC3)tJ-COIDO)0)0)

m^mmW'irifvii-CDCDCOOlOO)

<? T <? CM-T^TgooSo1 d d d d

o*- <=>

oo

.

co . o P ov-

CM^

CO

CDNNCDCOQCN^tl'CNCOCNCOCON

*^-C0CD0)CMCDCflc0.nriS4ri

l^lOVOC\IC\lT7CV'VgggSgd d d d '

SLDCMt-CDCMCO^CnCncOLOtOCMCM

dioddcMpWr-'cdN:ir>:jj9

SCDinCOCMCM--CDrMLOr:ggi i i i o

"

^o o

in ^'

lo Ji'

CDIOCOi-COt-COLOCDLOLOOOCNCOCOrisdNioNM:T-'n>ffl

NNOCOWCOt-lOOCOlOtoSn^upLOLO^cpCMCMYT^lipCM 'oOO

odd

St-0)C0(OCM^C0C0C0C0C0CO(OO)

coaicdoio>dT--'i?d0??Sco!?co

^cpcpCNCN'^-T^CO' CN CM gj g . g

do d

>

NNtDlOCOOlSNTfttNCOCOM'

lo cn a) n cm co lo00 CN LO

t-

CO CD

MOON..,..,,_ CN CN O LO LO

SR Jnqnnnooqoq

1 o o o

co . o H o zLO

"J- Mto

^ftNCOCnCMCOCOM-CCICDlOCONCOCDIOM-M-COCM-i-d-ftpJCMSCMT-

rt t-

o S ,' SSHopsgo o

O CD CM,

LO CO CD CD OO

CO CD -^r

"

O O O

IfiT-CftCOCOLOCOCDCOCVLOCMM-

fflo-o sSCO - O S O Z o

loM- "

in 5

iflco^ococoinnLO

t-

CN r~ t-

CO O CN O)

: co o oOOO

cn o _

- o SLO *

^ 9Zo

o>N(oonDoiT-mo)incOT-o)Sco

Lo'cDNrJs'cdr-,aittS'g]C5!

COCMCNCNCMOLOCOLOCOu?J2rjmScoscoLOfncji^cfNo^ooS

d d d d

00>NCnStDSO)SCDCJIONir>SLOcoWddlcitMncco

TcococBOT-nmLO

-^ cp cp CN tj-

CO

d 3"> ^ ? - O O CN

O O O q o

o oo

'

9 9

Page 179: Avalanche photodiodes arrays - RIT Scholar Works

o >- o

LOLOCOT-LOr^r^COCOOLOT-LOLOCO

ylJ^^iocownocoNccn-Sfe\ n"\ rr\ ?_ m m -i a. ,-* CD LTJ

o,00.

LO LO

CDLOLOCOLOt-COT-OO'^-COTj-I^LO>-grjio^sssNqo)

SLOT-cOtflCOT-nLOCOCDN^CMopcpcpr-j-cOLOLO-^-cocNT-coLO '

i oo o

,

LO LO

COCOCOr^CDCDCOCDCOCDCOTJ-CDCOLO

SCddcNcdcNddco^-. rj S " P 5rTh-a)T-cOCOOOCMLOOCOT^c,fe9

COLOIO^-COCNCNt-OT 'CM0 g g

DSSCOlOCDNi-lDT-CMCOCOCOTtooddcocNc6cof-.'dtDcocooo,'3-

cm S <D co"n co fe oi s 12 S S !S

l-CDLO-*-*COCMt-T-COT-^:Hoin

'''''''''o9od

COO ,-, O o^

;-SZ

^T-CNCOQNCD^CDCOCOCOIOIOCN

goco^^^Vrtto'co^^^S^'CONO)Or-CNCO^lOr-N. "^

d o

O) CO Is"- CD CO tO

CO

;-isi*i

SCOCBCOCOOSCDT-niOlDOCOCO

r^tbsoigd-r^LOtDddP^J-jyCOCDOCNTCDCOCDOXMCOCDr^^

CO N CD CD rtT*^OCNCMv-LO>*ZZ,-:'iii I I 1 1 1 1 1 7 O

0O '

o"-

O <- O 5?

LOCNM-COCMM-CMCOSCOM-CMt-COCO

dnScDdio'cMdd<I?0!SSSISCO CO CN g g ^^ cp CO CN CN

CO

'

O /-. O v?

- o 9 o z S;-

*^

LO O

*-0-<-r^l*.CNCMCMLOCDO>COv-CDLO"

'co!^co'da>dP9g>!?ocD

TVOCOCOO-a-r-CNCDr-32^ .

LO-*COCOCNt-t-CD*-~S3To0.9o o

>

ro

o0o

.

- o S oCM"

V

cocn^-ololololot-cococococn^cNOcosin^^oi'mOinfficoo)"?<oco<?vv<oP2

r ,.

-WS^cjOOodd

cn n.

oT- O

CO

- o _ o- o 9 o-

CM"

V

concMcncocosncoscoio

JgdcdcdS- '" ""

Z o

\-t i'/ 1^. \< \i./ i^ \j_j u y ^ t n^

ccigdcdcdJ^S'

9 T <? T <?5o5d 0 9 9o o

^>-COOJCJCOCOCO<OCOinscONTJ

d^cDCD-^dcdcM,^'r:S2?SiSSococDLOLO^-LocoocoHSCi Si

^^

U/ IV VI

mSCDLD^COCNr-tO'ToSnt-j

-^~

"*mt CM0000

d d d d d

CO

*"

o .

- o 2 ov-

CM"

-<t

NNIfiCDCOT-^COlOCOCOtr-T-ID

S ID CO 1 CM CM CM CO CO .,-=!=:

N

CO h- CD ^ CO CNt-

LO ^ ,

o o d o d

OCO^-T-CMCDCOCOlO-^-v-CO-v-OO)CONCO^COm'^K-foriC^TtT-CO

12 2 2 = S - 8 v. S S d C; SV V d 9 9

o o

Page 180: Avalanche photodiodes arrays - RIT Scholar Works

ooi-osinintDiowwtcioiio

ortonoifliofflnPCSsSJJ^'T^^TTciico^nN

S^E

rJ3SS

jr T HI Mil

cNOOtNJOco^niot5^cDCD^TCN^cncpN-tDin

co-vovm^cocotNCDg

Siiooi'-nowok'-

7<OIOr1CMtD(DV ' CN CM

'.SSsz

Sio^jooonso'

v-snui'-iniBa'-io

tcn'-noo'-ojN'fi'-

r Q CC Bin IB (

? m v^ai ri n b coed m cm o a tp - g Sec S 5 - i5 S ? ST T ? *7 *? *? W <>"? 'T T T 2 5 Ta eri io to g fc Rj fe

^ - o a o z g

2g7

jo>snNi()-NOconT-ii)Fitoifl\t5riaT-ffl

Jm.k.'^m-iiimn;*m01*l""l''0|1'1''

T-iONcjciicDcocoio^ojcocDrjfo^tOLDoinajco

MmOJTV(M)'-lfiOiNi>lltin001VN)'t1l

CD m ffl co CD O K.

O v v'

O po r> i- pS 5 oLU S ? S S

n toV 6 6 o ^

TSrNlNrOr Sn5MOr)inN N N ID IN (N- CM

"

iri ri *. ^r-

= 2 i/ii/i a a a a s

o o "-; o

-o S o > o ||||Si?sas52llsli?i

P> O ,-, O .gS

r^ S 2

>" a> n- pi

"Ss<

1 O0

O gf.

OOVNW-T-0(OT-Cftl^r>oowcm^^-^-oco>-ioiriminnrN<D

.-SSozJ

)SSi-5m

jintMioooiip'oiri

Jffirir^airoeM'0,^,nr'

"EiniOMnsdioVriTiSviNr-efNin^co

Jir jmifiOlTrOrT7N^N|-ioiflirncv

m o m f-. o v o

5*"

- 2 -^ S2 o co 5 T o R

"P v o in <n m cdB 1MM ui Ifl ^

^-. c> cn m cm r- cn

a n u-i u-j r

co o) co to to n

v v j t aoi K-

cri 5 cn => *

v cm cm o co S eV PS P> i- CO CD '

woiomNoi- v-

-w ._: en ot co

^ P) CM CO *". 1- Oi- m io

v-

o o v

ji-f-ooaiacDr^r^r^coco oin"Y^-mcocvic\iT-^c^

CD 1 CJ "D CD O5 =

I a.| |

, 1|5|I |Scjooa.EE m s leg

Page 181: Avalanche photodiodes arrays - RIT Scholar Works

o 8 8 o > s

d 8 8 o > g

IINOOIiniBtOOIOlSi-lOffl

T-MScDOLflS|gg|gJ0

o-wcDnocMcocnuimmw'w-

cocoiricDcjopigj^j^^r^ciZ

iococnpi3oPF2S!S~c

."gSSzo

,ReS,*

jnNqn^nT-T-wiDfflfflCMiD

- co s to lf> V CM M-oJr^COinifj

iSSs^S

toontoinoonooi7cM'r^^ilr)co^^cl'wa?t,:l,'

>t J 3 cn to cn co

35*

cn enSS:ioio),ncMCi<::io

'oZo T V V V a> toT 3

Tr-

toSSSZ

>'S2>S

rwi-^onmoi-'.

S > o

in ili cfl to in in o> id cn.,, ,n ,,

o^j^oco^jtrr^T-^gJ!

oioi-^-koco-op)tomi^

lOmOlfflLnrNWKKJgj^^

2S$^3cmv-^*s ;

fosBrijinoriiri,'n0.p!

-(pif^P)CMM^5p^'

'IN 't^t^-

-ipoioiAiaifla'-inniDiNv^

2 O) v CO'

in^

'cMrviT^v^ep^,p)cj'^oicp'

ooor"-cDP>Tro>iOKt--cnu

Page 182: Avalanche photodiodes arrays - RIT Scholar Works

-9',71 -91B4 -17050

-6039 -BOSS -10940

4669

-6661 -ST12 -8648

4517 -758-5

3234 -3356 -6515

2066 -2231 -5*45

3116 -317D -3394 -3212

-2176 -2422 -2310

1193125* -1543 -1547

-409.3 -504-3 -B34.8 9*0.6

-78.96 -82.B1 -325.5 -484.1

-54.28 -52.71 -97.8 -1B2.9

34.55 -32.55 -40.95 -77.51

-13.5 -12*2 13.55 29.16

6.624 -9.B32 -27.6

-7 12 -9J3 12J2 -20.77

-8 652 -6.762 -11.91 -25.96

-50490 0 :

-23240 -39190

-4604

497 6 -1695 3342

-1961 -319.7 -1346

-104 1 -13B-T -51Z.7

-75.6 -252-8

-34.57 -42.87 -161.8

-32.95 39 42 -140

IV DMs - Water s .ti (Pag* 1 ol 2)

Page 183: Avalanche photodiodes arrays - RIT Scholar Works

-39630

-4637

2457

-S732

-4652

-5870

4990 5108

5323

-3955 -4096 -4231 -1517

-3043 3349 267B-

2132 -2262 2475 -1894

-1257 1654 -1163

-365.5 538 7 -6607 594

-1667 -187 -3318 -291 E

119.6 -1334 166.9 -153 8

-7B12 -83 66 -92 13 -78.SS

-10.31 -55.23 -58 99 -50

-10240 14 10540.65 -10550 12 -13253 91

9171 BS1 9204 117 -12153.61

-7740 142 6079 117

-6561 142 6869 651 41B25117 -B618.915

-5358.142 5661651 -5732.117 4)751.915

-4146 142 4537 117 -7BB9 91S

3234 651

1821 142 2066 651 2251 117 -SS46.915

-714.5417 1236 117 -4487 915

-83.9617 126 4512 370 4166 -3444 915

-47 1517 56 35117 -2393.915

-8 761704 18 05117 -35.2068 -1446.915

3.2S917S -4S7 1147

-02641 417186 -26 7898 -260 7147

-0 1BS4 4)6845 -23 4S7B

0141704 &6S1175

43139428 4.647443 19S2664 102 8717

0134532 643903 10 53488 -101 6775

19 27784 -100 6276

43 12811 8.636596 -1B0925 -99 44177

41125754 O 632516 -10 93228

-0120735 0.62B1B3 16 67439 -97 17535

-0.11779 O 6347TB 1841057 -96 00644

-0113962 0 620709 18 24674 95 02074

47111205 O 617081 1799596 S396587

-0106696 0.612105 17 69458 -92 7356

* 103023 -0.609296 1743443 -9143036

-0101355 0 606003 -90 4285

-0 096852 O.6O08SB 16.96496 -89.22125

-0.092916 0.598293

-0 08924 0 59371 16 54676 -86.9797

41067363 0.590S23 1E3G484 -85 85701

-0OB291B 0.586687 16 15534

-0 079922 O.S81B71 IS.84699 -83 66751

4)075985 0 578862 -8237657

O 574901 1 .30926 8143037

O 71668 IS 14198 -B0 17065

41064883 0 566414 14 90162 -79.06724

41062S24 0 563371 14 69568 -77*6703

4)058469 0.559379 14 45541 -76 86365

-0 055033 0 555B35 14.23767 -75 77481

-0 05182B -0 55245 13 947B

-0 048679 0 548712 13.74221 -73 42534

-0 045357 -0.54558 13.51061 -72.24342

-0 041211 13.27738 -7106077

-0 036099 0 536051 13 04821 -70 06621

-0 033565 0.533347 12.B5072 438*6976

0 030042 0S291B7 -12.5652 417*0075

0 027182 0 526159 12.31964 416 5548

4)024273 0 521118

4)01384 4)5178 -11.99 -64 48

0 013O4 -0 5176 11 68 -633

0 013*4 4) SI 76 -1154 -62 16

0134 -0 5176 1126

-0 01384 -0.5178 -59 64

-O013B4 -0.5170 10 92 S7 73

0 01384 0.5176 -10 62 -27 37

-O0I3B4 -0 5176 9 642 9614

-0 013*4 4)5176 3 105 -2.627

4)01384 -0 5178 -0 6459 4)5817

-0 01384 a 01035 0 02591 0 00066

0 01384 0 6543 128 1 179

* 01364 3 S3 4684 5 174

-5834 11560 13050

-3019 SO52 -6951

-1200 -3146 -4070

3361 1460

1298

-77.29 -600 6

29 39 -105 3 -370 7

12 16 -49 31 261 a

11-22 -42 09

-10 6

10 12

-40 35 -223.9

2199

V Data - Wale' 5 IPbqs 2 of 2)

Page 184: Avalanche photodiodes arrays - RIT Scholar Works

6.7.3 Figures ofMerit Analysis of Selected Photodiodes

The following are figures of merit calculation of selected photodiodes discussed in this research

paper.

170

Page 185: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W1 C5,6 D1500,50,0,Y

Breakdown Voltage: -1 .244 [V]

Dark Current (@ Vbr): -38.7 [uA]

Gain (@ Vbr): 1513

Responsitivity (@ 600nm, 2V Bias): 0.199 [A/W]

NEP (@ Vbr): 0.000195 [W]

Analysis (W1 C5,6 D1500,50,0,Y).xls (Page 1 of 12)

Page 186: Avalanche photodiodes arrays - RIT Scholar Works

o o

CO CO

CO O CO

Q o d 2

H T

>

o

omr-

Q

to

in

O

o

>

o

CM

<DO)

CO

L

X

2Sw lO

boo o

i? Q

o <q> in

O

CO

'co

to

c

<

[vn] uajjnQ )nd)no apoipotogd

Page 187: Avalanche photodiodes arrays - RIT Scholar Works

-3CJ

CD

Q

o o o o

1_

CO

Q

CO

o

d

CO

o

d

COCO

d

CO

CO

d

|_S .2

t 1 II | 1 ;: I

oin

om

Q

CO

in

O

0)

c

c

om3

Oa.w

a>+

c

a>

O)

to*

o

>

c

Soajc:

to0)L-

m

o

a.

>

[yn] uiauno indno apoipojoijd

Page 188: Avalanche photodiodes arrays - RIT Scholar Works

o

m

in

Q

10

in

O

cCD

L-

3

o

to

Q

>

< >

o

^r

tl)

O)

CD

L

-. <n

ic. x

tn cT"

03 O

CD O5> m

oin

Q

tfi

in

O

c

<

>

o o O O oLO o LO O LO*~

CN CN CO CO

LVn] juejjno jndjno epoipojoijd

Page 189: Avalanche photodiodes arrays - RIT Scholar Works

m

om

Q

co

in

O

c

"toO

<

1

O

in

CD

rn

to

n

> CO

Xa

ono

CO >

b'

> oin

l/l

CO o

COoin

Q

CO

in

O

CO

CO^>

toc

<

LO

CN

ooo

o

oo

o

ooo

ooo

*

oooCM

ooo

(IN) U!B9

Page 190: Avalanche photodiodes arrays - RIT Scholar Works

om

Q

co

in

O

c

V>

to

5

3

a

3

o

c0)u.

3

o

1>

ooco

oLOf-

oo

O

CD

CC

TOCO

a

_ to

E x

io? oa in

a o

> Oa in

5Qto

in

O

CO

CO

j>.

to

c

<

[yn] jueuno

Page 191: Avalanche photodiodes arrays - RIT Scholar Works

2: LLI LU LU LU LU 1X1

c

Ooo a

CO

oQ.CO @

o o

(X. ce cr a:

a aCD LO

LU LU 111

OOOCO CN

t-

a: a: a: a: a: a: o:

om

m

Q

co

in

O

>

c

oQ.U)a>

Qi

\\\\

i ?

\ \'

\\

li

\1

\\ 1

\\\11

\\\

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 Ml 1~t 1 1 M

\\\4

,

1

1

,

1

oLO

CD

CN

o

r--

CD

roto

CL

tn

x

>

b^ m

P

o> Q

<."5 in

> OCO

CO

CO

COc

<

o

d

o

d

oo

*

[/WV] A}!Ai!suodsay

Page 192: Avalanche photodiodes arrays - RIT Scholar Works

m

om

5to

in

O

a.Ui

z

l_

v

o

a+^

c

to

>

3

IT

LU

OCO

'5z

\

V

1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 ) 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1

' i

1 1 1 1 ' I

CN

O

t

O CD

jo

8 f ^o. O

o S

oin

ooo

ooCN

CO

in

O

CO

to

c

<

CO co CO CO co 3 ct * a o

V 9 O 9 9 9 9 O 9 o+

LUo

LU LU LU LU LU LU LU LU LUCD * CN o O O o o

T_ <- T i- *-

00 CD * CN o

[M] (d3N) JSMOd juaiBAinba asjOfg

Page 193: Avalanche photodiodes arrays - RIT Scholar Works

Ecoo

ID

LU

Z

oQ

LU

a.

<

LU

or

t/>

- CO

oo oLO LO

OO OLO LO

LO $1

T-

.

O

o >-.2

> S

O > CO

t t^-

* CO

N N CO ^CO CD CO CO

t-

LO Tf CO CM CM

CO LO N N CO O) ifo>

_; O CO CN CD CO

d d

COCOOl(DCOT-T-i-Nf0^i-NlO0Jdio'dNNdNois1,!p!S|tDo"'

'-IO(OSI>-IOCONSCD'-9SSoCDLOtS-COCOCNt-t- ' CO ^ CM H ^

I I i I I I i i t ,<-

3CJ O

i o d

COlO^CDCDCnOJr-STtT-COCMCRCOCONNr^ON^tncOCnST-CO^N

?E5coSioi-:c6d--'ir!Sg35r)^l29<?<?Vr7TThr"TCN92qooo

d d d d

oLO

doLO

5CD

o

>.

CO

<

^s

51 t CM O t-

* C

ID CD O) CM'

COr^CNCOCOOOOJCDcoMt\i'-'-t-con>-

S N CO CO lO CDt-

o 10 co t-

-^r o cm-

CD*-

LO Tf O t-

99589000 0

O LO O LO oO N It) N O

CO CM CM CM CM

oloolooloolooLO CNOf^lOCNOCNlO

E ;? ?E =. E b.

-

L.= - 2>

.2

5 .B~ -a

S=| J!E18

.2 3 x 3

5 O Q O 0. E =

e

to

o

>

m

Page 194: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 1 1 1 1

Cell 5,6 5, 6 5,6 5,6

Diameter [um] 1500 1500 1500 1500

Guard Ring [um] 50 50 50 50

Pixel Dist [um] 0 0 0 0

Metal Ring Y Y Y Y

Illumination [%] Dark 0.03 lo 0.33 lo lo

Bias Voltage [V] -3.00 -331.9 -343.3 -610.8 -855.4

-1.360 -0.822 -9.8492 -122.109 0.1592

-1.356 -0.0212 -9.04232 -120.918

-1.311 0.03508 -107.521

-0.950 -0.044

Curve Fit a

b

2nd Derivative

c

d

a

b

VbrMax Gradient

Threshold Vbr

Linear Trend Vbr -1.360 -1.356 -1.311 -0.950

Voltage Breakdown Vbr -1.244 -1.244 -1.244 -1.244

Analysis (W1 C5,6 D1500,50,0,Y).xls (Page 10 of 12)

Page 195: Avalanche photodiodes arrays - RIT Scholar Works

q=

1.60E-19[C]h = 6.63E-34 [J s]

c = 3.00E+08 [mis]wavel = 6.00E-07 [m]v = 5.00E+14 [Hz]Po @ 600i 4.86E-07 [W]w = 2.69E-06 [m]R @ 600m 0.3538 [%]a@600nr 3.75E+05 [1/m]

lp = 9.65E-08 [A]

QE = 0.4104

Vbias [V] Idark [A] I [A] Inorm [A] M R @ 1 [AA>NEP [W]-3.00 -3.32E-04 -8.55E-04 9.65E-08 8862.437 0.1986 1.67E-03

-2.75 -2.76E-04 -7.12E-04 9.65E-08 7372.586 0.1986 1.39E-03

-2.50 2.26E-04 -5.82E-04 9.65E-08 6034 0.1986 1.14E-03

-2.25 -1.82E-04 -4.67E-04 9.65E-08 4842.533 0.1986 9.15E-04

-2.00 -1.39E-04 -3.68E-04 9.65E-08 3813.728 0.1986 7.00E-04

-1.75 -1.02E-04 -2.84E-04 9.65E-08 2946.548 0.1986 5.16E-04

-1.50 -6.92E-05 -2.12E-04 9.65E-08 2192.298 0.1986 3.48E-04

-1.25 -3.92E-05 -1.47E-04 9.65E-08 1527. 149 0.1986 1.98E-04

-1.00 -1.61E-05 -9.00E-05 9.65E-08 932.0374 0.1986 8.09E-05

-0.75 -3.66E-06 -4.35E-05 9.65E-08 450.6851 0.1986 1.84E-05

-0.50 -1.88E-07 -1.40E-05 9.65E-08 145.2553 0.1986 9.47E-07

-0.25 -1.52E-08 -2.63E-06 9.65E-08 27.26904 0.1986 7.63E-08

0.00 4.45E-09 8.28E-08 9.65E-08 -0.857856 0.1986 2.24E-08

0.25 -9.00E-09 3.37E-08 9.65E-08 -0.349048 0.1986 4.53E-08

0.50 1.12E-08 -3.43E-08 9.65E-08 0.355782 0.1986 -5.64E-08

Analysis (W1 C5,6 D1500,50,0,Y).xls (Page 11 of 12)

Page 196: Avalanche photodiodes arrays - RIT Scholar Works

j), S 3 S 3 5^ l K t X

c P P P P Po ^ S 3 S S

2 5 S S S 2fc 3* * *t *

p p p p p

p p p o p

p p d p p

p p p p p

p p o p pp p p p p

p- p p p p p

Oo

LUa.

<

CO

a.

CO

<

LU lil LU LU LU

o O o O O

7? . 9<C,>i o o o

orCO

< CM inm- Ol CM O

CO o co <o CMm lO T- co O

C)

>CM

LO 5 M- CNI *-

UJ* d d d d @

h- O cc

<Q k CO O) O)o o o o o

_ Uj LU U] Ul Ujyio k io ) *

tiCO i- ID IO ^

q. e\it^ oi vi

Uln n o v w io

if CM O CO CO M-

. CO^- IT) CO

o o o o o o

ff d d d d d

lO n. oo o> ot o co cm a

o o o *- *-

d d d d d

O CO O C\ *) to

n <o * w cd in

-; OJ (N if CO O)O O *~ *. *- *.

) d d d d d

M" m- Mr M- o o co CO CO t-

M" o> CO in CO+ + + + + CM CO Oi CM tn

IUJ LU UJ LU LU

d CM CM

M"

oooo

COCM O d d d d d

Si S^ CO wM:

CO K

r-- r- s. CO CO 5 co CO o CO <oo o o O o kO CM CM CM

? LUCD

LUCM

LilCO

LU

O

Lil

o

pCO o

CM

M-

CMCOCM

CMCO

r. CN CO CM CO d d d d do

a.,r"

LOm*

"T,-

C

cn cn cn 0. O) a CO o M- CO ,_

9 9 9 9 9 to CO CM O CO i^

UJcn

HIen

UJcn

UJcn

Ulcn

pOj M-

CM CMCOCO

COCO

ID CD u> to CD @ d d d d d

*cm CM CM CM CM

cc

CD LO in LOM"

o CO CO CO CM r^O o o o o r^ uo CM CO LO+ + + + + CM CO CO o> inLU UJ LU LU UJ CM CM CO CO M-

e.CO0) CO

in CM

CO

o<> d d d d d

CDCO CO CO CO CC

CO CO CO CO CO a CO ^_ r-^ CMCO r- CO r^ f^-

CO CO CM r-^ toCO CO LO CO CM UO CM CO in

- "* CO CO CO CO pCM CO CO M- in

o o o o o d d d d d

a. ct

? ot-\o o o o o M-

o> in ^ r^

CD CO g*-

<o m

S

1

,m- m CO K. CO

1 s. h- r-. r s.

__

o o o o o

-_ Lil UJ UJ LU 111CO o o o o o> o o o o o

> io to k oo

O) c> cm in co oo> co co o cocm co

m-in in

I d d d d d

O CO O) CO CN

O CM CO CO Mr WCM O CO CO Mr

*-

co m- m- in co

) d d d d d

Page 197: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W2C6,8C1500,50,0,Y

Breakdown Voltage: -1.346 [V]

Dark Current (@ Vbr): -73.8 [uA]

Gain (@ Vbr): 2413

Responsitivity (@ 600nm, 2V Bias): 0.199 [A/W]

NEP (@ Vbr): 0.000371 [W]

Analysis (W2 C6,8 D1500,50,0,Y).xls (Page 1 of 12)

Page 198: Avalanche photodiodes arrays - RIT Scholar Works

o o

CO CO

a d d .2

H ;:

o

O

co

CO

O

CM

o

>

o oLO

OCM

CDU)

CO

(L

CO

oo

>

T^

!>'

o

ow inCO

moo

a> in

O)T"~

to Q

o o cnLO >

CO

O

CN

CO

CO

o mo r

CM <

[yn] juajjno jndjno apoipo)Ol|d

Page 199: Avalanche photodiodes arrays - RIT Scholar Works

o o n o^

CO CO CO COCO CO o o CO CO

CJ Odd o d -2 Si

I Ml l \ l

lO

O

CO

CD

o

CN

5

to

CD

C

'_i

c

o'J

o

ai_

a><-

a>

O)

CO+-

o

>

c

So

a

rea>t_

CO

o

0.

>

o oLO

dCO

CD

CD

CD

a

co

X

oo

>

^ > o1

oin in

COoo

a in

TOT

to* Q

O o ooLO >

CO

O

CNI

CO

'lO>>

O mO r

CM <

[vn] juajjno jndjnrj apoipojoiid

Page 200: Avalanche photodiodes arrays - RIT Scholar Works

o

co

O

CM

*^

C

L.

3

o

to

o

CM

M

o

CDO)

CD

CL

~ JO

Ci X

to c~-

to >-

om

a

TOOin

oin

5co

to

O

CN

CO

CDc

[yn] )U3Jjno jndjno epojpoioild

Page 201: Avalanche photodiodes arrays - RIT Scholar Works

o

oo

O

CM

c

'reO

o

m

CDO)

CD

CL

> a>

%>

I 3SCO O

5 8

Q

co

O

CM

CO

CO

>.

CD

c

<

(W) "ieo

Page 202: Avalanche photodiodes arrays - RIT Scholar Works

lO

om

o

CO

O

CM

5

c

o

CD>re

>*-

3

Q.

3

o

cCDwi_

3

o

?h III-

ooCO

oLO

O

O CO

cS <Dai

co

cl

O i-

CD O

1 "1> sto O> LO

00

O

CN

CO

'co>

CD

c

<

o LOT COLO LO

oCNLO

[Vn] juajjno

Page 203: Avalanche photodiodes arrays - RIT Scholar Works

Ill LU

o o05 CO

HI LU LU 111 111

OOON CD lO

odd

O OCO CM

LtttLtKirtciririL'ii:

m

o

CO

O

CM

tn

coatn

CD

CC

\\\\ \ /:

> \ '

\ \ /

\\ \\\\ \\

\ \ I1 ?1 1 1 1 11 t 1 1 t 1 1 t-^l - 1 . 1 M

li1' 4 1 1

O CD(^

CD

CL

CO

><

O >LO

CD o

or , in

E oc o

in.c

O TO n

CDC

aCO

CO

> ( >

5CN

5OLO

CO

LO CO>.

CDcz

<

OO

oh-

d

O o o

LO <fr CO CM

O O o O

LO

OO1

[AA/V] AijAijisuodsay

Page 204: Avalanche photodiodes arrays - RIT Scholar Works

>-

m

olO

O

CO

O

CM

STLU

CD

ioa.*-

ca>

re

>

'5ty

LU

tD

to

O

z

I

oooCD

OOO

oo

oCM

o ooo 00

oCDO)

CD

CO

^^X

s. *

o Vo

o c o00 CO

oin

oin

Q

o rnoo COCD n

ooo-3-

CN

to

CD

C

<

CO CO CO CO co rf

9 o 9 9 9 9LU HI HI UJ LU LU

LO o LO o o

CO CM CM T- T

LO

LUO

d

LM] (d3N) JSMOd jueiEAmba asjON

Page 205: Avalanche photodiodes arrays - RIT Scholar Works

Eco

<

LU

z

oQ

LU

<

UJ

sHI

on

=>CO

o

o>

CDCO

CO

CD o CO O) LO O) COT- LO CO l-~ CX> O) CO tf

COooLO

oLO

O > Si

CO

COdodod

LO

dO

T

CO

CO

CM

COo>

LO

CM

LO

dCO

O

dCO

LO

d

CO

CO

o

CM

o

o

o

pd

T

d d

O) LO ^ CO 00 CO r- CO CD ^f t CO LO LOT_

COo

o r~: r-: COCOd LO

"3-

CO

*

LO

CNdr-

dd

CM

dCO

'J-

LO

LO

CMoo

d

CMLO

oLO

OLO

O >- COCO

d

CO i~- LO G CO' 1

LO CM do

d5d

CM^_

CO CO LO CD CD CD a> CO Ol LO CT> LO,_

COo

o CO COr-

csiCO

oCO

CM

CO

d r~:CO

CM

CO LO

dCDo>

CO

CO

CO

o 00

CM oo

oLO

oLO

O > COo

LO ? CO CM*7 V

r^ COV d o 5 o o

T"

c6d d d d

>-

LO

oLO

CO

o

CM

5

8 o

CDLO LO ^S

m m lo c ^in cd

-r1 r^._

COCOLONOn-COCOS

lOtOCMCM'-OJlOCN

i I i i i i i ' "

O)COC0SNCOINt-CM

O)OOOjO)(0COSO

r O CO ^ O) Iflf-

COt- o o

T H o O O O

o o o o

oo

c*i csi csi <N cn x^t-^WoOOOOO

E :?

E .2. E El

we ? .2

| 13

S = I g 2 Ere e .2 3 x 5"5 O Q O 0. 2 =

CD

TO(0

O

>

LU

Page 206: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 2 2 2 2

Cell 6,8 6,8 6,8 6,8

Diameter [um] 1500 1500 1500 1500

Guard Ring [um] 50 50 50 50

Pixel Dist [um] 0 0 0 0

Metal Ring Y Y Y Y

Illumination [%] Dark 0.03 lo 0.33 lo lo

Bias Voltage [V] -3.00 -535.5 -573.2 -897.9 -1336

-1.472 0.16816 -17.5299 -186.189 -46.5192

-1.423 0.12772 -163.437 -5.4278

-1.417 -160.651 -0.3962

-1.071 0.00328

Curve Fit a

b

2nd Derivative

c

d

a

b

VbrMax Gradient

Threshold Vbr

Linear Trend Vbr -1.472 -1.423 -1.071 -1.417

Voltage Breakdown Vbr -1.346 -1 .34575 -1.34575 -1.34575

Analysis (W2 C6,8 D1500,50,0,Y).xls (Page 10 of 12)

Page 207: Avalanche photodiodes arrays - RIT Scholar Works

q= 1.60E-19 [C]

h = 6.63E-34 [J s]

c = 3.00E+08 [m/s]wavel = 6.00E-07 [m]v = 5.00E+14 [Hz]Po @ 600l 4.86E-07 [W]w = 2.69E-06 [m]R @ 600ni 0.3538 [%]a@600nr 3.75E+05 [1/m]

lp = 9.65E-08 [A]

QE = 0.4104

ias [V] Idark [A] I [A] Inorm [A] M R@ 1 [AAfNEP [W]-3.00 -5.36E-04 -1.34E-03 9.65E-08 13841.73 0.1986 2.70E-03

-2.75 -4.37E-04 -1.11E-03 9.65E-08 11500.24 0.1986 2.20E-03

-2.50 -3.52E-04 -9.01E-04 9.65E-08 9332.807 0.1986 1.77E-03

-2.25 -2.75E-04 -7.07E-04 9.65E-08 7323.891 0.1986 1.38E-03

-2.00 -2.07E-04 -5.41E-04 9.65E-08 5599.892 0.1986 1.04E-03

-1.75 -1.49E-04 -4.01 E-04 9.65E-08 4153.555 0.1986 7.49E-04

-1.50 -9.90E-05 -2.89E-04 9.65E-08 2992.134 0.1986 4.98E-04

-1.25 -5.80E-05 -1.98E-04 9.65E-08 2052.43 0.1986 2.92E-04

-1.00 -2.70E-05 -1.26E-04 9.65E-08 1300.252 0.1986 1.36E-04

-0.75 -7.20E-06 -6.96E-05 9.65E-08 720.8889 0.1986 3.62E-05

-0.50 -1.10E-07 -3.01E-05 9.65E-08 311.5425 0.1986 5.52E-07

-0.25 -3.67E-08 -6.60E-06 9.65E-08 68.36944 0.1986 1.85E-07

0.00 1.48E-08 -8.14E-08 9.65E-08 0.843247 0.1986 -7.46E-08

0.25 -9.71E-09 4.03E-08 9.65E-08 -0.417117 0.1986 4.89E-08

0.50 5.02E-09 -9.40E-09 9.65E-08 0.097389 0. 1986 -2.53E-08

Analysis (W2 C6,8 D1500,50,0,Y).xls (Page 11 of 12)

Page 208: Avalanche photodiodes arrays - RIT Scholar Works

UJ2

f "* > ? 2,00000

UJ UJ UJ UJ UJco Mr M> f^- co

O)^- co

-- O)M- CD O CD

"> M- M" CO <M CDc in 01 n <oO > CM r- 1- O

to <6 <6 c3 <6 <3

oi csi co p o

CO CO CO N- co

OM" LO

M-

toM- lo

M- N.

OOOOO

OOOOO

N. CM O Ol *-

^Tf iti s ti H^ 1- CM CO CM T-

3 10 lO U} Ul VI

00000

Lil Ul LU UJ UJin *o K. Mf co

Si, iri iri S m 10

UJO co co Mr uo lo

t- CM O CO CD M-

.<co Mr

M- i5 ego o o o o o

fa) <6 cS c6 <5 <6

< CM 10

<o 10CO

CM

toOCM

LOM- 0

COCO

Oi

CM

OOi

fflo

ID

IDM-

COCM

O d O

CO0

Oi

0

CM

>CM UJ

O d d d O O d d O d

1- 0 a

<CO r-^ CO CD Oi 3 CO 0 CM

M- CO

UJ 0 0 0 0 0 CO COCJ) CM

LOM"

OiCO

CO

Oi

z UJ uj UJ uj uj 0 0

0D 2 CO

f*. ID

to

IDLO

*~_ @ d d O d O

Ul Oi. CM 'p- oS 10 tt

a.< Mr

M- M- M- M" 0 0 CO CO CO -r-

M- Oi CO ID co

to1 _^ Uj

+

UJ+

Uj+

Uj+

UJd

CM to Oi CM

CM

LOCM

DC

CO CO

r^

CD

J? Oi O O <X> LOlC Mr O O CM Is-

s, N CO IO V CO

S N S CO CO

OOOOO

="T LU LU UJ UJ UJ> CO CM CO O O* *

r- cm co cm co

o t- iri -f -r-

CJi Oi Oi Oi Oi

9 9 9 9 9UJ LU LU LU LU

EO) O) 9) O) 0)

CO CO CO co to

7 N N oi N N

CO ID lO LO "*

) O O O O O

CD O Mr CD CMx- CM CM CM CO

i 0 d o d d

O co o Mr co *-

to co cm o co r*-.

-^ OiM- Oi CO CO

O --- cm CM CO co

) d o d d d

O co co CO CM N.

0

Ell~- CO

0

+

UJO)

CO

0+

UJlO

r-.

0+

UJCM

CO

0

+

LilOM"

O

LO

CMCM

O

CM

CO

CM

d

CO

COCO

d

LO

Oi

CO

d

LO

Mr

d

COCO CO

"-

CD cc

CO

03

CO

COt-r-

CO

CO

COto

ID

CO

CDr>-

co

CO

CO

CM

CO

0CO

O

COLO

CM

CO

CMCM

CO

r-~

CO

COM-

CM

CD

LO

<i0 0 0 O O d d d d d

EC or

"p? 0

>, Mr

00LO

00CO

O

sOOCO

OOi

d

M-

0OiCM

OiCM

<oCO

LOLO

coM-

CO0LO

OCOLO

1i

@) d 0 d d d

CC

fcr- r- r-. N. 0 to 2 Oi CO CM

_ UJ LU UJ LU lil

CD O O O O O> q q o o q> -t Ul CD S CO

O CM CO COM" LO

CM O CD COM-

*~c^i -* in

tr-

lO O O O O

Page 209: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W3 C11,10 D200,20,300,Y

Breakdown Voltage: -0.451 [V]

Dark Current (@ Vbr): -3.4 [uA]

Gain (@ Vbr): 1332

Responsitivity (@ 600nm, 2V Bias): 0.199 [A/W]

NEP (@ Vbr): 1 .7E-05 [W]

Analysis (W3 C11.10 D200,20,300,Y).xls (Page 1 of 12)

Page 210: Avalanche photodiodes arrays - RIT Scholar Works

o

co co

co o co

? ci o .2

H T

O

O

to

CM

O

o

CO

54-1

o

a.

>

o

o fNin

oCD

a>

CO

CL

to

><

>oo

oo

t-

> to

o

ts CM

m o

a

O)

co

o

CN

a

o oo

LD >*

_

T-

o

CO

cn

'cno >,

CMCD

C

<

[vn] juejjno jndjno apoipoioiid

Page 211: Avalanche photodiodes arrays - RIT Scholar Works

o o o o

S CO CO CO COCO CO o o CO CO

a Odd o d Si o

I IH IH

o

CM

CM

O

o

CO

g

to

CD

c

c

o

oa.u.

a>

CD

O)

re

o

>

c

oT3jc

re

a>L-

ffi

o

a.

>

c

:

i

i

l\

\vT

\\

\\

K

\>

k

\ N

\ ^\\

oo

d

O

to

CD

D)

CO

CL

><

>

>

Sm o

m O

S, pire Q

> t.

o

CO

COtz

<

o

oCN

OO

CM

OO

T

oo

CD

OO

CO

OOO

OoCN

OOCO

[vn] uajjno jndjno apoipojoiid

Page 212: Avalanche photodiodes arrays - RIT Scholar Works

ooCO

tN

o

CM

O

O

to

54-

c

E3

o

L-

to

O

1

>

\

r*

oLO

d

oo

CM

o

CDCD

CO

L

^> Jl

>:to O

5

o I Sto

-*

CM

^ Q

O

CO

cn

cn

>,

co

oo

CM

oo

CM

oo

CO

ooin

oo

CD

OOt".

ooCO

ooCJ)

[vn] juejjno jrtdino 3poipo)oi|d

Page 213: Avalanche photodiodes arrays - RIT Scholar Works

to

CM

CM

O

o

to

5

c

"too

Page 214: Avalanche photodiodes arrays - RIT Scholar Works

CO

CM

oCM

a

O

CO

5

O)

c

*

0)

>re

s

>

3

a.<-

3

o

c

3

o

ooCN

LOr-

oLO

CO

ooCD

oLOLO

O

CD

CDO)

CO

IX

,-,tn

E *

O) oC CO

a cn

tB O5o

CN

a

o

CO

tn

cn^.

COc

<

ooCO

oo

ooCM

tvn] juejjno

Page 215: Avalanche photodiodes arrays - RIT Scholar Works

LU LU Lil Lil LU LU LU

a a a a a a aO) CO

d dco 10

d d

LU LU LU

OOOCO CN t-

KLtO: trKQiQrCCirCrrQ:

CO_

CM

CN

O

O

CO

5

tn

c

oQ.tn

CD

or

\\

\\ \I / =

\ \ '

\ \ /

\\

y

\ \ \ i\1 1 1 1 1 1 1 ( 1 1 1 1 1 1 1 1 H -H \ 1 '1 iv < 1 1

0

LOI-

CN

"5

CDO m

r- CO

a

cn

><

>

0 0LO 0

CO

FCM

OO

.cCM

O4->

n>Q

CDc

a>O

>,

sO

CO

<>

LOs '

LO cn

cn>-.

CO

c

<

oLO

o

d

o

d

[/liW] AiiAjjisuodsey

Page 216: Avalanche photodiodes arrays - RIT Scholar Works

o

oCO

CM

CM

Q

o

to

5

(L

LU

CD

5o0.

cJ)

re>

3

IT

LU

CD

w

o

z

\

\"

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 II 1 l>

o

oCN

OOO1-

oooCM

O

CO

CDO)

CO

CL

x

fgc o

5(3 O

CM

oCN

a

o

o

CO

cn

cn

COc

<

CO CO CO CO CO CO CO CO * o

V 9 9 9 9 9 9 9 o o

Lil LU LU LU LU Lil Lil UJ LU Lilo LO o LO o LO o o o

-* tf CO CO CN CN*- - LO o

[M] (d3N) J3MOd juaieAmbg asiON

Page 217: Avalanche photodiodes arrays - RIT Scholar Works

<

111

z

oo

UJ

a.

<

wi-

LU

at

t/>

o

O)

CD

oCN

O CO

to r-

CD LO

r^cNiconcoiri'tr-co^gjuj

o >- J2

"=r E5 d in

^ O) t-

MV cn co to

coo0!'

co lo cr> Kcn

>-

co "ii i i o

co10 CJ)

o o

d d

>

oCO

dCN

d

CO

o o

- o a o >. jor-

CMW

CO CO*-

o

COt-COCMCDCDCOCM^"

"ScdiriLricDco'cN'tr-iriI_ifcOCOCOCOCOCOCOTrCNCOVVo)scciici^nw>-o

CO CO CO^-

CM'

CD Ot- t-

CO OI NCO LOO O

d d

O

CO

CO s > sCM CO P

O) COr-

CO^"

O) "^ 00 CO

cocd^co'cd'tdco^

*-

LO G) CJ) CO

O N O ID

^J CO CN O) OlZ t-

LO -tf CM

V o p q p'OOO

CO

<

oT" O

CO

*- 0 O 0V^

- o S o >- cot-

CN^

CO O

r*-CO-*-lOC0*-CDCMCOCO

^tONSlricD-f^-f1^

CMT-T-^-T-N--SOin

CO r- CD LO ^ CO CMI I I I I I I

f- CO tt-

LOo cm to O) r--

CN COi-

CM CO-

^ -:

i-

co m cm

V T T o o o o

d d d d

oo

o lo o lo O LOlO CM O N. LO CN

co'c\ic\ic\ic\i^^^

O LO O LO O LO oO r^ LO CM O CM LO

v- d d d d d d

-, E -- "? 5E =. E i=ffli =

._= -

2>.2

>- 1 S ri 5 S

2 = 1 tti "5 5 E<t> ^> .2 3 * to 3

5 o o o a. s =

CO

O)to

o

>

to

m

Page 218: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 3 3 3 3

Cell 11, 10 11, 10 11, 10 11, 10

Diameter [um] 200 200 200 200

Guard Ring [um] 20 20 20 20

Pixel Dist [um] 300 300 300 300

Metal Ring Y Y Y Y

Illumination [%] Dark 0.03 lo 0.33 lo lo

Bias Voltage [V] -3.00 -824.7 -866.9 -1198 -1680

-0.796 -0.04044 -31.0136 -291.177 -368.75

-0.712 -0.05032 -256.685 -315.999

-0.209 -50.1485 -0.11991

-0.087 -0.05407

Curve Fit a

b

2nd Derivative

c

d

a

b

VbrMax Gradient

Threshold Vbr

Linear Trend Vbr -0.796 -0.712 -0.087 -0.209

Voltage Breakdown Vbr -0.451 -0.451 -0.451 -0.451

Analysis (W3 C11.10 D200,20,300,Y).xls (Page 10 of 12)

Page 219: Avalanche photodiodes arrays - RIT Scholar Works

q=

1.60E-19[C]h = 6.63E-34 [J s]

c = 3.00E+08 [m/s]wavel = 6.00E-07 [m]v= 5.00E+14 [Hz]Po @ 600r 4.86E-07 [W]w = 2.69E-06 [m]R @ 600m 0.3538 [%]a @ 600nr 3.75E+05 [1/m]

lp = 9.65E-08 [A]

QE = 0.4104

Vbias [V] Idark [A] I [A] Inorm [A] M R @ 1 [AA/NEP[W]-3.00 -8.25E-04 -1.68E-03 9.65E-08 17405.77 0.1986 4. 15E-03

-2.75 -7.16E-04 -1.57E-03 9.65E-08 16297.19 0.1986 3.61E-03

-2.50 -6.12E-04 -1.46E-03 9.65E-08 15167.88 0. 1986 3.08E-03

-2.25 -5.18E-04 -1.34E-03 9.65E-08 13893.53 0. 1986 2.61E-03

-2.00 -4.16E-04 -1.18E-03 9.65E-08 12246.2 0.1986 2.09E-03

-1.75 -3.26E-04 -1.00E-03 9.65E-08 10356.43 0.1986 1.64E-03

-1.50 -2.45E-04 -8.11E-04 9.65E-08 8405.536 0.1986 1.23E-03

-1.25 -1.71E-04 -6.25E-04 9.65E-08 6478.468 0.1986 8.62E-04

-1.00 -1.04E-04 -4.48E-04 9.65E-08 4636.358 0.1986 5.25E-04

-0.75 -4.56E-05 -2.86E-04 9.65E-08 2967.269 0.1986 2.29E-04

-0.50 -4.21 E-06 -1.50E-04 9.65E-08 1555.123 0.1986 2.12E-05

-0.25 -1.83E-08 -4.00E-05 9.65E-08 414.2158 0.1986 9.20E-08

0.00 -3.13E-08 -5.74E-07 9.65E-08 5.948007 0. 1986 1.58E-07

0.25 -5.29E-08 4.52E-08 9.65E-08 -0.468194 0. 1986 2.66E-07

0.50 -2.88E-08 -4.99E-08 9.65E-08 0.516889 0. 1986 1.45E-07

Analysis (W3 C11.10 D200,20,300,Y).xls (Page 11 of 12)

Page 220: Avalanche photodiodes arrays - RIT Scholar Works

CO CO CO CO CO,00000

UJ uj Uj Uj UjCM LO O) lO N.

LO CO O *- O

CM t^ CM COCO-

7= OiM- CO O CO

W ^-jj. CO CM CO

CO CM Oi CO CO

g>- CM - -r- O

w d d o d

CM --- O

io oi

CM CO ID

CO CO O

CO CO O O CM

CO Oi CM CM OI

OiM" Nr *- UO

-=. d cm r^ Mr^ O ^ O) CO <o

^ CD O O CO rr-

-j np-

-J tOOOOO

UJ UJ LD lil LU

(8 t MO-3-

O O O CO CD

t- W B N

Uj

o <**t- CM

COM- ID ID

O to co Mr

-- Mr Mr lo co

OOOOO

1 d d o d d

<

m

>CM

111

z

oa

tO CD

r^

CO

CM LO M- Oi CM O LD fr*. CO o> 0

CO O CO CO CMM- O CO CM O)

LO CO 0O

CO CO o> CM

ID LOM- CM O 0 0 ~ ""*

UJ0

O O d d d @ d 0 d d O

a:

CD N- CO O) OiOOOOO

Uj uj uj Uj ujJlO N IO "O *-

2". CO -r- CO LD ^J

O CO O CM Mr CO

o ------ r-

i d d o o d

LU .a.(M * o> LO tc

C

<M- M-

MrM- M- O 0 co CO CD *-

M- 01 CO <D CO

CO + + + + +O

CM CO 0 CM LO

1-

IUJ Ul Ul UJ UJ

--- * - CM CM

zLU

o>M-

00

OO

COCM

LD @ d O d O O

s -> K <b LO M" <0 t

LU

a.r- r r-. CO CO O CO CO 0 CO CO

O 0 0 O 0 ID CM CM CM

3m

<LU

E

I0

L

UJCO

UJ

CMCM

LO

LU

COCO

M"

LilO

CM

M"

UJ0

CO

O

@

CO

0

0CM

d

M-

CM

d

CDCM

d

CM

CO

O

a> cn cn cn cn O CO 0M- CO .-_

9UJ

9UJ

9UJ

9UJ

9UJ

CO

d

COOi

CMM-

CM

OOCM

COCO

CO

I--

COCO

? Oi

CO

cn

CO

Oi

CD

cn

<o

cn

CD ) d d d d 0

CM CN CM CN CM

co 10 in ift -j O co CO CO CM N.

E LU LU

0 0 0 r->- LD CM CO LD T-

+ + + CM CO CO Oi LO

UJ UJ UJ d CM LN CO CO Mr

LOIT.

CM

CD

0M" @ d d d d O

CO *" CO 0:

CO CD CO O -^ <o ^_ r-~ CMCO r- r--.

CO CO CM r-*. CO10 co CM

dLO CM co LO

CO co CO CM CO CO M- LO

OOOOO

. ZL . K.

cT o o o o o00000.

M- LO CD r-v CO

) o o o o o

M- Oi ID 1- N.

O CM ID CO OOi CO CO O toCM CO M" LO LO

1 d d d d d

r-. r- r*- h- k--

O O O OCO CO O) CO CMCM CO CO

M^ lo-

CO CO"E_ 0

_ UJ UJ LU UJ UJ ^co^^iocSCD O O O O O> O O O O o

2 MT ID CO N. CO

OOOOO

Page 221: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W4 C7,3 D200,20,300,Y

Breakdown Voltage: -7.624 [V]

Dark Current (@ Vbr): -2484 [uA]

Gain (@ Vbr): 22677

Responsitivity (@ 600nm): 0.2801 [A/W]

NEP (@ Vbr): 0.00887 [W]

Analysis (W4 C7,3 D200,20,300,Y).xls (Page 1 of 12)

Page 222: Avalanche photodiodes arrays - RIT Scholar Works

co co

co o CO

Q d d Si

o

CO

ooCM

O

CO

o

-*

o

0.

>

1 1 1 1 1 1 1 1 H 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1

"

. \\

*\\

^

CM

oO

P CM

*f u>

CO

tn

x

o >_ ,-r

9 > o

to m.to o

ciO O

> Sto CM

a Q

o > CO

?O

cn

co

CD

C

<

ooo

CMO

T

o

oCO

oo

oCO

oooCN

ooo

[vn] luejjno jndino apoipojoiid

Page 223: Avalanche photodiodes arrays - RIT Scholar Works

CD CD

Q Q

>

o

-O.

>

o o o

CO CO CO CO

O O CO CO

d d d d Si

o

CO

oCM

O

CO

O

tn

o

c

c

o

oQ.i_

0>*-

c

tl)

O)

CO

o

>

c

oaj*:

co

CDu.

CD

O

0.

>

1 1 1 1 i i y4 i i i i i i i t 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1

'

1

^ K

t-j\\

V.^^%%

^

o

CO

8 a)

T co

tn

X

>

2o o

d > co

s

a>CM

Q

to

0)

co

oooCM

oo

oCM

OOO

T

oooCD

O

Oo

o

oo

[Vn] juaxino jndjno apojpoioijd

Page 224: Avalanche photodiodes arrays - RIT Scholar Works

o

oCO

CM

o

CM

o

CO

O

|c

L.

3

o

to

O

i.

n

o

TCNT

M

o

CD

O)

COo n

9 >tn

X

in , ,

to >m o

CD oO) ro

COo

oo

>

CN

Oo

CO CN

Q

CO

o

1oo tn

o tn

1

CO

c

<

oo

CM

oooCM

O

T

oooCD

oooCO

oo

oo

o

oo

LVn] luajjno jndjno apoipoiond

Page 225: Avalanche photodiodes arrays - RIT Scholar Works

>

oCO

CM

o

CO

o

c

'too

o

LO

CI)

D)

CO

oa.

9 > tn

"*X

0) ^-C^

O)

10>

o

o o

> CO

to o

CMo CO o

COoCN

Q

CO

O

5oo cn

o tn

COc

<

oo

oo

o

ooo

ooo

oooo

ooo

o-3-

ooo

(W) ujEQ

Page 226: Avalanche photodiodes arrays - RIT Scholar Works

ooCO

CM

oCM

O

CO

o

O)

c

o

tl)

>to

to

>

3

a

3

o

c

0)l_L_

3

o

o

oCO

OLO

CN

S ftO)CD

CL

i JlT >:

O r- oCD 5 C0_

m O

> CM

S O

5 oCM

a

CO

ooLO

CO^.

co

c

<

s

LO

oo

l"vn] uajjno

Page 227: Avalanche photodiodes arrays - RIT Scholar Works

LU

ooOOOO) co

d d

Lil LU LU LU LU LU LU

o O nCO LO *

o o o

OOOCO CM ^

LtLtairKirLttCLtLtLi:

>-_o

o

CO

CN

oCM

O

to

O

-*

V)

c

oQ.IA

0)

ce:

o

r-

<D

O)

CD

CL

X

oo

CO

"=

Isj: o

% cm

"? Q

COIs"

cn

COcz

<

[/WV] AiiAHisuodsay

Page 228: Avalanche photodiodes arrays - RIT Scholar Works

ooco

IN

oCM

O

CO

O

|CL

LU

CU

5o

CL

c

to

>

'3cr

LU

CD

10

'oZ

ooooO)

ooooCO

oo

oo

ooooCD

o

CO

CD

O)

CO

CL

X

g C O

LO CO0o

CN

oooo

t

oooCO

o

o

CM

Q

co_

O

CO

c

<

CNO

CN

OCMO

LUO

lilLO

lilO

LO rf ^r

CM CM CN CN CN co

V 9 9 9 9 0

Lil LU lil LU LU LUO LO 0 LO O O

CO CN CN T- T-

LO

o+

LUo

d

[M] (d"3N) JSMOd lueieAmbg asiON

Page 229: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 4 4 4 4

Cell 7, 3 7, 3 7, 3 7, 3

Diameter [um] 200 200 200 200

Guard Ring [um] 20 20 20 20

Pixel Dist [um] 300 300 300 300

Metal Ring Y Y Y Y

Illumination [%] Dark 0.03 lo 0.33 lo lo

Bias Voltage [V] -72.00 -12410 -12460 -12700 -12940

-11.50 -10850 -10910 -11150 -11390

-11.00 -9354 -9398 -9649 -9933

-10.50 -7932 -7986 -8255 -8561

-10.00 -6654 -6685 -7003 -7287

-9.50 -5531 -5545 -5871 -6193

-9.05 -4571 -4573 -4909 -5207

-8.47 -3720 -3722 -4066 -4349

-7.99 -2966 -3002 -3328 -3578

-7.50 -2321 -2353 -2681 -2920

-7.00 -1779 -1814 -2147 -2344

-6.46 -1337 -1374 -1689 -1850

-6.00 -977 -1014 -1303 -1438

-5.50 -697.7 -733.7 -974.3 -1089

-5.00 -483.6 -512.5 -712.8 -804.7

-4.51 -320.7 -346.5 -497 -571.5

-4.00 -222.8 -228.2 -329.4 -389.6

-3.50 -170.4 -166.1 -209 -254.1

-3.00 -126.5 -122 -130.4 -160.4

Analysis (W4 C7,3 D200,20,300,Y).xls (Page 9 of 12)

Page 230: Avalanche photodiodes arrays - RIT Scholar Works

Wafer4 4 4 4

Cell 7, 3 7, 3 7, 3 7,3

Diameter [um] 200 200 200 200

Guard Ring [um] 30 30 30 30

Pixel Dist [um] 400 400 400 400

Metal Ring N N N N

Illumination [%] Dark Vbr 0.03 lo Vbr0.33 lo Vbr loVbr

Bias Voltage [V] -12.00 -12410 -12460 -12700 -12940

-7.729 0.106 -18.9092 -403.936 -774.883

-7.722 1.3544 -383.932 -755.094

-7.588 -0.9864 -376.276

-7.455 -0.285

Curve Fit a

b

2nd Derivative

c

d

a

b

VbrMax Gradient

Threshold Vbr

Linear Trend Vbr -7.729 -7.722 -7.588 -7.455

Voltage Breakdown Vbr -7.624 -7.624 -7.624 -7.624

Analysis (W4 C7,3 D200,20,300,Y).xls (Page 10 of 12)

Page 231: Avalanche photodiodes arrays - RIT Scholar Works

q=

h =

c =

wavel =

v =

1.60E-19 [C]

6.63E-34 [J s]

3.00E+08 [m/s]6.00E-07 [m]5.00E+14 [Hz]

Po @ 600i 4.86E-07 [W]w = 6.02E-06 [m]R @ 600m 0.3538 [%]a @ 600nr 3.75E+05 [1/m]

lp = 1 .36E-07 [A]

QE 0.5787

Vbias [V] Idark [A] I [A] Inorm [A] M R @ 1 [AA>NEP [W]-12.00 -1.24E-02 -1.29E-02 1.36E-07 95073.31 0.2801 4.43E-02

-11.50 -1.09E-02 -1.14E-02 1.36E-07 83685.09 0.2801 3.87E-02

-11.00 -9.35E-03 -9.93E-03 1.36E-07 72980.16 0.2801 3.34E-02

-10.50 -7.93E-03 -8.56E-03 1.36E-07 62899.74 0.2801 2.83E-02

-10.00 -6.65E-03 -7.29E-03 1.36E-07 53539.35 0.2801 2.38E-02

-9.50 -5.53E-03 -6.19E-03 1.36E-07 45501.47 0.2801 1.97E-02

-9.05 4.57E-03 -5.21E-03 1.36E-07 38257.09 0.2801 1.63E-02

-8.47 -3.72E-03 -4.35E-03 1.36E-07 31953.16 0.2801 1.33E-02

-7.99 -2.97E-03 -3.58E-03 1.36E-07 26288.43 0.2801 1.06E-02

-7.50 -2.32E-03 -2.92E-03 1.36E-07 21453.95 0.2801 8.29E-03

-7.00 -1.78E-03 -2.34E-03 1.36E-07 17221.94 0.2801 6.35E-03

-6.46 -1.34E-03 -1.85E-03 1.36E-07 13592.4 0.2801 4.77E-03

-6.00 -9.77E-04 -1.44E-03 1.36E-07 10565.33 0.2801 3.49E-03

-5.50 -6.98E-04 -1.09E-03 1.36E-07 8001.147 0.2801 2.49E-03

-5.00 -4.84E-04 -8.05E-04 1.36E-07 5912.326 0.2801 1.73E-03

-4.51 -3.21E-04 -5.72E-04 1.36E-07 4198.949 0.2801 1.15E-03

-4.00 -2.23E-04 -3.90E-04 1.36E-07 2862.486 0.2801 7.96E-04

-3.50 -1.70E-04 -2.54E-04 1.36E-07 1866.934 0.2801 6.08E-04

-3.00 -1.27E-04 -1.60E-04 1.36E-07 1178.498 0.2801 4.52E-04

Analysis (W4 C7,3 D200,20,300,Y).xls (Page 11 of 12)

Page 232: Avalanche photodiodes arrays - RIT Scholar Works

CM CM CO CM CM

c^ O O O O O

S, ui Uj Uj Uj Ujr- -r- S. N. O)

U. lo o co O Is--

g ~ ~ is ~ -;

; (J) Ol r- O J2 M" ID O CO CO

COM- CO CO CO

gt- CM CM CM -r-

Co O O O O O

CO CO

-^

CO

_ CO Oi Y- cr>M- O CO co CO

LO ID CO CO oS

LO O CO CO co

CO CM CO r~~.

LO "*" T~ LO COco

5

o O o O Oo o> CO Mr

CO CO CM CO CO

-> cmM1 MJ CO CM

5 ID LO -D LO LO

5.T~ - * "-* -

UJM*

Mf M- ** ** oO O O o o

LU LU UJ UJ UJ dCO LO M" CO CO

5" m LO ID ID @)

CM

LO

COOiOCO

co

LO

CO

CM

M-

OLO

CM

UJO

o o O O O

to

o o O

Oi

o

Oi

O

UJLOCO

UjCOCM

UJCO

CO

UlOi

IS

UJCM

CM

.a.CM -- *- o> CM

CO COM- LD ID

CM O CO CO M-

COM- M- LO CO

OOOOO

d d o d d

O >d f-~ co Oi o

CM "* O CO CM Oi

CO Co Oi t- CM

o o o - *-

@) d O d d d

Of CO O CM M- COm O -r- ID Oi CO

Oi CM M- CO Oi

(3)00000

Q. CM r~ 1~" o> CMq:

M- M- M- M- M- o o CO CO COM- Oi CO LO CO

+ + +O

CM CO O) CM LO

Ul UJ Ul Ul LU T- - * CM CM

OiM-

oooo

CO

CMLOts

d d d d d

r> l< CO ID CO tt

r-. r r- CO CO o CO CO o CO COo O o O o LO CM CM CM

? UJCO

LilCM

LilCO

UJ

o

Lil

O

dCO o

CMMrCM

COCM

CM

CO' '

r-- CM CO CM CO @ d d O d do

CL*~

LO T -T,~

or

Oi Oi Oi Oi Oi O to oM"

CD ,_

o o o o O CO co CM o CO fs

UJfM

LilCM

Lil UJ LilCM

dOi M-

CM

Oi

CMCOCO

coto

oM"

, q q q q| o

> CD CO CD CO CD

CO ID ID ID t*

OOOOO+ + + + +

E uj uj uj uj uj~- CO O) LO CM O

~", O) CO S (O Tf

-gCO CO COit CD

CO CO CO CD CO

CO K n N s

I o o o o o

O co co to cm r-v

\ LO C\ CO LT) "-_ CM CO CO C3i LDO cm CM CO CO

M-

{) d d d d d

__

COM-

CO

CO

in

CO

CO

CO

CM

CO dLO

CM

CM

CO

CO

CO

LOM- LO

L^,O d o o o @ d O d d d

cr or

IT

i

OoM-

o

oLO

ooCO

oor-*

ooCO

oOi

dCT)

CM

o>CMCO

CO

LOCOM-

CO

oID

oCOLO

@ d d d d d

cc

1*CD

o

UJo

o

Lilo

qLUo

qLUo

qLUt

i

oo

COCM

CMCO

COCO

oM-

OiCOCDM-

COM-

COLO

CM

LO

s> q q o o o

> t ift CD S CO

OOOOO

Page 233: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W4 C7,3 D200,30,400,N

Breakdown Voltage: -5.2 [V]

Dark Current (@ Vbr): -10.4 [uA]

Gain (@ Vbr): 188

Responsitivity (@ 600nm): 0.272 [A/W]

NEP (@ Vbr): 3.83E-05 [W]

Analysis (W4 C7,3 D200,30,400,N).xls (Page 1 of 12)

Page 234: Avalanche photodiodes arrays - RIT Scholar Works

2 O

S co co

CO O CO

Q d d -2

H \

o

CM

O

CO

O

<*

**

o

Q.

>

[yn] ^usjjno indjno apoipojond

Page 235: Avalanche photodiodes arrays - RIT Scholar Works

o

CO

o

CM

O

O

tn

tu

c

c

o

o

aw

CD

9>

a)

to

o

>

c

SoTJJC

CO

a)L_

CO

o

CL

>

[vn] ut*Jjno indjno apoipoioiid

Page 236: Avalanche photodiodes arrays - RIT Scholar Works

o

o

CO

oCM

Q

CO

O

Ic

3

o

XLi

to

O

1

\\

o

CN

oo

CM

t -T

o

*

CDcn

CD

CL

tn

x

</> Z

CO O

a ^

"? oJS co

o

> oCM

Q

CO

O

CO

cn>.

CO

c

<

LO

CMo

[yn] juajjno jndjno 9pojpo)OL|d

Page 237: Avalanche photodiodes arrays - RIT Scholar Works

oCO

oCM

o

CO

O

|c

'toO

oo

d

>

to

O COO ~

d o

>

o

LO

CO0)

CD

CL

x

o

o

t COto

COooCN

o

CO

o

cn

cn

COc

<

O o o

LO o LO"3-

<tf CO

(IM) uibo

Page 238: Avalanche photodiodes arrays - RIT Scholar Works

o

o

Tt

CO

oCM

O

o

cm

a>

>to

5

>

3

o

c

tuk.L.

3

o

1"_

1 1 1 1 1 1 1 1 Vt i i i 11 1 t 1 1 1 1 1 1 1 ( 1 1 1 !

ooCO

olO

tn

O

CO

CD

CO

CD

CL

cn

E x

c -

pO) oto

>

oCO

o

oCN

Q

CO

o

cn

cn^>

COc

<

[vn] juajjno

Page 239: Avalanche photodiodes arrays - RIT Scholar Works

lUJUJLLILULJLULULdLLILU

'""SSSPSSoaooO) CO CD LO -"Cf

d dco CN

o d

icciroiLLifctirLLir

CO

oCM

a

CO

i>r

o

I

tn

c

oo.tfl

tl)

a:

\ \

i\

\ 1 i

i

i

i

^\ \\ \

\ \\\

\ V

\ \ \\ \f\\s\ \\\ \ A i

i

i

i

\\\\\(\ u

\ \

\\\\\

\\\\ul\y\\\

1 1 1 1 1 1 1 1 1 -1 11 1 1 1 1 1 1 1 1 1 \ 1- 1'

1 1i\ 1

1

1

1

1

1

oLO

CO

LO oN

CDCO

m

OCL

or~. cn

X

CJ> o

CO^*

Eo

cO

.coCN

oCO

c

0)

Q

CO

0) r^-

CO O

5 *oLO sLD

CO

cn>.

CD

OO

C

<

CM

d

[M/v] AjjAiiisuodsay

Page 240: Avalanche photodiodes arrays - RIT Scholar Works

z

o

CO

CM

o

CO

o

ICL

LU

CD

o0.

c

o

to

>

'3tT

LU

CD

o

oa-

oLO

CO

ooCO

CO

CD

O)

CO

CL

CN ^

.E oto o

(3 *

co

oCM

Q

CO

O

tn

cn>.

coc

<

2; ?.J LO LO LO LO O

9 O 9 0 9 O O+

LU LU LU LU LU LU LUCM O O O O O O

^ *~ "-

CO CD T CM O

[Ml (d3N) JSMOd }ua|BAinbg as|ON

Page 241: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 4 4 4 4

Cell 7, 3 7, 3 7, 3 7, 3

Diameter [um] 200 200 200 200

Guard Ring [um] 30 30 30 30

Pixel Dist [um] 400 400 400 400

Metal Ring N N N N

Illumination [%] Dark 0.03 lo 0.33 lo lo

Bias Voltage [V] -10.00 -35.9 -37.71 -41.8 -56.1

-9.50 -31 -32.56 -35.9 -50

-9.05 -27.4 -28.7 -31.7 -45.8

-8.47 -23.7 -24.7808 -27.3 -41.8

-7.99 -21 -21.9 -24.2 -38.5

-7.50 -18.82 -19.48 -21.5 -35.6

-7.00 -16.72 -17.48 -19.1 -32.9

-6.46 -14.71 -15.5028 -17 -30.3

-6.00 -13 -13.85 -15.3 -28.1

-5.50 -1 1 .37 -12.14 -13.8 -26.1

-5.00 -9.75 -10.52 -12.3 -23.9

-4.51 -8.42 -9.08 -10.7361 -22.2

-4.00 -7.1 -7.6928 -9.47393 -20.5

-3.50 -5.94 -6.22 -8.3 -18.6

-3.00 -4.973 -5.063 -6.96 -16.7

-2.50 -3.84 -4.033 -5.865 -15.01

-2.00 -2.784 -3.06 -4.64 -13.24

-1.50 -1.757 -1.995 -3.34 -11.3

-1.00 -0.7186 -0.9749 -2.263 -9.723

-0.50 -0.1643 -0.3023 -1.809 -8.701

0.00 0.04135 -0.07548 1.851 5.689

0.50 0.3052 0.728 2.658 6.611

Analysis (W4 C7,3 D200,30,400,N).xls (Page 9 of 12)

Page 242: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 4 4 4 4

Cell 7, 3 7,3 7, 3 7, 3

Diameter [um] 200 200 200 200

Guard Ring [um] 30 30 30 30

Pixel Dist [um] 400 400 400 400

Metal Ring N N N N

Illumination [%] Dark Vbr 0.03 lo Vbr0.33 lo Vbr loVbr

Bias Voltage [V] -10.00 -35.421 -37.218 -41.2 -55.354

-5.63 -0.70091 -0.38555 -0.0004 -14.7206

-5.59 -0.33455 0.003099 -14.2919

-5.54 -0.00078 -13.9012

-4.05 0.003171

Curve Fit a 2.57E-02 2.95E-02 0.05806 0.100617

b 6.70E-02 0.119131 0.546536 1.382015

c 1.626956 1 .924237 3.85923 9.477178

d 0.18952 0.284974 1.012613 0.922955

2nd Derivative a 0.154212 0.177134 0.34836 0.6037

b 0.133921 0.238261 1 .093072 2.76403

Max Gradient Vbr -0.86842 -1.34509 -3.13777 -4.57848

Threshold Vbr

Linear Trend Vbr -5.63 -5.59 -5.54 -4.048

Voltage Breakdown Vbr -5.2 -5.2 -5.2 -5.2

Analysis (W4 C7,3 D200,30,400,N).xls (Page 10 of 12)

Page 243: Avalanche photodiodes arrays - RIT Scholar Works

ID LO LD LO ID CD LO- O O O O O O O

Ul Ul Ul Ul Ul Ul Ml

1IT) M-

CM

CO * O CM CM

CM *~ *- *- *- CM CO

CO

Co

t^ Oi v. IS ,_

S

<o M- s.*** " CM CM CM O

coooooodd

CM cm Oi Mr

CO CO LOO CO Oio> CO

COM-

CM CMO) N N CD

*- ID Oi

M-

CM LOM-

o CO COCM CO

M- N.

CO LO * O CM CO CO

Oi d CM CO d d

UjCO LO ID ID LD LO LO o CM CO CO

q q O q O q q CO CM O

LU uj UJ UJ Lil LU LU dCM

oCOO

M-

OCM ID CM o CM CO

m-

CO O CM CO o o @ d d d

M- ID LO COCO CO m- COM- ID CO CO

o o o o

d d d o

CM CM N. LO T- O CO o LO LO IS CO Oi o ,_

s. s |S CD CM O M- o CO CM Oi s.

CO O CO CO O) CMd

LO CO CO CT> CM COM-

LO to LD CO -f- " o O o o -

UJO

d d d d d d d @ d d d d d d d

X

CO CO N. S. Oi Oi Oi a rs to o CM M- CO S-

o o o o o o o COm-

CO LO Oi CO LO

LU LU uj LU LU LU LU dCOo

Oi

oCM

M-

CO Oi oCM

gCO

oIDCO

CO

CMCM

CO

CO CO

o

M-

O @ d d d d d d d

s. ^ CM *" W Oi CMx

M- M- M- M- M- M" M- o Oi o CO CO CO _ CMM- CM o> CO LO CD

M-

+ + + + + CM CO Oi CM LO S-

"n1

5.

UJ LU UJ LU LU LU UJd i- T CM CM CM

LOM-

oo

OO

COCM

LOIS

COLO m d d d d d d o

i. CO K CO LOM;

CO CO x

CO S- N- r-- CO CO CO o ^ CO CO o CO CO CO

q q q q o q q LO CM CM CM CM

Lil

O

UJ

CO

UJ

CM

LU

CO

LU

O

LU

o

LU

O

dM-

CO oCM

MrCM

CO

CM

CMCO

M"

CO

' '

Oi r CM CO CM CO CM @ d d d d d d dO

Q_CO

,_

LO MrM" *" *"

x

CD Oi Oi CT> Oi Oi CD o M- CO o M- CO _ CO

q q q q q q q CO Oi CO CM O CO S-

LU LU LU UJ Ljj LU LU dCO OI

M-

CM CMCO

COcoCO

M-

"H*

CM CM CM CM CM CM CM

> LD ID

T ""* "*

lO ID LO ID ID

co co m in id t t Oooooooo r^.

E LU LU- CO CO

r*. o q

roi- CO CO P)

r-

CDCO

co co co co co co ^r

cocor--cos.r-.--r

o o o o

CO co co co cm is OiS. L/J CM CO LO 1- Oi

Oi CM CO CO Oi ID N-

t- CM CM CO CO MrM-

d d d d d d d

ooooooo

CO - CO - N. CM ID

LO CO CM IS t- CO CO

CM LO CM CD LO -r- M-

CM CM CO COM- ID LO

i O O O O d O O

^2, or

t- CO O g4 4 LU ~

CD CO g-On i

r s n

Eoo

_ LU LU

ooooooo

LO O O O O O ID

CO Mh LD CO Is OQ CO

s. r-. r r- r*-

OOOOO

t- Mr OS CO - N- OM" O CM LO CO O Is

LO Oi CO CO o co *-

CM CM COM- ID ID CO

i CD CD CD CD CD CD CD

_ UJ LU UJ LU LU -"-

OOOOOOOO

>iooooqqLO

Scri-fiocbscbcb

CO <D CO Oi CO CM CO

CM CM CO COMf- LD LO

CO CM O CO CO M- 00

CM coM-

M> LO CO CO

o d d d d d d

Page 244: Avalanche photodiodes arrays - RIT Scholar Works

q= 1.60E-19 [C]

h = 6.63E-34 [J s]

c = 3.00E+08 [m/s]

wavel = 6.00E-07 [m]

v = 5.00E+14 [Hz]

Po @ 600l 4.86E-07 [W]

w = 5.42E-06 [m]

R @ 600ni 0.3538 [%]

a@600nr 3.75E+05 [1/m]

lp = 1 .32E-07 [A]

QE= 0.5615

sM Idark [A] I [A] Inorm [A] M R @ 1 [AA> NEP [W]

10.00 -3.59E-05 -5.61 E-05 1.32E-07 424.77 0.2717 1.32E-04

-9.50 -3.10E-05 -5.00E-05 1.32E-07 378.59 0.2717 1.14E-04

-9.05 -2.74E-05 -4.58E-05 1.32E-07 346.79 0.2717 1.01E-04

-8.47 -2.37E-05 -4.18E-05 1.32E-07 316.50 0.2717 8.72E-05

-7.99 -2.10E-05 -3.85E-05 1.32E-07 291.51 0.2717 7.73E-05

-7.50 -1.88E-05 -3.56E-05 1.32E-07 269.55 0.2717 6.93E-05

-7.00 -1.67E-05 -3.29E-05 1.32E-07 249.11 0.2717 6.15E-05

-6.46 -1.47E-05 -3E-05 1.32E-07 229.42 0.2717 5.41E-05

-6.00 -1.30E-05 -2.8E-05 1.32E-07 212.77 0.2717 4.78E-05

-5.50 -1.14E-05 -2.6E-05 1.32E-07 197.62 0.2717 4.18E-05

-5.00 -9.75E-06 -2.4E-05 1.32E-07 180.96 0.2717 3.59E-05

-4.51 -8.42E-06 -2.2E-05 1.32E-07 168.09 0.2717 3.10E-05

-4.00 -7.10E-06 -2.1 E-05 1.32E-07 155.22 0.2717 2.61E-05

-3.50 -5.94E-06 -1.9E-05 1.32E-07 140.83 0.2717 2.19E-05

-3.00 -4.97E-06 -1.7E-05 1.32E-07 126.45 0.2717 1.83E-05

-2.50 -3.84E-06 -1.5E-05 1.32E-07 113.65 0.2717 1.41E-05

-2.00 -2.78E-06 -1.3E-05 1.32E-07 100.25 0.2717 1.02E-05

-1.50 -1.76E-06 -1.1 E-05 1.32E-07 85.56 0.2717 6.47E-06

-1.00 -7.19E-07 -9.7E-06 1.32E-07 73.62 0.2717 2.64E-06

-0.50 -1.64E-07 -8.7E-06 1.32E-07 65.88 0.2717 6.05E-07

0.00 4.14E-08 5.69E-06 1.32E-07 -43.08 0.2717 -1.52E-07

0.50 3.05E-07 6.61 E-06 1.32E-07 -50.06 0.2717 -1.12E-06

Analysis (W4 C7,3 D200,30,400,N).xls (Page 12 of 12)

Page 245: Avalanche photodiodes arrays - RIT Scholar Works

Cell: W5C9,10D400,20,500,N

Breakdown Voltage: -50.43 [V]

Dark Current (@ Vbr): -63 [uA]

Gain (@ Vbr): 19053

Responsitivity (@ 600nm, 2V Bias): 0.307 [AMI]

NEP (@ Vbr): 0.000205 [W]

Analysis (W5 C9.10 D400,20,500,N).xls (Page 1 of 12)

Page 246: Avalanche photodiodes arrays - RIT Scholar Works

2 2

co CO

ra o CO

Q d d Si

\\ t

oIN

o

Q

t3>

o

m

5

o

CL

>

oo

dco

o

f

O

CN

CDD)

CD

CL

x

o

lC tn

5 CM01

OO O

"? **

5 Q

5

O

m

cn

cn

^>-

CD

C

<

oo

oCM

OooCN

O

T

oo

oCD

OO

OCO

ooo

o

ooo

o

dCD

LVn] ;uejjno indino epoipojond

Page 247: Avalanche photodiodes arrays - RIT Scholar Works

J2

>

>

O

-i - co co co co

CO CO O O CO CO

Q Q d d d d

th

o

m

o

CM

o

o

tn

5

V)

CD

c

c

o

oal_

CD

C

0)

OI

CO

o

>

c

5oaj:

co

ID

CD

O

a.

>

o oLJ

OCO

CDo>

CD

CL

cn

O XO

O

INZ

o

>in

CO CN

oCOn

CO oo <*

o> O

o

oT

> a>

O

in

o <N

to

C/3>s

CD

oo

C

<

[vn] luajjno indino apoipojoqj

Page 248: Avalanche photodiodes arrays - RIT Scholar Works

ooin

CM_

o

O

O)

O

m

5

cID

3

o

to

o

_l I I I 1 I I I 1 I I I 1 I I I 1 I I I

-

o

o

d

oo

d

o

CD

CT1

CO

CL

_. tn

"1 *

0)5"

[Q O

/,,<"">

S> w-to O

-J-

Q

O

cn

cn

CD

c

<

oo

dCD

oo

o

?

oooCD

ooo

ooo

o

oo

oCM

LVn] luajjno jndjno apoipojond

Page 249: Avalanche photodiodes arrays - RIT Scholar Works

CM

O

m

c

'5O

t...

CN

M

o

in

CD

O)

co

Q.

CO ^ -

at Z

3

is

co CM

O)

O

in

5

cn^.

CD

c

<

o

dCD

ooo

oo

o

oo

o

oooCO

ooo

o

oo

o

oooo

*

oo

o

ooo

o

(IN) uibo

Page 250: Avalanche photodiodes arrays - RIT Scholar Works

oom

CM

O

O)

O

m

O)

c

CD

>to

3

a*^

3

o

cIDL.

L.

3

o

ooCO

oo

o

CD

CD

a>

CO

CL

, . to

E x

c . ^

X.D) O

too

CN

OO

Q

a>

O

CO

CD

c

<

[vn] juajjno

Page 251: Avalanche photodiodes arrays - RIT Scholar Works

coCLto

CD

LT

LU LU

o a aO) CO

LU LU LU LU LU LU LU

a a a o a o as co in ^r co cm

-

d d d d d d d

LtLCLtLtitairirLtLt

o

m

a

o

o

m

to

c

oQ.to

CD

a:

o

h-

CD

O)

CO

CL

tn

X

ooin

^

E cm.E

<=>

cn Q

S o

O)

O

cn

enj>.

co

c

<

[M/V] AjjAHisuodsay

Page 252: Avalanche photodiodes arrays - RIT Scholar Works

o

o

in

CM

Oo

O

o

m

5

STLU

z

0)

so

0.

c

J2to

>

'5cr

LU

CD

10

o

z

<

1 r

c '

l I

Ooooo

ooooCO

oool-~

oooo

o

CO

CDa>

CO

CL

tn

x

n m

oCM

OO

o ^*

8 a

O

8 .a

cn^>

co

c

<ooo

oooo

CN CN CM CM CN co oo O 9 9 9 o o

+LU LU LU LU LU LUo lO O LO o o oCO CN CM

T T- LO o

LAA] (d3N) JSAAOd juaiEAinbg bsion

Page 253: Avalanche photodiodes arrays - RIT Scholar Works

Water 4 4 4 4

Cell 7, 3 7, 3 7, 3 7, 3

Diameter [um] 200 200 200 200

Guard Ring [um] 20 20 20 20

Pixel Dist [um] 300 300 300 300

Metal Ring Y Y Y Y

Illumination [%] Dark 0.03 lo 0 33 lo la

Bias Voltage [V] -60 00 -10240 1 -10540.7 -10550 1 -13253 9

-59 00 4888 14 -9171.65 -9204.12 -12153.9

-56 00 -7740.14 -8039.65 -8079 12 -11043.9

-57 00 -6561 14 -6869.65 -6925.12 -9618.91

-56 00 -5356.14 -5661.65 -5732.12 -8751.91

-55 00 -114614 -4441.65 -4537.12 -7689.91

-54 00 -2970.14 -3234.65 -3376.12 -6618.91

-53 00 -1621.14 -206665 -2251.12 -554831

-52.00 -714.542 -1024 65 1236 12 -448791

-51 00 -83 9617 -126 451 -370.417 -344431

-50 00 -J7.1517 -58.3512 -98.0168 -2393.91

-49 00 4.7617 -18.0512 352068 -144631

-46.00 -0.3786 -125917 -27 327B -457 115

-47 00 -0.2841 -0.7186 -26.7898 -260.715

-4600 -0.1854 -0.6845 -234578 -138.435

-45.00 -0.1417 -0.65117 -20 1168 -103.915

-44 00 -0.13943 -0.64744 -193268 -102.872

43 00 0.13453 -0.6439 -193349 -101.677

4100 0.13185 -0.64046 -192776 -100.628

41 -0.12811 -0.6366 -19.0925 -99.4418

-40 -0.12575 -0.63252 -185323 -98.4024

39 -0.12074 -0.62818 -18.6744 -97.1753

-38 -011779 -0.62472 -184106 -96.0064

-31 -0.11398 -0.62071 -182467 -95.0207

-36 -0.1112 -0.61709 -17.996 -93.8659

-35 -0.1067 -0.6121 -17.6946 -92.7356

34 -010302 -0.6093 -17.4344 -914304

-33 -0.10136 -0 606 -172627 -90 4285

-32 -0.09685 4.60089 -16.985 -892212

31 -0.09292 0.59829 -16.8371 88.D411

-30 -0.08924 -0.59371 -163468 -86 9797

-29 -0.0B736 -0.59082 -16.3648 -85B57

-28 -0.08292 -0.58669 -16.1553 -84 7748

-27 -0.07992 -0.58187 -15.B47 -83.6675

26 -0.D7599 -0.57666 -15.6151 -82.3796

-25 -0JJ72B4 0.5749 -153093 -81.4304

-24 -0.06812 -0.57169 -15.142 -80-1707

-23 -0.06488 -0.56641 -143016 -79.0672

-22 -0.06252 -0.56337 -14.6957 -77.867

-27 -0.05847 -0.55938 -14.4555 -76.6637

-20 -0.05503 -0.55593 -142377 -75.7746

-19 -0.05183 -055245 -133478 -74 4817

16 -0.D4868 -034871 -13.7422 -73 4253

-17 0 04536 -0.54556 -133106 -722434

-16 -0.04121 -0.54004 -132774 -71 0608

15 -0.0361 -0.53605 -13.0482 -70.D862

-14 -0.03356 -0.53335 -123507 -68B898

-13 -0.03004 -032919 -123652 -673008

12 0.02718 -032616 -12.3196 -665548

11 -0.02427 -0.52112 -12.1054 -65.466

-10 -0.01384 -0.5176 -11.99 -64 48

9 -0.01384 -03176 -11 66 -63.3

-e -0.01384 -05176 -11.54 -62.18

-7 0 01384 -0.5176 -1126 -61.08

-6 -0.01384 -05176 -11.1 -59.64

5 -0.01384 -05176 -1092 -5773

4 -0.01384 -0.5176 -10.62 -27 37

3 -0.01384 -0.5176 -9 642 -9614

2 -0J31384 -0.5176 -3.105 -2.827

1 -0.01384 -05176 -0.6459 -05817

0 -0.01384 -0.01035 0.02591 -0.00066

1 -0.01384 0.6543 128 1.179

2 -0.01384 3.53 4 984 5174

MEASUREMENTS ARE DONE AT 600nm

Analyst (W5 C9.10 D4D0,20,500,N).xls (Page 9 of 12)

Page 254: Avalanche photodiodes arrays - RIT Scholar Works

Wafer 4 4 4 4

Cell 7, 3 7, 3 7, 3 7, 3

Diameter [um] 200 200 200 200

Guard Ring [um] 30 30 30 30

Pixel Dist [um] 400 400 400 400

Metal Ring N N N N

Illumination [%] Dark Vbr 0.03 lo Vbr0.33 lo Vbr loVbr

Bias Voltage [V] -60.00 -10240.1 -10540.7 -10550.1 -13253.9

-51.470 -0.00952 -280.979 -490.077 -3844.69

-51.234 0.05077 -214.973 -3585.55

-51.050 0.00608 -3383.04

-47.967 0.4208

Curve Fit a

b

c

d

2nd Derivative a

b

Max Gradient Vbr

Threshold Vbr

Linear Trend Vbr

Voltage Breakdown Vbr

-51.470 -51.234 -51.050 -47.967

-50.4303 -50.4303 -50.4303 -50.4303

Analysis (W5 C9.10 D400,20,500,N).xls (Page 10 of 12)

Page 255: Avalanche photodiodes arrays - RIT Scholar Works

I 60E-19 |C]

6 63E-34 [J 5)

3 00E*0B |nUs]

6 OOE-07 H

5 0QE-14 \Hz]

4 B6E-07 JWl

1 0Bt 1)5 [m]

0 353B |%j

@600nrr 3 75E*0S [1fm)

> = 1 49E-07 |A]

Po@ 6OO1

R@600n

OE =

viutary] dirk [A) [A] Inarm/A] W fi@ IIAAVjNEPfW]

-60 00 -1.02E-O2 -1.33E-02 I 49E-07 88736 64 0 3073 3 33E-02

-69 00 -8 89E-03 -1 22E-02 1 49E-07 81372 0 3073 2 B9E-02

-S8 00 -7 74E-03 -1.10E-02 1 49E-07 73940 41 0 3073 2 52E-02

-57 00 -6 56E-03 -9 B2E-03 1 49E-07 65736 88 0 3073 2 136-02

-56 00 -5.36E4J3 -8.75E-03 1 49E-07 58595 re 0 3073 1 74E-02

-5500 4 1SE-03 -7 69E-03 I 49E-07 51454 95 0 3073 1 35E-02

-54.00 -2.97E-03 -6 62E-03 I 49E-07 44314 47 0 3073 9 666-03

-S3 OO -1 82E-03 -5.55E-03 1 49E-07 37150 69 O3073 5 93(7-03

52.00 -7.15E-04 -1 4ye-03 1 49E-0? 30047 16 0 3073 2 32E-03

-51 00 - 40E-05 -3 44E-03 1 49E-07 23064 74 0 3073 2 73E-04

-50-00 -4.72E-05 -2.39E-03 1 49E-07 16027 56 0 3073 1 5317-04

-49.00 -JJ.76E-06 -1 4SE-03 1 49E-07 9687 277 0 3073 2 856-05

-48.00 -3.79E-07 -4.57E4M 1 49(7-07 3060 441 0 3073 1236-06

41 00 -Z B4E-07 -2.61E-04 1 49E-07 1745 518 0 3073 9 24E-07

-46 00 -1.B5E-07 -1.3BE-04 1 496-07 926 8378 0 3073 6 03E-O7

-4500 -1 42E-07 -1 04E-O4 1 49E-0? 695 7221 D3073 4 616-07

-14 tin -1.39E-07 -1 03E-O4 1 49E-07 688 7391 0 3073 4 54E-07

-13.00 -1.35E-07 -V02E-O4 I 49E-07 680 7436 0 3073 4 38E-07

-42.00 -1.32E-07 -1.01E-04 1 49E-07 673 7158 0 3073 4 29E-07

-41 -1.3E-07 -9.9E-05 1 49E-07 665 7752 0 3073 4 1 7E-07

-411 -tJE-07 -9 BE -05 1 49E-07 658 8162 0 3073 4 09E-O7

-39 -1-2E-07 -9.7E-05 1 49E-07 650 6013 0 3073 3 93E-07

-38 -1.2E-07 -9 6E-05 1 49E-07 642 7753 0 3073 J 63E-07

-37 -1.1E-07 -9.SE-05 I 49E-C7 636 T75S 0 3073 3 7JE-07

-36 -1.1E-07 -9.4E-05 1 49E-07 628 4439 0 3O73 3 62E-07

-35 -1.1E-07 9.3E-05 1 49E-07 620 8766 0 3073 3 47E-07

-34 -1E-07 -9 1E-05 I 49E-07 612 1378 0 3073 3 35E-07

-33 -1E-07 -9E-05 r 49E-07 605 4303 0 3073 3 30(7-07

-32 -9.7E-OB -B.9E-OS 1 49E-07 597 3476 0 3073 3 1SE-07

-31 -9.3E-OB -6 BE -05 1 496-07 589 4465 0 3073 3.026-07

-30 -S9E-08 -8 7E-05 I 496-07 582 3401 0 3073 2 90E-O7

-29 -8.7E4JB -B.6E-05 1 49E-07 574 8236 0 3073 2 84E-07

-28 -B.3E-08 -S 5E-05 1 49E-07 567 5778 0 3073 2 70E-07

-27 -AE-oa -B.4E-05 I 49E-07 560 1646 0 3O73 2 60E-O7

-26 7.6E-0B -8.2E-0S 1 49E-07 551 5417 0 3073 2 476-07

-25 -7.3E-OB -8.1E-05 1 49E-07 545 1867 0 3073 2 37E-07

-24 -6.8E-OB -SE-05 1 49E-07 536 7527 0 3073 2.22E-07

-23 -6.SE-O8 -7.9E-05 1 49E-07 52S 3652 0 3073 2 1 1E-07

-22 -6JE-08 -7.BE-05 1 49(7-07 521 3296 0 3073 2 03E-O7

-21 see -ob -7.7E-05 I 49E-07 514 6119 0 3073 1 906-07

-20 -5 5E-08 -7.BE-0S 1 49E-07 507 322 0 3073 1 79E-07

-1B -57E-OB -7 4E-05 1 49E-C7 406 6644 0 3073 1 60E-C7

-18 -4.9E-0B -7.3E-0S 1 49E-07 491 593 0 3073 1 586-07

-17 -4.5E-0B -7JE-OS 1 49E-07 46J 6789 0 3073 1 486-07

-16 4 1E-0-B -7 1E-05 1 49E-07 475 7609 0 3073 1 34E-07

-IS 3 8E-48 -7E-05 1 49E-07 469 236 0 3073 1 24E-07

-14 -3 4E-OB -6.9E-05 1 49E-07 461 2257 0 3073 I 09E-07

-13 3E-08 -6.BE-DS 1 49E-07 53 9347 0 3073 9 78E-08

-12 2 7E-OB -6 7E-05 1 49E-07 445 5928 0 3073 8B4E-0B

-11 -2.4E-08 -6 5E-05 1 4BE437 438 3031 0 3073 7 90E-OB

-10 -1.4E-0B -6 4E-05 1 49E-07 431 7018 0 3O73 4.50E-O8

-1 -1 4E-0B 6JE-05 1 496-07 423 8015 0 3073 4 5OE-0S

1 -1 4E-0B -6.21: 05 1 496-07 416 303 0 3073 4S0E-08

-7 -1.4E-C* -6 IE-OS 1 49E-07 408 9384 0 3073 4 50E-O8

-6 14E-08 -6E-C5 1 49E-07 399 2874 0 3073 4 SOE-OB

-5 1 4E-0B -5.BE-0S I 496-07 386 5097 0 3073 4 506-08

-4 -1 4E-08 -2.7E-03 1 49E-07 183 2456 0 3073 4 506-08

-: 1 4E-0B -S BE -06 1 49E-07 65 70598 0 3073 4 506-08

-2 -1 4E-06 -2 HE 06 1 49E-07 18 927)2 0 3073 4 50E-08

-1 1 4E-08 -5.BE-07 1 49E-07 3 894555 0 3073 4 506-08

0 -1 4E-0S -6.6E-10 1 49E-07 0 004419 0 3O73 4 506-08

1 -1 4E-0B 1.1BE-06 1 49E-07 -7 89355 0 3073 4 506-08

2 1 4E-0B 5.17E-0* 1 49E-07 -34 6406 0 3073 4 SOE-OB

Analysis (W5C9.10 D400.20.500N) ills (PaflB 1 1 0(12}

Page 256: Avalanche photodiodes arrays - RIT Scholar Works

>-

s s sr_, CD O o o O

2*

LUCN

CO

LU

LO

LULO

o

LUTf-

o

LUOOi

CO CM CM CNI CN)

COOi

TT N. s.

co

Oi

CDCO

C co ** o oO t- CM CO cn CM

co"

d d d d d

cn v- co co loT- C\| (\l CO N

Oi Csj Oi CO Tfr

Oi CN t- *-- -t-

O ^ CO O N-

Co CD K ^ CM

00 CO CO CO co

i cn c\i csj csj csi

(O (D (O CO CO

ooooo

UJ UJ LU UJ LU

ry r- oo ^ n

n a CO CO CO

S. csi oi csi oi n

n-q- ^ o

OOOOO

) CD CD CD CD CD

< CM<M LQ

COCO

CJ LO

Csj Tfr O CO CM Oi

m>o to

COCO

TfLO ro

oCO

O OCM

>CN

UJd d d d d d d d

h- o

<CO r^ s. CO Oi O co o CM Tr CO

LU O o o o o CM <0CM

LOTh

o>

CO

CO

Z Uj Uj LU LU LU O o

oa 5. co

Oi

CM

C3i

Tf;COtt

=s d o d d

LU Q_ Csj "r" "r" CO K

Ct

< Tf Tf tt TT *w- Oi

CO CO

CO

CDLO CO

tn +

**-- UJ+

Uj+

UJ

+

LU+

LU2 s CO a> CM

CM

LO

CN

zLU

o> oo

OO

CO

CM

LO d d d d

E -> < sd LO Tf CO a

LU r*- s- r-- CO CO O co CO o CO CO

t o o o o o mT- CM CM CM

3CO

<

C"

UJ> CO' '

1^

lil

CM

CN

LU

CO

CO

LUoCN

LU

O

CD

doCM

d

*<TCM

d

COCM

d

CSICO

dLU

so

D_in <* *

"r"

X

09099UJ UJ UJ UJ til

ECO 00) CO 00 00

..OOOOO

O co o * co r-

CO CO CN O CO N.

_ Oi t> Oi co 50O t- CM CM Co CO

) d d 0 d d

5 cc

CO LO UO LO ^r O CO CO CO CN s.

0 O O O 0 r>- LO CM CO LO

+ + + + + CM CO CO Oi 10

E LU LU LU LU LUd CM CM CO CO

TJ-

00CO

to CM

CD

O@ d O d d O

COCO 06 CO

*-" CD CC

CO CO CO CD CO O T- CO ^- N. CM

CO r- CO r- CO CO CM N. to

CO CO LO CO CN LO CN CO LO----T CO CO CO CO d CM 00 CO Tr LO

OOOOO 1 o o o o o

CD CO

<-:

OOOOOOOOOOtj- LO CO r^ 00

E o o o o 0

CD O O O O O

> 0 0 o p o

5 'T LfJ CO S OS

0Oi

d

TJ-

0o>

CM

Oi

CN

CO

CO

LO

Ui

COTr

CO

0LO

OCOLO

0) 0 0 O 0 0

cc

00

COCM

COCO

Oi

CO

CO

Th

CN

LO

LULULULULU ~co ^ 3 <S

I \ . I II LI L' T ^.

*.

CN O CO OTj-

] o o o o o

Page 257: Avalanche photodiodes arrays - RIT Scholar Works

6.7.4 Raw Crosstalk Data

The following graphs are the raw crosstalk test results of the APD arrays. Only arrays exhibiting

promising data were tested for crosstalk.

243

Page 258: Avalanche photodiodes arrays - RIT Scholar Works

OOO

OO 10

>oo

o

o

a i

el

A ** *

* b l a a <p

rt c o *> 9L. li. *4 4- + -M C

> _J W W OT O >

> W

*,-:

x .j"

| n 19>. |

' haj'

C"

J

Xlo }i1 |-~

>j<^ s!io V

1 f\J1} 1

!sfc

5o

Oc

k :

cn2 o

Ii^ WW

-

to

X1-1 '^\

^S \ 1

1

<T-i V \ 1

\ \ t

LT."

VsSt'U

1

\ Tl. " li-

\ >

X. w\

\ v\v- I

*

%

1

N,''

*11 1

N

*.M^O (o> oO (D-H oyO iOT3 in *

LU *4. ^

M i

Page 259: Avalanche photodiodes arrays - RIT Scholar Works

>>> >OOO oooo oOOO oO O 10 o

lO ?

a iB

vl b CO- jC * .. .^O D * <J>

B ( 4* 1rt u cA 0 + e* b c a a 4*

-rl CIOD IBL. SL *ri *l +* * CB > _J CO W>

3*

* CJ

Page 260: Avalanche photodiodes arrays - RIT Scholar Works

>>>OOO

OOO

OOOOOO

>o

o

o

o

JO *t

a i

Ba

5*B

0 Ir L

A *>

m b c a. a

H C B O B 8

I, U. -rt 4-1 + * C

i>jnnc4 o >

> o

m

B U+ Ic

B

-K Tl

X1

* "Z

* Q.l

*f^-.

rjj

i , "J

CJ ^_3

_l

G.

O

O

:n

os-1

CJ

LrJ

%

\ *. \

IZ^ o

< o

E O

o

\W-^

\\

\V

\

\ * . L_

\ \ \ |\ V.

\- W \|-Vs. "V

\ WW

-i^r*%' """ *"

\N

-4-

\

\. \

O

rO

IO-flD

>

oo

o

m

JjLI >

w\V \

o

o

O-rt

in -a

0^ ^v.j i***

?in i

Page 261: Avalanche photodiodes arrays - RIT Scholar Works

> > > >OOO oO O o oOOO o

O O ID o

10 **

a i*

v* B cn.. J

-*0 N 5

I 4J 3>i L, C+ B*> c a o. *

rt C B D B a

L LL *4 *- * + c

> jmcjffl o >> U

*"W

<

Li.i

O

o

oxz \i

I

1

1

^rv \

ino

*

6

W i \UO

Q.S W !- - -

J

:i

>

"D

oo 2 ;w

s

\\

\

V

O

O

O

IDi

\

i

0L

CDi La.

>

*

i

i

v\;

w1 2

*'i 1 i [CD

c

c

c

c

i

*

o>O-H

tm-j

c

c

IT

J

t

i

Page 262: Avalanche photodiodes arrays - RIT Scholar Works

>>> >

OOO o

OOO o

OOO o

OOifl o

10 **

a 1B

n b n

B U

6 1 +* 1

it L c

a +* B

e l a a 4J

n C B O B B

t 11. *i 4* 4A * C

b > j 09 a) o

>

S*

,o

^ in

T1

*

t i

o

lO

n.

i ;

ir

\-.

f

>

-H

O

o

to

LI 1

Oil

Li o

^i

, 1

w*

-.

w- .. Li

i

i

0]

(J CD

r lLT

X'::

\\

\\Q'

CD\\

\

*

\

\ \\ '-.

\1. .,

S

ED

o

o

o

o1

<

<

l

o>

V

a

o

in

I

*

J

Page 263: Avalanche photodiodes arrays - RIT Scholar Works

> > >o o oOOOOOO

OOO

B I

{0 -r*

O. IBB

SB

AB

t- LL

>OO

o

o

.. JC

8 O-M 1

C44 m

b c a a **

c a o b m

** an cj <o a) to o >

Page 264: Avalanche photodiodes arrays - RIT Scholar Works

>->> >

OOO o

OOO o

OOO o

00 a o

tO Tl

a i9

vt B P)

5*

rl U B IU

B 1 4* E

r* L. C

J3 B ** ft

b l a. a +>

n C B O B B

C tl, -H 4i + 44 C

B > -J CO CO CO o>

> o

Xn"

*7

H.,"

cj

5

Cjna

Hifi'

Xu

[Let.<r5

X

CD

X

><

*

*

<

e

Page 265: Avalanche photodiodes arrays - RIT Scholar Works

> > > >

OOO oooo oOOO o

O O Q oT *

ID <H

a. iB

n o (0,. -C * . jC

U a 0 ua 3 4> 1*- c c-Q 0 4* Bb b i_ a a 4*

rt B O B 0C U. -rl +? + ** cB > _1 CO 10 CO>

s>

*Li?

_ o

Ucj

tXo

"5

(l)Q

rjct;

LI*

"J

Q.co

X

<

Page 266: Avalanche photodiodes arrays - RIT Scholar Works

JOB

r*

uB

>

>9OO

oTl

a i

a

cB4>

B C

C Brl 41

_l tfl

OO

oo

>a

ooo

rt

.$

a a

O 0

CO to

cB4*

0c

-*

in

1f>

C3ru

Jc;Xo

Um

LX^

X

LD

*.

X

*

&

*

<

LL

Page 267: Avalanche photodiodes arrays - RIT Scholar Works

> >> >ooo oOOO O

OOO8- o o

o *

t <ri t

a is

n a pj..ex ..

n o a 0 us 1 4> 1- e. c1 0 4* 00 a i. a n 4

rl C 0 O B 0t "i. -rl 4* 4* 4* c0 > J to to CO o>> o

Page 268: Avalanche photodiodes arrays - RIT Scholar Works

>

ooo*

o

a I0

Tl 0

.. STl O 0

0'

n Ca 04*

0 (.Tt C 0

0 > j to

>

>>

OO

O OOOoo

*

rl *

a ao B41 4

to co

>oooo

14

.5

P I

c

co >o

X .

Jt-

Xo

LJ -

I-ho

XfJ

Q.1<3:

X

CD

X

X

X

X

X

X

E

Page 269: Avalanche photodiodes arrays - RIT Scholar Works

>> > >OOO oOOO oOOO oO O o

Od n ti

a t0

Wf PI

. J= ..

rt o 0 b a0 ( 4J 1r t. c

J3 0 4> B

B v t a a 4T

rl C B Q B B

t. U. * ? 4J + C

B > ^ 0) CO 0) O >

> o

X*T

X j

.

l-v

-"-"

1iLD^:J

X^T<-*

n

CD

X

X

x

X

*X'

Page 270: Avalanche photodiodes arrays - RIT Scholar Works

6.7.5 Crosstalk Analysis of Selected Photodiodes

The following are crosstalk calculations of selected APD arrays.

256

Page 271: Avalanche photodiodes arrays - RIT Scholar Works

Z-

oLO

2 z 4t^- ( > o o

oCN

Lf> lo1^- S-

o(_> o CN

O CM CM

^r O O

fl CJ C 3 CN

oQa

T- aj CD

1X1 m

u O o oT

<r> Tf3-

<

ts

1s:

TO*-

tntn

O

(P8Z!|bujjon) >(|Bissoj3 |eu6js

Page 272: Avalanche photodiodes arrays - RIT Scholar Works

Die: W1 C11.10 D400,20,750,N

Vbias: -3.0 [V]

Distance P4 Off P4 On Signal Crt Signal Crosstalk (Normalized)

0 -718.95 -907.5 1.262257 1

750 -718.95 -854.9 1.189095 0.942039

1500 -718.95 -734.8 1.022046 0.809697

2250 -718.95 -693.1 0.964045 0.763747

Die: W3 C5,8 D400,20,750,N

Vbias: -3.0 [V]

Distance P4 Off P4 On Signal Cr< Signal Crosstalk (Normalized)0 -470.575 -794.7 1.688785 1

750 -470.575 -774.4 1.645646 0.974456

1500 -470.575 -357.5 0.759709 0.449855

2250 -470.575 -114.6 0.243532 0.144205

Die: W4 C5,6 D400,20,750,N

Vbias: -9.0 [V]

Distance P4 Off P4 On Signal Cr< Signal Crosstalk (Normalized)0 -807.9 -7112 8.80307 1

750 -807.9 -6619 8.192846 0.930681

1500 -807.9 -519.6 0.643149 0.07306

2250 -807.9 -1208 1.495235 0.169854

Die: W4 C10.9 D200,20,300,N

Vbias: -9.0 [V]

Distance P4 Off P4 On Signal Cr Signal Crosstalk (Normalized)0 -191.1 -398.9 2.087389 1

300 -191.1 -303.96 1.590581 0.761995

600 -191.1 -297 1.55416 0.744548

900 -191.1 -155.6 0.814233 0.390073

Pixel Crosstalk Summary.xls (Page 2 of 2)

Page 273: Avalanche photodiodes arrays - RIT Scholar Works

7. Bibliography

Cheung, N., "EECS143 Lecture #7", University of California Berkeley, 2003

Cova, S., Ghiono, M., Lacaita, A., Samori, C, and Zappa, F., "Avalanche Photodiodes and

Quenching Circuits for Single-Photon Detection", Applied Optics, April 1996, Vol. 35, No.

12, p. 1956

Forrest, S.R., DiDomenico, Jr., M., Smith, R.G., and Stocker, H.J., "Evidence for tunneling in

reverse-biased lll-IV photodetector diodes", Applied Physics Letters, 1980, Vol. 36, p.

580

Kruger, A., "Photodiode Responsitivity",

http://www.chipcenter.com/eexpert/akruger/akruger040.html, 2002

Laifer, E. and Gilad, E., "Zener Diode", http://www.hait.ac.il/staff/vagner/zener/content.html, 2002

MacGregor, A., "Silicon Avalanche Photodiodes for Low-Light, High-Speed Systems", Photonics

Spectra, February 1991, p. 139

Matsushima, Y., Moda, Y., Kushiro, Y., Seki, N., and Akiba, S., Electronics Letters, 1984, Vol. 20,

p. 235

Mclntyre, R.J., "Multiplication Noise in Uniform Avalanche Diodes", IEEE Trans, on Electron

Devices, January 1966, Vol. ED-13, No. 1, p. 164

McKay, K. and Chynoweth, A., "Photon Emission from Avalanche Breakdown in Silicon", Physics

Review, May 1956, Vol. 102, No. 2, p. 369

Mitsubishi, "PD8042, PD8932 Datasheet", Mitsubishi Laser Diodes, November 1997

259

Page 274: Avalanche photodiodes arrays - RIT Scholar Works

Pierret, R., "Semiconductor Device Fundamentals", Addison-Wesley Publishing Company, March

1996, p. 355

Proudfoot, C.N., "Handbook of Photographic Science and Engineering", IS&T, 1997, p. 127

Ridley, B.K., "Factors Affecting Impact lonisation in Multilayer Avalanche Photodiodes", IEE

Proceedings, June 1985, Vol. 132, No. J3, p. 177

Schroder, D.K., "Semiconductor Material and Device Characterization", John Wiley & Sons, 1990

Sze, S.M., "Physics of Semiconductor Devices, 2nd. Edition", John Wiley & Sons, 1981

Torres, M., Sandoval, M., and Lush, P., "EE3329 Study Guide",

http://www.ece.utep.edu/courses/ee3329/ee3329/Studyguide/, 2002

Webb, P.P. and Mclntyre, R. J., "Multi-Element Reachthrough Avalanche Photodiodes", IEEE

Trans, on Electron Devices, September 1984, Vol. ED-31, No. 9, p. 1206

Wegrzecka, I., Wegrzecki, M., Grynglas, M., Bar, J., Uszynski, A., Grodecki, R., Grabiec, P.,

Krzeminski, S., and Budzynski, T., "Design and properties of silicon avalanche

photodiodes", Opto-electronics Review, 2004, Vol. 12, p. 95

Wolf, S. and Tauber, R.N., "Silicon Processing for the VLSI Era", Lattice Press, 1986, Vol. 1, p.

289

Zappa, F., "Solid-state single-photon detectors", Optical Engineering, April 1996, Vol. 35, No. 4,

p. 938

Zeghbroeck, B.V., "Principles of Semiconductor Devices", http://ece-

www.colorado.edu/~bart/book/, 2001

260