asynchronous sar adc: past, present and...

70
Asynchronous SAR ADC: Past, Present and Beyond Mike Shuo-Wei Chen University of Southern California MWSCAS 2014 1

Upload: lamdan

Post on 14-Mar-2018

234 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Asynchronous SAR ADC: Past,

Present and Beyond

Mike Shuo-Wei Chen

University of Southern California

MWSCAS 2014

1

Page 2: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Roles of ADCs

• Responsibility of ADC is increasing more BW, more dynamic range

• Potentially simplify analog pre-conditioning circuits

• Reconfigurable system imposes more weights on ADC

spec/cost of ADC?

IF Sampling, except IF is becoming RF

Direct RF Sampling

2

Page 3: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Who is driving higher speed?

• Low Medium resolution (6bit) with 10-100 GS/s

High speed optical links, instrumentations.

• High Medium resolution (10bit), with 100MS/s to

a few GS/s.

Radars, Commercial Communications, or

wideband radios, such as 60GHz, UWB, SDR,

Cognitive radio.

Power efficiency is a key issue!

3

Page 4: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Why possible now?

• Cost of such ADCs used to be intimidating, bounded by Walden wall.

• CMOS technology provides tremendous opportunity.

• Circuit designers enjoy inventing and polishing ADC architectures.

Given the resolution, speed and power efficiency advanced by orders of magnitude over the past decade

4

Page 5: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Walden’s ADC Survey

Robert Walden, “Analog-to-Digital Converter Survey and Analysis”, Journal of

selected area in communications, 1999.

5

Page 6: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Optimal ADC Architecture?

• Architecture that promotes mostly digital operation

so it scales with CMOS technology

• No high precision analog requirement

• Tolerate low voltage design

• Take advantage of device speed

6

Page 7: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

ADC Architecture Overview

VrefD

eco

de

rVin

CLK

Vin

De

co

de

r

CLK

DAC

S/H

ADC DAC

+

Stage

1

Stage

N

Stage i

Flash Pipeline SAR

Complexity

Conv. time 7

Page 8: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Successive Approximation (SAR) Algorithm

• Binary

searching.

• N-bit resolution

requires N

comparisons, i.e.

1 bit per cycle.

8

Page 9: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Typical SAR Logic

• N-bit SAR requires at least N+1 cycles.

• Typically, a fast clock is used to divide the time into S/H, and N bit comparison.

• DAC and SAR logic change reference levels.

9

Page 10: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

DAC Implementation

• Capacitor array to perform sampling and

charge redistribution fast and low

power. This is most commonly used.

• However, other DAC implementations are

possible, such as resistor ladder network

or capacitor-resistor hybrid version.

10

Page 11: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Sampling Phase

• Sampling on the capacitive DAC.

11

Page 12: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

First MSB comparison

• All capacitors are connected to Vcm.

12

Page 13: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Second MSB Comparison

• If Vin > 0… The rest of bit conversions

follows.

13

Page 14: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Why SAR?

1. Mostly digital components good for

technology scaling

2. No linear, high precision amplification is

required fast, low power

3. Minimal hardware 1 comparator is needed

14

Page 15: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Evolving Ecosystem

15

Page 16: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

SAR ADC in the past 10 years

16

Page 17: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Limitation of Synchronous SAR

• Cost

– No redundant comparison

– High-speed internal clock

• Speed limitation

– Worst-case cycle time

– Margin for clock jitter

MSB MSB-1 LSB

Synchronous

Conversion Phase

Tracking

Phase Sampling Instants

MSB-2

Jitter

Internal

CLK

17

Page 18: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

MSB MSB-1 MSB-2 LSB

Sampling Instants

Tracking

PhaseAsynchronous

Conversion Phase

Gnd

Vref

Vref

Vref

VrefVin

'1'

'0'

'1' Full

Scale

Conversion Time

43

85

21

Asynchronous SAR ADC Concept

)ln(ID

FS

m

cmpV

V

g

Ct

t cm

p

VID

M. S.W. Chen, R. Brodersen, “A 6b 600MS/s 5.3mW

Asynchronous ADC in 0.13µm CMOS,” ISSCC 06. Still uniform sampling… 18

Page 19: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

How much time can it save?

• Conv. time between sync. and async. SAR,

assuming regenerative comparator is used.

• It varies with residue voltage profile

Best case

Worst case

19

Page 20: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Best Case

• Peak input value yields larger Vres pattern

20

Page 21: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Worst Case (I)

• Input with alternative polarity smaller

magnitude

21

Page 22: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Worst Case (II)

• As N increases, it approaches ½, same as the

best case!

• Note that: Since there is no synchronous clock

uncertainty, more saving is possible! Actual time

saving depends on input signal characteristics. 22

Page 23: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Ready

Generator

SR

Latch

Non-Binary

Capacitor

Network

Switch

Logic

&

Bit

Caches

Pulse

Generator

Sequencer

(Multi-Phase CLK)

iCLK0

iCLK6

Vin

Clk0

Clk1

bit0

bit6

SRAM

Vref+

Vref-

2-phase

clock

generation

First Asynchronous SAR ADC

Prototype

Asynchronous digital circuits

23

Page 24: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Vb

VinVip

Qn Qp

eq

strobe strobe2a

2aeq

Qp

Qn

Ready

Dynamic Comparator

• Dynamic to save power and generate ready signal

• Reset switches for fast recovery

• Ready signal is generated by NAND gate!

regenerative latch pre-amplifier

24

Page 25: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Metastable Issue

NAND gate

threshold

'1' '0' '0' '1' '0' '0'

'1' '1'

large vid moderate

vid

vid~0

(metastable

)

Ready

Signal

Cmp

Outputs

VFS

If a comparison is stuck, SAR conversion won’t be complete!

25

Page 26: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Sampling Network

• Series capacitor bank reduces input cap loading

and settling time (C-2C network if α=β=2)

26

Page 27: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Die Micrograph

240 µm

250 µ

m1.4 mm

1.7

4 m

m

27

Page 28: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Single Async. SAR ADC

• Resolution naturally tradeoffs with sampling rate!

28

Page 29: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Single Async. SAR w/ RF Input

29

Page 30: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Dual Async. SAR ADCs

30

Page 31: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Performance Summary

Technology 0.13-mm 6M CMOS

Package Chip-on-board

Resolution 6 bits

Sampling rate 300-500 MS/s for single ADC

(600M-1GS/s for dual)

Supply voltage 1.2 V

Input 3dB BW > 4 GHz

Peak SNDR 34 dB (fs = 600MS/s for dual ADC)

INL/DNL 0.5 / -0.5 LSB

Power

Analog 1.2mW

Total (dual ADC):

5.3mW Digital 3.2mW

Clock 0.9mW

31

Page 32: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Comparison with SOA in 2006

• High-speed (>10MS/s, 6-10b) ADCs from ISSCC (00’-05’)

ENOB

s 2F

Total_PW

32

Page 33: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

• Constant field scaling (W,L,Vdd ↓ 1/S)

FOM (joule/conversion step) ↓ 1/S2

Technology Scaling

Ttrack Tcomp Tdig

RCH~1/S 1/fT~1/S RC~1/S

Panalog Pclk Pdig

IV~1/S fCV2~[1/S-1/S2] fCV2~1/S2

33

Page 34: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Asynchronous SAR Advantages

• Asynchronous SAR architecture breaks

the speed limit of conventional

synchronous design methodology.

• Clock generation requirement is

significantly relaxed.

• It was just the starting point… many

variations can be introduced potentially.

34

Page 35: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

What’s next?

1. Higher resolution approaching KT/C

limit regime?

2. Higher speed 1-100 GS/s sampling

rate possible?

35

Page 36: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Higher Resolution Extension

DAC

Asynchronous

SAR Logic

VINGPassive

DAC

Asynchronous

SAR Logic

VIN

• Traditional Asynchronous SAR

• Proposed Passive Gained Asynchronous SAR

36

Page 37: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

• Key highlights

Proposed Passive Gained SAR

DAC

Asynchronous

SAR Logic

VIN

𝐃𝐎𝐔𝐓

VN,Comp

VN,Comp

GPassive

Input referred

Noise

GPassive

1. Passive amplifier(Power-less) ► Comparator noise spec.

2. Redundant SAR operation ► Non-linear distortion

due to parasitic Cap.

3. Passively amplified signal ► Comparison time

4. Embedding amplifier into DAC ► DAC settling time

► Full-scaled amplifying O

1

37

Page 38: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

• Key highlights

Proposed Passive Gain SAR

DAC

Asynchronous

SAR Logic

VIN

𝐃𝐎𝐔𝐓

VN,Comp

VN,Comp

GPassive

Input referred

Noise

GPassive

1. Passive amplifier(Power-less) ► Comparator noise spec.

2. Redundant SAR operation ► Non-linear distortion

due to parasitic Cap.

3. Passively amplified signal ► Comparison time

4. Embedding amplifier into DAC ► DAC settling time

► Full-scaled amplifying O

2 Converged to

common mode

at the final

38

Page 39: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

• Key highlights

Proposed Passive Gain SAR

DAC

Asynchronous

SAR Logic

VIN

𝐃𝐎𝐔𝐓

VN,Comp

VN,Comp

GPassive

Input referred

Noise

GPassive

1. Passive amplifier(Power-less) ► Comparator noise spec.

2. Redundant SAR operation ► Non-linear distortion

due to parasitic Cap.

3. Passively amplified signal ► Comparison time

4. Embedding amplifier into DAC ► DAC settling time

► Full-scaled amplifying O

3 xGPassive

39

Page 40: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

• Key highlights

Proposed Passive Gain SAR

DAC

Asynchronous

SAR Logic

VIN

𝐃𝐎𝐔𝐓

VN,Comp

VN,Comp

GPassive

Input referred

Noise

GPassive

1. Passive amplifier(Power-less) ► Comparator noise spec.

2. Redundant SAR operation ► Non-linear distortion

due to parasitic Cap.

3. Passively amplified signal ► Comparison time

4. Embedding GPassive into DAC ► DAC settling time

► Rail-to-rail input swing √

4

40

Page 41: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Embedded Passive Gain Operation

VIN

CS1 CS2

CS1 CS2

CS MS1 MS2

Passive

Gain

Split Capacitor

(Double Sampling)

Stacked Capacitor

(Amplification)

-2VIN

-

+

-

+

+

-

+

-

CS

2

CS

2

41

Page 42: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Controlling only CS/2 during SAR operation

► DAC response speed

VIN

CS1 CS2

CS1 CS2

CS MS1 MS2

Passive

Gain

-2VIN -2VIN+Vtune

Vtune

SAR

Operation

Subsequent

SAR operation

Embedded Passive Gain Operation

Split Capacitor

(Double Sampling)

Stacked Capacitor

(Amplification)

+

- -

+

+

- -

+

CS

2

CS

2

C-DAC

42

Page 43: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

VOUT VIN

Voltage Over-range Issue

Φ1

Φ1’

Φ2

Φ2

CS1 Φ1

Φ1’

Φ1 : Sampling VIN to CS1 & CS2 Φ1’

Φ2 Φ2 : Charge Redistribution

Φ1

VX

VIN

+ –

+ –

VIN 0 VX 0 VOUT 0

CS2

- VFS/2

+VFS/2

- VFS/2

+VFS/2

- VFS/2

+VFS/2

43

Page 44: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Voltage Over-range Issue

VIN Φ1

Φ1’

Φ2

Φ2

CS1 Φ1

Φ1’

VOUT

Φ1 : Sampling VIN to CS1 & CS2 Φ1’

Φ2 Φ2 : Charge Redistribution

Φ1

VX

VIN

+ –

+ –

VX 0 VOUT 0 VIN

- VFS/2

0

+VFS/2

Not properly

Turned off

Rail-to-rail

Input Swing [X]

CS2

- VFS/2

+VFS/2

- VFS/2

+VFS/2

44

Page 45: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Proposed Level Shifting

• Procedures

(1) MSB decision by using CS2

(2) Performing Level shifting

VIN Φ1

Φ1’

Φ2

Φ2

CS1

CS2

Φ1

Φ1’

VOUT VX

VIN

+ –

+ –

Comparator

Level Shifting

Circuit

45

Page 46: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Level Shift Up [MSB>0]

0

Level shift up

x2

VIN

CASE – I : VIN = [ -VFS/2, 0 ]

VFS/2

VFS/2

CBAT

CS2

VIN Φ1

Φ3

CS1

Φ1’

Φ1’

+ –

+ –

Φ3

Φ3

VOUT

Comp.

MSB (=D[1]) Φ2

Φ1’

Φ2

Φ1

Φ3 doubled

[MSB-1]

Decision range

Performing at once

VIN

Φ1

46

Page 47: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Level Shift Down [MSB<0]

CASE – II : VIN = [ 0, VFS/2 ]

Level shift down VFS/2

0

VFS/2

VIN

[MSB-1]

Decision range

CBAT

CS2

VIN Φ1

Φ3

CS1

Φ1’

Φ1’

+ –

+ –

Φ3

Φ3

VOUT

Comp.

MSB (=D[1]) Φ2

x2

Performing at once

VIN

Φ1

Φ1’

Φ2

Φ1

Φ3 doubled

47

Page 48: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

VOUT

VOUT VIN

VY

+ VFS/2

- VFS/2

VX 0 0 0 0

• Allowing rail-to-rail input signal swing

Free of Voltage Clipping

CBAT

CS2

VIN Φ1

Φ3

CS1

Φ1’

Φ1’

+ –

+ –

Φ3

Φ3

Comp.

Φ2

VIN Φ1

VX

VY

+ VFS/2

- VFS/2

+ VFS/2

- VFS/2

+ VFS/2

- VFS/2

48

Page 49: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Subsequent SAR Operation

CBAT

CS2

VIN

CS1

D[1]

VIN

• CS1 consists of non-binary weighted Cap arrays.

VREF

Asynchronous

SAR Logic

D[2:12]

Φ1’

Φ2 Φ1’

12

𝐕𝐃𝐀𝐂 = 𝐃𝐎𝐔𝐓[𝒊]

𝐑𝐱[𝒊]𝒊∙ 𝑽𝑹𝑬𝑭

𝟏𝟐

𝒊=𝟐

VOUT

49

Page 50: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

KT/C Noise Analysis

VIN

Passive

Gain

- 2VIN±VBAT

CBAT

VBAT

CBAT

𝐒𝐍𝐑𝐢 ≝𝑽𝐈𝐍𝑲𝑻𝐂𝒔

Signal Amplitude: 2VIN

RMS V[ KT/C Noise ] : 𝟐𝑲𝑻

𝐂𝒔

SNRO = SNRi

Selecting large size of CBAT

(SNR drops due to CBAT) < 0.5dB

+

-

+

-

-

+

-

+

CBAT

Sampling Phase Amplifying Phase

• Sufficiently large sized CBAT to prevent SNR degradation

CS

2

CS

2

CS

2

CS

2

50

Page 51: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

CKRS

CKRS

CKRS

CKRSVINNVINP

VO1N VO1P

VO2PVO2N

CKAMP

CKAMP

CKAMP

VOUTP VOUTN

1st Stage 2nd Stage

Latch

S2

S1

Equalize Amplify

CKAMP

CKRS

S1 :S2 :

ON OFFON ON

S1 >> S2

MP1 MP2

MP3 MP4 MP5 MP6

MN1 MN2 MN3 MN4

MN5 MN6

IS1 IS2

VDD

R1 R2

• Dual sized switches ► Fast Reset (S1)

► Amplifying (S2)

Comparator

51

Page 52: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

DAC

Delay T time-out

Asynchronous SAR logic

CKRS

Vdata_ready

SW_CTRL CKAMP, CKRS

Earlier arrived pulse

detected

Vtime-out

VINP

VINN

Sampling Clock

Time-out Scheme

• Forcing the advancement of asynchronous

conversion if comparator is stuck.

Normal Operation Loop

Time-out operation Loop

52

Page 53: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

SCLK

Env_Conv

Vdata_ready

CKAmp

Vtime-out

Vcomp

Comparator’s

threshold level

1st

Time-out

detect

2nd 3rd

4th Nth

T time-out

T Conv

Code 1 0 1 1 0

• Vtime-out forces next conversion (Ttime-out designed for worst case)

Time-out Timing Diagram

53

Page 54: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

260um

280u

m

CDACP

(CS1)

Bootstrap

SW

CDACN

(CS1)

Async.

SAR Logic

CBAT

CS2 CS2

Co

mp

ara

tor

Decimator

CBAT

• Active Area: 280μm X 260μm

Chip Micrograph

J. Nam, D. Chiong, M. S.W. Chen, “A 95-MS/s 11-bit 1.36-mW Asynchronous SAR

ADC with Embedded Passive Gain in 65nm CMOS”, CICC 2013.

54

Page 55: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Static Performance

+1.0

-1.0

0.0

0 2047 [CODE]

+1.0

-1.0

0.0

[LS

B]

DNL (+0.70/-0.84 LSB)

INL (+0.79/-0.84 LSB)

[LS

B]

0 2047 [CODE]

55

Page 56: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

-120

-80

-40

0

0 32

3 fS

32

4 fS

32

2 fS

32

fS

Po

wer

(dB

)

SNDR = 63.1 dB

SFDR = 75.2 dB

fIN = 1.0 MHz, fS = 95 MHz

ENOB = 10.2

HD2 HD3 HD5

After Radix Calibration*

Normalized Frequency (ADC output decimated by 4x)

Dynamic Performance

-120

-80

-40

0

032

3 fS

32

4 fS

32

2 fS

32

fS

50

60

70

80

0 10M 50M30M 40M20M

Po

we

r (d

B) SNDR = 63.1 dB

SFDR = 75.2 dB

fIN = 1.0 MHz, fS = 95 MHz

ENOB = 10.2

Normalized Frequency

Po

we

r (d

B)

Input Frequency (Hz)

SFDR

SNDR

HD2 HD3 HD5

fS = 95 MHz

(ADC output decimated by 4x)

57.8 dB

56

Page 57: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

ADC Topology Asynchronous SAR

with Passive Gain

fsampling 95-MS/s

Resolution 11-bit

Signal Bandwidth 47.5 MHz

Supply (V) 1.1 V

SFDR (dB) 75.2 dB

SNDR (dB) 63.1 dB

Power (mW) 1.36 mW

Area (mm2) 0.073 mm2

Process (nm) 65 nm CMOS

FoM 22 fJ/conv.-step @ Nyquist

14 fJ/conv.-step @ Low Freq.

Performance Summary

57

Page 58: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Filtering with > 10.0 ENOB, > 10MS/s

fsample

Comparison to prior art F

oM

[fJ

/ste

p]

• Achieves the lowest FoM among recently published ADCs

( >10ENOB, > 10MS/s )

ISSCC 1997-2013

VLSI 1997-2013

0.0

20.0

40.0

60.0

80.0

20M 40M 60M 80M 100M 0

This work

10.2 ENOB

(@ Nyquist)

(@ Low Freq.)

58

Page 59: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Higher Speed Extension

• What if higher speed is demanded?

1. Unrolled comparators

2. Asynchronous DAC settling

3. Multi-bit/cycle

4. Pipelining

5. Time interleaving

59

Page 60: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Unrolled Comparators

• Unroll the comparators No comparator reset

No DAC settling

60

Page 61: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Unrolled Asynchronous SAR

G. Van der Plas, et al, “A 150 MS/s 133 uW 7 bit ADC in 90 nm Digital CMOS

“, JSSC, 2008

61

Page 62: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Asynchronous DAC Settling

• DAC settling can also be asynchronous

R. Kapusta, et al., “A 14b 80MS/s SAR ADC with 73.6dB

SNDR in 65nm CMOS,“ ISSCC 2013.

62

Page 63: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Multi-bit/cycle Conversion

- Fewer cycles

required for

conversion

- Time-to-digital

converter can

assist bit

comparison

But…

-Give away the

offset tolerance

-Opportunities for

calibration

63

Page 64: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Pipelining

• Residue voltage is available on capacitor

network for free

64

Page 65: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Time Interleaving

• Sampling rate scale

proportionally to the

number of interleaved

channels

• Calibration is required

for inter-channel

mismatch

• Relaxed clock

distribution

• For example:

8bit 56GS/s

320 of 175MS/s SAR

(Fujitsu)

65

Page 66: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

90GS/s 8bit with 64x Time Interleave

• Two comparators ping pong in two consecutive

conversions implemented in 32nm SOI

66

L. Kull, et al., “A 90GS/s 8b 667mW 64x Interleaved

SAR ADC in 32nm Digital SOI CMOS,” ISSCC 14.

Page 67: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Family of Asynchronous SAR

• High-speed (>10MS/s, 5-10b) ADCs from ISSCC (00’-10’)

• Asynchronous SAR has been widely adopted since 2006.

• Benefit from technology scaling!

ENOB

s 2F

Total_PW

Family of Async. Enabled ADC

Latest: 8b, 90GS/s,

200 fJ/conv-step

ISSCC 2014

67

Page 68: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Future Asynchronous SAR

• The trend is going towards 1-100GS/s ADC.

• Power efficiency is going towards the order of 1-10

fJ/conv-step.

ENOB

s 2F

Total_PW

Latest: 8b, 90GS/s,

200 fJ/conv-step

ISSCC 2014

68 Future Breakthroughs!

Page 69: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Conclusion

• Low-power, high-speed ADCs are in great needs. New opportunities and breakthroughs are expected in accelerated rate.

• Asynchronous SAR ADC architecture provides power efficient platform for achieving this goal. The record high-speed (90GS/s) ADC also leverages this topology.

• More variations of asynchronous SAR ADC architecture will come from all of you!

69

Page 70: Asynchronous SAR ADC: Past, Present and Beyondswchen/index_files/async_sar_tutorial_chen_final.pdf• DAC and SAR logic change ... DAC Implementation • Capacitor array to perform

Mike Chen’s IC Group

Acknowledgements

• All PhD students involved in these

projects: Jaewon Nam, Praveen Sharma

and David Chiong.

• ONR for funding supports.

70