asymmetric radical reactionsaug 30, 2018  · chiral lewis acid-mediated reactions 12 cyclization...

30
Asymmetric Radical Reactions Zhen Liu 08/30/2018

Upload: others

Post on 14-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Asymmetric Radical Reactions

Zhen Liu 08/30/2018

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

2

Contents

3

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

Introduction–Radical Chemistry

4

R1 R2•

Radical

Features:• Very reactive• Nearly planar (slight pyramidal)

HMe

EtClH2C

(+)-1

Cl2

hυCl

MeEt

ClH2C

(±)-2

CHOMe

Et

(–)-3

DTBP

H

MeEt

(±)-4

iPr iPrΔ

Parsons, A. F. An Introduction to Free Radical Chemistry, Oxford: Blackwell Science 2000.

Radicals Stability:

R2

R3

R1 >R2

R1> R1 hyperconjugation effect

E

RadicalSOMO

π*

n (long pair)

NucleophilicElectrophilic

ORR1

R2

R

O

Brown, H. C. et. al. J. Am. Chem. Soc. 1940, 62, 3435.

Doering, W. von E. et. al. J. Am. Chem. Soc. 1952, 74, 3000.

Introduction–Radical Chemistry

5

Sibi, M. P. et. al. Chem, Rev. 2003, 103, 3263.

RadicalPrecursor

InitiationRadical-1 Radical-2 Neutral

SpeciesPropagation Termination

ChainProcess

The Fate of Radicals

Atom Transfer

Addtion to Neutral Molecule

Fragmentation

Coupling

104–108 dm3•mol–1•s–1

104–108 dm3•mol–1•s–1

105–109 s–1

109 dm3•mol–1•s–1

One example:

Et

Me HBr

DTBP Et

Me Br

Mechanism:

tBuO OtBu hυ or Δ2 tBuO

tBuO H Br tBuOH + Brinitiationsteps

Et

Me + BrEt

Me Br

Et

Me Br H BrEt

Me Br + Br

propagationsteps

Br Br Br2

Et

Me Br BrEt

Me BrBr

terminationsteps

Common radical initiators:

N

CN

Me MeN Me

CN

Me

AIBN

RO OR Et3B

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

6

Reactions Using Chiral Auxiliary

7

Porter, N. A. et. al. J. Am. Chem. Soc. 1989, 111, 8311.

Giese, B. et. al. J. Am. Chem. Soc. 1990, 112, 6741.

N NO

O

Porter, Giese and Lindner, 1989

N NO

OtBu

+ N NO

OtBu

tBuHgCl

NaBH4, 25 ºC

40 1:

N NO

O

Giese, 1990

N NO

OtBu

+ N NO

OtBu

tBuHgCl

NaBD4, 25 ºC

13 1:

tBu

D D

NO

OX

NO

OX

Favored Unfavored

vs.

Reactions Using Chiral Auxiliary

8

Naito, T. et. al. J. Org Chem. 2000, 65, 176.

Entry RI Yield (%) d.r.

1

2

3

EtI

iPrI

tBuI

80

80

83

95:5

96:4

>98:2

NS

ONOBn

O

O

R

RAttack from si face is preferred

A

NS

O

NOBnO

O

B

NS

OO

O

C

NOBn

NS

OO

O

D

BnON

NSO2

O

H

NOBn

Naito, 2000

RI (5 eq.), BF3•Et2O (2 eq.)Bu3SnH (2.5 eq.), BEt3 (5 eq.)

DCM, –78 ºCN

SO2

O

R

NHOBn

NSO2

O

iPr

NHOBn Mo(CO)6 (0.7 eq.)

H2O/MeCN, refluxN

SO2

O

iPr

NH2 1N LiOH

THFHO

O

iPr

NH2

D-Valine55% over 4 steps

Reactions Using Chiral Auxiliary

9Sibi, M. P. et. al. J. Org. Chem. 2002, 67, 1738.

N

O

Sibi, 2002

iPrI (10 eq.), Sm(OTf)3 (1 eq.)Bu3SnH (6 eq.), BEt3 (3 eq.)

O2, DCM/THF, –78 ºC

N

O

CO2Et

iPr

CO2EtO O

O O

Ph

Ph

Ph

Ph

95%, d.r. = 29:1

NO

CO2EtO

O

PhPh

Sm OTfTfO OTf iPr

iPr

x

N

OSm(OTf)3 (1 eq.)

Bu3SnH (6 eq.), BEt3 (3 eq.)

O2, DCM/THF, –78 ºCN

OCO2Et CO2EtO O

O O

Ph

Ph

Ph

Ph

Br OMe

(10 eq.)OMe

NaHMDS, THF

I OMe

N

O

CO2EtO

O

Ph

Ph

OMe

OMe

LiOH, H2O2 HO

O

CO2Et

OMe

OMe

50%

88%

1. BH3/THF, –15 ºC

2. PPTS, reflux3. BBr3 (4 eq.)

OO

HOHO

69% for three steps

(–)-Enterolactone

71%

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

10

Chiral Lewis Acid-Mediated Reactions

11

Murakata, M. et. al. Tetrahedron1999, 55, 10295.

Hydrogen Atom Transfer

O O

IR

O O

HR

NN

BnO

OBn

(S)-L1

MgI2/Et2OBu3SnH, DCM, –78 ºC

5a, R = CH2OMe 5b, R = CH2OEt5c, R = CH2OBn 5d, R = Me

Entry Substrate Yield (%) ee (%)1234

5a5b5c5d

88 62 (R)84 65 (R)89 58 (R)78 30 (S)

Sibi, M. P. et. al. Angew. Chem. Int. Ed. 2001, 40,1293.

Conjugate Radical Reaction

HN

O

2-Naph CO2MeHN

O

2-Naph CO2Me

R

Mg(ClO4)2/L2 (1.3 eq.)RX, BEt3/O2

Bu3SnH, DCM, –78 ºC

O

N N

O

L2

Entry Yield (%) ee (%)1234

76 8071 6572 85 (R)62 83 (R)

5 54 27 (R)

RXAcBrMeOCH2BrEtIiPrItBuI

Chiral Lewis Acid-Mediated Reactions

12

Cyclization Reaction

O O

OEt

Me Me

BrMe

O

MeCO2Et

Br MeMe

Mg(ClO4)2 (1 eq.)

BEt3,toluene, 4Å MS, –78 ºC

MeMeO

N N

O

tBu tBuL3 (1.1 eq.)

MeMeO

N N

O

tBu tBuMgO O

EtOMe

MeMe

67% (94% ee)

Allylation Reaction

MX2, BEt3/O2DCM, –78 ºC

N

O

BrR1

O

O+ Z N

O

R1O

O+ Z–Br

R2R2

O

N N

O

R3 R3

Entry Yield (%) ee (%)1234

84 42 (S)65 60 (S)

5

R1

MeMe

R2

MeMe

R3

PhPh

MX2 Z(R, R)(R, R)

Config.

Zn(OTf)2 SnBu3Zn(OTf)2 Si(OEt)3

88 90 (R)tBu Me Ph (R, R) Zn(OTf)2 SiMe386 68 (S)tBu Me Ph (R, R) MgI2 SiMe365 88 (R)tBu -(CH2)2- tBu (S, S) MgI2 SiMe3

MX

X ON

ONN

OMe

Me

O

O

H

H

R

R

MX

OON

XNMe

Me

O

O

H

H

R

R

H

NO

H

vs.tBu

tBu

Porter, N. A. et. al. J. Org. Chem. 1997, 62, 6702.

Yang, D. et. al. J. Am. Chem. Soc. 2001, 123, 8612.

Chiral Lewis Acid-Mediated Reactions

13Yoon, T. P. et. al. Science 2014, 344, 392.

Sibi, M. P. et. al. J. Org. Chem. 2001, 123, 9472.

Addition-Trapping Reaction

N

O

PhO

O+ SnBu3 N

O

PhO

O R O

N N

O

L2

MgI2/L2 (30 mol%)RI, BEt3/O2

DCM, –78 ºC

R = iPr, 93%, 37:1 d.r., 93% eeR = tBu, 84%, 99:1 d.r., 97% ee

Cycloaddition Reaction

Ph

O

Me+

Me

O

Me

O O

Ph Me

Me

O O

Ph Me

Eu(OTf)3 (10 mol%)L4 (20 mol%)

[Ru(bpy)3Cl2] (5 mol%)iPr2NEt, MeCN, rt., hυ

Eu(OTf)3 (10 mol%)L5 (30 mol%)

[Ru(bpy)3Cl2] (5 mol%)iPr2NEt, MeCN, rt., hυ

trans-6 (92% ee)71%, 7:1 d.r.

cis-6 (95% ee)78%, 4.5:1 d.r.

ON

Me Me

OH O NHnBuL4

NaBH4

ONH

Me Me

OH O NHnBuL5

Ph

O

Me

*LnM

Ph

O

Me

*LnM

Me

O[2+2]

trans-6 or cis-6

e–

Ru(bpy)32+*

Ru(bpy)32+ Ru(bpy)3+

iPr2NEthυ

Chiral Lewis Acid-Mediated Reactions

14Meggers, E. et. al. Nature 2014, 515, 100.

N

NR2

OR1

+ Br EWG N

NR2

O

R1EWG

Λ-Ir (2 mol%)Na2HPO4 (1.1 eq.)

visible light, 40 ºC

N

NMe

O

Ph

NO2

NO2

N

NMe

O

Me

CN

NO2

N

NiPr

O

Ph

97%, 99% ee 87%, 97% ee

O

Br

86%, 91% ee

NIrN

StBu

NCMeNCMe

StBu

Λ-Ir

+

PF6–

7 8 9

Meggers, 2014

N

NMe

OR Λ-Ir N

NMe

OR

[Ir]

N

NMe

OR

[Ir]

N

NMe

OR

[Ir]

EWG

N

NMe

OR

[Ir]

EWG

AsymmetricCatalysis

7

9 PS

PS+

PS*

PhtoredoxCatalysis

Visible light

SET

Br EWG

Br EWG•–

SET

EWGBr–

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

15

Transition Metal-Catalyzed Reactions

16Fu, G. C. et. al. Science 2016, 351, 681.

Fu, G. C. et. al. J. Am. Chem. Soc. 2005, 127, 4594.

Fu, G. C. et. al. Science 2016, 354, 1265.

Cross-Coupling Reactions

NPh

BnO

Br

R1 + R2 ZnX

racemic

NiCl2•glyme (10 mol%)(R)-(iPr)-Pybox (13 mol%)

DMI/THF, 0 ºCNPh

BnO

R2

R1

up to 96% eeup to 90% yield

NN

OO

NiPr iPr(R)-(iPr)-Pybox

R1

X

Bpin

NiCl2•glyme (10 mol%)(S, S)-L6 (13 mol%)

R2ZnBr (1.8 eq.)

DMA/THF, 0 ºC

R1

R2

Bpin

(S, S)-L6 (Ar = o-tolyl)

Ar Ar

MeHN NHMe

up to 95% eeup to 86% yield

racemic

R2N

O

R1

Cl +

racemic(1.2 eq.)

cat. CuCl/(S)-L7hυ (blue LED)

LiOtBu (1.5 eq.)toluene, –40 ºC

up to 99% eeup to 98% yield

R2HN

X R2N

O

R1

NR2

X(S)-L7

P Ph

Transition Metal-Catalyzed Reactions

17Liu, G. et. al. J. Am. Chem. Soc. 2016, 138, 15547.

Buchwald, S. L. et. al. Angew. Chem. Int. Ed. 2013, 52, 12655.

Buchwald, S. L. et. al. J. Am. Chem. Soc. 2015, 137, 8069.

Alkene Difunctionalization Reactions

HO

O

Arn

n = 1, 2

+I

O

CF3

O Cu(MeCN)4PF6 (7.5 mol%)(S, S)-L3 (7.5 mol%)

MTBE, rt.

OOAr

CF3n

MeMeO

N N

O

tBu tBuL3up to 83% ee

up to 88% yield

HO

O

Rn

n = 1, 2

R'•, Cu(MeCN)4PF6/L3 OOR

R'n

OOR

N3n

OOAr

SO2Phn

OOAr

Ar'n

PhI(OAc)2, TMSN3 Ag2CO3, TsCl DTBP, Ar'N2BF4

+I

O

CF3

Cu(MeCN)4PF6 (1 mol%)L2 (1.5 mol%), TMSCN

MeCN, rt.

Me Me

ArAr

CNCF3

O

N N

O

L2up to 99% ee

Transition Metal-Catalyzed Reactions

18

Liu, G. et. al. Science 2016, 353, 6303.

C–H Functionalization

Ar R

cat. CuOAc/L*TMSCN (2–3 eq.)

NFSI (1.5 eq.)C6H6, rt., N2

Ar R

CNR2R2

O

N N

O

R3 R3L*

NC

71%, –97% ee

NC

73%, 97% ee

N3

N

CN

SO2Ph

Cl

76%, 98% ee

NC

80%, 96% ee

S

NPh

N2

MeO2C

O2S NO2

Cat-1 (2 mol%)Benzene, rt.

92%, 96:4 d.r.O2S

MeO2C

NO2

N2

MeO2C

O2S Ar

Cat-1 [Co]MeO2C

O2S Ar

H-abstraction [Co]MeO2C

O2S ArSubstitution

O2S

MeO2C Ar

NN

N NCo

iPr iPr

iPr iPr

NHO

H

H

tBu

NHO

HH

tBu

HN

HNO

OH

H

H

H

tBu

tBu

Cat-1

Zhang, X. P. et. al. Chem. Sci. 2015, 6, 1219.

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

19

Reactions Using Chiral Organocatalysts

20

HN

O

I HN

O H

81%, 84% ee

Bu3SnH, BEt3, toluene, –78 ºC

NH

OMeMe

Me

N

O

(2.5 eq.)N

OMeMe

Me

N

O

H O

NH H SnBu3

Hydrogen-bonding Organocatalysts

NHOMe

Me

Me N

O

OPh

NH

O

N

toluene, –40 ºC, hυ

PET catalyst (30 mol%)

NH

O

NN

OMe

Me

Me NO

HOPh

H

N

OH

N

64%, 70% ee

Ph

ONNMe2

HO NHNMe2Ph

O

OP

O

OH

SiPh3

SiPh3

(10 mol%)

90%, 92% ee

[Ir(ppy)2(dtbpy)]PF6 (2 mol%)dioxane, rt., hυ

NH

EtO2C CO2EtH H

Me Me

PhO H

NNMe2

O PO O

O*

Bach, T. et. al. Angew. Chem. Int. Ed. 2004, 43, 5849.

Bach, T. et. al. Nature 2005, 436, 1139.

Knowles, R. R. et. al. J. Am. Chem. Soc. 2013, 135, 17735.

Reactions Using Chiral Organocatalysts

21

Jang, D. O. et. al. Chem. Commun. 2006, 5045.

HO

O

H

NOBn

RI (5 eq.), QP (2 eq.)BEt3 (0.5 eq.)/O2

DCM/H2O, rt.HO

O

R

NHOBn

Entry RI Yield (%) R:S

1

2

3

nOctI

iPrI

tBuI

50

83

60

40:60

21:79

1:>99

HO

O

H

NOBn

RI (5 eq.), QDP (2 eq.)BEt3 (0.5 eq.)/O2

DCM/H2O, rt.HO

O

R

NHOBn

Entry RI Yield (%) R:S

1

2

3

nOctI

iPrI

tBuI

50

83

60

58:42

62:38

>99:1

OH

OMe

N

NHH2PO2

Quinine, QP

OH

OMe

N

NH

H2PO2Quinidine, QDP

Chiral Brønsted Acids

OH

OMe

N

NH

H2PO2

O N

HO H

O

•R

Si-face attack

Reactions Using Chiral Organocatalysts

22

Chiral Amine Catalysts–SOMO Activation

R H

O+

R'SiMe3

RH

OR'

CAN (2 eq.), NaHCO3

DME, –20 ºC

NH

NO Me

tBuPh

•CF3COOH

(20 mol%)

70–88%, 87–95% ee

H

O

Me NH

NO Me

tBuPh

IP ≈ 9.8 eV IP ≈ 8.8 eV

N

NO Me

tBuPh

MeIP ≈ 7.2 eV

N

NO Me

tBuPh

MeSOMO-activated

NH

NO Me

tBuPh

N

NO Me

tBuPh

R

N

NO Me

tBuPh

R

N

NO Me

tBuPh

R

N

NO Me

tBuPh

RMe3Si

N

NO Me

tBuPh

RMe3Si

RH

O

RH

O

H

CANoxidation

CANoxidation

SiMe3

N

NO Me

tBuPh

R

MacMillan, D. W. C. et. al. Science 2007, 316, 582.

Reactions Using Chiral Organocatalysts

23

Chiral Amine Catalysts–SOMO Activation

R H

O+

RH

OON

FeCl3, NaNO2, O2

NH

NO Me

Me

Ph (20 mol%)49–78%, up to 90% ee

NO

Me

R H

O+

55–92%, 86–96% eeNH

NO Me

tBuPh (20 mol%)

R'

OTMS

RH

OR'

O

CAN (2 eq.), DTBP, H2OAcetone, –20 ºC

R H

O+

61–93%, 89–96% eeNH

NO Me

tBuPh (20 mol%)

R'R

H

OR'

KF3B

CAN (2 eq.), NaHCO3, H2ODME, –50 ºC

Sibi, M. P. et. al. J. Am. Chem. Soc. 2007, 129, 4124.

MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2007, 129, 7004.

MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2008, 130, 398.

Reactions Using Chiral Organocatalysts

24

Merge Photoredox with Organocatalysis

H

OnBu + Br Ph

O Fluorescent lightOrganocatalyst, Ru(bpy)3Cl2

2,6-lutidine, DMF, rt.H

OPh

Hex O

84%, 96% ee

RuN

N

NN

N

N

2+

2Cl–

Ru(bpy)3Cl2

NH

NO Me

Me tBu

Organocatalyst

•HOTf

NH

NO Me

Me tBu

N

NO Me

Me tBu

R

RH

O

N

NO Me

tBu Me

R O

Ph

N

NO Me

tBu Me

R O

Ph

H

OPh

R O

Ru(bpy)32+*

Ru(bpy)32+

Ru(bpy)3+hυ

Si-face open

Br–

Br Ph

O Ph

O

Ph

O

MacMillan, D. W. C. et. al. Science 2008, 322, 77.

Reactions Using Chiral Organocatalysts

25

H

OR +

Ir(ppy)2(dtb-bpy)PF6 (0.5 mol%)

2,6-lutidine, DMF, –20 ºCH

OCF3

R

90–99% ee

NH

NO Me

Me tBu•TFA

(20 mol%)

CF3I

H

OR +

fac-Ir(ppy)3 (0.5 mol%)

2,6-lutidine, DMSO, rt.H

O

R

87–97% ee

(20 mol%)NH

NO Me

Bn Me•HOTf

Br Ar Ar

MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2009, 131, 10875.

MacMillan, D. W. C. et. al. J. Am. Chem. Soc. 2010, 132, 13600.

Contents

– Introduction

– Reactions Using Chiral Auxiliary

– Chiral Lewis Acid-Mediated Reactions

– Transition Metal-Catalyzed Reactions

– Reactions Using Chiral Organocatalysts

– Miscellaneous

26

Chiral Organotin Hydride or Chiral Thiols

27

Maruoka, K. et. al. Nature Chem. 2014, 6, 702.

Br

O

OEt

O

OEt

lewis acid (1 eq.)stannane (1.1 eq.)

9-BBN, toluene, –78 ºC

75%, 96% ee

NMn

N

O OCl tBu

tButBu

tBu

NMe2

SnH(men)2

men =

CO2BnCO2Bn

+ tBuOCO2Bn

CO2BntBuO

OH SH

Me

SitBu(4-CF3C6H4)2

R

R

R = 10-Bu-9-anthryl(3 mol%)

Benzoyl peroxide, toluene, rt., hυ

95%, 95:5 d.r., 86% ee

OH S

Me

Si

R

RtBu

Ar Ar

OtBu

BnO2C

BnO2C

Chiral Organotin Hydride

Chiral Thiol

Schiesser, C. H. et. al. Chem. Commun. 1999, 1665.

Solid-State Photochemistry

28

Scheffer, J. R.; Trotter, J. et. al. J. Am. Chem. Soc. 1986, 108, 5648.

iPrO2C

CO2iPr

hυ, solidCO2iPriPrO2C

P212121 (chiral) 95% ee

SN Bn

H PhH

P21 (chiral)

hυ, solid

SN Bn

PhH

NS Bn

HPh

81% ee, 100% conv.

Phtochemistry in Chiral Crystals

Sakamoto, M. et. al. J. Am. Chem. Soc. 1996, 118, 10664.

Enzyme-catalyzed Reactions

29

Hyster, T. K. et. al. Nature 2016, 540, 414.

Biocatalysis

O

O

nBr

R

Racemic

O

O

n

R O

O

n

R

RasADH (1 mol%)NADP+ (1 mol%)

GDH-105, glucose, TRISGlycerol, DMSO

460 nm hυ, rt.

LKADH (0.25 mol%)NADP+ (0.4 mol%)

kPi, iPrOH, DMSO460 nm hυ, rt.

O

O

O

OF

O

O

Me

O

O

Ph

Ras-ADH47%, e.r. 97/3

LKADH91%, e.r. 2/98

Ras-ADH79%, e.r. 3/97

LKADH56%, e.r. 4/96

Ras-ADH29%, e.r. 80/20

LKADH80%, e.r. 4/96

Ras-ADH82%, e.r. 81/19

LKADH74%, e.r. 9/91

N

NN

NNH2

O

OHOH

OP

O

P

OO

O OO N

O

OHOH

NH2

O

NAD+

Acknowledgements

30