autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · auv...

23
Autonomous underwater mapping using terrain- and sonar navigation Ove Kent Hagen Forsvarets forskningsinstitutt, FFI Geodesi- og hydrografidagene 2014 Sola, 13. november 2014

Upload: others

Post on 28-Feb-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Autonomous underwater mappingusing terrain- and sonar navigation

Ove Kent HagenForsvarets forskningsinstitutt, FFI

Geodesi- og hydrografidagene 2014Sola, 13. november 2014

Page 2: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Outline

• HUGIN AUV and underwater mapping– Underwater navigation– Mapping sensors

• Data-driven navigation techniques– Terrain navigation– Sonar navigation

• Autonomous mapping concepts– Autonomous survey– Autonomous mine hunting

• Plans

Page 3: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

AUV research at FFI

Batteries

SAS

Autonomy ATRNavigation

Camera

Page 4: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Underwater mapping

Global referenced vehicle position and orientation+

Sensor data referenced in vehicle reference frame– Sensor processing: acoustic signals to bathymetry– Lever arms and reference systems alignments– Time synchronization

= Global referenced sensor data

Ormen LangeNorsk Hydro

Sigsbee, Gulf of MexicoC&C Technologies

Sensors near sea floor- High resolution- Increased stability

< 800 m < 2400 m

HUGIN AUVKongsberg Maritime

Page 5: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

NavPReal-time system on HUGIN AUVs

NavLab (commercially available)Post-processing, simulation, analysis and development

HUGIN Navigation System

AUV Navigation

Problem: GPS does not work under water!

Solution:- Inertial navigation system (INS)- Aided by any available sensor

Page 6: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

State-of-the-art DVL-aided INS for AUVs

AUV trajectory

Elliptic Position Uncertainty

Honeywell HG9900• 0.8 nm/h• 0.003 °/h

Doppler Velocity Log (DVL) Inertial Measurement Unit (IMU)

WHN 600• 0.2% • ±1mm/s

- Orientation found by processing accurate accelerometers and gyros - Position drift:

~ 0.1% travelled distance, straight line~ 0.01% travelled distance, lawn mower pattern, 1km lines

IMU

+DV

L

DVL

Page 7: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Navigation post-processing (NavLab): Simulated Survey

Trajectory

Estimated postionaccuracy (1σ)

Green Real-time pos acc (1σ)Red Post proc pos acc (1σ)

GPS-fix

Page 8: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

AUV navigation autonomy levels

• Supervised– AUV may be commanded– Requires infrastructure for positioning– E.g.: Mother ship with GPS and acoustic tracking

of AUV (USBL)

• Semi-autonomous– AUV operates autonomously– Requires infrastructure for positioning– E.g.: GPS-fix, GPS-buoy transponder navigation,

sea floor transponder navigation, …

• Autonomous– AUV operates autonomously– No infrastructure for positioning– E.g.: terrain navigation, sonar navigation, …

GPS

USBL

Transpondernavigation

TerrainNavigation

Page 9: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Mapping sensors

EM 3000Multibeam echosounder

HISASSynthetic Aperture Sonar Combined

Page 10: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

SAS imaging and bathymetry

Courtesy Royal Norwegian Navy

Courtesy Royal Norwegian Navy

Resolution > 2 cm Resolution ~ 6 cm

SAS Image SAS Bathymetry

Page 11: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

SAS image fused with bathymetry

Holmengraa sunk 1944 outside Horten

Page 12: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Terrain navigation with loose INS coupling• Search area based on INS estimate• Correlate bathymetric

measurements with an a priori known digital terrain model (DTM)

• Find best position estimate within search area

• Send position estimate and accuracy to the INS

HUGIN Terrain Navigation SystemCommercially available for HUGIN AUVs

TerrLab: simulation, development, analysis and post-processingTerrP : real-time system

Point Mass Filter

Page 13: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Hagen & Ånonsen, MTS/IEEE OCEANS 2010, Seattle

HUGIN AUV, Barents Sea, 2009Test of terrain navigation during long covert transit in open sea

• DTM from EM710 with 10 m resolution

• Straight line transit ~50 km or ~27 nm

• HUGIN navigated autonomously, monitored on USBL

• ~ 4 m difference at end of transit

East [km]

Nor

th [k

m]

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

300

310

320

330

340

350

360

370

380

390

East [m]

Nor

th [m

]

-5 0 5 10

-15

-10

-5

0

5

10

HUGIN INS

USBL

Page 14: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

HUGIN AUV, Oslo fjord, 2010Test of covert transit in fjord

10.5 10.55 10.6 10.65 10.7

59.18

59.2

59.22

59.24

59.26

59.28

59.3

59.32

59.34

59.36

0

5

10

100

350

Bolærne

←Åsgårdstrand

• DTM created from EM710: 10 m resolution

• TerrP used only DVL (4 beams)

• HUGIN navigated autonomously for ~5 hours (about 36 km), monitored on USBL

• The difference between HUGIN’s GPS and the INS after resurfacing was ~ 5 m

Ånonsen & Hagen, MTS/IEEE OCEANS 2010, Seattle

Page 15: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

East

Nor

th

-155

-150

-145

-140

-135

1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.5 1.51

x 104

0

100

200

300

400

500

600

700

Eastings [m]

Nor

thin

gs [m

]

Navigation solution and TerrNav position fixes, meters

NavPNavLabTerrP RQTerrP OK

Mappingmode

Navigation mode

HUGIN AUV, Larvik, 2011Test of local covert terrain navigation

• Map built in-mission at start• Used for navigation upon return

East

Nor

th

-160

-155

-150

-145

-140

-135

EM 710H.U. Sverdrup II

EM2000HUGINin-mission

Ånonsen & Hagen, MTS/IEEE OCEANS 2011, Kona

Page 16: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

H.U. Sverdrup II, West Coast fjords, 2013Test of terrain navigation against simulated GPS jamming/spoofing

Hagen & Ånonsen, MTS Journal, vol 48(2), 2014

Page 17: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Line-by-line terrain navigation• Use of sparse maps - search area only partially covered• Estimate position difference along the line• Simulation results (conservative)

– Side scan bathymetry (~1 m res) with SAS DTM (~ 0.18 m res)

10.426 10.427 10.428 10.429 10.43 10.431 10.432 10.433 10.434 10.43559.4675

59.468

59.4685

59.469

59.4695

59.47

59.4705

59.471

59.4715

0 20 40 60 80 100 120 140 1600

2

4

6

8

10

12

14

Time [s]

RM

S S

tdD

ev[m

]

20% overlap30% overlap50% overlapSAS Line DTM SSB measurements

Overlap

Page 18: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Sonar ATR navigation

Automatic target recognition (ATR) – association - invariant to poseEstimates position difference

0 0.5 1 1.5 2 2.5 3 3.5-10

-5

0

5

Time [h]

y [m

]

DVLDVL+FBNFeature Observations

0 0.5 1 1.5 2 2.5 3 3.5-10

-5

0

5

Time [h]

Horizontal position error and std (1σ)

x [m

]

DVLDVL+FBNFeature Observations

Page 19: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Feature-based sonar navigation

Feature tracker, similar pose, line-by-lineEstimates position and heading difference

Resolution 4 cm x 4 cm

Page 20: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Autonomous mapping: survey

Supervised mappingwith GPS+USBL

Cross-line autonomous navigation and mapping: - DVL-aided INS- Terrain navigation- Sonar ATR navigation Supervised mapping

with GPS+USBL

Line-by-line autonomous navigation and mapping:- DVL-aided INS- Terrain navigation- Sonar navigation

• Accurate real-time navigation required to ensure coverage • Navigation accuracy requirements to be met by post-processing• Navigation post-processing inherently increases mapping data consistency

Page 21: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Autonomous mapping: mine hunting

Transit 1

DVL-aided INS

Line-by-line terrain- and sonar navigation

Detection

Transit 2

DVL-aided INS

Independent global position error

Detect & Classifyby SAS image

Identify byoptical image

Page 22: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

FFI Plans 2014/2015

• Finish development of line-by-line terrain navigation delta measurements– SSB measurements vs SSB DTM line– SSB measurements vs SAS line DTM– SAS line bathymetry vs SAS line DTM

• Finish development of line-by-line feature tracker based sonar navigation delta measurements

• Integrate the delta measurements with NavLab4, navigation post-processing

• Test on dedicated data set collected in Barents Sea 2014

Can also be used in real-time

Page 23: Autonomous underwater mapping using terrain- and sonar navigation · 2019. 10. 3. · AUV navigation autonomy levels • Supervised – AUV may be commanded – Requires infrastructure

Questions?http://www.ffi.no/no/Forskningen/Avdeling-Maritime-systemer/hugin