automatic reaction mechanism generation with group ... · figure1:part of a pair of trees for...

7
Automatic Reaction Mechanism Generation with Group Additive Kinetics Richard H. West, Joshua W. Allen, and William H. Green Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue 66-270, Cambridge MA 02139 Abstract The key challenge in making chemical mechanism development predictive is being able to accu- rately estimate any possible rate coefficient k(T ) even if there are no experimental data. Reaction Mechanism Generator (RMG) is an open-source software project that can build detailed kinetic models for chemical reacting systems (http://rmg.sourceforge.net). It uses a database of rules to propose elementary chemical reactions and to estimate the necessary thermochemical and kinetic parameters. We are modifying the algorithm used to estimate kinetic data to make the estimated reaction rates more reliable and easier to document in cases where they are estimated from sparse data. We present a brief overview of RMG, a discussion of the kinetics estimation options, an explanation of the chosen algorithm, and an assessment of its performance. Introduction Kinetic models for gas-phase reacting systems, such as atmospheric chemistry and combustion, often contain thousands of species and reactions. Researchers in these fields have developed a number of tools to help them generate these detailed models [1–5]. Reaction Mechanism Generator (RMG) is an open-source software project that can build detailed kinetic models for reacting systems[4–7]. To estimate reaction rate expressions, RMG uses a group- based approach. The current algorithm works well when the database of rate-estimation rules and associated group values is complete, but performs poorly when kinetic data are sparse. We are modifying the algorithm to make the estimated reaction rates more reliable and easier to document in cases where they are estimated from sparse data. Automatic kinetic model generation with RMG Given some starting species (e.g. methane and oxygen) and some reaction conditions (temperature and pressure) it will create a kinetic model of the reaction mechanism consisting of many (up to thousands) elementary reactions between intermediate species. Inside the software molecules are represented as graphs, with atoms as nodes and bonds as edges connecting the nodes. Standard graph-theory methods are used to identify equivalent graphs and ensure uniqueness. RMG uses “reaction families” to generate all the possible reactions that a species can undergo in the presence of the other species in the chemical mechanism. Every reaction family represents a particular type of elementary chemical reaction, such as bond-breaking, or radical addition to a double bond. Each reaction family has a recipe for mutating the graph, and a library of rate expressions for different reacting sites.

Upload: others

Post on 12-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

AutomaticReactionMechanismGenerationwithGroupAdditiveKineticsRichardH.West, JoshuaW.Allen, and WilliamH.GreenMassachusettsInstituteofTechnology, DepartmentofChemicalEngineering,77MassachusettsAvenue66-270, CambridgeMA 02139

Abstract

Thekeychallengeinmakingchemicalmechanismdevelopmentpredictiveisbeingabletoaccu-ratelyestimateanypossibleratecoefficient k(T ) eveniftherearenoexperimentaldata. ReactionMechanismGenerator (RMG) isanopen-sourcesoftwareproject thatcanbuilddetailedkineticmodels forchemical reactingsystems (http://rmg.sourceforge.net). Itusesadatabaseof rules toproposeelementarychemicalreactionsandtoestimatethenecessarythermochemicalandkineticparameters. Wearemodifyingthealgorithmusedtoestimatekineticdatatomaketheestimatedreactionratesmorereliableandeasiertodocumentincaseswheretheyareestimatedfromsparsedata. WepresentabriefoverviewofRMG,adiscussionof thekineticsestimationoptions, anexplanationofthechosenalgorithm, andanassessmentofitsperformance.

Introduction

Kineticmodels forgas-phase reacting systems, suchasatmosphericchemistryandcombustion,oftencontain thousandsofspeciesandreactions. Researchers in thesefieldshavedevelopedanumberoftoolstohelpthemgeneratethesedetailedmodels[1–5].

ReactionMechanismGenerator(RMG) isanopen-sourcesoftwareprojectthatcanbuilddetailedkineticmodelsforreactingsystems[4–7]. Toestimatereactionrateexpressions, RMG usesagroup-basedapproach. Thecurrentalgorithmworkswellwhenthedatabaseofrate-estimationrulesandassociatedgroupvaluesiscomplete, butperformspoorlywhenkineticdataaresparse. Wearemodifyingthealgorithmtomaketheestimatedreactionratesmorereliableandeasiertodocumentincaseswheretheyareestimatedfromsparsedata.

AutomatickineticmodelgenerationwithRMG

Givensomestartingspecies(e.g.methaneandoxygen)andsomereactionconditions(temperatureandpressure)itwillcreateakineticmodelofthereactionmechanismconsistingofmany(uptothousands)elementaryreactionsbetweenintermediatespecies. Insidethesoftwaremoleculesarerepresentedasgraphs, withatomsasnodesandbondsasedgesconnectingthenodes. Standardgraph-theorymethodsareusedtoidentifyequivalentgraphsandensureuniqueness. RMG uses“reactionfamilies”togenerateallthepossiblereactionsthataspeciescanundergointhepresenceoftheotherspeciesinthechemicalmechanism. Everyreactionfamilyrepresentsaparticulartypeofelementarychemicalreaction, suchasbond-breaking, orradicaladditiontoadoublebond. Eachreactionfamilyhasarecipeformutatingthegraph, andalibraryofrateexpressionsfordifferentreactingsites.

Page 2: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

Becausethemodelcancontainthousandsofspeciesandrates, theestimationofthermochemicalandkineticparametersmustbeveryfast. Aswithmostmechanismgeneratingtools, RMG usesadatabaseofknownvalueswhereverpossibletofindthermochemicaldataforspecies, butusuallythedataareunknownanditestimatesparametersusingagroupcontributionmethod. ThermochemistryestimatesarebasedonBenson’sgroupadditivitymethodforstandardenthalpiesofformation[8, 9].Thefunctionalgroupsarerecognizedusingagraph-theorymatchingalgorithm. A similarmethodisused toestimate the ratecoefficients for the reactions: functionalgroupsare identifiedusinggraph-matchingandtheratesareestimatedfromadatabaseofrules.

RMG usesarate-basedterminationcriterion; thereactionnetworkisexpandeduntiltheratesofall reactions going to species not included in thenetwork fall belowa certain threshold. Thishelpstoincludeimportantpathwayswithoutunnecessarilyexploringslowerpathways, ratherthanterminatingtheexpansionafterasetnumberofgenerations[10].

Rateestimationmethods

Theratecoefficientofareactionislargelydeterminedbytheatomsintheregionarounditstransitionstate. This region, containingseveralpolyvalentatoms, canbecalleda“supergroup” [11, 12].Identifyingthesupergroupallowsonetoestimatethereactionratecoefficient.

Thesupergroupcanbedecomposedintocomponentgroups. Forexample, inH-abstractionreac-tions

XH+ Y· −→ X·+ YH (1)

thecomponentgroupswouldbetheabstractinggroup(Y) andthegroupfromwhichahydrogenisabstracted(X).

CurrentlyinRMG,thegroupsX andY areusedonlytolocatethetransitionstatesupergroupXHYinthedatabase. WhenarateexpressionisnotavailableforXHY,theratesofsupergroupsclosetoitinthedatabasearecurrentlyaveragedusingacomplicatedschemethatcanunfortunatelyleadtopoorestimatesandobfuscatethesource(s)ofthefinalreactionrateexpression.

Inthenewgroupadditiveapproach, theeffectonthekineticexpressionfromthecomponentgroupsX andY areseparatedandassumedtobeindependentandadditive. Forexample, theeffectofchangingY fromaprimarytoasecondarycarbonisindependentofthegroupX [13].

Wetrainourgroupvalueswithalargedatabaseofreactionratestakenfromtheliteratureand abinitio calculations. Weorganizethegroupsinahierarchicaltreestructurewherechildnodesaremorespecificinstancesoftheirparentnode. AnexampleisgiveninFigure 1. Thegroupvaluesforeachnodearefitted toall thekineticdata thatmatchthatnode, including those thatmatchitsdescendants. Thegoodnessofthisfitisalsostored. Whenestimatingtheratecoefficientforareaction, themostspecificinstanceofeachgroupisidentified. Ifvaluesaremissingforthatgroupthenitsparentnodeisused, continuingupthetreeuntilanodewithdataisfound. ThiswillallowsomeindicationofthefittingerrorsateachnodeandmakeitclearerhoweachratecoefficientwasestimatedinRMG.

Page 3: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

Thisprocedurecanbemadeautomatic, sothatallthegroupvaluescanbeeasilyrefitwhenevertheuserhasaddednewdataon individual reactionrates, making itmorepractical tokeep therate-estimationrulesup-to-datewiththelatestinformation.

Inspecting thefittedvaluescansuggestmodifications to the tree structure. Forexample, in thebottomleftcornerofthe Y · treeinFigure 1 molecularoxygen O2(

3Σ−g )isasiblingof C2(X

1Σ+g )

althoughtheirreactivitiesareverydifferent.

X-­H  +  Y.    X.  +  Y-­Hrates  contributing:  (233)log10(kf  @  1000K):  9.23

H2 C H

X H

O HCC H CO HCC H

(19)-­0.59

(120)+0.18

(25)-­0.55

(5)-­2.31

(22)+0.79

(34)-­0.05

CH4 CH3 CH2 CH

(16)-­0.45

(47)+0.16

(28)+0.18

(29)+0.56

O CH3C CH3 CC CH3 CO CH3CC CH3

(23)+0.05

(17)-­0.12

(2)+1.83

(1)+2.09

(3)+1.42

(1)+3.52

.C C.

(12)-­7.82

.O O. C.H3 C.H2 C.H C.

(23)+0.54

(34)-­0.69

(23)-­0.96

(17)-­1.11

R: R.

Y.

(13)+1.68

(218)-­0.09

H. C. O.C.C C.OC.C

(23)+2.21

(13)-­7.01

(97)-­0.56

(26)+1.02

(7)+2.62

(37)+0.77

(12)-­1.13

.R R.:CH2

(4)+0.13

O:

(9)+2.40

Figure 1: Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-actionratescontributingto the training(inparentheses)andthefittedgroupvalue forlog10 (kf @1000 K)

Example

Figure 1 showspartofapairoftreesforthehydrogenabstractionreactionfamily. Inthiscasethedatausedare thebase-10 logarithmsof the forward reaction ratecoefficientsat1000 K,perHatom. 223reactionrateexpressionswereusedinfittingthegroups, andtheoverallaverageratewas 109.23 cm3/mol/s. Forthereaction C2H6 + HCO −→ C2H5 + CH2O, wecanestimatetheratecoefficientat1000 K byidentifyingthe X−H and Y · groupsinthetreeasfollows:

C CH3

-­0.129.23

Base TotalC.O

-­1.13 =+ + 7.98

There are 6 equivalent H atoms to abstract so the total rate coefficient is 6 × 107.98 = 5.6 ×108 cm3/mol/s, whichcompareswellwitha 7.0× 108 cm3/mol/sestimatebyTsang etal.[14].

Page 4: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

Methodcomparison

Totestthemethodsweextracted888rateexpressionsforhydrogenabstractionreactionsofspeciescontainingonlycarbon, hydrogenandoxygen(ascoveredbyourrules)fromthePrIMeKineticsdatawarehouse[15]andcomparedthemwithestimatesmadeusingtherulesandgroupvalues.Thetestsetincludesalltheavailabledata, notjustthecurated, checked, andapprovedvalues.

Foreachreactionthereactingfunctionalgroups X−H and Y · areidentified. Sometimeswehavearule for thatexactcombinationofX andY, inwhichcaseweuse it toestimate the rate. ThecomparisonofpredictedvsPrIMe k(1000 K) for thesecases is shown inFigure 2. Thekineticsestimationschemeworksquitewell. The95%confidenceintervals(shownbythedashedlines)are±1.13 in log(kf ) andmostoftheoutliersaremistakesinthetestdatafromthePrIMedepository. 1

976

820

PrIMe database rate coefficient (cm³/mol/s)

Pre

dic

ted r

ate

coeffic

ient

(cm

³/m

ol/s)

Figure 2: Parityplotcomparingpredicted k(1000 K) withdatafromPrIMedatabase, forhydrogenabstractionreactionsreactionsthatmatchaknownruleforXHY.

WhenthereisnoruleavailablefortheidentifiedcombinationofX andY,theratemustbeestimatedusingtherulesthatareavailable. ThepreviousmethodusedinRMG softwarewastoaveragetheratesofrules“nearby”inthetrees. Whentheneighboringpairsofgroupsarealsomissingthiscanleadtocomplicatedexpressionswhicharehardtounderstandandcangivepoorestimates. 2 The

1Checkingtheoriginalsourcesforpoints820and976inFigure 2 revealserrorsintheactivationenergiesof −6.1and −9.6 kcal/molrespectively. Theoutlyingpoint877inFigure 3 signifiesanothermistakeininterpretingthePrIMedatabase: the n inthemodifiedArrheniusexpressionrepresents (T/298 K)n not (T/1 K)n.

2Thereaction HC−−−C · + H2O −−→ HC−−−CH + HO · (point893inFigure 3)matchesthepairofgroups(O-pri, Ct-rad), butthatruleisunknown. Usingtheoldschemeitisestimatedas: (Averageof: (Averageof: (Averageof: (O-priO2b)&Averageof: (O/H/NonDeC O2b)&O-priH-rad&Averageof: (O/H/NonDeC H-rad&O/H/OneDeH-rad)&Averageof: (O-priC-methyl&Averageof: (O-priC-rad/H2/Cs))&Averageof: (O/H/NonDeC C-methyl&Averageof:(O/H/NonDeC C-rad/H2/Cs)&Averageof: (O/H/NonDeC C-rad/H/NonDeC) &Averageof: (Averageof: (O/H/NonDeCC-rad/Cs3))&Averageof: (Averageof: (H2O2C4H9O/c12345&H2O2C4H9O/c134(2)5&H2O2C4H9O/c134(2)5&H2O2C4H9O/c14(2,3)5)&Averageof: (H2O2C3H5/c132))&Averageof: (Averageof: (H2O2C4H9O/c12345&H2O2C4H9O/c12345&H2O2C4H9O/c134(2)5)&Averageof: (Averageof: (H2O2C4H9O/c12345)))&Average

Page 5: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

resultsofusingthisschemeforthecaseswhenthecombinationX andY isnotknown, areshowninFigure 3a.

Usingthenew, groupadditivemethodtoestimatethekineticsforunknowncombinationsofX andY issimplertoexplainthantheaveragingscheme. Thereaction HC−−−C · + H2O −→ HC−−−CH +HO · (point893inFigure 3)matchesthepairofgroups(O-pri, Ct-rad), eachofwhichistrainedindependently. O-priwastrainedfrom11rules(incombinationwithY groupsotherthatCt-rad)andcontributes −2.35 to log(k@1000 K). Ct-radwastrainedfrom7rules(incombinationwithX groupsotherthanO-pri)andcontributes +2.53 to log(k@1000 K). Figure 3b showstheresultsofusingthisschemetoestimatethecaseswhentherulesarenotavailableforthematchedcombinationofXandY.The95%confidenceintervals(dashedlines)arenarrower, thereislessstratification, andthepredictedratesspanalargerrangethanwiththeaveragingmethodusedinFigure 3a.

893

430

877

PrIMe database rate coefficient (cm³/mol/s)

Pre

dic

ted r

ate

coeffic

ient

(cm

³/m

ol/s)

877

893

994

444

PrIMe database rate coefficient (cm³/mol/s)

Pre

dic

ted r

ate

coeffic

ient

(cm

³/m

ol/s)

Figure 3: Parityplotscomparingpredicted k(1000 K) withdatafromPrIMedatabase, forhydrogenabstractionreactionsthatdonotmatchaknownXHY rule. Left(a): oldmethodofav-eraging“similar”XHY rules. Right(b): newmethodofestimatingfromindependentXHand Y · contributions.

Conclusions

ThereactionmechanismgenerationsoftwareRMG estimatesreactionrateexpressionsusingrulesbasedonthefunctionalgroupssurroundingthereactingcenter. A reactiontypicallyinvolvesmorethanonefunctionalgroup(e.g.anatomwithahydrogenligandXH andaradical Y · ), whichcom-binetoforma“supergoup”XY.Whenarulefor thesupergroupXY isknown, itcanbeusedtopredictthereactionkineticswithreasonableaccuracy. However, whendataaresparseandarule

of: (Averageof: (Averageof: (H2O2C4H9O/c134(2)5)))&O/H/OneDeC-methyl)&Averageof: (O-priCd-pri-rad)&Averageof: (O/H/NonDeC Cd-pri-rad&Averageof: (H2O2C4H7/c1342)&Averageof: (H2O2Cd-rad/NonDeC))&Averageof: (O/H/NonDeC Ct-rad)&Averageof: (O-priCO-pri-rad)&Averageof: (O-priO-pri-rad&Averageof:(O-priO-rad/NonDeC)) &Averageof: (O/H/NonDeC O-pri-rad&Averageof: (H2O2O-rad/NonDeO &H2O2O-rad/OneDe)))))

Page 6: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

forXY isnotknown, RMG currentlyaverages‘similar’XY supergroups. Forthesescenarioswearehavetestedagroupadditivemethod, addingseparatecontributionsfromX andY whicharederivedfromknownXY supergroups. Thegroupvaluescanbetrainedusingexistingsupergrouprulesorexplicitreactions. Thegroupvaluescanbere-trainedwhennewkineticdataareavailableorthedefinitionsandhierarchyofthegroupsareupdated. Byrecordingthegoodnessoffitwhenthegroupvaluesaretrained, confidenceintervalscanbecalculatedoneachreactionrateestimatedusingthismethod. Forthehydrogenabstractionfamilyofreactions, estimatescalculatedinthismannerarebetterthanthoseestimatedusingtheaveragingschemepreviouslyusedinRMG software, andtheiroriginissimplertotrace. Thisapproachisnowbeingextendedtofamiliesofreactionsotherthanhydrogenabstraction.

References

[1] Broadbelt LJ, Stark SM, KleinMT. Computer Generated Pyrolysis Modeling: On-the-FlyGeneration of Species, Reactions, and Rates. Ind Eng Chem Res. 1994;33(4):790–799.doi:10.1021/ie00028a003.

[2] Grenda J,Androulakis I,DeanA,GreenW. Applicationofcomputationalkineticmecha-nismgenerationtomodeltheautocatalyticpyrolysisofmethane. IndustrialandEngineeringChemistryResearch.2003;42(5):1000–1010. doi:10.1021/ie020581w.

[3] BroadbeltL,PfaendtnerJ. LexicographyofKineticModelingofComplexReactionNetworks.AIChE J.2005;51(8):2112–2121. doi:10.1002/aic.10599.

[4] Song J,RamanS,Yu J,WijayaC,StephanopoulosG,GreenW. RMG:thenextgenerationofautomaticchemicalreactionmechanismgenerator. In: ProceedingsoftheAIChE AnnualMeeting.SanFrancisco, CA,USA.2003; .

[5] GreenWH,et al. RMG ReactionMechanismGeneratoropen-sourcesoftwarepackage.2011.URL http://rmg.sourceforge.net

[6] Song J. Building Robust Chemical ReactionMechanisms: NextGeneration ofAutomaticModelConstructionSoftware. Ph.D.thesis, MassachusettsInstituteofTechnology, CambridgeMA,USA.2004.URL http://hdl.handle.net/1721.1/30058

[7] Van GeemK,ReyniersM,MarinG,SongJ,GreenW,MatheuD. Automaticreactionnet-workgenerationusingRMG forsteamcrackingofn-hexane. AIChE J.2006;52(2):718–730.doi:10.1002/aic.10655.

[8] BensonSW. ThermochemicalKinetics. NewYork: Wiley, 2nded.1976.URL http://www.worldcat.org/oclc/2074434

[9] CohenN,BensonS. Estimationofheatsof formationoforganiccompoundsbyadditivitymethods. ChemRev.1993;93(7):2419–2438. doi:10.1021/cr00023a005.

[10] SusnowR,DeanA,GreenW,PeczakP,BroadbeltL. Rate-basedconstructionofkineticmodelsforcomplexsystems. J PhysChemA.1997;101(20):3731–3740. doi:10.1021/jp9637690.

Page 7: Automatic Reaction Mechanism Generation with Group ... · Figure1:Part of a pair of trees for hydrogen abstraction reactions, showing the number of re-action rates contributing to

[11] Sumathi R, CarstensenH,Green JrW. Reaction rate prediction via group additivity part1: H abstraction fromalkanesbyH andCH3. J PhysChemA.2001;105(28):6910–6925.doi:10.1021/jp010697q.

[12] SumathiR,GreenW. A priorirateconstantsforkineticmodeling. TheorChemAcc.2002;108(4):187–213. doi:10.1007/s00214-002-0368-4.

[13] SaeysM,ReyniersM,MarinG,Van SpeybroeckV,WaroquierM. Ab initiogroupcontri-butionmethod foractivationenergies for radicaladditions. AIChE J.2004;50(2):426–444.doi:10.1002/aic.10038.

[14] TsangW,HampsonR. Chemicalkineticdatabaseforcombustionchemistry.PartI.Methaneandrelatedcompounds. J PhysChemRefData.1986;15:1087.

[15] FrenklachM. Transformingdataintoknowledge–ProcessInformaticsforcombustionchem-istry. ProcCombustInst.2007;31(1):125–140. doi:10.1016/j.proci.2006.08.121.URL http://www.primekinetics.org