atom1

97
1 The Electronic Structures of Atoms The Electronic Structures of Atoms Electromagnetic Radiation The wavelength wavelength of electromagnetic radiation has the symbol Wavelength is the distance from the top (crest) of one wave to the top of the next wave. Measured in units of distance such as m,cm, Å. 1 Å = 1 x 10 -10 m = 1 x 10 -8 cm The frequency frequency of electromagnetic radiation has the symbol Frequency is the number of crests or troughs that pass a given point per second. Measured in units of 1/time - s -1

Upload: ij-carido

Post on 10-May-2015

699 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Atom1

1

The Electronic Structures of AtomsThe Electronic Structures of AtomsElectromagnetic Radiation

The wavelengthwavelength of electromagnetic radiation has the symbol

Wavelength is the distance from the top (crest) of one wave to the top of the next wave.

– Measured in units of distance such as m,cm, Å.– 1 Å = 1 x 10-10 m = 1 x 10-8 cm

The frequencyfrequency of electromagnetic radiation has the symbol

Frequency is the number of crests or troughs that pass a given point per second.

– Measured in units of 1/time - s-1

Page 2: Atom1

2

Electromagnetic Radiation

The relationship between wavelength and frequency for any wave is velocity =

For electromagnetic radiation the velocity is 3.00 x 108 m/s and has the symbol c.

Thus c = forelectromagnetic radiation

Page 3: Atom1

3

Electromagnetic Radiation

Example 5-5: What is the frequency of green light of wavelength 5200 Å?

m10 5.200 Å 1

m 10 x 1 Å) (5200

c c

7-10-

1-14

7-

8

s 10 5.77

m10 5.200

m/s 10 3.00

Page 4: Atom1

4

Electromagnetic Radiation

In 1900 Max Planck studied black body radiation and realized that to explain the energy spectrum he had to assume that:

1. energy is quantized

2. light has particle character

Planck’s equation is (Energy of one photon)

sJ 10x 6.626 constant s Planck’ h

hc or E h E

34-

Page 5: Atom1

5

Electromagnetic Radiation

Example 5-6: What is the energy of a photon of green light with wavelength 5200 Å?What is the energy of 1.00 mol of these photons?

photon per J10 3.83 E

) s 10 s)(5.77J10 (6.626 E

h E

s 10 x 5.77 that know we5,-5 Example From

19-

1-1434-

-114

kJ/mol 231 photon)per J10 .83photons)(3 10 (6.022

:photons of mol 1.00For 19-23

Page 6: Atom1

6

The Photoelectric Effect

Light can strike the surface of some metals causing an electron to be ejected.

Page 7: Atom1

7

The Photoelectric Effect

What are some practical uses of the photoelectric effect?

You do it!

Electronic door openers Light switches for street lights Exposure meters for cameras Albert Einstein explained the photoelectric effect

– Explanation involved light having particle-like behavior.– Einstein won the 1921 Nobel Prize in Physics for this work.

Page 8: Atom1

8

Atomic Spectra and the Bohr Atom

An emission spectrum is formed by an electric current passing through a gas in a vacuum tube (at very low pressure) which causes the gas to emit light.– Sometimes called a bright line spectrum.

Page 9: Atom1

9

Atomic Spectra and the Bohr Atom

Every element has a unique spectrum. Thus we can use spectra to identify elements.

– This can be done in the lab, stars, fireworks, etc.

Page 10: Atom1

10

Atomic Spectra and the Bohr Atom

Atomic and molecular spectra are important indicators of the underlying structure of the species.

In the early 20th century several eminent scientists began to understand this underlying structure.– Included in this list are:– Niels Bohr– Erwin Schrodinger – Werner Heisenberg

Page 11: Atom1

11

Atomic Spectra and the Bohr Atom

In 1913 Neils Bohr incorporated Planck’s quantum theory into the hydrogen spectrum explanation.

Here are the postulates of Bohr’s theory.1. Atom has a number of definite and discrete

energy levels (orbits) in which an electron may exist without emitting or absorbing electromagnetic radiation.

As the orbital radius increases so does the energy

1<2<3<4<5......

Page 12: Atom1

12

Atomic Spectra and the Bohr Atom

2. An electron may move from one discrete energy level (orbit) to another, but, in so doing, monochromatic radiation is emitted or absorbed in accordance with the following equation.

E E

hc h E E - E

12

1 2

Energy is absorbed when electrons jump to higher orbits.

n = 2 to n = 4 for example

Energy is emitted when electrons fall to lower orbits.

n = 4 to n = 1 for example

Page 13: Atom1

13

Atomic Spectra and the Bohr Atom

Light of a characteristic wavelength (and frequency) is emitted when electrons move from higher E (orbit, n = 4) to lower E (orbit, n = 1).– This is the origin of emission spectra.

Light of a characteristic wavelength (and frequency) is absorbed when electron jumps from lower E (orbit, n = 2) to higher E (orbit, n= 4)– This is the origin of absorption spectra.

Page 14: Atom1

14

Atomic Spectra and the Bohr Atom

Bohr’s theory correctly explains the H emission spectrum.

The theory fails for all other elements because it is not an adequate theory.

Page 15: Atom1

15

The Wave Nature of the Electron

In 1925 Louis de Broglie published his Ph.D. dissertation.– A crucial element of his dissertation is that electrons

have wave-like properties.– The electron wavelengths are described by the de

Broglie relationship.

particle of velocity v

particle of mass m

constant s Planck’ hmv

h

Page 16: Atom1

16

The Wave Nature of the Electron

De Broglie’s assertion was verified by Davisson & Germer within two years.

Consequently, we now know that electrons (in fact - all particles) have both a particle and a wave like character.– This wave-particle duality is a fundamental property

of submicroscopic particles.

Page 17: Atom1

17

The Wave Nature of the Electron

Example 5-9. Determine the wavelength, in m, of an electron, with mass 9.11 x 10-31 kg, having a velocity of 5.65 x 107 m/s.

– Remember Planck’s constant is 6.626 x 10-34 Js which is also equal to 6.626 x 10-34 kg m2/s2.

m 1029.1

m/s 1065.5kg 109.11

sm kg 10626.6

mv

h

11

731-

2234

m/s 1065.5kg 109.11

sm kg 10626.6

mv

h

731-

2234

Page 18: Atom1

18

The Wave Nature of the Electron

Example 5-10. Determine the wavelength, in m, of a 0.22 caliber bullet, with mass 3.89 x 10-3 kg, having a velocity of 395 m/s, ~ 1300 ft/s.

You do it!You do it!

m 1031.4

m/s 953kg 103.89

sm kg 10626.6

mv

h

34

3-

2234

m/s 953kg 1089.3

sm kg 10626.6

mv

h

3-

2234

• Why is the bullet’s wavelength so small compared to the electron’s wavelength?

Page 19: Atom1

19

The Quantum Mechanical Picture of the Atom

Werner Heisenberg in 1927 developed the concept of the Uncertainty Principle.

It is impossible to determine simultaneously both the position and momentum of an electron (or any other small particle).– Detecting an electron requires the use of

electromagnetic radiation which displaces the electron! Electron microscopes use this phenomenon

Page 20: Atom1

20

The Quantum Mechanical Picture of the Atom

Consequently, we must must speak of the electrons’ position about the atom in terms of probability functions.

These probability functions are represented as orbitals in quantum mechanics.

Page 21: Atom1

21

The Quantum Mechanical Picture of the Atom

Basic Postulates of Quantum Theory

1. Atoms and molecules can exist only in certain energy states. In each energy state, the atom or molecule has a definite energy. When an atom or molecule changes its energy state, it must emit or absorb just enough energy to bring it to the new energy state (the quantum condition).

Page 22: Atom1

22

The Quantum Mechanical Picture of the Atom

2. Atoms or molecules emit or absorb radiation (light) as they change their energies. The frequency of the light emitted or absorbed is related to the energy change by a simple equation.

hc

h E

Page 23: Atom1

23

The Quantum Mechanical Picture of the Atom

3. The allowed energy states of atoms and molecules can be described by sets of numbers called quantum numbers.

Quantum numbers are the solutions of the Schrodinger, Heisenberg & Dirac equations.

Four quantum numbers are necessary to describe energy states of electrons in atoms.

EV8

b

equationdinger oSchr

2

2

2

2

2

2

2

2

..

zyxm

Page 24: Atom1

24

Quantum Numbers

The principal quantum number has the symbol – n.n = 1, 2, 3, 4, ...... “shells”

n = K, L, M, N, ......

The electron’s energy depends principally on n .

Page 25: Atom1

25

Quantum Numbers

The angular momentum quantum number has the symbol l.l = 0, 1, 2, 3, 4, 5, .......(n-1)l = s, p, d, f, g, h, .......(n-1)

l tells us the shape of the orbitals. These orbitals are the volume around the atom

that the electrons occupy 90-95% of the time.This is one of the places where Heisenberg’s

Uncertainty principle comes into play.

Page 26: Atom1

26

Quantum Numbers

The symbol for the magnetic quantum number is ml.

If l = 0 (or an s orbital), then ml = 0. – Notice that there is only 1 value of ml.

If l = 1 (or a p orbital), then ml = -1,0,+1.

Page 27: Atom1

27

Quantum Numbers

If l = 2 (or a d orbital), then ml = -2,-1,0,+1,+2.

If l = 3 (or an f orbital), then ml = -3,-2,-1,0,+1,+2, +3.

Theoretically, this series continues on to g,h,i, etc. orbitals.– Practically speaking atoms that have been discovered or made up to this point in time only have electrons in s, p, d, or f orbitals in

their ground state configurations.

Page 28: Atom1

28

Quantum Numbers

The last quantum number is the spin quantum number which has the symbol ms.

The spin quantum number only has two possible values.

– ms = +1/2 or -1/2– ms = ± 1/2

This quantum number tells us the spin and orientation of the magnetic field of the electrons.

Wolfgang Pauli in 1925 discovered the Exclusion Principle.

– No two electrons in an atom can have the same set of 4 quantum numbers.

Page 29: Atom1

29

Atomic Orbitals

Atomic orbitals are regions of space where there is a high probability of finding the electron.

s orbital properties:– There is one s orbital per n level.– l = 0 1 value of ml

Page 30: Atom1

30

Atomic Orbitals

s orbitals are spherically symmetric.

Page 31: Atom1

31

Atomic Orbitals

p orbital properties:– The first p orbitals appear in the n = 2 shell.

p orbitals are peanut or dumbbell shaped volumes.– They are directed along the axes of a Cartesian coordinate

system.

There are 3 p orbitals per n level. – The three orbitals are named px, py, pz.

– They have an = 1.– ml = -1,0,+1

Page 32: Atom1

32

Atomic Orbitals

p orbitals are peanut or dumbbell shaped.

Page 33: Atom1

33

Atomic Orbitals

d orbital properties:– The first d orbitals appear in the n = 3 shell.

The five d orbitals have two different shapes:– 4 are clover leaf shaped.– 1 is peanut shaped with a doughnut around it.– The orbitals lie directly on the Cartesian axes or are rotated

45o from the axes.

222 zy-xxzyzxy d ,d ,d ,d ,d

There are 5 d orbitals per n level.–The five orbitals are named –They have an l = 2.–ml = -2,-1,0,+1,+2

Page 34: Atom1

34

Atomic Orbitals

d orbital shapes

Page 35: Atom1

35

Atomic Orbitals

f orbital properties:– The first f orbitals appear in the n = 4 shell.

The f orbitals have the most complex shapes. There are seven f orbitals per n level.

– The f orbitals have complicated names.– They have an l = 3– ml = -3,-2,-1,0,+1,+2, +3 – The f orbitals have important effects in the

lanthanide and actinide elements.

Page 36: Atom1

36

Atomic Orbitals

f orbital shapes

Page 37: Atom1

37

Atomic Orbitals

Spin quantum number effects:– Every orbital can hold up to two electrons.

Consequence of the Pauli Exclusion Principle.– The two electrons are designated as having– one spin up and one spin down

Spin describes the direction of the electron’s magnetic fields.

Page 38: Atom1

38

Because two electrons in the same orbital must be paired, it is possible to calculate the number of orbitals and the number of electrons in each n shell.

The number of orbitals per n level is given by n2. The maximum number of electrons per n level is

2n2.– The value is 2n2 because of the two paired electrons.

Page 39: Atom1

39

Energy Level # of Orbitals Max. # of e-

nn nn22 2n2

1 1 2

2 4 8

You do it!You do it!

3 9 18

4 16 32

Page 40: Atom1

40

The Periodic Table and Electron Configurations

Aufbau Principle – orbitals are filled up according to the order of increasing energy

Page 41: Atom1

41

The Periodic Table and Electron Configurations

The Aufbau Principle describes the electron filling order in atoms.

Page 42: Atom1

42

The Periodic Table and Electron Configurations

There are two ways to remember the correct filling order for electrons in atoms.1. You can use this mnemonic.

Page 43: Atom1

43

The Periodic Table and Electron Configurations

2. Or you can use the periodic chart .

Page 44: Atom1

44

The Periodic Table and Electron Configurations

Now we will use the Aufbau Principle to determine the electronic configurations of the elements on the periodic chart.

1st row elements.

22

11

1s He

1s H

ionConfigurat 1s

11 1s H

ionConfigurat 1s

Page 45: Atom1

45

The Periodic Table and Electron Configurations

2nd row elements.

•Hund’s rule tells us that the electrons will fill thep orbitals by placing electrons in each orbital singly and with same spin until half-filled. Thenthe electrons will pair to finish the p orbitals.

Page 46: Atom1

46

The Periodic Table and Electron Configurations

3rd row elements 62

18

5217

4216

3215

2214

1213

212

111

3p s3 Ne NeAr

3p s3 Ne Ne Cl

3p s3 Ne Ne S

3p s3 Ne Ne P

3p s3 Ne Ne Si

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne NeNa

ionConfigurat 3p 3s

52

17

4216

3215

2214

1213

212

111

3p s3 Ne Ne Cl

3p s3 Ne Ne S

3p s3 Ne Ne P

3p s3 Ne Ne Si

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

42

16

3215

2214

1213

212

111

3p s3 Ne Ne S

3p s3 Ne Ne P

3p s3 Ne Ne Si

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

32

15

2214

1213

212

111

3p s3 Ne Ne P

3p s3 Ne Ne Si

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

2

12

111

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

111 s3 Ne Ne Na

ionConfigurat 3p 3s

22

14

1213

212

111

3p s3 Ne Ne Si

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

12

13

212

111

3p s3 Ne Ne Al

s3 Ne Ne Mg

s3 Ne Ne Na

ionConfigurat 3p 3s

Page 47: Atom1

47

The Periodic Table and Electron Configurations

4th row elements

119 4s Ar ArK

ionConfigurat 4p 4s 3d

Page 48: Atom1

48

The Periodic Table and Electron Configurations

2

20

119

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

Page 49: Atom1

49

The Periodic Table and Electron Configurations

it! do You Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

21

220

119

Page 50: Atom1

50

The Periodic Table and Electron Configurations

12

21

220

119

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

Page 51: Atom1

51

The Periodic Table and Electron Configurations

it! do You Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

22

1221

220

119

Page 52: Atom1

52

The Periodic Table and Electron Configurations

22

22

1221

220

119

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

Page 53: Atom1

53

The Periodic Table and Electron Configurations

32

23

2222

1221

220

119

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

Page 54: Atom1

54

The Periodic Table and Electron Configurations

orbitals. filled completely and filled-half with

associatedstability of measureextra an is There

3d 4s Ar ArCr

3d 4s Ar Ar V

3d 4s Ar Ar Ti

3d 4s Ar Ar Sc

4s Ar ArCa

4s Ar ArK

ionConfigurat 4p 4s 3d

5124

3223

2222

1221

220

119

Page 55: Atom1

55

The Periodic Table and Electron Configurations

5225 3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

Page 56: Atom1

56

The Periodic Table and Electron Configurations

it! do You Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

26

5225

Page 57: Atom1

57

The Periodic Table and Electron Configurations

62

26

5225

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

Page 58: Atom1

58

The Periodic Table and Electron Configurations

72

27

6226

5225

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

Page 59: Atom1

59

The Periodic Table and Electron Configurations

82

28

7227

6226

5225

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

Page 60: Atom1

60

The Periodic Table and Electron Configurations

it! do You Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

29

8228

7227

6226

5225

Page 61: Atom1

61

The Periodic Table and Electron Configurations

reason. same y theessentiallfor

andCr like exceptionAnother

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

10129

8228

7227

6226

5225

Page 62: Atom1

62

The Periodic Table and Electron Configurations

102

30

10129

8228

7227

6226

5225

3d 4s Ar Ar Zn

3d 4s Ar Ar Cu

3d 4s Ar Ar Ni

3d 4s Ar Ar Co

3d 4s Ar Ar Fe

3d 4s Ar Ar Mn

ionConfigurat 4p 4s 3d

Page 63: Atom1

63

The Periodic Table and Electron Configurations

110231 4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 64: Atom1

64

The Periodic Table and Electron Configurations

it! do You Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

32

110231

Page 65: Atom1

65

The Periodic Table and Electron Configurations

2102

32

110231

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 66: Atom1

66

The Periodic Table and Electron Configurations

3102

33

210232

110231

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 67: Atom1

67

The Periodic Table and Electron Configurations

it! do You Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

34

310233

210232

110231

Page 68: Atom1

68

The Periodic Table and Electron Configurations

4102

34

310233

210232

110231

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 69: Atom1

69

The Periodic Table and Electron Configurations

5102

35

410234

310233

210232

110231

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 70: Atom1

70

The Periodic Table and Electron Configurations

6102

36

510235

410234

310233

210232

110231

4p 3d 4s Ar ArKr

4p 3d 4s Ar ArBr

4p 3d 4s Ar Ar Se

4p 3d 4s Ar Ar As

4p 3d 4s Ar Ar Ge

4p 3d 4s Ar ArGa

ionConfigurat 4p 4s 3d

Page 71: Atom1

71

The Periodic Table and Electron Configurations

Now we can write a complete set of quantum numbers for all of the electrons in these three elements as examples.

– Na– Ca– Fe

First for 11Na.– When completed there must be one set of 4 quantum numbers for

each of the 11 electrons in Na(remember Ne has 10 electrons)

111 s3 Ne NeNa

ionConfigurat 3p 3s

Page 72: Atom1

72

The Periodic Table and Electron Configurations

1/2 0 0 1 e 1

m m n -st

s

Page 73: Atom1

73

The Periodic Table and Electron Configurations

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-nd

-st

s

Page 74: Atom1

74

The Periodic Table and Electron Configurations

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-rd

-nd

-st

s

Page 75: Atom1

75

The Periodic Table and Electron Configurations

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-rd

-nd

-st

s

Page 76: Atom1

76

The Periodic Table and Electron Configurations

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-rd

-nd

-st

s

Page 77: Atom1

77

The Periodic Table and Electron Configurations

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-rd

-nd

-st

s

Page 78: Atom1

78

The Periodic Table and Electron Configurations

1/2 1 1 2 e 7

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2- 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-th

-rd

-nd

-st

s

Page 79: Atom1

79

The Periodic Table and Electron Configurations

1/2 1 1 2 e 8

1/2 1 1 2 e 7

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-th

-th

-rd

-nd

-st

s

Page 80: Atom1

80

The Periodic Table and Electron Configurations

1/2 0 1 2 e 9

1/2 1 1 2 e 8

1/2 1 1 2 e 7

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-th

-th

-th

-rd

-nd

-st

s

Page 81: Atom1

81

The Periodic Table and Electron Configurations

electrons p 2

1/2 1 1 2 e 10

1/2 0 1 2 e 9

1/2 1 1 2 e 8

1/2 1 1 2 e 7

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-th

-th

-th

-th

-rd

-nd

-st

s

Page 82: Atom1

82

The Periodic Table and Electron Configurations

electron s 31/2 0 0 3 e 11

electrons p 2

1/2 1 1 2 e 10

1/2 0 1 2 e 9

1/2 1 1 2 e 8

1/2 1 1 2 e 7

1/2 0 1 2 e 6

1/2 1- 1 2 e 5

electrons s 21/2 0 0 2 e 4

1/2 0 0 2 e 3

electrons s 11/2 0 0 1 e 2

1/2 0 0 1 e 1

m m n

-th

-th

-th

-th

-th

-th

-th

-th

-rd

-nd

-st

s

Page 83: Atom1

83

The Periodic Table and Electron Configurations

Next we will do the same exercise for 20Ca.– Again, when finished we must have one set of 4 quantum numbers for each of the 20 electrons

in Ca. We represent the first 18 electrons in Ca with the symbol [Ar].

220 4s Ar [Ar]Ca

ionConfigurat 4p 4s 3d

Page 84: Atom1

84

The Periodic Table and Electron Configurations

1/2 0 0 4 e 19 ]Ar[

m m n

-th

s

Page 85: Atom1

85

The Periodic Table and Electron Configurations

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19]Ar[

m m n

-th

-th

s

Page 86: Atom1

86

The Periodic Table and Electron Configurations

Finally, we do the same exercise for 26Fe.– We should have one set of 4 quantum numbers for each of the 26 electrons in Fe.

To save time and space, we use the symbol [Ar] to represent the first 18 electrons in Fe

6226 3d 4s Ar Ar Fe

ionConfigurat 4p 4s 3d

Page 87: Atom1

87

The Periodic Table and Electron Configurations

1/2 0 0 4 e 19 ]Ar[

m m n

-th

s

Page 88: Atom1

88

The Periodic Table and Electron Configurations

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19]Ar[

m m n

-th

-th

s

Page 89: Atom1

89

The Periodic Table and Electron Configurations

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 ]Ar[

m m n

-st

-th

-th

s

Page 90: Atom1

90

The Periodic Table and Electron Configurations

it! doYou e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 ]Ar[

m m n

-nd

-st

-th

-th

s

Page 91: Atom1

91

The Periodic Table and Electron Configurations

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-nd

-st

-th

-th

s

Page 92: Atom1

92

The Periodic Table and Electron Configurations

1/2 0 2 3 e 23

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-rd

-nd

-st

-th

-th

s

Page 93: Atom1

93

The Periodic Table and Electron Configurations

1/2 1 2 3 e 24

1/2 0 2 3 e 23

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-th

-rd

-nd

-st

-th

-th

s

Page 94: Atom1

94

The Periodic Table and Electron Configurations

shell d filled-half

1/2 2 2 3 e 25

1/2 1 2 3 e 24

1/2 0 2 3 e 23

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-th

-th

-rd

-nd

-st

-th

-th

s

Page 95: Atom1

95

The Periodic Table and Electron Configurations

it! doYou e 26

1/2 2 2 3 e 25

1/2 1 2 3 e 24

1/2 0 2 3 e 23

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-th

-th

-th

-rd

-nd

-st

-th

-th

s

Page 96: Atom1

96

The Periodic Table and Electron Configurations

1/2 2- 2 3 e 26

1/2 2 2 3 e 25

1/2 1 2 3 e 24

1/2 0 2 3 e 23

1/2 1- 2 3 e 22

1/2 2- 2 3 e 21

electrons s 41/2 0 0 4 e 20

1/2 0 0 4 e 19 [Ar]

m m n

-th

-th

-th

-rd

-nd

-st

-th

-th

s

Page 97: Atom1

97

End of Chapter 5

The study of various spectra is one of the fundamental tools that chemists apply to numerous areas of their work.