authors: young-oh kwon, michael a. alexander,nicholas a. bond, claude frankignoul,

24
Role of the Gulf Stream and Role of the Gulf Stream and Kuroshio-Oyashio Systems in Kuroshio-Oyashio Systems in Large-Scale Atmosphere-Ocean Large-Scale Atmosphere-Ocean Interaction: A Review Interaction: A Review Authors: YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL, HISASHI NAKAMURA, BO QIU,AND LUANNE THOMPSON Speaker: Yi-Ning Peng

Upload: tasya

Post on 08-Jan-2016

51 views

Category:

Documents


2 download

DESCRIPTION

Role of the Gulf Stream and Kuroshio-Oyashio Systems in Large-Scale Atmosphere-Ocean Interaction: A Review. Authors: YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL, HISASHI NAKAMURA, BO QIU,AND LUANNE THOMPSON Speaker : Yi-Ning Peng. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

Role of the Gulf Stream and Role of the Gulf Stream and Kuroshio-Oyashio Systems in Kuroshio-Oyashio Systems in Large-Scale Atmosphere-Ocean Large-Scale Atmosphere-Ocean Interaction: A ReviewInteraction: A ReviewAuthors: YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,HISASHI NAKAMURA, BO QIU,AND LUANNE THOMPSON

Speaker: Yi-Ning Peng

Page 2: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

IntroductionIntroductionWhy western boundary current regions are so important?

1.The largest mean and variance at interannual and longer time scales of the net surface heat flux (Qnet) over the global ocean occurs in WBC regions. (Wallace and Hobbs 2006)

2.Oceanic changes are primarily communicated to the atmosphere via fluctuation in SST.

3.It is important to determine whether the WBCs have a significant influence on the large-scale atmospheric circulation.

Page 3: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

Processes affecting the SST Processes affecting the SST variability in the WBCsvariability in the WBCsa. Shift of oceanic frontsb. Oceanic advectionc. Surface heat fluxesd. Ekman transporte. Remmergence mechanismf. Remote wind stress curl forcing communicated

via oceanic Rossby wavesg. Tropical atmospheric teleconnections

Page 4: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

a. Shift of oceanic fronts

Contours: Climatological meanContours: Climatological mean

North Pacific North Atlantic

Page 5: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

Vertical Structure

OE front: surface

KE front: below the sea 200m~600m

Black contours: temperatureColor shadings: the changes in 5-winter mean temperature

Black contours: temperatureColor shadings: the changes in 5-winter mean temperature

Page 6: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

• Variability in the heat content of the upper ocean in the WBCs is determined mainly by anomalous geostrophic advection.

• Examples: In mid-1980s, intensification of the Oyashio and the southward displacement of its extension generated negative SSTAs along OE front.

b. Oceanic Advection

Page 7: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

• Qnet in the WBCs undergoes a substantial seasonal cycle

• Upward Qnet is strongest in winter and is dominated by latent heat flux along the KE and GS.

• The when solar radiation dominates. Qnet is downward in summer

c. Surface heat fluxes

Page 8: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

↓ Sensible heat flux↓ Sensible heat flux ↓ Latent heat flux↓ Latent heat flux

The presence of oceanic fronts yield tight cross-frontal gradients in the sensible and latent heat fluxes.

Page 9: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

d. Ekman transport

• Ekman transport responds quickly to changes in surface winds and can thus generate SSTAs with the passage of storms. (Xue et al. 1995)

• They can also influence SSTs over a broader region. (Seager et al. 2001; Alexander and Scott 2008)

Page 10: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

e. Reemergence mechanism

• The solid line denotes

seasonal change of

the mixing layer depth

(MLD)

• Above is a local process

typical for regions adjacent

to the WBCs and in the

central and eastern portion

of a basin.

Page 11: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

e. Reemergence mechanism-along WBCs

• Strong advection by mean current can transport the anomalies over ~800km along the North Atlantic Current and ~4000km along the KE over a course of a year.

Page 12: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

f. Remote wind stress curl forcing communicated via oceanic Rossby waves

SSH anomalies the wind-forced PDO SST index baroclinic Rossby wave

North Pacific

Page 13: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

g. Tropical atmospheric teleconnections• Atmosphere bridge

heat flux,

freshwater

flux,

momentum

flux

Page 14: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

WBCs and the basin-scale climate WBCs and the basin-scale climate variabilityvariabilitya. Decadal SST variability in the WBCs

b. Oceanic dynamics and decadal variability??

c. Surface heat fluxes damping and implications

d. Decadal variability in atmosphere-ocean coupled general circulation models

Page 15: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

a. Decadal SST variability in the WBCs

• The SST variance exhibits maxima in the central North Pacific and near 40N along the KOE.

• In the North Atlantic, decadal SST variability is enhanced along the GS and its extension east of ~40W

Location SSTAs variability

Central North Pacific Interannual

KOE decadal

Page 16: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

a. Decadal SST variability in the WBCs

• The pattern-based observational data analyses suggest that both the interannual and decadal time scales of the PDO are related to SSTAs in

the tropical Pacific. (Nitta and Yamada 1989; Deser and Blackmon 1995; Barlow et al. 2001; Newman et al. 2003; Alexander et al. 2002, 2008; Zhang et al. 1997; Guan and Nigam 2008)

PDO

Time scale Be influenced by

Interannual time Heat fluxes

Decadal time Wind-driven ocean circulation

Page 17: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

c. Surface heat fluxes damping and implications

• Decadal WBC SSTAs are primarily forced by ocean dynamics, especially for time scales longer than a few years and damped by surface heat fluxes, implying anomalous heat transfer to the atmosphere.

• The large-scale atmosphere circulation response appears to be more sensitive to the SSTAs in the WBC regions because of the proximity to the storm track. (Peng and Whitaker 1999)

Page 18: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

d. Decadal variability in atmosphere-ocean coupled general circulation models• Extratropical climate variability can be difficult

to assess using observations or single component models, such as OGCM hindcasts, because of the limited sampling.

• Coupled climate models generally indicate that ocean–atmosphere interaction in WBC regions is a key factor in generating extratropical decadal variability.

Page 19: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

Performance of climate models on Performance of climate models on simulation of WBC variabilitysimulation of WBC variabilitya. High-resolution ocean simulations

b. Simulations of the Kuroshio and Gulf Stream at non-eddy-permitting resolution

c. Atmospheric simulations

Page 20: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

a. High-resolution ocean simulations

SSH gradient SST gradient

KE front Sharp Weak

OE front Weak Sharp

•The distinction between these two fronts can only be found in high-resolution ocean models. [e.g., see Nonaka et al.(2006), and the SSH from the Hybrid Coordinate Ocean Model (HYCOM) simulation discussed by Kelly et al.(2007)].

•The interaction of the GS with the DWBC requires that the nonlinear dynamics of the surface currents and the formation regions, transport, properties, and dynamics of the DWBC must be adequately represented.

Page 21: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

b. Simulations of the Kuroshio and Gulf Stream at non-eddy-permitting resolution

←observations

←coupled version of CCSM3

←ocean-only version of CCSM3

North Pacific North Atlantic

CCSM3: version 3 of Community Climate System Model (NCAR)

Page 22: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

c. Atmospheric simulations

• Atmospheric models used in coupled GCMs are suited for a variety of purposes ranging from understanding decadal-scale climate variability.

Page 23: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

Outstanding issuesOutstanding issues

• How are the frontal-scale and the basin-scale atmosphere-ocean interactions related?

• What is the large-scale atmospheric circulation/wind stress curl response to the WBCs SSTAs?

• Global warming and the WBCs• Relation between the Gulf Stream and the MOC• Connection between GS and KOE variability

Page 24: Authors:  YOUNG-OH KWON, MICHAEL A. ALEXANDER,NICHOLAS A. BOND, CLAUDE FRANKIGNOUL,

SummarySummary

• WBCs are unique locations in the midlatitude ocean. WBCs are of potential importance to decadal climate variability.

• Some climate model studies indicate that the basin-scale atmospheric circulation response is strong enough and of the correct spatial structure to generate decadal variability, even though current-generation climate models exhibit substantial deficiencies in reproducing WBCs, which can result in incorrect climate responses