august 24, 2017 45th slac summer institute los alamos ... · • local cosmic accelerator (e.g....

52
Probing Dark Matter with Cosmic Messengers Andrea Albert Los Alamos National Lab 45th SLAC Summer Institute August 24, 2017

Upload: others

Post on 09-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Probing Dark Matter with Cosmic Messengers

Andrea AlbertLos Alamos National Lab

45th SLAC Summer InstituteAugust 24, 2017

Page 2: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Outline

• Indirect Detection Overview– evidence for dark matter– dark matter candidates– indirect detection messengers

• Recent Dark Matter Results– unexplained anomalies– current constraints

• Future Gamma Ray Prospects Andrea Albert (LANL) 2

Page 3: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Dark Matter Primer

• Galaxies form in large Dark Matter halos, which make up most of their mass– Coma Cluster + Virial, F. Zwicky (1937)– Rotation Curves, V. Rubin et al 1980)

www4.nau.e

• Dark Matter is virtually collisionless– The Bullet Cluster, D. Clowe et al (2006)

• Dark Matter is non-baryonic– CMB acoustic oscillations– Big Bang nucleosynthesis

Andrea Albert (LANL) 3

Page 4: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

• Dark Matter is virtually collisionless– The Bullet Cluster, D. Clowe et al (2006)

• Galaxies for in large Dark Matter halos, which make up most of their mass– Coma Cluster + Virial, F. Zwicky (1937)– Rotation Curves, V. Rubin et al 1980)

Dark Matter Primer

www4.nau.e

• Dark Matter is non-baryonic– CMB acoustic oscillations– Big Bang nucleosynthesis

4Andrea Albert (LANL)

ΛCDMNo Dark Matter

Planck measurementCAMB simulations

CMB temp fluctuations simulated with CAMBhttps://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

4

Page 5: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

DM Structures are Present on Many Scales

Zoom Sequence of DM Structure on 100 Mpc Scales Milky Way-like Halo and Several Sub-Halos

• DM clumps :• On cosmological scales (left)• In the Milky Way virial radius (~300

kpc = ~1 MLY, right) ■ (Visible size of MW = ~ 20 kpc)

(M31 is ~800 kpc away)Left: Boylan-Kolchin+ 2009MNRAS.398.1150B Right: Springel+ 2008MNRAS.391.1685S

slide credit: Eric Charles (SLAC) 5

Page 6: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Dark Matter Candidates

Baer+ PR 555 (2015)

• Wide variety of particle DM candidates in beyond SM theories

• Large scale structure and galactic formation seem to require cold (non-relativistic) DM

• Tend to focus on 100 GeV WIMPs– but lack of detection at e.g.

LHC and LUX motivates need for other candidates with mDM >10 TeV

6Andrea Albert (LANL)

Page 7: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Dark Matter Candidates

Baer+ PR 555 (2015)

• I will focus on WIMP results, but other DM candidates can leave cosmic signatures– axion and axion-like-particles

couple to rays in B fields– x-ray lines from sterile – -ray lines from gravitinos

• Recall all DM results are derived from firm measurements– DM limits from flux limits– Important for experiments to

publish measured limits and fluxes that are not convolved with DM model assumptions

7Andrea Albert (LANL)

Page 8: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

WIMP Dark Matter

• Weakly Interacting Massive Particle (WIMP, )– GeV - TeV mass scale– WIMPs may be thermal relics– e.g. neutralino (SUSY, electrically

neutral, stable)

• Assuming a weak scale ann at freeze out yields observed relic abundance– < v>ann ~ 3x10-26 cm3/s

E. Kolb and M. Turner, The Early Universe, Westview Press (1994)

• Sommerfeld enhancement – relevant for high DM masses (>~1 TeV)– enhanced at low WIMP velocities

• this effect was suppressed at time of freeze out

– high mass thermal relics have present < v>ann larger than 3x10-26 cm3/s in some models

arXiv:1202.1170arXiv:1405.1730

time in early Universe when amount of DM freezes out

Andrea Albert (LANL) 8

Page 9: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Various Dark Matter Search Techniques

Direct Detection

(underground detectors)

?

χ

χ

SM

SMIndirect Detection

Production(collider)

t

t

t9

Page 10: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Various Dark Matter Search Techniques

Direct Detection

(underground detectors)

?

χ

χ

SM

SMIndirect Detection

Production(collider)

t

t

t10

Page 11: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Indirect Dark Matter Detection

• The Milky Way sits in a large halo of cold DM (vDM << c)– Expect additional DM overdensities (halos / subhalos)

• e.g. Milky Way dwarf galaxies• e.g. Galaxy Clusters

• WIMP annihilations (decays) may produce gamma rays

Broad spectrumSpectral line

Andrea Albert (LANL) 11

Page 12: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Indirect Dark Matter Detection

Broad spectrumSpectral line

Andrea Albert (LANL)

• The Milky Way sits in a large halo of cold DM (vDM << c)– Expect additional DM overdensities (halos / subhalos)

• e.g. Milky Way dwarf galaxies• e.g. Galaxy Clusters

• WIMP annihilations (decays) may produce gamma rays

12

Pro: Gamma rays and neutrinos point back to their source so we can look for excesses from known DM targets. Con: Can be difficult to disentangle from non-DM sources from those targets

Page 13: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

• The Milky Way sits in a large halo of cold DM (vDM << c)– Expect additional DM overdensities (halos / subhalos)

• e.g. Milky Way dwarf galaxies• e.g. Galaxy Clusters

• WIMP annihilations (decays) may produce gamma rays

Indirect Dark Matter Detection

Broad spectrumSpectral line

Andrea Albert (LANL) 13

Pro: Positrons and antiprotons come from relatively nearby DM interactions, so are only subject to local DM density uncertainties

Con: Charged matter/antimatter lose source direction information in Galactic magnetic field. Difficult to disentangle from non-DM sources

Page 14: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Gamma rays from DM Annihilation

Andrea Albert (SLAC) rsun = 8.5 kpc 14

Page 15: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Gamma rays from DM Annihilation

Andrea Albert (SLAC) rsun = 8.5 kpc

Charles+ [LAT Collab]PR 636 (2016)

15

Page 16: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Expected Gamma rays from Dark Matter

Aquarius (A1) simulation

Galactic Center● Large statistics● Complex astrophysical

fore/backgrounds

Galactic latitude(looking above Galactic plane)

Galactic longitude(looking away from Galactic center)

Spectral Lines● Smoking gun● Small signal

DM clumps in Halo● Few backgrounds● Unknown location

Extragalactic● All galaxies● Isotropic

Galactic Halo● Large statistics● Complex astrophysical

fore/backgrounds

Satellite Galaxies● dSph DM enriched● Known location● Smoking gun

Galaxies Clusters● e.g. Virgo● DM enriched● likely astrophysical

fore/backgrounds

Andrea Albert (LANL) 16

Page 17: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Current Gamma-ray Observatories

Low earth orbit (565 km)28.5° orbital inclination, ~2 sr f.o.v.20 MeV -- > 300 GeV, 100% Duty Cycle(AGILE has similar technology, but has limited energy resolution)

Khomas Highland of Namibia23° South Latitude, ~5° f.o.v.~30 GeV -- ~100 TeV

Parque Nacional Pico de Orizaba, Mexico19° North Latitude, ~2 sr f.o.v.~50 GeV -- ~100 TeV, 100% Duty Cycle

Tucson, Arizona31° North Latitude, ~5° f.o.v.~85 GeV -- ~50 TeV

La Palma, Canary Islands29° North Latitude, ~5° f.o.v.~30 GeV -- ~30 TeV

VERITAS ArrayMAGIC

H.E.S.S.

HAWC Observatory

Fermi Large Area Telescpe

17

Page 18: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Current Gamma-ray Observatories

Low earth orbit (565 km)28.5° orbital inclination, ~2 sr f.o.v.20 MeV -- > 300 GeV, 100% Duty Cycle(AGILE has similar technology, but has limited energy resolution)

Khomas Highland of Namibia23° South Latitude, ~5° f.o.v.~30 GeV -- ~100 TeV

Parque Nacional Pico de Orizaba, Mexico19° North Latitude, ~2 sr f.o.v.~50 GeV -- ~100 TeV, 100% Duty Cycle

Tucson, Arizona31° North Latitude, ~5° f.o.v.~85 GeV -- ~50 TeV

La Palma, Canary Islands29° North Latitude, ~5° f.o.v.~30 GeV -- ~30 TeV

VERITAS ArrayMAGIC

H.E.S.S.

HAWC Observatory

Fermi Large Area Telescpe

HAWC (~1 TeV) and Fermi LAT (~1 GeV) are complementary wide field of view survey instruments. Provide continuous monitoring of the gamma-ray sky across 7 decades of energy (20 MeV to >100 TeV)

18

Page 19: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

γ

e+ e-

The Fermi LAT

Si-Strip Tracker:convert γ->e+e-

reconstruct γ directionEM v. hadron separation

Hodoscopic CsI Calorimeter:measure γ energyimage EM showerEM v. hadron separation Anti-Coincidence Detector:

Charged particle separationTrigger and Filter:Reduce data rate from ~10kHz to 300-500 Hz

Fermi LAT Collaboration:~400 Scientific Members,NASA / DOE & InternationalContributions

Public Data Release:All γ-ray data made public within 24 hours (usually less)

Incident Angle (θ)

Andrea Albert (LANL) 19

Page 20: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Simulated 27 GeV Gamma-ray Event

Andrea Albert (LANL) 20

Page 21: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Simulated 27 GeV Gamma-ray Event

Andrea Albert (LANL) 21

Page 22: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Simulated 27 GeV Gamma-ray Event

ACD hits from backsplash(not from incident gamma direction so event isn’t vetoed

Once gamma ray pair converts, we measure the electron/positron tracks

Andrea Albert (LANL) 22

Page 23: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

LAT Simulated 1 TeV Gamma-ray Event

Andrea Albert (LANL) 23

Page 24: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

The HAWC Observatory

Joint NSF/DOE/CONACyT (Mexico)

~17 rad lengths

24

Page 25: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

The HAWC Observatory

Angle of primary is determined from timing.

Energy of primary is determined from energy in detector.

~60 TeV gamma ray event from the Crab

25

Page 26: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Complementary Sensitivity

26

Abeysekara+ [The HAWC Collab] ApJ 843 39 (2017) arXiv:1701.01778

Page 27: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

GeV Gamma-ray Sky

Fermi Large Area Telescope7 year map >1 GeV

27

Page 28: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

GeV Gamma-ray Sky

Galactic Center

Markarian 501(AGN)

Diffuse emission- complex gas structure- particle interactions

Dark Matter?- Will be a small piece

Geminga Pulsar

Fermi Large Area Telescope7 year map >1 GeV

Crab Nebula

28

Page 29: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

TeV Gamma-ray Sky

HAWC 1.4 year Pass 4 Map

Galactic Center

Markarian 501(AGN)

Geminga Pulsar

Crab Nebula

29

Page 30: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

OVERVIEW OF RECENT RESULTS

Andrea Albert (LANL) 30

Page 31: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Local Positron Fraction

AMS Collaboration (2016)http://www.ams02.org/wp-content/uploads/2016/12/Fig2.png

S.Schael (AMS Coll) TeVPA 2016

• AMS-02 on board the International Space Station observes local cosmic rays since 2011– excellent charge resolution and particle species discrimination

• TeV e-e+ lose energy quickly and therefore must be produced locally (d < ~100 pc)– secondaries produced by cosmic ray interactions with ISM (spallation)– primaries produced by local source

• local cosmic accelerator (e.g. Geminga)? local dark matter interactions?• Larger positron flux observed above ~10 GeV than expected from secondaries

– First observed by Pamela in 2009, since confirmed by Fermi LAT and AMS-02– Are they from a local cosmic accelerator or dark matter?

• If they are from dark matter, other annihilation products should be produced 31

Page 32: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Local Positron Fraction

http://www.ams02.org/wp-content/uploads/2016/12/Fig4.png

S.Schael (AMS Coll) TeVPA 2016

• AMS-02 on board the International Space Station observes local cosmic rays since 2011– excellent charge resolution and particle species discrimination

• TeV e-e+ lose energy quickly and therefore must be produced locally (d < ~100 pc)– secondaries produced by cosmic ray interactions with ISM (spallation)– primaries produced by local source

• local cosmic accelerator (e.g. Geminga)? local dark matter interactions?• Larger positron flux observed above ~10 GeV than expected from secondaries

– First observed by Pamela in 2009, since confirmed by Fermi LAT and AMS-02– Are they from a local cosmic accelerator or dark matter?

• If they are from dark matter, other annihilation products should be produced 32

Page 33: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Cosmic Neutrinos

• With the detection of Bert and Ernie by IceCube in 2014, we entered the era of cosmic neutrino astronomy

– before the only extra-solar neutrinos came from SN1987a• Expect brightest neutrino signal from DM annihilations from the Galactic Center

– no neutrino excess observed towards the GC• Recent limits from IceCube constrain DM models proposed to explain local positrons

– gamma ray limits from dwarf galaxies (more later) are more constraining, but it’s important to have multi-messenger constraints from various targets

Aartsen+ [IceCube Collab] EJPC 76, 531 (2016)

“Bert” “Ernie”

33

Page 34: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Cosmic Neutrinos

• With the detection of Bert and Ernie by IceCube in 2014, we entered the era of cosmic neutrino astronomy

– before the only extra-solar neutrinos came from SN1987a• Expect brightest neutrino signal from DM annihilations from the Galactic Center

– no neutrino excess observed towards the GC• Recent limits from IceCube constrain DM models proposed to explain local positrons

– gamma ray limits from dwarf galaxies (more later) are more constraining, but it’s important to have multi-messenger constraints from various targets

Aartsen+ [IceCube Collab] EJPC 76, 531 (2016)

“Bert” “Ernie”

Albert+ [ANTARES Collab]submitted to Phys B LettarXiv:1612.04595

34

Page 35: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

TeV Gamma-ray DM Constraints

uncertainty on DM density in the GC

• For gamma-rays from 500 GeV to 5 TeV, best sensitivity comes from Air Cherenkov Telescopes (ACTs, e.g. H.E.S.S.)

• H.E.S.S. located in the southern hemisphere can observe the Galactic Center– No DM-like excess observed, strong constraints placed– Limits for DM annihilation to tau leptons now constrain ‘WIMP miracle’ models

(assuming Einasto profile)

Abdallah+ [H.E.S.S. Collab] PRL 117 11 (2016)

35

Page 36: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

TeV Gamma-ray DM Constraints

• For gamma-rays from 500 GeV to 5 TeV, best sensitivity comes from Air Cherenkov Telescopes (ACTs, e.g. H.E.S.S.)

• H.E.S.S. located in the southern hemisphere can observe the Galactic Center– No DM-like excess observed, strong constraints placed– Limits for DM annihilation to tau leptons now constrain ‘WIMP miracle’ models

(assuming Einasto profile)

uncertainty on DM density in the GC

Abdallah+ [H.E.S.S. Collab] PRL 117 11 (2016)

36

Page 37: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

“GeV Excess” in the Galactic Center

Excess emission spectrum peaks around 3 GeV

Dark matter annihilation, unresolved sources, CR electrons?– Mirabal (MNRAS 436 (2013) 2461), Petrovic et al. (JCAP 1502 (2015) 02,023), Cholis et al. (JCAP

1512 (2015) 12, 005), Lee et al. (PRL 116 051103 (2016)), Bartels et al. (PRL 116 051102 (2016)), Brandt & Kocsis (ApJ 812 (2015) 1, 15), Carlson et al. (arXiv:1510.04698) etc.

?

Via Lactea II, Kuhlen et al., Science 325:970-973,2009 Fermi LAT >1 GeV, 6 years, Pass 8 data

Goodenough & HooperPhys.Lett. B697 (2011) Abazajian &

KaplinghatPRD 87 129902 (2012)

Gordon & MaciasPRD 88, 083521 (2013)

Hooper & SlatyerPhys.Dark Univ. 2 (2013)

Daylan et al.Phys. Dark Univ. 12 (2016)

Calore et al.JCAP 1503 (2015) Ajello et al.

(The Fermi-LAT Collaboration)ApJ 819 1 44 (2016)

37Andrea Albert (LANL)

Page 38: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

“GeV Excess” in the Galactic Center

Calore+ PRD 91 063003 (2015)

All-sky Spectra

• Excess of GeV gamma rays from the GC above standard models first detected by Goodenough & Hooper in 2009 in the Fermi Large Area Telescope data

– If interpreted as DM annihilation, mDM ~ 50 GeV with ‘WIMP miracle’ cross section value

• Currently not clear if it is from DM or non-DM sources– Complicated region of the sky and the community is working hard to disentangle a

potential DM component• ~85% of the gamma rays at 1 GeV are from fore/backgrounds

– DM is a small component of the whole gamma-ray sky, so precision modeling of the non-DM components is necessary to tease out DM component in the Galactic Center

Ackermann+ [The Fermi LAT Collab] ApJ 840 43 (2017)

38

Page 39: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Milky Way Dwarf Spheroidal Galaxies

A.Drlica-Wagner DPF 2013

Optical Luminosities from 103L⍟ to 107L⍟

39Andrea Albert (LANL)

Page 40: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

6 year Fermi LAT dSphs Results

The Fermi LAT Collab PRL 115, 23 (2015)

• Joint likelihood analysis of 15 well characterized dwarf galaxies• Limits exclude thermal relic < v>ann in bƃ channel for

5 GeV < m < 100 GeV Andrea Albert (LANL) 40

Page 41: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Growing Number of Known Dwarf Galaxies

• Deep photometric surveys in optical astronomy have led to the discovery of numerous new Milky Way-satellites

– Spectroscopic follow up necessary to determine if they are DM-dominated dwarf galaxies. Many new dwarf galaxies have already been spectroscopically confirmed

• LSST & other surveys will continue to find new dwarf galaxies– Wide field of view survey instruments (e.g. Fermi LAT, HAWC) will have

already observed these new DM targets

Dark Energy Survey Year 2 Data: Drlica-Wagner+, 2015ApJ...813..109DDark Energy Survey Year 1 Data: Bechtol+, 2015ApJ...807...50B

Koposov+, 2015ApJ...805..130K

SDSS

DECam

41

Page 42: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

New Satellites Classification

42

Ret II

Seg I

Draco

Tri II

Albert+ [DES & LAT Collabs] ApJ 834 2 (2017)

• Photometric data tells us half-light radius, mag, and distance• Spectroscopic data is needed to determine mass to light ratio (i.e.

if object is dark matter dominated)– ‘galaxy’ mass to light ratio >> 1– ‘globular cluster’ mass to light ratio ~ 1 42

Page 43: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

LAT-DES Analysis of dSphs and dSph Candidates

Andrea Albert (LANL)

Albert+ [DES & LAT Collabs] ApJ 834 2 (2017)

43

Page 44: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

LAT-DES Analysis of dSphs and dSph Candidates

• Combined limits including new DES dSph candidates are consistent within statistical uncertainties with LAT limits from 15 known dSphs

• Simply find new dSphs will not give maximum sensitivity...we need well measured J-factors too!

○ This is because the J-factor uncertainties are included as a nuisance parameter in the limit calculation

Albert+ [DES & LAT Collabs] ApJ 834 2 (2017)

44

Page 45: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

>TeV Gamma-ray Constraints

• For gamma-rays >5 TeV, best sensitivity comes from the High Altitude Water Cherenkov Observatory (HAWC)

– HAWC has a wide field of view making it sensitive to extended objects – HAWC surveys ⅔ of the sky every day, including several DM targets

• No excesses observed, limits extend out to the highest DM masses– will be able to test DM decay models proposed to explain the IceCube neutrinos

• Typically PeV mass DM with lifetime ~ 1e27 s

• e.g. A. Esmaili+ (2013) arXiv:1308.1105, K. Murase+ (2015) 1503.04663v2

1 year HAWC limits

excluded

45

Page 46: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

FUTURE GAMMA RAY PROSPECTS

Andrea Albert (LANL) 46

Page 47: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Upgrade to HAWC Observatory

• Upgrade to HAWC array is underway– increase collection area with sparse array of small tanks

• Provide better measure of highest energy air showers– expected gain in sensitivity above 10 TeV of 3-4– will allow HAWC to search for the highest energy gamma-ray ever observed

~60 TeV gamma ray event from the Crab Nebula

A. Sandolval arXiv:1509.04269

47

Page 48: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

The Cherenkov Telescope Array

• CTA is a next-generation gamma-ray observatory• International Consortium combines existing ACT expertise• Plan for Northern and Southern array -> full sky coverage

– sites will be La Palma, Spain and Paranal, Chile• Will increase TeV point source sensitivity by ~10x relative to

current instruments48

Page 49: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Expected Future Sensitivity

Charles+ [LAT Clb] PR 636 (2016)49Andrea Albert (LANL)

Page 50: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Summary

• Evidence for DM exists on all cosmic scales– all observational evidence for dark matter comes from space; we must

continue investigating dark matter in its cosmic setting

• Dark matter annihilations (decay) are predicted to produce a cascade of secondary standard model particles– We can search for these cosmic messengers with a network of

ground-based and space-based observatories

• Some intriguing anomalies exist that require extensive follow up work from all experiments to complete the picture– The fundamental particle properties of DM (e.g. mass) must be the same

from all messengers and targets

• The future is bright and full of exciting questions!– We need to continue our multimessenger indirect detection quest to

complement terrestrial experiments and gain a complete picture of the DM puzzle

Andrea Albert (LANL) 50

Page 51: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

EXTRA SLIDES

Page 52: August 24, 2017 45th SLAC Summer Institute Los Alamos ... · • local cosmic accelerator (e.g. Geminga)? local dark matter interactions? • Larger positron flux observed above ~10

Characterization of the GeV Excess

Fractional residual, 1.1 -- 6.5 GeVno excess template included in fit

Fractional residual, 1.1 – 6.5 GeV

Preliminary

Preliminary

• Preliminary results from new Fermi GC analysis have been shown

– A. Albert, D. Malyshev, A. Franckowiak, L. Tibaldo, E. Charles, et al

• Goal: study the effects of varying diffuse emission modeling on the GeV excess

– see backup slides for modeling details• Results: Excess persists, large spectral

uncertainties at low and high energies

Spectra are normalized to 4π sr

52Andrea Albert (LANL)