astroii datasheet 1

85
CME-M5 Family Data Sheet September 2014 Capital Microelectronics Co., Ltd.

Upload: others

Post on 21-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AstroII Datasheet 1

CME-M5 Family

Data Sheet

September 2014

Capital Microelectronics Co., Ltd.

Page 2: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 1

Notes

Copyright © 2014 Capital Microelectronics,

Inc. All rights reserved.

No part of this document may be copied,

transmitted, transcribed, stored in a retrieval

system, or translated into any language or

computer language, in any form or by any

means, electronic, mechanical, magnetic,

optical, chemical, manual or otherwise, without

the written permission of Capital

Microelectronics, Inc. All trademarks are the

property of their respective companies.

Version Part Number

CME-M5DSE08

Contact Us

If you have any problems or requirements

during using our product, please contact

Capital Microelectronics, Inc. or your local

distributors, or send e-mail to

[email protected]

Environmental Considerations

To avoid the harmful substances being

released into the environment or harming

human health, we encourage you to recycle this

product in an appropriate way to make sure that

most of the materials are reused or recycled

appropriately. Please contact your local

authorities for disposal or recycle information.

Warranty

The information in this document has been

carefully checked and is believed to be entirely

reliable. However, no responsibility is assumed for

inaccuracies. Furthermore, Capital

Microelectronics, Inc. reserves the right to

discontinue or make changes, without prior notice,

to any products herein to improve reliability,

function, or design.

Capital Microelectronics, Inc. advises its

customers to obtain the latest version of the

relevant information to verify, before placing

orders, that the information being relied upon is

current.

The product introduced in this book is not

authorized for use as critical components in life

support devices or systems without the express

written approval of Capital Microelectronics, Inc.

As used herein: 1. Life support devices or systems

are devices or systems that (a) are intended for

surgical implant into the body or (b) support or

sustain life, and whose failure to perform, when

properly used in accordance with instructions for

use provided in the labeling, can be reasonably

expected to result in a significant injury to the user.

2. A critical component is any component of a life

support device or system whose failure to perform

can be reasonably expected to cause the failure of

the life support device or system, or to affect its

safety or effectiveness.

Page 3: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 2

Revision History

The table below shows the revision history for this document.

Date Version Revision

June 2012 1.0 Initial release.

July 2012 1.1 First updated.

October 2012 CME-M5DSE03 Update new device name and FBGA256 package

November 2012 CME-M5DSE04 IO38/MSEL_2->IO39/MSEL_2

EMIF Read Waveform modified

April 2013 CME-M5DSE05

Update the MSS peripheral information;

Update the Device-package, see Table 2;

Add the information about GUBF, see section GBUF;

Update figures: Figure 1, Figure 24, etc.;

Revise bugs in the manual.

November 2013 CME-M5DSE06

Add QFN68 Pin Package, see P75 and P79

The Temperature Range in Industrial level is changed

from (TJ = -40°C to +100°C) to (TJ = -40°C to +125°C),

see P82;

In SDR mode, the read port 256x16 does not support the

following write ports:

4K × 1, 2K × 2, 1K × 4 and 512 × 8, see Table 8;

ISCHEADER3 is updated from 0x2A to 0x22, see

ISCHEADER3 = 0x22;

The max TD Junction temperature is corrected from -85°C

to 125°C, see Table 37.

March 2014 CME-M5DSE07

Update dimensions of LQFP144 Low-profile Quad

Flat-Pack Package Specifications, TQFP100 Thin

Quad Flat-Pack Package Specifications and QFN68

Package Specifications;

Update the 9 Ordering Information;

Correct the formula of PLL configuration in section of

MSS in System Clock Configuration;

Change the Pins of QFN68 Package Pin List:

Pin 20 is changed from IO15_0 to IO15_1;

Pin 21 is changed from IO16_0 to IO16_1;

Pin 22 is changed from IO17_0 to IO17_1;

Pin 23 is changed from IO18_0 to IO18_1;

Page 4: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 3

Date Version Revision

September 2014 CME-M5DSE08

Update Table 39 Supply Voltage Ramp Rate:

The minimum Supply Voltage Ramp Rate of VCCINT is

changed from 10us to 10ms and the VCCINT must be

powered to threshold before the VCCIO.

Add Figure 38 Power on waveform.

Page 5: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 4

Table of Contents

Notes .......................................................................................................................................................... 1

Revision History ....................................................................................................................................... 2

Table of Contents ..................................................................................................................................... 4

Before You Start ........................................................................................................................................ 7

About this Guide .................................................................................................................................. 7

CME-M5 Family FPGA Introduction .................................................................................................... 7

1 CME-M5 Family FPGA Features ...................................................................................................... 8

1.1 CME-M5 Family FPGA Feature Summary ........................................................................... 9

1.2 Architecture Overview ........................................................................................................ 10

2 FPGA ................................................................................................................................................ 12

2.1 Programmable Logic Block (PLB) ...................................................................................... 12

2.1.1 LP ................................................................................................................................... 12

(1) Look-Up Table ............................................................................................................ 13

(2) Register ...................................................................................................................... 13

(3) Carry, Cascade and Arithmetic Logic ........................................................................ 13

2.2 LE ....................................................................................................................................... 14

(1) LE Cascade ............................................................................................................... 14

(2) LE Carry and Skip ...................................................................................................... 14

(3) LE Shift ....................................................................................................................... 14

2.3 Embedded Memory Block .................................................................................................. 14

2.3.1 EMB5K Port Definitions ................................................................................................. 15

2.3.2 EMB5K Operations ........................................................................................................ 16

2.3.3 EMB5K Operation Mode ................................................................................................ 17

(1) EMB5K True Dual-port ............................................................................................... 17

(2) EMB5K Simple Dual-port ........................................................................................... 18

(3) EMB5K Single-port .................................................................................................... 19

2.3.4 Conflict Avoidance ......................................................................................................... 20

2.4 DSP Block ........................................................................................................................... 20

2.4.1 DSP Primitive ................................................................................................................. 20

2.4.2 DSP Usage Mode .......................................................................................................... 22

(1) Multiplier ..................................................................................................................... 23

(2) Multiplier and adder ................................................................................................... 23

(3) Multiplier and Accumulator......................................................................................... 24

2.5 Embedded Single Port SRAM ............................................................................................ 24

2.5.1 SRAM Port Definitions ................................................................................................... 24

2.6 Input/output Blocks ............................................................................................................. 25

2.6.1 Pull-Up/Down/Keeper Resistors .................................................................................... 27

Page 6: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 5

2.6.2 ESD Protection .............................................................................................................. 27

2.6.3 Drive Strength ................................................................................................................ 27

2.6.4 The Organization of IOBs into Banks ............................................................................ 27

2.6.5 The I/Os During Power-On, Configuration, and User Mode ......................................... 28

2.7 Interconnect ........................................................................................................................ 28

2.8 PLL ..................................................................................................................................... 29

2.8.1 PLL features................................................................................................................... 29

2.8.2 PLL Hardware Description ............................................................................................. 29

2.8.3 PLL Primitive Port Signal Definitions ............................................................................. 30

2.8.4 Clock Feedback Modes ................................................................................................. 32

(1) Internal Feedback Mode (Frequency Synchronous Mode) ....................................... 33

(2) External Feedback Mode ........................................................................................... 33

2.9 Global Clock & Reset Resources ....................................................................................... 34

2.9.1 External Crystal Input .................................................................................................... 35

2.9.2 Clocking Infrastructure ................................................................................................... 35

2.9.3 GBUF ............................................................................................................................. 36

2.9.4 Clock Switch .................................................................................................................. 37

3 MSS Subsystem .............................................................................................................................. 39

3.1 8051 Instantiation ............................................................................................................... 40

3.1.1 8051 Macro Primitive Description .................................................................................. 40

3.2 Multiplex of P Port Pins ...................................................................................................... 42

3.3 MSS Clock Description ....................................................................................................... 43

3.4 MSS Memory Map .............................................................................................................. 43

3.5 MSS External Memory Interface (EMIF) ............................................................................ 44

(1) Synchronous EMIF .................................................................................................... 44

(2) Asynchronous EMIF .................................................................................................. 45

3.6 RTC..................................................................................................................................... 46

3.7 MSS in System Management ............................................................................................. 47

3.7.1 Device Register ............................................................................................................. 47

3.7.2 ISC Register Frame ....................................................................................................... 48

3.7.3 Extended SFR ............................................................................................................... 48

3.7.4 MSS In System Configuration ....................................................................................... 49

3.7.5 MSS in System Clock Configuration ............................................................................. 51

(1) PLL Configuration ...................................................................................................... 51

(2) GCLK Dynamic Switch .............................................................................................. 51

(3) MSS Clock Dynamic Switch ...................................................................................... 52

4 Configuration and Debug ............................................................................................................... 53

4.1 Configuration Mode ............................................................................................................ 53

4.1.1 AS Mode ........................................................................................................................ 53

4.1.2 PS Mode ........................................................................................................................ 54

4.1.3 JTAG Mode .................................................................................................................... 55

4.2 SPI Flash ............................................................................................................................ 55

(1) Using embedded SPI-Flash ....................................................................................... 55

Page 7: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 6

(2) Using External SPI-Flash........................................................................................... 56

4.3 ISC ...................................................................................................................................... 56

4.4 Debug ................................................................................................................................. 56

4.5 Power-On-Reset (POR) ..................................................................................................... 56

4.6 eFUSE Program ................................................................................................................. 57

5 Security ............................................................................................................................................ 58

5.1 Bitstream Generation Security Level .................................................................................. 58

(1) prot_flagn ................................................................................................................... 58

(2) read_disable0 ............................................................................................................ 59

(3) read_disable1 ............................................................................................................ 59

5.2 On-Chip eFuse ................................................................................................................... 59

5.3 Embedded SPI-Flash Hidden Bitstream ............................................................................ 59

5.4 AES Security ...................................................................................................................... 60

6 DC & Switching Characteristics .................................................................................................... 61

6.1 DC Electrical Characteristics .............................................................................................. 61

6.1.1 Absolute Maximum Ratings ........................................................................................... 61

6.1.2 Power Supply Specifications ......................................................................................... 61

6.1.3 General Recommended Operating Conditions ............................................................. 62

6.2 Switching Characteristics ................................................................................................... 65

6.2.1 Clock Performance ........................................................................................................ 66

6.2.2 I/O Performance ............................................................................................................ 66

6.2.3 PLB Performance .......................................................................................................... 66

6.2.4 EMB5K Performance ..................................................................................................... 66

6.2.5 DSP Performance .......................................................................................................... 67

7 Pins and Package............................................................................................................................ 68

7.1 Pins Definitions and Rules ................................................................................................. 68

7.2 Pin List ................................................................................................................................ 69

7.2.1 LQFP144 Package Pin List ........................................................................................... 69

7.2.2 TQFP100 Package Pin List ........................................................................................... 72

7.2.3 FBGA256 Package Pin List ........................................................................................... 73

7.2.4 QFN68 Package Pin List ............................................................................................... 76

7.3 Package Information .......................................................................................................... 77

7.3.1 LQFP144 Low-profile Quad Flat-Pack Package Specifications .................................... 77

7.3.2 TQFP100 Thin Quad Flat-Pack Package Specifications .............................................. 78

7.3.3 FBGA256-Pin FineLine Ball-Grid Array (FBGA) – THIN – Wire Bond .......................... 79

7.3.4 QFN68 Package Specifications ..................................................................................... 80

8 Developer Kits ................................................................................................................................. 81

9 Ordering Information ...................................................................................................................... 82

10 Legends ...................................................................................................................................... 84

Page 8: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 7

Before You Start

About this Guide

This guide is only a part of an overall of documentation on CME-M5 family FPGA. It serves as a

technical reference guiding you to be familiar with the CME-M5 family FPGA module with its heart

functions and characteristics.

The CME-M5 Family FPGA consists of CME-M5 C, CME-M5 R and CME-M5 P series FPGA

modules. And this manual is available for all modules contained in this family except where

noted.

For the detailed information of this family module, please go to http://www.capital-micro.com.

Note:

CME-M5 Family FPGA is just a name that replaces the manuals of CME3000-M and CME3000-C FPGA

Data Sheet.

CME-M5 Family FPGA Introduction

CME-M5 family FPGA has C, R and P three series devices.

The C series devices are an intelligent device integrated enhanced 8051 MCU and high performance

FPGA, which can fulfill customized system design and IP protection (128 bit AES). Embedded optimized

RAM confers the highest speed and performance on 8051 processor hardcore. Designers can design

FPGA with CME’s Primace as well as embedded design with third party EDA tool KeilTM conveniently

and quickly. Based on CME-M5 single chip, CAP (Configurable Application Platform on chip) is ideal for

hardware and embedded designers who need a true system-on-chip (SoC) solution that gives more

flexibility than traditional fixed-function microcontrollers and is more cost-efficient than FPGAs-without

the excessive cost of soft processor cores on traditional FPGAs.

The R series devices are with no hard MCU core and P series devices are special for tradition FPGA

application with no hard MCU core and large embedded SRAM.

The three series FPGA can be used widely in industry, medical, communication system,

consumer electronics, etc.

Page 9: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 8

1 CME-M5 Family FPGA Features

FPGA

SRAM-based FPGA Fabric

- Up to 6144 4-input Look-up Tables, 4096

DFF-based registers

- Performance up to 250MHz

Embedded RAM Block Memory

- 32 4.5Kbit programmable dual-port

DPRAM memory EMB5K blocks

Embedded DSPs block

- 16 18x18 DSP (MAC) blocks

Clock Network

- 8 de-skew global clocks

- 2 PLLs support frequency multiplication,

frequency division, phase-shifting,

de-skew

- 8 external input clocks, 1 external crystal

clock input

I/O

- 3.3/2.5/1.8/1.5V LVTTL/LVCMOS support

- Programmable Pull-Up, Pull down and

Bus Keeper control

- Programmable driver strength: 2, 4, 8, 12,

16 mA

- Level slope ratio control

MSS

Enhanced 8051 MCU

- Reduced instruction cycle time (Up to 12

times in respect to standard 8051),

frequency up to 200MHz

- Compatible to 8051 instruction system

- Support up to 8MB data/code memory

extension

- Support hardware 32/16-bit MDU

- On-chip debugger system (OCDS)

- 8-channel DMA

Embedded SRAM Memory

- 128KByte single-port SRAM

- Data/code unified addressing, flexible

memory configuration

Peripheral

- 3 16-bit Timers

- 1 I2C interface

- 1 SPI interface

Master rate up to 100Mb/s @200MHz

Slave rate up to 25Mb/s @200MHz

- 2 Full Duplex Serial Interfaces, the rate is

up to 6.25Mb/s @200MHz

- Enhanced hardware operation unit

supports multiplication, division, skip and

normalization.

STOP, IDLE Mode Power Management

In System Management

- ISC Control

- Dynamic clock management in system

Configuration

Configuration Mode

- JTAG Mode

- AS Mode

- PS Mode

JTAG Interface

- JTAG Chip Configuration

- JTAG 8051 Debugging

Dynamic/Multi-configuration Image Support

Security

Encrypted Bitstream with 128-bit AES

Based Efuse and SPI Flash security settings

control accessing the device memory

Protection against copying, overbuilding,

cloning and tampering with both of

customer's FPGA and 8051 firmware IP

Package

TQFP-100

LQFP-144

FBGA-256

QFN-68

Page 10: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 9

1.1 CME-M5 Family FPGA Feature Summary

Table 1 CME-M5 C Series FPGA Feature Summary

Series Device (1) LUT

Programmable

Logic

Block(PLB) (2)

Embedded

Memory

Block

SRAM

(3)

DSP

Block

(4)

PLL Flash MCU

Max

User

I/O LP Register 4.5Kb Max

C

M5C03N0 3072 1024 2048 32 144Kb 128KB 16 2 - 1 186

M5C06N0 6144 2048 4096 32 144Kb 128KB 16 2 - 1 186

M5C03N3 3072 1024 2048 32 144Kb 128KB 16 2 4Mb 1 186

M5C06N3 6144 2048 4096 32 144Kb 128KB 16 2 4Mb 1 186

R

M5R03N0 3072 1024 2048 32 144Kb 128KB 16 2 - - 186

M5R06N0 6144 2048 4096 32 144Kb 128KB 16 2 - - 186

M5R03N3 3072 1024 2048 32 144Kb 128KB 16 2 4Mb - 186

M5R06N3 6144 2048 4096 32 144Kb 128KB 16 2 4Mb - 186

P

M5P03N0 3072 1024 2048 32 144Kb - 16 2 - - 186

M5P06N0 6144 2048 4096 32 144Kb - 16 2 - - 186

M5P03N3 3072 1024 2048 32 144Kb - 16 2 4Mb - 186

M5P06N3 6144 2048 4096 32 144Kb - 16 2 4Mb - 186

Note:

(1) C: FPGA + SRAM (used by MCU) + MCU; R: FPGA + SRAM; P: FPGA.

‘N0’: indicates device contains no Flash, ‘N3 ’indicates that device contains 4Mb Flash.

(2) Each CME-M5 PLB contains 4 LPs (Logic parcel). Each LP contains 3 LUTs, 2 registers.

(3) M5CXX series devices: SRAM could only be used by MCU; M5RXX series devices: SRAM could be

used by FPGA.

(4) Each DSP Block contains an 18 x 18 multiplier with 41 bits accumulator, an adder. Each DSP Block

can also support 2 independent 12 x 9 multipliers with 21 bits accumulator.

Table 2 CME-M5 FPGA Device-Package and Available I/Os

Package TQFP100 LQFP144 FBGA256 QFN68

Pitch(mm) 0.5 0.5 1.0 0.4

Body Size(mm) 16 x 16 22 x 22 17 x 17 8 x 8

Device User I/O User I/O User I/O User I/O

M5x03N0 69 100 186 46

M5x06N0 69 100 186 46

M5x03N3 69 100 186 46

M5x06N3 69 100 186 46

Page 11: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 10

1.2 Architecture Overview

The CME-M5 FPGA architecture consists of 5 fundamental programmable functional tiles and an

enhanced 8051 MSS. The PLBs, IOBs, EMB, DSPs and PLLs make up the FPGA. The enhanced 8051

and SRAM make up the MSS. The EMB and DSP can be called as special function block (SFB).

Programmable Logic Blocks (PLBs) contain RAM-based Look-Up Tables (LUT-4) to implement

logic and storage elements that can be used as flip-flops. PLBs can be programmed to perform a

wide variety of logical functions as well as to store data.

Embedded Memory Block provides data storage in the form of 4.5K bit dual-port blocks.

DSPs accept two 18-bit binary numbers as inputs and calculate the product. The DSP block

includes special DSP multiply-accumulate blocks.

Phase (PLL) blocks provide self-calibrating, fully digital solutions for distributing, delaying,

multiplying, dividing, and phase shifting clock signals.

Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the

device. Each IOB supports bidirectional data flow plus 3-state operation.

The monocycle enhanced 8051 CPU is used as central processing unit, whose instruction set is

compatible with standard ASM51 completely.

The embedded 128KB SRAM is only used as the 8051 coding and data memory for C Series

devices.

These elements are organized as shown in figure below. A ring of IOBs surrounds a regular array of

PLBs. The CME-M5 family FPGA has a single column of block EMB and DSP in the array. The PLLs and

GCLK_CTRL blocks are positioned at the top and bottom right corner. The 8051 and SRAM memory are

laid out at the right side of the diagram. All these elements include the Xbars that interconnect the

functional elements, transmitting signals among them.

Page 12: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 11

SPI

Config /

JTAG

80

51

64KB SRAM

64KB SRAM

PLL

GCLK_Ctrl

PLLGCLK_Ctrl

200um 300um

RTC

Digital

RT

C a

na

log

Efu

se

ES

D

IOBs

IOBs

IOBs

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

EMB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

MAC

MAC

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

IOBs

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r26

r23

r24

r25

r27

r32

r28

r29

r30

r31

C1 C2 C3 C4 C7 C8 C9C1

0

C1

2

C1

3

C1

4

C1

5

C1

6

C1

7

C1

8

C1

9C5 C6

C1

1

Figure 1 CME-M5 FAMILY FPGA Architecture

Page 13: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 12

2 FPGA

The CME-M5 FAMILY FPGA consists of up to 512 PLBs, 32 EMB5K blocks, 16 18x18 DSPs and 2 PLLs.

This chapter describes these element blocks.

2.1 Programmable Logic Block (PLB)

The Programmable Logic Block (PLB) is the fabric basic logic tile that is composed of LE and Xbar. The

PLB is the basic tile of the Fabric. Their organization is shown in the following figure. One LE contains

four interconnected Logic Parcels (LP). The LE constitutes the main logic resource for implementing

synchronous as well as combinatorial circuits.

The Xbar switches and passes the signals between the tile elements.

Xbar

LP3

LP2

LP1

LP0

LE

PLB

Figure 2 PLB Schematic Diagram

The PLBs are arranged in a regular array of rows and columns, as shown in Figure 1.

The CME development software designates the location of a PLB according to its C and R coordinates,

starting in the bottom left corner, as shown in Figure 1. The letter ‘C’ followed by a number identifies

columns of PLBs, incrementing from the left side of the die to the right. The letter ‘R’ followed by a

number identifies the position of each PLB in the CLB row, incrementing from the bottom of the die.

2.1.1 LP

LP is the basic programmable logic element. The LP has the following elements to provide logic,

arithmetic functions, as shown in the figure below.

Three 4-input LUT function generators

Two registers

Carry, cascade and arithmetic logic

Page 14: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 13

LUT4

4_1

LUT4

0

LUT4C

4_0

di

di

4

0

f0[8]

f1[8]

f2[8]

byp[8]

byp[12]

f0[4]

f1[4]

f2[4]

fy[0]

byp[4]

f0[0]

f1[0]

f2[0]

dy[0]

qx[4]

dx[4]

qx[0]

dx[0]

byp[0]

fast cascade to next PLB

Lut5 cascades

from next LP up

dx4bcarry output

din[0]

shift

a_sr

en

shift

a_sr

en

shift up/down

shift up/down

fast cascade to next LP above

fast cascades

from prev PLB

clk

fx4b

shift[1:0]

Ca

sca

de

Ge

n

Ca

sca

d

e G

en

LU

T5

Ge

n

LUT5

Gen

din[1]

carry input

din[1:0]

Figure 3 LP Schematic Diagram

(1) Look-Up Table

The Look-Up Table or LUT is a RAM-based function generator and is the main resource for

implementing logic functions. Each of the three LUTs in a LP has four logic inputs (f0-f3) and a single

output (d). Any four-variable Boolean logic operation can be implemented in one LUT. Functions with

more inputs can be implemented by cascading LUTs that are in one LP or adjacent LPs.

(2) Register

The register is a programmable D-type flip-flop. There are two level multiplexers on the D input select of

the registers. The first level multiplexer selects either the LUT combinatorial output or the bypass signal

byp[x]. The second level multiplexer selects either the first level multiplexer output signal byp[x] or signal

shift. The shift signal is from the next up/down relative register output qx.

The storage element output, qx, offers three possible paths:

Drives the interconnect line directly

Feedbacks to the LUT input

Cascade to the next up/down relative storage element signal shift

(3) Carry, Cascade and Arithmetic Logic

The vertical up cascading from near down LP feeds the LUT0 input, the LUT40 or LUT41 generates the

cascading output. Functions with more inputs can be implemented by cascading LUTs between PLBs.

The carry chain, together with various dedicated arithmetic logic gates, support fast and efficient

implementations of math operations such as adders, counters, comparators, multipliers, wide logic gates,

and related functions. The carry logic is automatically used for most arithmetic functions in a design. The

gates and multiplexers of the carry and arithmetic logic can also be used for general-purpose logic,

Page 15: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 14

including simple wide Boolean functions.

The carry input from LUT40 of the near down LP enters the LUT40 and the LUT40 generates the carry

out which can be cascaded to next up LUT40.

2.2 LE

The LE contains 4 LPs and Carry Ship, Register Control circuitry which make LE implement many

complex functions, such as cascading, Carry and Skip, LE Shift. These functions provide higher

performance and lower resources usage than normal LUT implemented because these connections are

hardware logic and connections.

(1) LE Cascade

The LEs can be cascaded vertically and horizontally to implement large and complex functions.

(2) LE Carry and Skip

The LEs can implement flexible carry function with skip 4 and skip 8 fast carry logics.

(3) LE Shift

The LE registers can be cascaded to implement the register shift up or down vertically with next up LE

register.

2.3 Embedded Memory Block

CME-M5 family device supports embedded memory block (EMB), which is organized as one column

total 32 4.5Kbit EMB5K. EMB5K module is a true dual-port memory that permits independent access to

the common EMB block. Each port has its own dedicated set of data, control and clock lines for

synchronous read and writes operations. EMB5K provides the features as below:

4.5Kbits

Mixed clock mode

A, B data width configured independently

Support write data through output

Parity bit. The EMB5K blocks support a parity bit for each byte. The parity bit, along with internal LC,

can implement parity checking for error detection to ensure data integrity. Parity-sized data words

can be used to store user-specified control bits.

Initialization support. The format of initialization file is either .hex or .dat (a hexadecimal number

each line, the number of lines depends on depth of EMB5K). Initialization files initialize EMB5K

memory during configuration.

Two EMB5K cascade

Three Memory Modes available. EMB5K can be configured into the following modes:

- emb_tdp

Page 16: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 15

- emb_sdp

- emb_sp

2.3.1 EMB5K Port Definitions

The dual-port primitive EMB5K signals are defined in the following table.

Table 3 EMB5K Port Definition

Port Name Type Width Description

clka I 1 Input clock for port A

cea I 1 Chip enable for port A

wea I 1 Write enable for port A

aa I 12 Address line for port A

da I 18 Data input for port A

clkb I 1 Input clock for port B

ceb I 1 Chip enable for port B

web I 1 Wire enable for port B

ab I 12 Address line for port B

db I 18 Data input for port B

q O 18 Memory data q output

wq_in I 9 Input from paired EMB5K for wide true dual port mode

wq_out O 9 Output to paired EMB5K for wide true dual port mode

Table 4 EMB5K Parameters

Parameters Type Description

modea_sel string

Port a usage mode setting:

256x18, 512x9, 1kx4, 2kx2, 4kx1, wtdp (wide true dual port)

Default: 256x18

modeb_sel string

Port b usage mode setting:

256x18, 512x9, 1kx4, 2kx2, 4kx1, wtdp (wide true dual port)

Default: 256x18

porta_wr_through string

Bypassing of write data from write port to read port enable for port a,

true or false

Default: false

portb_wr_through string

Bypassing of write data from write port to read port enable for port b,

true or false

Default: false

init_file string EMB initial file

Default: “” (No initial file)

operation_mode string EMB working mode, just for simulation

true_dual_port, single_port, simple_dual_port

porta_data_width string EMB port a data width

Page 17: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 16

Parameters Type Description

portb_data_width string EMB port b data width

2.3.2 EMB5K Operations

Writing data to and accessing data from the EMB5K are synchronous operations that take place

independently on each of the two ports.

When the we and ce signals enable the active edge of clk, data at the d input bus is written to the

EMB5K location addressed by the a lines. There are two write actions which are selected by wr_through

parameter. The write data is also passed to q output bus if the wr_through is true during the writing

process. The q output bus value will be the previous read output value during the writing process if the

wr_through is false. The two operation waveforms are shown in Figure 4 and Figure 5.

clk

ce

we

a

d

q

mem[bb]FFFF

men[ab]

FFFF

ab bb

0000

Figure 4 wr_through is false Waveform

Page 18: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 17

1

1

clk

ce

we

a

d

q

mem[bb]

mem[ab]

FFFF

FFFF0000

ab bb

FFFF

Figure 5 wr_through is true Waveform

2.3.3 EMB5K Operation Mode

(1) EMB5K True Dual-port

EMB5K supports any combination of dual-port operation: two read ports, two write ports, or one read and

one write at different clock frequencies. The following figure shows true dual-port memory configuration.

Port A Port B

da[]

cea

clka

qa[]

db[]

ceb

clkb

EM

B5

K

qb[]

aa[] ab[]

wea web

Figure 6 True Dual-port Memory Mode

Table 5 Port Descriptions of True Dual-port Memory Mode

Port Name Type Description

aa (b) Input Port A (B) Address.

da (b) Input Port A (B) Data Input.

Page 19: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 18

Port Name Type Description

qa (b) Output Port A (B) Data Output.

wea (b) Input Port A (B) Write Enable. Data is written into the dual-port SRAM upon the

rising edge of the clock when both wea (b) and cea (b) are high.

cea (b) Input Port A (B) Enable. When cea (b) is high and wea (a) is low, data read from the

dual-port SRAM address aa (b). If cea (b) is low, qa (b) retains its value.

clka (b) Input Port Clock.

Table 6 True Dual-port Configurations

A Port B Port

4K×1 2K×2 1K×4 512×8 512×9 256×16 256×18

4K × 1 √ √ √ √

2K × 2 √ √ √ √

1K × 4 √ √ √ √

512 × 8 √ √ √ √

512 × 9 √

256 × 16

256 × 18

(2) EMB5K Simple Dual-port

EMB5K also supports simple dual-port memory mode: one read port while one write port. The following

figure shows simple dual-port memory configuration.

dw[]

cew

aw[]

qr[]

ar[]

EM

B5K

cer

clkw clkr

Figure 7 Simple Dual-port Memory Mode

Table 7 Port Descriptions of Simple Dual-port Memory Mode

Port Name Type Description

dw Input Write Data

aw Input Write Address

clkw Input Write Clock

cew Input Write Port Enable. Active high.

Page 20: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 19

Port Name Type Description

qr Output Read Data

ar Input Read Address

cer Input Read Enable. Active high

clkr Input Read Clock

Table 8 Simple Dual-port Configurations

W Port Read Port

4K×1 2K×2 1K×4 512×8 512×9 256×16 256×18

4K × 1 √ √ √ √

2K × 2 √ √ √ √

1K × 4 √ √ √ √

512 × 8 √ √ √ √

512 × 9 √

256 × 16 √ √ √ √ √

256 × 18 √

(3) EMB5K Single-port

EMB5K also supports single-port memory mode as shown in the figure below.

we

ce

clk

q[]

EM

B5

K

a[]

d[]

Figure 8 Single-port Memory Mode

Table 9 Pin Description of Single-port Memory Mode

Port Name Type Description

d Input Write Data

a Input Write Address.

we Input Write Enable. Active high.

clk Input Write Clock.

ce Input Port Enable. Active high.

q Output Read Data

Table 10 Single-port Configuration

Port

4K×1 2K×2 1K×4 512×8 512×9 256×16 256×18

Page 21: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 20

2.3.4 Conflict Avoidance

In the dual-port memory mode, both ports can access any memory address at any time. When both ports

access the same address, the read and write behavior should observe certain clock timing restrictions.

These restrictions are applicable to both synchronous and asynchronous clocks.

2.4 DSP Block

The CME-M5 family devices have one column of 8 DSP MAC tiles. Within the DSP column, a single DSP

tile is combined with extra logic and routing.

+

dinx

diny

dinz

mac_out

acc_en

dinz_ensload

Xdinx_input_mode

mac_output_mode

diny_input_mode

dinz_input_mode

Figure 9 DSP Block

DSP tile contains an 18 x 18 two’s complement multiplier and a 40-bit sign-extended accumulator, a

function that is widely used in digital signal processing (DSP). Programmable pipelining of input

operands, intermediate products, and accumulator outputs enhances throughput.

DSP provides features as below:

18 x 18 two's-complement multiplier with a full-precision 36-bit result

Flexible 40-bit post-accumulator with optional registered accumulation feedback

Dynamic user-controlled operating modes to adapt DSP functions from clock cycle to clock cycle

Registers, ensuring maximum clock performance and highest possible sample rates with no area

cost

One DSP support 2 independent 12 x 9 multiplier with 21-bit accumulator

2.4.1 DSP Primitive

The following figure shows DSP (MAC) block.

Page 22: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 21

a_dinx[13:0]

a_sload

clk

MAC

a_diny[9:0]

a_dinz[20:0]

a_acc_en

a_dinz_en

rst_n

a_mac_out[20:0]

a_over_flow

b_dinx[13:0]

b_sload

b_diny[9:0]

b_dinz[20:0]

b_acc_en

b_dinz_en

b_mac_out[20:0]

b_over_flow

Figure 10 MAC Block

Table 11 Port Definition

Port Direction Width Description

a_dinx[13:0] I 14 Multiplicand inputs from ixbar to mult A MSBs, 6 bit LSBs

for usage in 18x18 mode.

b_dinx[13:0] I 14 Multiplicand inputs from ixbar to mult B MSBs.

a_diny[9:0] I 10 Multiplier input from ixbar to mult A, LSBs of multiplier

input in 18x18 mode.

b_diny[9:0] I 10 Multiplier input from ixbar to mult B, MSBs of multiplier

input in 18x18 mode.

a_dinz[20:0] I 21 Ixbar and bypass inputs to mult A post add and post add

LSBs in 18x18 mode.

b_dinz[20:0] I 21 Ixbar and bypass inputs to mult B post add and post add

MSBs in 18x18 mode.

a_sload I 1 sloadA, when asserted directly loads the post add input

into the accumulator.

b_sload I 1 sloadB, when asserted directly loads the post add input

into the accumulator.

a_acc_en I 1 Accumulator A enable.

Page 23: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 22

Port Direction Width Description

a_dinz_en I 1 Post adder A enable.

b_acc_en I 1 Accumulator B enable.

b_dinz_en I 1 Post adder B enable.

a_mac_out[20:0] O 21 Outputs to oxbar mult A.

b_mac_out[20:0] O 21 Outputs to oxbar mult B.

a_overflow O 1 mulA Overflow flag.

b_overflow O 1 mulB Overflow flag.

clk I 1 Clock input.

rstn I 1 Reset input, Active low.

Table 12 Parameter Table

Parameters Type Description

mode_sel string MAC working mode select, default: 000.

signed_sel string Set signed/unsigned multiplication, true or false, default: true.

adinx_input_mode string a_dinx input mode setting: bypass or register, default: bypass.

adiny_input_mode string a_diny input mode setting: bypass or register, default: bypass.

adinz_input_mode string a_dinz input mode setting: bypass or register, default: bypass.

amac_output_mode string a_mac_out output mode setting: bypass or register

Default: bypass.

bdinx_input_mode string b_dinx input mode setting: bypass or register, default: bypass.

bdiny_input_mode string b_diny input mode setting: bypass or register, default: bypass.

bdinz_input_mode string b_dinz input mode setting: bypass or register, default: bypass.

bmac_output_mode string b_mac_out output mode setting: bypass or register,

Default: bypass.

2.4.2 DSP Usage Mode

The DSP can be used as two dependent 12x9 A-MAC and B-MAC or one 18x18 MAC function. These

MACs have the same functions is shown as Figure 9. The CME Primace® deals with use input width and

maps to 12x9 A-MAC and B-MAC or one 18x18 MAC automatically.

Table 13 Port Description

Port name Type Description

clk Input Clock, posedge active.

rstn Input Reset, active low.

dinx Input Multiplier input (Range: 2~18).

diny Input Multiplier input (Range: 2~18).

dinz Input Input (Range: 2~40).

sload Input Accumulate load.

acc_en Input Accumulate enable, active high.

dinz_en Input Adder enable, active high.

mac_out Output Output (Range: 2~40).

Page 24: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 23

Port name Type Description

overflow Output Overflow, 1 overflow; 0 not active high.

Note: The acc_en and dinz_en both are not active if they are both high.

Table 14 Parameter Description

Parameter Type Description

signedx_sel string “true” dinx input type is signed

“false” dinx input type is unsigned

signedy_sel string “true” diny input type is signed

“false” diny input type is unsigned

signedz_sel string “true” dinz input type is signed

“false” dinz input type is unsigned

dinx_input_mode string " bypass " input directly to multiplier;

" register " input via register

diny_input_mode string " bypass " input directly to multiplier;

" register " input via register

dinz_input_mode string " bypass" input directly;

" register" input via register

mac_output_mode string " bypass" mac output directly;

" register" mac output via register

The x * y multiplier output will be an unsigned result only when both the x and y are unsigned, otherwise

the x * y multiplier output will be a signed and two’s complement result. The mac_out will be an unsigned

result only when both the dinz and multiplier output are unsigned, otherwise the mac_out will be a signed

and two’s complement result.

(1) Multiplier

The following figure describes that the DSP is used as a multiplier which outputs the dinx * diny result.

+

dinx

diny mac_outXdinx_input_mode

mac_output_mod

e

diny_input_mode

Figure 11 Multiplier

(2) Multiplier and adder

The following figure describes that the DSP is used as a multiplier and adder which output the dinx * diny

+ dinz result.

Page 25: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 24

+

dinx

diny

dinz

mac_out

acc_en

dinz_en

Xdinx_input_mode

mac_output_mode

diny_input_mode

dinz_input_mode

Figure 12 Multiplier and Adder

(3) Multiplier and Accumulator

The following figure describes that the DSP is used as a multiplier and adder which output the dinx * diny

+ mac_out(n-1) result.

+

dinx

diny

dinz

mac_out

acc_en

dinz_ensload

Xdinx_input_mode

mac_output_mode

diny_input_mode

dinz_input_mode

Figure 13 Multiplier and Accumulator

2.5 Embedded Single Port SRAM

CME-M5 family device contains an embedded SPRAM. The synchronous SPRAM total size is 128Kbyte

that can be configured as 128x8 or 64x16 mode.

2.5.1 SRAM Port Definitions

The dual-port primitive SPRAM signals are defined in the table below.

Table 15 SRAM Port Definition

Port Name Type Width Description

clk I 1 Input clock for SRAM, posedge active

cen I 1 Chip enable for SRAM, active low

Page 26: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 25

Port Name Type Width Description

wen I 1 Write enable for SRAM, active low

addr I 12 Address line for SRAM

datai I 8/16 Data input for SRAM

datao o 8/16 Input clock for SRAM

Table 16 SRAM Parameters

Parameters Type Description

data_width string SPRAM port data width, “8” or “16”

init_file string SPRAM initial file, the suffix name is .dat or .hex

Default: “”

2.6 Input/output Blocks

The Input/output Block (IOB) provides a programmable, bidirectional interface between an I/O pin and

the FPGA’s internal logic. The IOC is the function for an I/O pin. A simplified diagram of the IOC’s

internal structure appears in Figure 14. There are three main signal paths within the IOC: the output path,

input path, and tri-state path. Each path has its own pair of registers that can act as registers. The three

main signal paths are as follows:

The input path carries data from the pad, which is bonded to a package pin, through an optional

programmable delay element directly to the id line. There are alternate routes through a register to

the id line. The id line is lead to the FPGA’s logic.

The output path, starting with od, carries data from the FPGA’s internal logic through a multiplexer

and then a tri-state driver to the IOC pad. In addition to this direct path, the multiplexer provides the

path to registers.

The tri-state path determines when the output driver is high impedance. The oen line carries data

from the FPGA’s internal logic through a multiplexer to the output driver. In addition to this direct

path, the multiplexer provides the option to insert a register. When the oen line is asserted high, the

output driver is high-impedance (Floating, Hi-Z). The output driver is active-low enabled.

The output and tri-state paths entering the IOC have an inverter option. Any inverter placed on

these paths is automatically absorbed into the IOC.

Page 27: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 26

od

0

1

D Q

CKQ

resetn

setn

clk

2

3

1

0

od_setn

od_resetn

1

0 txd

0

1id rxd

Q D

CKQ

resetn

setn

clk

id_resetn

id_setn

oen

1

0

D Q

CKQ

resetn

setn

clk

2

3

1

0

oen_setn

oen_resetn

1

0 txe

Vddc

Vddio

In

out

Vddc

Vddio

In

out

Vddc

Vddio

In

out

Level Shifters UP

Level Shifters DOWN

ESD

VSS

VDDIO

Bus

Beeper

Pad

Pull

UP

Pull

DOWN

Single-ended

Transmitter (Driver)

RXD_S

Schmitt Trigger

Figure 14 IOC

The IOC Symbol is shown in the following figure.

IOC

clk

setnrstn

od

id

pad

oen

clken

Figure 15 IOC Symbol

Table 17 OC Port Definition

Port Width Direction Description

clk 1 I IO input clock

rstn 1 I IO input reset, active low

setn 1 I IO input set, active low

clk_en 1 I IO clock enable

oen 1 I IO output enable, active low

od 1 I Output data from fabric

id 1 O Input data from IO

pad 1 IO IO pad

Parameters

is_en_used string Whether external enable is used. Default: false

reg_always_en string Register for id/od/oen enable setting. True or false,

default: false

is_rstn_inv string Reset input invert enable, true or false, default: false

Page 28: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 27

Port Width Direction Description

is_setn_inv string Set input invert enable, true or false, default: false

is_clk_inv string Clock input invert enable, true or false, default: false

is_od_inv string Input data from fabric invert enable, true or false,

default: false

is_oen_inv string Output enable invert enable, true or false, default:

false

oen_sel string

Output enable mux selection control from

bypass/register/vcc(1)/gnd(0)

Default: bypass

od_sel string IO input data mux selection control from

bypass/register/vcc(1)/gnd(0)

id_sel string

IO output to fabric mux selection from

bypass/register

Default: bypass

oen_setn_en string Output enable register set enable

oen_rstn_en string Output enable register reset enable

od_setn_en string IO input register set enable

od_rstn_en string IO input register reset enable

id_setn_en string IO output register set enable

id_rstn_en string IO output register reset enable

2.6.1 Pull-Up/Down/Keeper Resistors

The optional pull-up and pull-down resistors are intended to establish logic High or Low, at unused I/Os.

The pull-up resistor optionally connects each IOB pad to VCCIO and the pull-sown resistor optionally

connects each IOB pad to GND. The resistors are about 50KΩ~100KΩ. Each I/O has an optional keeper

circuit that retains the last logic level on a line after all drivers have been turned off. This is useful to keep

bus lines from floating when all connected drivers are in a high-impedance state. These resistors are

used in a design using the “pull up”, “pull down” and “bus keeper “attributes in Primace .aoc file.

2.6.2 ESD Protection

The Electro-Static Discharge (ESD) protection circuitries protect all device pads against damage from

ESD as well as excessive voltage transients.

The VIN absolute maximum rating in Table 37 specifies the voltage range that I/Os can tolerate.

2.6.3 Drive Strength

CME-M5 I/O current drive strength is programmable 2, 4, 8, 12, 16mA

2.6.4 The Organization of IOBs into Banks

IOBs are allocated among 4 banks, so that each side of the device has one bank, as shown in Figure 1.

For all packages, each bank has independent VCCIO lines. For example, the VCCIO Bank 1 lines are

Page 29: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 28

separate from the VCCIO lines going to all other banks.

2.6.5 The I/Os During Power-On, Configuration, and User Mode

With no power applied to the FPGA, all I/Os are in a high-impedance state. The VCCINT and VCCIO

supplies may be applied in any order. Before power-on can finish, VCCINT, VCCIO must have reached

their respective minimum recommended operating levels. At this time, all I/O drivers also will be in a

high-impedance state.

VCCIO and VCCINT serve as inputs to the internal Power-On Reset circuit (POR). When the power is

applied, the FPGA begins initializing its configuration memory. At the same time, the FPGA internally

asserts the Global Set-Reset (GSR), which asynchronously resets all IOB registers to a pull-up state. A

Low level applied to nCONFIG input also serves as a GSR.

At this point, the configuration data is loaded into the FPGA. The I/O drivers remain in a high-impedance

state (with pull-up resistors) throughout configuration. The signal is released during Start-Up, marking

the end of configuration and the beginning of design operation in the user mode. At this point, those I/Os

to which signals have been assigned go active while all unused I/Os remain in a high-impedance state.

2.7 Interconnect

All the CME-M5 family device tile includes Xbar that is interconnect, also called routing resources and

function element. The Xbar passes signals among the various functional tiles of CME-M5 family devices.

There are four kinds of interconnect: Octal lines, Triple lines, Single lines, and Diagonal lines.

Octal lines span the die both horizontally and vertically and connect to one out of every eight and four

Xbars (see Figure 16).

Triple lines connect to one out of every three, two and one Xbars horizontally and vertically (see Figure

16).

The octal and triple lines are very useful for one driver fanouting several tiles which span different tiles

numbers.

xbar xbar xbar xbar xbar xbar xbar xbarxbar xbar xbar xbar xbar xbar xbar

triple

octaloctal

triple

xbarxbar

Figure 16 Octal and Triple Lines

Single and Diagonal lines directly connect lines route signals to neighboring tiles: vertically, horizontally.

These lines most often drive a signal from a "source" tile to an octal and triple line and conversely from

the longer interconnect back to a direct line accessing a "destination" tile.

Page 30: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 29

xbar xbarxbar

xbar xbarxbar

xbar xbarxbar

diagonal single

Figure 17 Single and Diagonal Lines

2.8 PLL

2.8.1 PLL features

Input frequency: 5~472.5 MHz

PFD input frequency: 5 ~ 325 MHz

Output frequency: 10 ~ 450 MHz

VCO operating rang: 600 ~ 1200 MHz

Clock bypass mode: Allow bypass of input clock directly to PLL output

Power supply: DVDD: 1.0 ~ 1.2V, VDDA: 1.0 ~ 1.2V

Output clock duty-cycle: 45-55%

Run power current consumption: < 2mA

Power down current: < 20uA (VDDA), < 10uA(DVDD)

Operation junction temperature: -40 to 125 °C

PLL outputs: CO0, CO1, CO2, CO3

Lock detection output

2.8.2 PLL Hardware Description

CME-M5 family device contains two PLLs (PLL0 and PLL1) with advanced clock management features.

The main goal of a PLL is to synchronize the phase and frequency of an internal or external clock to an

input reference clock. The PFD produces an up or down signal that determines whether the

voltage-controlled oscillator (VCO) needs to operate at a higher or lower frequency. The output of the

PFD feeds the charge pump and loop filter, which produces a control voltage for setting the VCO

frequency. The loop filter also removes glitches from the charge pump and prevents voltage overshoot,

which filters the jitter on the VCO. A divide counter (m) is inserted in the feedback loop to increase the

Page 31: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 30

VCO frequency above the input reference frequency. VCO frequency (fVCO) is equal to (m+1) times the

input reference clock (fIN). The input reference clock (fIN) to the PFD is equal to the input clock (fIN)

divided by the pre-scale counter (N+1). Therefore, the feedback clock (fFB) applied to one input of the

PFD is locked to the fIN that is applied to the other input of the PFD. The VCO output can feed 4

post-scale counters (C[0..3]), while the corresponding VCO output from Top/Bottom PLLs can feed ten

post-scale counters (C[0..3]). These post-scale counters allow a number of harmonically related

frequencies to be produced by the PLL.

The figure below shows a simplified block diagram of the major components of the CME-M5 FAMILY

PLL.

1/(n+1) PFD

Charg

e

Pump

Loop

FilterVCO

1/(c0+1)

post-divider

8

fVC

O

pre-divider

fRE

F

fFB

fIN

operation_mod

e

fbclkin

clkin

1/(m+1

)

Lock

DIV2

loop-divider

pll_lock

1/(c1+1)

1/(c2+1)

1/(c3+1)

8

vco_divide_mod

e clkout0

clkout1

clkout2

clkout3

Figure 18 PLL Block Diagram

The dedicated pin CLK0~CLK3, XIN and OSC (internal configuration oscillator) and FPGA logic feed the

Bottom PLL0 clkin as the PLL clock input. The external feedback fbclkin must come from the dedicated

pin CLK0~CLK3 or internal clkout0 if the PLL is used as external feedback mode. The PLL generates

four clock outputs.

The Top PLL1 is same as the PLL0 only when the clkin and fbclkin are come from the dedicated pin

CLK4~CLK7.

2.8.3 PLL Primitive Port Signal Definitions

CME-M5 family PLLs primitive module port signal definition and parameter table are shown in the table

below. The CME-M5 family PLL can be generated using the Primace wizard.

Table 18 Port Definition

Port Name Type Description

clkin Input PLL reference clock input

fbclkin Input Feedback input to the PLL. Come from the dedicated CLK pin or

PLL clkout0.

clkout0 Output PLL output 0 driving to the global clocks.

clkout1 Output PLL output 1 driving to the global clocks.

Page 32: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 31

Port Name Type Description

clkout2 Output PLL output 2 driving to the global clocks.

clkout3 Output PLL output 3 driving to the global clocks.

locked Output Lock output from lock detect circuit. Active high

pwrdown Input

Power down control.

1: Power on PLL

0: Power down PLL (default)

Table 19 Parameter Definition

Parameters Type Description

pwr_mode string

PLL power mode.

"always_off": make PLL always stay in power down status

"always_on": make PLL always stay in power on status

"mcu_ctrl": mcu control the PLL power

"fp_ctrl": FP control the PLL power

Default: "always_off",

operation_mode string

PLL feedback source path.

"internal_feedback": select the internal PLL output as the feedback

source

"external_feedback": select the external dedicated CLK pin as the

source

default: "internal_feedback"

rst_mode string

PLL reset mode

"auto": chip power on to reset the PLL automatically

"mcu_control": MSS 8051 mcu control the PLL reset

test_control: reserved for chip test

default: "auto"

bandwidth_type string

PLL bandwidth setting

"low": filters out reference clock jitter but increases lock time

"medium": default

"high": provides a fast lock time and tracks jitter on the reference

clock source

vco_phase_shift string

VCO phase shift setting

VCO phase select from the "0", "45", "90", "135", "180", "225",

"270", "315" degree.

default: “0”

co0_enable string

PLL CO0 output enable

"true": PLL CO0 output enable

"false" PLL CO0 output disable

default : "true"

Page 33: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 32

Parameters Type Description

co1_enable string

PLL CO1 output enable

"true": PLL CO1 output enable

"false" PLL CO1 output disable

default : "false"

co2_enable string

PLL CO2 output enable

"true": PLL CO2 output enable

"false" PLL CO2 output disable

default : "false"

co3_enable string

PLL CO3 output enable

"true": PLL CO3 output enable

"false" PLL CO3 output disable

default : "false"

multiply_by(M) decimal PLL loop-divider setting, range is from 1 to 256

divide_by(N) decimal PLL pre-divider setting, range is from 1 to 256

co0_divide_by(C0) decimal PLL output 0 counter setting, range is from 1 to 256

co1_divide_by(C1) decimal PLL output 1 counter setting, range is from 1 to 256

co2_divide_by(C2) decimal PLL output 2 counter setting, range is from 1 to 256

co3_divide_by(C3) decimal PLL output 3 counter setting, range is from 1 to 256

co0_delay_by decimal PLL output 0 to counter delay the VCO cycles , range is from 0

to255

co1_delay_by decimal PLL output 1 to counter delay the VCO cycles , range is from 0 to

255

co2_delay_by decimal PLL output 2 to counter delay the VCO cycles , range is from 0 to

255

co3_delay_by decimal PLL output 3 to counter delay the VCO cycles , range is from 0 to

255

co0_phase_shift string PLL output 0 to counter phase shift to VCO, select from the 8

"0","45","90","135","180","225","270","315" degree phase

co1_phase_shift string PLL output 1 to counter phase shift to VCO, select from the 8

"0","45","90","135","180","225","270","315" degree phase

co2_phase_shift string PLL output 2 to counter phase shift to VCO, select from the 8

"0","45","90","135","180","225","270","315" degree phase

co3_phase_shift string PLL output 3 to counter phase shift to VCO, select from the 8

"0","45","90","135","180","225","270","315" degree phase

The CME-M5 family device is a SoC device. The 8051 of MSS can control the PLL parameter such as

loop-divider M and pre-divider N. Post-divider C0, C1, C2 and C3 also can be modified or reconfigured

by 8051 in system. For more details, please refer to 3.7.5 MSS in System Clock Configuration.

2.8.4 Clock Feedback Modes

CME-M5 family PLLs support up to two feedback modes. Each mode allows clock multiplication and

division, phase shifting. The mode is controlled by the operation_mode parameter.

Page 34: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 33

(1) Internal Feedback Mode (Frequency Synchronous Mode)

In frequency synthesize mode, the feedback is from the internal VCO, the PLL does not compensate for

any clock networks. This provides better jitter performance because clock feedback into the PFD passes

through less circuitry.

1/(n+1) PFDCharge

Pump

Loop

FilterVCO

1/(c0+1)

post-divider

8

fVC

O

pre-dividerfR

EF

fFB

fIN

clkin

1/(m+1)

Lock

DIV2

pll_lock

8

vco_divide_modeclkout0

clkout1

clkout2

clkout3

1/(c1+1)

1/(c2+1)

1/(c3+1)

Figure 19 Internal Feedback Mode

fpfd = fIN /(N+1) ;

fVCO = fIN *DIV2*(M+1)/(N+1), DIV2 = 1 or 2 ;

fFB = fVCO / m;

fclkout0 = fIN * (M+1) / ((N+1) * (C0+1));

fclkout1 = fIN * (M+1) / ((N+1) * (C1+1));

fclkout2 = fIN * (M+1) / ((N+1) * (C2+1));

fclkout3 = fIN * (M+1) / ((N+1) * (C3+1));

(2) External Feedback Mode

In external feedback mode, the external feedback input pin (fbclkin) is phase-aligned with the clock input

pin. Aligning these clocks allows you to remove clock delay and skew between the devices. This mode is

supported on all CME-M5 family PLLs. The feedback signal fbclkin comes from internal global clock PLL

clkout0 as shown in Figure 20 or clock pin CLK0~3/CLK4-7 as shown in Figure 21.

The clock pin CLK0~3/CLK4-7 is connected with the pin which is driven by the clkout0 on the board.

Page 35: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 34

1/(n+1) PFDCharge

Pump

Loop

FilterVCO

1/(c0+1)

post-divider

clkout0

8

fVC

O

pre-divider

fRE

F

fFB

fIN

fbclkin

clkin

1/(m+1)

Lock

DIV2

loop-divider

pll_lock

1/(c1+1)

1/(c2+1)

1/(c3+1)

clkout1

clkout2

clkout3

8

vco_divide_mode

Figure 20 Feedback Signal from clkout0

1/(n+1) PFDCharge

Pump

Loop

FilterVCO

1/(c0+1)

post-divider

clkout0

8

fVC

O

pre-divider

fRE

F

fFB

fIN

fbclkin

clkin

1/(m+1)

Lock

DIV2

loop-divider

pll_lock

1/(c1+1)

1/(c2+1)

1/(c3+1)

clkout1

clkout2

clkout3

8

vco_divide_modepin

clk pin

IC

Figure 21 Feedback Signal from Clock Pin clk0~3/clk4~7

fpfd = fIN /(N+1) ;

fVCO = fIN *DIV2*(M+1)/( (C0+1) (N+1)), DIV2 = 1 or 2 ;

fFB = fVCO / (M+1);

fclkout0 = fIN * (M+1) / (N+1);

fclkout1 = fIN * (M+1) (C0+1) / ((N+1) * (C1+1));

fclkout2 = fIN * (M+1) (C0+1) / ((N+1) * (C2+1));

fclkout3 = fIN * (M+1) (C0+1) / ((N+1) * (C3+1));

2.9 Global Clock & Reset Resources

CME-M5 family global clock resources include the dedicated clock inputs, buffers, and routing. The

clocking infrastructure provides eight low-capacitances and low-skew interconnect global clock lines.

The global clock lines can provide high-performance, low-jitter and low-skew clock source for each

blocks in FPGA. These resources also can be used for high-fanout signals.

Page 36: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 35

2.9.1 External Crystal Input

XIN and XOUT are external crystal input and output pins respectively. Their frequency ranges from 10

MHz to 20 MHz. When XIN works as external clock input, input clock connects to global clock tree

through XIN; meanwhile XOUT floats or connects to GND. The connection diagram when the external

crystal works as clock input connection is shown in the figure below.

CME Device

XOUT

XIN

1M

22P 22

P

330

10~20M

Figure 22 External Crystal Input

2.9.2 Clocking Infrastructure

The global clock resources consist of two connected components: two clock generators blocks and

Global Clock routing network. The CME-M5 family clock network infrastructure is shown in the figure

below.

PLL0XIN

PLL1clk4-clk7

Logic

Inputs

6

6

6

4

4

4Logic

Inputs

4Logic

Inputs

4Logic

Inputs

2

2

2

IO

IO

2

2

2

……

6GCLK

GCLK

clk0-clk3

Clock generator

MSS

EMIF

4

4

4

……

……

……

……

gclk to EMIF clock

gclk to MSS clock

Spine

66

2

Gclk[4]~Gclk[7]

Gclk[0]~Gclk[3]

SEAM

FP input

FP input

LBUF

LBUF

……

LBUF

LBUF

……

Mux &

deglitch

Mux &

deglitch

GBUF

GBUF

Gbuf

4:1*2

Gbuf

4:1*2

gbuf

2:1*6

gbuf

2:1*6

gbuf

2:1*6

gbuf

2:1*6

Gbuf

4:1*2

RBUF

RBUF

RBUF

RBUF

LBUF

LBUF

LBUF

LBUF

RBUF

RBUF

RBUF

RBUF

Figure 23 Clock Infrastructure

The clock generator 0 is located in the right of the bottom edge. The clock generator selects from the

Page 37: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 36

dedicated pins CLK0 – CLK3, XI, 4 PLL0 outputs and fabric logic signals source to generate four global

clocks to the GBUFs(global buf). The clock generator 1 is placed in the right of the top corner. Its

function is same as the clock generator 0, only the dedicated pin CLK4 - CLK7 replaced the CLK0 –

CLK3. Each clock generators has four multiplexers named as CFG_DYN_SWITCH which can deglitch

and hand off between pairs of clock sources, including a clock from the other clock and generator 4

global clocks to GBUFs. Two clock generators generate 8 global clocks to GBUFs.

GBUFs are located in the vertical spine, just to the right of the FP fabric, as shown schematically in the

above figure. Clocks from the clock generators are distributed to the GBUFs in a skew-balanced tree.

Each GBUF selects from the 8 spine clocks, a set of Gclks to distribute along its respective horizontal

seam. There are six seams, four for Fabric and two for I/O blocks.

The 2 IO GBUFs each select 2 Gclks for their seams. One MSS GBUF and EMIF GBUF also select one

GCLK from the 8 spine clocks for the clock of the MSS and EMIF interface.

Each of the four FP GBUFs selects 6 Gclks. In addition to the 8 spine clocks, the FP GBUFs may also

select from logic inputs from the FP fabric to distribute as Gclks. The four GBUFs are designed not as full

cross-bars, but as sparsely-populated crossbars, in order to reduce circuitry while providing a fully

nonblocking network (every PLL clock can reach every seam without blocking any other clock from

reaching any seam). A special GBUF selects from the 8 spine clocks, two more Gclks to distribute to all

FP fabric seams in a lowskew, recombinant mesh. These two clocks are rebuffered from this point all the

way down to PLBs without further selection or regional gating before final, LBUF muxes, so may be

connected in recombinant grids wherever their logic levels match. This provides a very

low-structural-skew option for any two clocks throughout the entire FP array; the remaining Gclks and

Rclks have flexible selectability and hierarchical gating, so cannot be recombined between seams.

All 8 Gclks in each FP fabric horizontal seam are distributed in a skew-balanced tree to each RBUF.

RBUFs select regional clocks to four rows of PLBs above and four below the seam, in two PLB columns,

or to one SFB above and one SFB below the seam. The two low-skew Gclks are simply rebuffered into

the low-skew Rclk grid; at the top and bottom of their columns, they connect to matching Rclks arriving

from the adjacent seam.

LBUFs are the last stage in the clock tree; they directly drive the flipflops. LBUFs provide local, precise

clock gating. Each two PLBs contain an LBUF, to select a local clock for its 8 registers from the 6 Rclks;

each SFB contains one or more LBUFs, one per clock domain, as needed.

2.9.3 GBUF

The GBUF generated by the Wizard allows a clock or general signal to enter the Global Clock Network

directly.

Table 20 GBUF Port Definition

Port Name Type Description

in Input GBUF input

Page 38: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 37

Port Name Type Description

out Output GBUF clock output

M5 is designed with two gated global clocks that can be easily controlled by using GBUF_GATE.

Table 21 GBUF_GATE Port Definition

Port Name Type Description

clk Input Clock input

en Input Clock enable, active high

clk_out Output GBUF clock output

2.9.4 Clock Switch

The clock generator contains one PLL and a four input deglitch CFG_DYN_SWITCH multiplexer. Each

of the four CFG_DYN_SWITCH multiplexer generates a gclk clock. The CFG_DYN_SWITCH

multiplexer not only can be used as a static clock path, but also can provide seamless clock dynamic

switchover between two clock sources in system, for both startup sequencing and entering/exiting

low-power operating modes.

The primitive CFG_DYN_SWITCH h is used to implement the clock dynamic switching in system. The

CFG_DYN_SWITCH is selected by MSS. About how to use the dynamic clock switch function, see MSS

Subsystem.

Table 22 CFG_DYN_SWITCH Port Definition

Port Name Type Description

in0 Input GCLK clock source 0 input.

in1 Input GCLK clock source 1 input.

out Output Global clock to GBUF.

Table 23 Parameter Descriptions of CFG_DYN_SWITCH

Parameters Name Type Description

gclk_mux digital Define the CFG_DYN_SWITCH location.

Table 24 Clock Routability Table

GCLK IN0 IN1

GCLK[0]/

gclk_mux 0

PLL0O0 PLL0O1 CLK0 CLK1 PLL0O2 PLL0O3 FP

GCLK[1]/

gclk_mux 1

PLL0O1 PLL0O3 CLK2 CLK3 PLL0O0 PLL0O2 GCLK[4] FP

GCLK[2]/

gclk_mux 2

PLL0O1 PLL0O2 CLK1 CLK2 PLL0O0 PLL0O3 XIN FP

GCLK[3]/

gclk_mux 3

PLL0O0 PLL0O1 CLK0 CLK3 PLL0O2 PLL0O3 XIN FP

GCLK[4]/ PLL1O0 PLL1O1 CLK4 CLK5 PLL1O2 PLL1O3 FP

Page 39: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 38

GCLK IN0 IN1

gclk_mux 4

GCLK[5]/

gclk_mux 5

PLL1O1 PLL1O3 CLK6 CLK7 PLL1O0 PLL1O2 GCLK[0] FP

GCLK[6]/

gclk_mux 6

PLL1O1 PLL1O2 CLK5 CLK6 PLL1O0 PLL1O3 XIN FP

GCLK[7]/

gclk_mux 7

PLL1O0 PLL1O1 CLK4 CLK7 PLL1O2 PLL1O3 XIN FP

For each of the eight GCLK, the CFG_DYN_SWITCH input in0 and in1 only can be fed as listed in the

table. The MSS can select the in0 or kin1 in system via the special extended SFR. About how to use the

dynamic clock switch function, please refer to MSS Subsystem.

Page 40: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 39

3 MSS Subsystem

MSS Subsystem is composed of 200 MHz enhanced 8051 processor, embedded peripherals, SRAM

and other components which are interconnected via the Xbar or hardware connection. This chapter only

describes the MSS system and functions which are special for the CME-M5 family device. The

enhanced r8051xc2 core and peripherals are described in 8051 User Guide.

The MSS features are listed as follows:

Enhanced 8051MCU

- Reduced instruction cycle, 12 times in respect of standard 8051 MIPS, up to 200 MHz

- Compatible 8051 instruction system

- On-chip debugger system (OCDS), online JTAG debugging

- Up to 8M data/code memory

Embedded SRAM Memory

- 128KByte single port memory SRAM, up to 200 MHz

- Data/code unified addressing, flexible memory configuration

- Flexible chip inside and outside memory expand (EMIF)

Peripheral

- 1 MDU

- 3 16-bit Timers, Timer 2 can be used as capture unit

- 1 16-bit Watch Dog Timer

- 1 I2C/SMBus Interface

- 1 SPI Interface

- 2 Full Duplex Asynchronous Series Ports

- 1 RTC

- 4-channel DMA

Suspend, Idle Mode Power Management

Chip system management

- ISC control

- Dynamic clock management

The figure below describes the functions of MSS and connections between MSS and FPGA.

Page 41: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 40

SFR

Peripheral

I2C

RTC

SPI

8051 MCU

SRAM

EMIF

SFR

MSS

USARTInterruptP0,1,2,3...

SFR

EMIF

ISC

FPGA

I2C

SPI

P Port

GCLKPLL0

PLL1

Figure 24 MSS Diagram

3.1 8051 Instantiation

In the view of a user design, the 8051 IP is considered to be a macro block as other IP, which will be

instantiated in the RTL code of the user design. The 8051 tile also contains Xbar that is used to connect

with other tiles.

3.1.1 8051 Macro Primitive Description

Table 25 8051 Port Definition

Name Type Bus size Description

Global Interface

clkcpu I 1 MSS 8051 clock, come from MSS GBUF or internal

OSC.

clkcpuen O 1 Be low when CPU is in STOP and IDLE mode.

clkperen O 1 Be low when CPU is in IDLE mode.

resetn I 1 MSS reset, active low.

ro O 1 MSS core reset output.

swd I 1

Start Watchdog Timer input.

High level on this pin during reset starts the Watchdog

Timer immediately after reset is released.

SPI Interface

Page 42: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 41

Name Type Bus size Description

scki I 1 Serial clock input.

scko O 1 Serial clock output.

scktri O 1 Serial clock tri-state enables.

ssn I 1 Slave select input.

misoi I 1 “Master input / slave output” input pin.

misoo O 1 “Master input / slave output” output pin.

misotri O 1 “Master input / slave output” tri-state enable.

mosii I 1 “Master output / slave input” input pin.

mosio O 1 “Master output / slave input” output pin.

mositri O 1 “Master output / slave input” tri-state enables.

spssn O 8 Eight slave select output.

I2C Interface

scli, I 1 Serial clock input.

sdai, I 1 Serial data input.

sclo, O 1 Serial clock output.

sdao, O 1 Serial data output.

General I/O

port0i I 8 8-bit input port.

port0o O 8 8-bit output port.

port1i I 8 8-bit input port, combine with int2-7, ccu, t2, rxd1.

port1o O 8 8-bit output port, combine with ccu, txd1.

port2i I 8 8-bit input port.

port2o O 8 8-bit output port.

port3i I 8 8-bit input port, combine with int0-1, rxd0, t0, t1.

port3o O 8 8-bit output port, combine with txd0, rxd0o.

EMIF Interface

clkemif I 1 EMIF interface clock.

memack I 1 Memory acknowledges.

memdatai I 8 Memory data input.

memdatao O 8 Memory data output.

memaddr O 23 Memory address.

memwr O 1 Memory write enable.

memrd O 1 Memory read enable.

Hold Interface

hold I 1 Hold mode request, active high.

holda O 1 Hold mode acknowledge signal.

intoccur O 1 Interrupt occurs in hold mode signal.

waitstaten O 1 Wait state indicator, active low when 8051 performs a

wait cycle.

Page 43: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 42

Table 26 Parameter Table

Parameters Type Description

rtc_div_num String Mcu rtc divide number.

sync_mode_en String Mcu synchronous mode enable,

True: synchronous mode, false: asynchronous mode.

program_file String Mcu/8051 program file: *.hex.

3.2 Multiplex of P Port Pins

Some function modules, such as: external interrupt1, USART0, USART1, Timer 0~2, and Compare –

Capture Unit, share pins with port1 and port3. The following shows the details.

Table 27 Port Pin Multiplex

Name Type Polarity

Bus size

Alternate

Port Description

External Interrupts Inputs

int0 I Low/Fall port3i[2] External interrupt 0

int1 I Low/Fall port3i[3] External interrupt 1

int2 I Fall/Rise port1i[4] External interrupt 2

int3 I Fall/Rise port1i[0] External interrupt 3

int4 I Rise port1i[1] External interrupt 4

int5 I Rise port1i[2] External interrupt 5

int6 I Rise port1i[3] External interrupt 6

int7 I Rise port1i[6] External interrupt 7

Serial 0 Interface

rxd0i I 1 port3i[0] Serial 0 receive data

rxd0o O 1 port3o[0] Serial 0 transmit data

txd0 O 1 port3o[1] Serial 0 transmit data or receive clock in

mode 0

Serial 1 Interface

rxd1 I 1 port1i[0] Serial 1 receive data

txd1 O 1 port1o[1] Serial 1 transmit data

Timers Inputs

t0 I Fall port3i[4] Timer 0 external input

t1 I Fall port3i[5] Timer 1 external input

t2 I Fall port1i[7] Timer 2 external input

t2ex I Fall port1i[5] Timer 2 capture trigger

Compare – Capture Unit

cc(0) I Rise/Fall port1i[0] Compare/Capture 0 input

cc(1) I Rise port1i[1] Compare/Capture 1 input

cc(2) I Rise port1i[2] Compare/Capture 2 input

Page 44: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 43

Name Type Polarity

Bus size

Alternate

Port Description

cc(3) I Rise port1i[3] Compare/Capture 3 input

Ccubus[0] O 1 port1o[0] Compare/Capture 0 Output

Ccubus[1] O 1 port1o[1] Compare/Capture 1 Output

Ccubus[2] O 1 port1o[2] Compare/Capture 2 Output

Ccubus[3] O 1 port1o[3] Compare/Capture 3 Output

3.3 MSS Clock Description

clkemif

clkcpu

8051

clk

SRAM

GCLK from EMIF

GBUF

GCLK from MSS GBUF

Figure 25 MSS Clock

The clock signal gclk comes from the 8 global clocks, see Figure 23. The SRAM clock and clkcpu use

the same clock.

3.4 MSS Memory Map

CME-M5 family integrates 2 blocks of 64 KByte (128 Kbyte in total) SRAM. The 128 KByte SRAM is only

available by MSS. 8051 can access SRAM, at the speed of up to 200 MHz.

The 8051 MCU core can extend both Program Memory and External Data Memory (independently) up to

8 MB by means of dedicated page address register. But CME-M5 family ORs the 8051 write and read

program and external data signals to one write and read signals, this makes the program and external

data memory share the memory space. The program memory is up to increase from address 0, and the

reset and interrupt vectors are stored in the low memory. The 128 KB SRAM can be used as program or

external data memory. Users must separate program memory space from external data memory space,

do not make them overlapped.

The parameter program_file is used to locate the 8051 firmware *.hex file which will be the part of the

initialized data and is add to configuration file.

The following figure describes the CME-M5 family MSS memory map which includes the FP extend

memory.

Page 45: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 44

FP Expand

128K SRAM

7FFFFF

1FFFF

000000

20000

Figure 26 MSS Memory Map

3.5 MSS External Memory Interface (EMIF)

EMIF is used to extend the MSS memory, with the address 20000~7FFFFF, which can be used by

Fabric.

The CME-M5 family provides synchronous and asynchronous EMIF for Fabric extended memory which

has the same data/address and control ports but in different timing waveforms. The synchronous or

asynchronous EMIF mode is selected by the parameter sync_mode_en.

Table 28 EMIF Port Description

Port Name Type Width Description

clkemif Input 1 Fabric EMIF clock. Posedge active.

memaddr Output 23 EMIF Address, MSS to Fabric.

memdatai Input 8 Read Data,Fabric to MSS.

memdatao Output 8 Write data,MSS to Fabric.

memrd Output 1 Read Enable. Active high.

memwr Output 1 Write Enable. Active high.

memack Input 1 Fabric to MSS operation acknowledge.

(1) Synchronous EMIF

The Fabric extended memory uses the same clkcpu as the 8051 clock. The signals are connected

directly to Fabric. For detailed description and waveform on synchronous mode, see the MSS

Subsystem User Guide.

The synchronous EMIF connection with fabric is shown as in figure below:

Page 46: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 45

8051 Fabric

clkcpu clkcpu

memaddr

memdatao

memdatai

memwrmemrd

memack

clkcpu clkemif

Figure 27 sync_mode_en is “true”

(2) Asynchronous EMIF

The Fabric extended memory is in clkemif clock domain which is different with the 8051 clkcpu clock

domain. The hardware SyncBridge is used to synchronize the control signals from one side clock

domain to the other side clock domain during the memory accessing process. EMIF implements two-way

synchronization between Fabric clock domain and MSS clock domain of Fabric. Each read/write

operation of Fabric extended memory takes about 4 clkemif cycles+ three 8051 clock cycles.

The asynchronous EMIF connection with fabric is shown as in figure below:

SyncBrige

8051 Fabric

clkcpu

memwr_cpu

clkemif

memrd_cpu

memaddr

memdatao

memdatai

memack_cpu

memwrmemrd

clkcpu clkemif

Figure 28 sync_mode_en is “false”

Control signals of “memrd”, “memwr” and “memack” are in the clkemif domain and generated on the

posedge clkemif. The “memrd”, “memwr”, “memack” control signals and “memaddr”, “memdatao” bus

Page 47: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 46

will be held if there is no valid “memack” to be sent to 8051 core. Both “memrd “and “memwr” will be

invalid when “memack” changes to be low, and either “memaddr” or “memdatao” will be delayed for

several periods.

In read cycle, Fabric places the read data to “memdatai” bus and does not output a valid “memack” after

one or several cycles until the fabric data is ready after the “memrd” is asserted. EMIF read waveform is

shown in the following figure.

memaddr

clkemif

memrd

memack

memdatai

... ...

... ...

Figure 29 EMIF Read Waveform

In write cycle, when the “memwr” is asserted, Fabric writes the “memdatao” to the extended memory and

sends a valid “memack” to MSS on the next cycle.

EMIF write waveform is shown in the following figure:

... ...

...

clkemif

memaddr

memwr

memack

memdatao

Figure 30 EMIF Write Waveform

3.6 RTC

The RTC circuitry has analog and digital parts. The 8051 RTC SFRs and control signals are partitioned

to the CME-M5 family device core VCCINT power domain, while the internal time counters relative

circuitry is partitioned to RTC power domain. The RTC analog circuitry is in the RTC power domain. The

external battery supplies the RTC power via the VCCRTC and GNDRTC pins and ensures the normal

operation of the RTC, whether the CME-M5 family device is power on or down. The circuitry partition

Page 48: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 47

makes the battery to run for long time.

The RTC crystal connection circuitry is shown in the following figure.

CME Device

RTCXO

RTCXI

15M

22P22P32.768K

Figure 31 RTC Crystal Connection Circuitry

3.7 MSS in System Management

Via special extended SFRs, the MSS can control certain components of CME-M5 family, such as special

configuration register, PLL and CFG_DYN_SWITCH multiplexer registers in system. The MSS can

control the ISC, PLL reconfiguration and clock dynamic switch functions directly in system by the

extended SFRs operation.

3.7.1 Device Register

The device registers directly determine and control the device working functions and status. There are

two types of registers: one is the ISC register, the other is the PLL and gclk_switch multiplexer clock

registers.

Table 29 ISC Register

Register Location Attribute Reset Value Description

ISCREG 1 R/W 0x00000000

[31:8]: Flash start address for read access

[0]: Bit0 ISCEN: reconfiguration enable, be

used to trigger the reconfiguration

sequence, auto clear

0: disable 1:enable

Table 30 Global Clock Register

Register Location Attribute Reset Value Description

DIVM 6 R/W 0 PLL 0/1 loop-divider M

DIVN 5 R/W 0 PLL 0/1 pre-divider N

DIVC0 4 R/W 0 PLL 0/1 post-divider C0

DIVC1 3 R/W 0 PLL 0/1 post-divider C1

Page 49: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 48

Register Location Attribute Reset Value Description

DIVC2 2 R/W 0 PLL 0/1 post-divider C2

DIVC3 1 R/W 0 PLL 0/1 post-divider C3

DYN_

CTRL[7:0] 0 R/W 0

Dynamical control register

[7:6]: reserved

[5]: Pll 0/1 reset control bit

1:reset PLL, 0: PLL work

[4]: Pll 0/1 power down control bit

0:Down PLL,1:On PLL

[3:0]: see Table 24

[3]: CFG_DYN_SWITCH 3/7 output select

0: gclk source is in0,1: gclk source is in1

[2]: CFG_DYN_SWITCH 2/6 output select

0: gclk source is in0,1: gclk source is in1

[1]: CFG_DYN_SWITCH 1/5 output select

0: gclk source is in0,1: gclk source is in1

[0]: CFG_DYN_SWITCH 0/4 output select

0: gclk source is in0,1: gclk source is in1

3.7.2 ISC Register Frame

When accessing the ISC register, please follow the frame below, which is a 32-bit header followed by a

32-bit write or read data.

Table 31 ISC Header Format

Bit[31:29] Bit[28] Bit[27] Bit[26] Bit[25] Bit[24] Bit[23:10] Bit[9:0]

3’h001 0 0 0 1: write

0: read 0 14’h1f 10 h1

3.7.3 Extended SFR

There are three types of SFR, ISC SFR, RTC SFR, global clock SFR and direct switch SFR.

The ISC SFR is used to transform the data between the MSS and device register. The MSS uses the

RTC SFRs to access RTC internal registers. The MSS manages the clock functions via the clock SFR.

The MSS accesses and controls the relative function directly via the direct switch SFR.

Table 32 Register Definition

Register Location Attribute Reset

Value Description

ISCDATD0 AC R/W 0x00 ISC data [7:0]

ISCDATD1 AD R/W 0x00 ISC data [15:8]

ISCDATD2 AE R/W 0x00 ISC data [23:16]

ISCDATD3 AF R/W 0x00 ISC data [31:24]

Page 50: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 49

Register Location Attribute Reset

Value Description

ISCCMD F2 R/W 0x00

[7] Write instruction

1: trigger to write, auto-return to zero when

completed.

ISCHEADER0 F3 R/W 0x00 ISC header [7:0]

ISCHEADER1 F4 R/W 0x00 ISC header [15:8]

ISCHEADER2 F5 R/W 0x00 ISC header [23:16]

ISCHEADER3 F6 R/W 0x00 ISC header [31:24]

RTCCMD E5 R/W 0x00

[7]WRITE go

1: write serial command,

self-cleared when done

[6:0] reserved

RTCSEL E6 R/W 0x00

[7:5]reserved

[4] 1: write operation, 0: read operation

[3:0] Register Address defined in RTC

(See MSS 8051 Subsystem User Guide).

RTCDATA E7 R/W 0x00 write or read RTC data

GCLKCMD F8 R/W 0x00

[7]WRITE go

1: write serial command,

self-cleared when done

[6:0] reserved

GCLKADDR F9 R/W 0x00

[7]reserved

[6:5]clock generator select

00: clock generator 0

01: clock generator 1

[4] WRITE/READN

1: write

0: read

[3:0] Register address defined in clock register

table

GCLKDATA FA R/W 0x00 write to or read from global clock data

ISMDIRCTRL FB R/W 0x00

[7] PLL 1 locked status, 1: locked, 0: not locked

[6] PLL 0 locked status, 1: locked, 0: not locked

[5:1] Reserved

[0] MSS clock switch

1: select the gclk

0: select the internal oscillator

3.7.4 MSS In System Configuration

The configuration Image of CME-M5 family consists of FPGA configuration data and MSS programming

code. FPGA configuration data sizes are substantially about 0x30000 byte, while MSS code size

changes with the size of program. The configuration Image is stored in SPI FLASH. Sector is the

Page 51: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 50

smallest unit to store Images, one image need about 3 sectors. In addition, one Image can take more

than one sectors. The following figure describes mapping of multi-Image stored in SPI FLASH, therein

the Image size is smaller than three sectors. Configuration packer in Primace can generate .mcf file with

multi Images, while Download can download Images of .mcf into SPI FLASH once. Utilizing ISC features,

CME-M5 family can make use of SPI FLASH space to expand the CME-M5 family device volume in

return, and in other words, CME-M5 family can fulfill several CME-M5 family FPGAs if each of the

multi-image logic can be implemented by CME-M5.

0000000

0030000

ISCREG

Configuration

CME

Device

SPI Interface

ISCEN

0060000

………

SPI-FLASH address

Image1bitstream

firmware

Image2bitstream

firmware

Image3bitstream

firmware

MSS

ISCCMD

ISCDATA

SFR

ISCHEADER

Figure 32 ISC

The following example describes that the 8051 program reconfigures the CME-M5 family device using

the Image 2.

Write SPI-FLASH Image starts address to device ISCREG [31:8], and then sets ISCREG [0] to trigger

the configuring process.

ISC steps are as follows:

//Switch the 8051 clock to internal osc

1) ISMDIRCTRL = 0;

//Write frame header, refer to Table 31 ISC Header Format

2) ISCHEADER0 = 0x01;

ISCHEADER1 = 0x7c;

ISCHEADER2 = 0x00;

ISCHEADER3 = 0x22;

//Write SPI-FLASH address and trigger the reconfiguration refer to and Table 32 and Table 29 ISC

Register

3) ISCDATA0 = 1;

ISCDATA1 = 0x00;

Page 52: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 51

ISCDATA2 = 0x00;

ISCDATA3 = 0x03;

//Write ISCCMD to enable data write to ISC register

4) ISCCMD = 0x80;

3.7.5 MSS in System Clock Configuration

If you want to use the clock configuration in system, you must get familiar with the clock network path

from the clock sources to the special gclk and its mechanism. For more information, see Table 24 Clock

Routability Table.

(1) PLL Configuration

MSS can reconfigure the PLL and make the PLL output another frequency. The following example is to

change the PLL0 clkout0 frequency from 100 MHz to 50 MHz.

fIN = 20MHz, m = 40, n =1, c0 =8;

fVCO = = fIN * (m+1) /( n+1) = 800MHz;

fclkout0 = fVCO / (c0+1) = fIN * (m+1) /( (n+1) * (c0+1)) = 100MHz;

The steps are listed as follows:

//Switch the 8051 clock to internal osc

1) ISMDIRCTRL = 0;

2) Select the PLL0 in PLL wizard of Primace.

//Write GCLKADDR to select PLL0, DIVC0 (4)

3) GCLKADDR = 00010100B

//Write new c0 to GCLKDATA

4) GCLKDATA = 16

//Write new c0 to PLL C0 register from GCLKDATA

5) GCLKCMD = 0x80

After the steps, the clkout0 of PLL0 will output a 50MHz clock.

(2) GCLK Dynamic Switch

MSS can switch the gclk from one clock to another clock dynamically.

The following example is to switch the GCLK [5] from PLL1 clkout1 to PLL1 clkout0. The steps are listed

as follow:

//Switch the 8051 clock to internal osc

1) ISMDIRCTRL = 0;

2) Select the PLL1 in PLL wizard of Primace.

3) Instantiate the CFG_DYN_SWITCH make the parameter gclk_mux is 5

4) Connect the PLL1 clkout0 to in1 and clkout1 to in0 of CFG_DYN_SWITCH

//Write GCLKADDR to select PLL1, DYN_ CTRL [7:0] (0)

5) GCLKADDR = 00110000B

Page 53: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 52

//Write new DYN_ TRL to GCLKDATA, select the clkin1 as the source of gclk[5]

6) GCLKDATA = 00010010

//Write new value to DYN_CTRL registers from GCLKDATA

7) GCLKCMD = 0x80

(3) MSS Clock Dynamic Switch

The MSS can switch MSS clock dynamically between gclk and internal OSC via CFG_DYN_SWITCH.

All the above 8051 In System managements should switch the MSS clock to OSC before the following

actions.

Steps of switching between the gclk and OSC are listed as follows:

//MSS clock switch to gclk

1) ISMDIRCTRL = 0x1

//MSS clock switch to OSC

1) ISMDIRCTRL = 0x0

Page 54: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 53

4 Configuration and Debug

4.1 Configuration Mode

There are three configuration modes: JTAG, AS and PS mode. AS, PS mode configuration are controlled

by a mode-select pin MSEL, as described in table below

Note: CME-M5 family with FLASH only provides two modes, AS and JTAG.

Table 33 Configuration Mode

Mode select pin Mode Description

MSEL

0 AS Active Serial mode. The chip will be configured automatically.

Configuration data is stored in the SPI flash.

1 PS Chip acts as slave.

External microcontroller feeds configuration data into the chip.

0/1 JTAG JTAG-based configuration. This mode takes higher privilege over AS

and PS modes

4.1.1 AS Mode

In AS configuration mode, CME-M5 family POR or pin nCONFIG reset reads configuration data from SPI

flash 0 address automatically, and configures FPGA and embedded RAM of MSS.

The following figure illustrates the AS mode of CME-M5 family without FLASH.

Page 55: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 54

Pin 1 Pin 2

JTAG

VCC

VCC

TMS

TDI

TCK

TDO

nCONFIG

10K

10K10K

nCS

sclk

SDO

SDI

MSEL

SPI Flash

CS#

sclk

SI

SO

10K

Figure 33 AS Configuration without Flash

The following figure illustrates the AS mode of CME-M5 family with FLASH.

Pin 1 Pin 2

JTAG

VCC

VCC

TMS

TDI

TCK

TDO

nCONFIG

10K

10K10K

10K

MSEL

Figure 34 AS Configuration with Flash

4.1.2 PS Mode

In the PS mode, CME-M5 family works as slave device, receive configuration data from external master

controller passively. SPI Master cannot read configuration data from CME-M5 family.

The following figure shows CME-M5 family in PS configuration.

Page 56: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 55

Pin 1 Pin 2

JTAG

VCCVCC

TMS

TDI

TCK

TDO

nCONFIG

10K10K10K

nCS

sclk

SDO

SDI

MSEL

SPI Master

CS#

sclk

SI

SO

10K

VCC

Figure 35 PS Configuration

4.1.3 JTAG Mode

There are two JTAG devices inside CME-M5 family, one is for fabric debugging and configuration,

another is for OCDS of MCU. These two JTAG devices are cascaded into one JTAG chain according to

the IEEE standard.

In JTAG mode, JTAG host computer configures and debugs both FPGA and MSS through CME-M5

family JTAG interface.

JTAG interface has higher priority than other configuration modes, and can download configuration files

and debug device.

4.2 SPI Flash

SPI-Flash is used for configuring CME-M5 family and can be operated in user mode, no matter it is

embedded or external configured SPI-Flash.

(1) Using embedded SPI-Flash

Invoke spi_interface in user design, to use SPI-FLASH in CME-M5 family device. For embedded

SPI-Flash datasheet, please refer to GD25QXX_Rev1.0.pdf.

Table 34 Embedded SPI Interface Port

Port Name Type Description

sclk Input spi flash input clock

sdo output spi flash serial output data

Page 57: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 56

Port Name Type Description

cson Input spi flash chip select,low active

sdi Input spi flash serial input data

(2) Using External SPI-Flash

When using external SPI-Flash, follow the connection illustrated in Figure 33, and set corresponding IO

as user IO during user design. See SPI related contents of 7.1 Pins Definitions and Rules and 7.2 Pin

List .

4.3 ISC

ISC (In System Configuration) enables MSS to re-configure CME-M5 family dynamically or statically.

ISC can only be achieved in AS mode.

During static re-configuration, MSS program writes addresses and instructions to ISC corresponding

SFR to make CME-M5 family re-load corresponding Image from certain SPI Flash address, to achieve

the reconfiguration of CME-M5 family device.

During dynamic re-configuration, MSS program reads Image from external (USART or other interfaces),

writes to corresponding Image space through SPI interface, and updates the Image. Then MSS writes

addresses and instructions to corresponding ISC SFR to configure CME-M5 family with the updated

Image. For more details, see 3.7.4 MSS In System Configuration.

4.4 Debug

There are two JTAG devices inside CME-M5 family: one is for fabric debugging and configuration, the

other is for OCDS of MCU, the two JTAG devices are cascaded into one JTAG chain according to the

IEEE standard. The CME-M5 family device identifies the different device operations and transforms the

data to the right JTAG device automatically.

4.5 Power-On-Reset (POR)

CME-M5 family device has internal POR circuits to monitor VCCINT and VCCIO voltage levels during

power-up. The POR circuit can keep the device in reset state until VCCINT and VCCIO reach the trigger

point. After the device enters into user mode, the POR circuit continues monitoring the VCCINT voltage

levels, but does not monitor VCCIO voltage anymore. POR is also controlled by external manual reset

control signal.

The POR circuit has the following features:

Power-up monitor, trigger point:

Page 58: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 57

- VCCINT: 0.75V-1.08V

Power down monitor, trigger point:

- VCCINT: 0.65V-0.9V

Delay time: typical 4.9ms, range 3.3ms ~ 7.4ms

4.6 eFUSE Program

The eFUSE is a macro that contains electrically programmable fuses which is One Time Program

memory. Using Primace tool E-Fuse Burner can program the eFUSE via CME download cable. The two

additional FUSE_CLK, VDDQ pins and JTAG pins should be connected as shown in the following figure.

For more information about FUSE_CLK and VDDQ pins definition and pinouts, see Chapter 7 Pins and

Package.

Pin 1 Pin 2

JTAG

VCC

VCC

TMS

TDI

TCK

TDO

nCONFIG

10K10K

10K

MSEL

1K

VDDQ

FUSE_CLK

10K

Figure 36 eFUSE Program Schematic

Page 59: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 58

5 Security

The CME-M5 family device has several security levels to help protect customer products and benefits.

- Configuration bitstream encryption using 128 bit AES

- Efuse-based protection mechanism

- SPI-based flash protection mechanism

5.1 Bitstream Generation Security Level

During the test and debug phase of a design, you can decide to leave the JTAG interface in the design

for possible maintenance or for random check-ups after the design goes into production. While this is

handy for the designer, it can leave a potential security hole.

The Bitstream Generator adds security information to configuration .acf file based on the security setting

in Primace. As shown in the following table, the Bitstream Generator has three settings: the first one is

the default, and the remaining two (Level1 and Level2) are optional to provide additional security. JTAG

can be fully or partially disabled via JTAG selection (Except special configuration memory).

Table 35 Bitstream Generator Security Level Settings

Security Level Description

None Default. JTAG unrestricted access to all configuration memory and functions

Level1 Disable JTAG to access the SPI-FLASH, fabric configuration memory or MSS

memory

Level2 Disable JTAG to access any memory completely

There are three settings for Bitstream Generator in Primace: prot_flagn, read_disable0 and

read_disable1. After the setting is completed, the Bitstream Generator will add security bits to the

configuration bitstream. User can decide to use a 128-bit key set as the AES algorithm input to encrypt

the bitstream according to the three level settings of Primace Bitstream Generator.

(1) prot_flagn

If Bitstream Generator is set to prot_flagn, the prot_flagn security bit will be programmed to SPI-FLASH.

The security bit is employed to protect flash content, to prevent fabric and register reading/writing, and to

prevent accessing MCU memory space via OCDS. Once prot_flagn is asserted, only several flash

instructions can be sent to flash, e.g. WREN, BE, RDSR, WRSR. So The SPI-FLASH can’t be accessed

by JTAG except the erase operation.

An internal signal prot_flagn is employed to obtain value of the security bit and control the security

protection. When power-up, the prot_flagn security bit stored in the SPI-FLASH is not loaded to the

internal prot_flagn, so the internal prot_flagn is LOW and active by default. User must send a specified

set of JTAG instruction to transfer the prot_flagn bit from SPI-FLASH to internal prot_flagn signals which

is then used to provide security control over the whole chip referring to user setting.

Page 60: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 59

(2) read_disable0

The security signal read_disable0 is stored in the internal register after the device is configured by the

bitstream. The signal read_disable0 that is high active is used to prevent fabric chain reading, and to

prevent accessing MCU memory space via OCDS.

When power-up, read_disable0 is 0 by default to enable JTAG read. The read_disable0 bit stored in the

internal register will load to the read_disable0. If it is written with 1, then it can’t be changed by writing

with 0.

(3) read_disable1

The security signal read_disable1 is generated by the SECU chain. The signal read_disable1 is also

used to prevent fabric chain reading, and to prevent accessing MCU memory space via OCDS.

When power-up, read_disable1 is 1 to enable the security protection. If the SECU chain matches the

fixed data pattern, read_disable1 will change to 0, so that read_disable1 is de-asserted and JTAG can

read FPGA static configuration SRAM and MCU memory, otherwise, the JTAG will be disabled.

The JTAG can’t read the fabric chain and MCU memory space if anyone of the three security signals is

active.

5.2 On-Chip eFuse

The CME-M5 family device has two 128-bit eFUSE. The eFUSE0 is used to store the 128-bit AES cipher

key that is used to decrypt the encrypted configuration bitsream generated by Primace Bitgen tool. The

eFUSE1 is used to store the security protection bits and other reserved information.

The following table provides more information about security bit.

Table 36 Security Bit

eFUSE1 Bit Description

[5]

Decryption flag:

1: the key stored in Efuse0 used to decrypt the bitstream. The key must match

with the key that is used for encryption by user in Primace.

0: Bitstream decryption is not required

[4] JTAG & OCDS disabled:

1: disable the JTAG operation, whether the Security Level Settings is set or not.

The cipher key and security bits can be programmed to eFUSE0/1 by Primace tool to prohibit the cloners,

over builders, and reverse engineers from embezzling the user design. Even if the embedded or external

SPI-FLASH content is copied completely, the user’s intellectual property rights can still be protected, as

long as the cipher key stored in Efuse0 is not decrypted.

5.3 Embedded SPI-Flash Hidden Bitstream

The embedded SPI-Flash is used to store CME-M5 family configuration data.

Page 61: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 60

The CME-M5 family device bitstream is hidden during configuration because the Flash is inside the

FPGA. This configuration provides a starting point for security in a design, where it cannot directly be

copied from the Flash.

5.4 AES Security

Advanced Encryption Standard (AES) is a specification for the encryption of electronic data. The AES

algorithm is adopted to encrypt the configuration bitstream using a 128-bit key. The CME-M5 family will

decrypt the encrypted bitstream using the 128-bit key stored in Efuse0. The configuration succeeds if the

two 128-bit keys match, otherwise the configuration fails and the device can’t work.

The following figure illustrates the encryption and decryption process.

Primace

Configuratio

n Data

AES

Encryptor

Memory

Storage

Encrypted

Configuration

Data

Volatile Key

Encryption Key

Programming

File

Encrypted

Configuration

Data

FPGA

AES Decryptor

Volatile Key

Storage

Encrypted

Configuration

Data

Volatile

Key

Bitgenabc

Security Setting

Check with

Expected Value

Yes/No

Efuse

Step 1. Generate the encrypted configuration data and store

in configuration memory.

Step 3. Configure the device using

encrypted configuration data.

Step 2. Program

volatile key into Efuse.

Figure 37 Encryption and Decryption Process

Page 62: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 61

6 DC & Switching Characteristics

All parameter limits are representative of worst-case supply voltage and junction temperature conditions.

The following information applies unless otherwise noted: AC and DC characteristics are

specified using the same numbers for both commercial and industrial grades. All parameters

representing voltages are measured with respect to GND.

6.1 DC Electrical Characteristics

6.1.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the

device. These are stress ratings only, and functional operation of the device at these or any other

conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure

to absolute maximum conditions for extended periods of time adversely affects device reliability.

Table 37 Absolute Maximum Ratings

Symbol Description Conditions Min Max Units

VCCINT Internal supply voltage -0.5 1.3 V

VCCIO I/O driver supply

voltage -0.5 5.5 V

VIN

Voltage applied to all

User I/O pins and

dual-purpose pins Driver in a high-impedance

state

-0.95 V

Voltage applied to all

Dedicated pins -0.8 V

VESD Electrostatic Discharge

Voltage

Human body model 0 ±2000 V

Charged device model - ±500 V

Machine model - ±200 V

TJ Junction temperature -40 125 °C

TSTG Storage temperature –65 150 °C

6.1.2 Power Supply Specifications

Table 38 Supply Voltage Thresholds for Power-On Reset

Symbol Description Min Max Units

VCCINTT Threshold for the VCCINT supply 0.7 V

VCCIOT Threshold for the VCCIO supply 2.26 V

Page 63: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 62

Table 39 Supply Voltage Ramp Rate

Symbol Description Min Max Units

VCCINTR Ramp rate from GND to valid

VCCINT supply level 10 ms

VCCIOR Ramp rate from GND to valid

VCCIO supply level 10 us

Note: The VCCINT must be powered to threshold before the VCCIO.

V

T

1V

3V

VCCINT

VCCIO

VCCINTT

VCCIOT

T1 T2T3

TVCCINTR

TVCCIOR

T4

T4>T1

Figure 38 Power on waveform

6.1.3 General Recommended Operating Conditions

Table 40 Recommended Basic Operating Conditions for Single I/O

Symbol Parameter Min Typ Max

TJ Junction temperature -40°C 25°C 85°C

VCCIN

T Core power 1.0V 1.1V 1.21V

VCCA_

PLL PLL analog power 1.0V 1.1V 1.21V

VCCIO

I/O supply voltage @ 3.3V 2.97V 3.3V 3.63V

I/O supply voltage @2.5V 2.25V 2.5V 2.75V

I/O supply voltage @1.8V 1.62V 1.8V 1.98V

I/O supply voltage @1.5V 1.35V 1.5V 1.65V

VIH

Input High Voltage @3.3V LVCMOS 2V VCCIO +0.3

Input High Voltage @2.5V LVCMOS 1.7V VCCIO +0.3

Input High Voltage @1.8V LVCMOS 0.65*

VCCIO VCCIO +0.3

VIL Input Low Voltage @3.3V LVCMOS -0.3 0.8V

Input Low Voltage @2.5V LVCMOS -0.3 0.7V

Page 64: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 63

Symbol Parameter Min Typ Max

Input Low Voltage @1.8V LVCMOS -0.3 0.35*

VCCIO

VT+

Schmitt trig Low to High threshold point @3.3V 0.6*

VCCIO

Schmitt trig Low to High threshold point @2.5V 0.6*

VCCIO

Schmitt trig Low to High threshold point @1.8V 0.6*

VCCIO

VT-

Schmitt trig High to Low threshold point @3.3V 0.4* VCCIO

Schmitt trig High to Low threshold point @2.5V 0.4* VCCIO

Schmitt trig High to Low threshold point @1.8V 0.4* VCCIO

TJ Junction Temperature -40°C 25°C 125°C

IL Input Leakage Current ±1μA

VOL

Output low voltage @IOL=2,4…16mA @3.3V 0.4V

Output low voltage @IOL=2,4…16mA @2.5V 0.7V

Output low voltage @IOL=2,4…16mA @1.8V 0.45V

VOH

Output high voltage @ IOH=2,4…16mA @3.3V 2.9V

Output high voltage @ IOH=2,4…16mA @2.5V 1.7V

Output high voltage @ IOH=2,4…16mA @1.8V VCCIO -0.45

IOL

Low level output current @VOL=0.4V

VCCIO =3.3V Min Typ Max

Drive Strength=4mA >4mA 6

Drive Strength=8mA >8mA 16

Drive Strength=12mA >12mA 19

Drive Strength=16mA >16mA 25

Low level output current @VOL=0.7V

VCCIO =2.5V Min Typ Max

Drive Strength=4mA >4mA 5

Drive Strength=8mA >8mA 14

Drive Strength=12mA >12mA 16.8

Drive Strength=16mA >16mA 21

Low level output current @VOL=0.45V

VCCIO =1.8V Min Typ Max

Drive Strength=4mA >4mA 4

Drive Strength=8mA >8mA 10

Drive Strength=12mA >12mA 13

Drive Strength=16mA >16mA 16

Low level output current @VOL=0.375V

VCCIO =1.5V Min Typ Max

Drive Strength=4mA 2.8

Drive Strength=8mA 7

Page 65: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 64

Symbol Parameter Min Typ Max

Drive Strength=12mA 8.4

Drive Strength=16mA 11

IOH

High level output current @VOH=2.9V

VCCIO =3.3V Min Typ Max

Drive Strength=4mA >4mA 6

Drive Strength=8mA >8mA 17

Drive Strength=12mA >12mA 18

Drive Strength=16mA >16mA 25

High level output current @VOH=2.1V

VCCIO =2.5V Min Typ Max

Drive Strength=4mA >4mA 5.4

Drive Strength=8mA >8mA 14

Drive Strength=12mA >12m 16

Drive Strength=16mA >16mA 19

High level output current @VOH= VCCIO -0.45

VCCIO =1.8V Min Typ Max

Drive Strength=4mA >4mA 4

Drive Strength=8mA >8mA 11

Drive Strength=12mA >12mA 13

Drive Strength=16mA 15

High level output current

@VOH= VCCIO -0.375 VCCIO =1.5V Min Typ Max

Drive Strength=4mA 2.8

Drive Strength=8mA 7.8

Drive Strength=12mA 8.5

Drive Strength=16mA 11

Table 41 Recommended Operating Conditions of Programmable Transmitter Features

Supported Voltage and

Current Capabilities Attributes Value

Drive strength

IOH

4mA

8mA

12mA

16mA

IOL

4mA

8mA

12mA

16mA

Slew-rate control Rising Slew

slow

nominal

fast

Page 66: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 65

Supported Voltage and

Current Capabilities Attributes Value

Falling Slew

slow

nominal

fast

TX impedance control

Pull up 75kΩ

Pull down 50kΩ

keeper 50kΩ to 75kΩ

Note: All IOs support single-ended IO standards, such as LVCMOS. Measured between 10% and 90%

VCCIO

Table 42 Quiescent Current Requirements

Symbol Description Device Typical(1) Maximum(2) Units

IFPINTQ Quiescent VCCINT supply current only for

Fabric. 18 mA

IMSSINTQ Quiescent VCCINT supply current only for

MSS include the 8051 SRAM (128KB). 2 mA

IINTQ Quiescent VCCINT supply current for

whole device. 20 mA

Note:

(1) The numbers in this table are based on the conditions set forth in General Recommended Operating

Conditions.

(2) Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all

pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical

devices at room temperature (TJ of 25°C at VCCINT = 1.1V).The FPGA is programmed with a

"blank" configuration data file (i.e., a design with no functional elements instantiated).The maximum

limits are tested for each device at the respective maximum specified junction temperature and at

maximum voltage limits with MAX VCCINT and VCCIO.

(3) The maximum numbers in this table indicate the minimum current each power rail requires in order

for the FPGA to power-on successfully.

6.2 Switching Characteristics

Timing parameters and their representative values are selected for inclusion below either because they

are important as general design requirements or they indicate fundamental device performance

characteristics.

Page 67: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 66

6.2.1 Clock Performance

Table 43 Recommended Operating Frequency of Global Clock

Symbol Max Frequency Units

GCLK 500 MHz

6.2.2 I/O Performance

Table 44 Recommended Operating Frequency of I/O

IO Standard Primary Usage Max

Frequency

LVCMOS/LVTTL 1.5v/1.8v/2.5v/3.3v general purpose 160 MHz

6.2.3 PLB Performance

Table 45 Recommended Operating Frequency of PLB

Symbol Description Speed Units

Min Max MHz

ADD16 16 bit adder performance @

recommended operating condition. 400

ADD32 32 bit adder performance @

recommended operating condition. 360

Add64 64 bit adder performance @

recommended operating condition. 215

CNT8 8 bit counter performance @

recommended operating condition. 720

CNT16 16 bit counter performance @

recommended operating condition. 640

CNT32 32 bit counter performance @

recommended operating condition. 580

6.2.4 EMB5K Performance

Table 46 Recommended Operating Frequency of EMB5K

Symbol Description Speed Units

Min Max MHz

EMB5K EMB5K performance at

recommended operating condition. 200

Page 68: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 67

6.2.5 DSP Performance

Table 47 Recommended Operating Frequency of DSP

Symbol Description Speed Units

Min Max MHz

DSP DSP using register path. 200

DSP not using the register path. 200

Page 69: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 68

7 Pins and Package

7.1 Pins Definitions and Rules

Table 48 Pins Definitions and Rules

Pin Name Direction Description

User I/O Pins

IOXX_# inout user I/O pin

Multi-Function Pins

IOXXX/ZZZ_#

Multi-function pins are labeled IOXXX/YYY_#, where YYY represents

one or more of the following functions in addition to being general

purpose user I/O.

If not used for their special function, these pins can be user I/O.

Multi-Function Pins: SPI serial configuration Pins

SCLK input/output

In passive serial configuration mode, SCLK is a clock input used to

clock configuration data from external device source into device.

In active serial configuration mode, SCLK is a clock output from device.

The pin can be used as regular user I/Os after configuration.

SDI input Dedicated configuration data input pin in AS mode.

The pin can be used as regular user I/Os after configuration in AS mode

SDO output

Active serial data output from the device.

The pin can be used as regular user I/Os after configuration in AS

mode.

This pin is only user I/O pin when the device is in PS mode.

nCS output

or input

Chip select output to enable/disable a serial configuration device.

This output is used during AS mode. The pin can be used as regular

user I/Os after configuration in AS mode.

it is used as chip selection control (input) during PS.The pin can be used

as regular user I/Os after configuration in PS mode.

Multi-Function Pins: Configuraiton Pins

CONF_DONE output

This is a dedicated configuration status pin, the pin will output high

during configuration. The pin can be used as regular user I/Os after

configuration.

MSEL 0: Active Serial mode, 1 Passive Serial mode.

The pin can be used as regular user I/Os after configuration.

Multi-Function Pins: Clock Pins

CLKX input These clock pins connect to Global Clock Buffers.

These pins become regular user I/Os when not needed for clocks.

Multi-Function Pins: Efuse clock

FUSE_CLK input Efuse program clock.

Page 70: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 69

Pin Name Direction Description

Dedicated Pins: JTAG

TCK input TCK Input Boundary-Scan Clock.

TDI input TDI Input Boundary-Scan Data Input.

TDO output TDO Output Boundary-Scan Data Output.

TMS input TMS Input Boundary-Scan Mode Select.

Dedicated Pins: JTAG

nCONFIG input Chip global reset input. Active low.

Dedicated Pins: Crystal Pins

XIN input External crystal input.

If not used it is better to connect to GND.

XOUT output Output to crystal. Not used can be floating.

Dedicated Pins: RTC Pins

RTCXI input External crystal input for RTC 32K clock.

If not used it is better to connect to GND.

RTCXOUT output 32K clock output to crystal.

If not used can be floating.

VCCRTC N/A RTC power. 2.0-3.3V.

GNDRTC N/A RTC ground.

Dedicated Pins: Power

VCCIO N/A Digital power for IO.

VCCINT N/A Digital power for core, 1.1V.

VCCA_PLL N/A Analog power for PLLs, 1.1V.

VDDQ N/A Efuse program power.

GND N/A Digital ground.

Note:

(1) VCCIO_0 and VCCIO_2 MUST be powered at 3.3V.

(2) VDDQ should connect to the pin6 of 10 pin header on CME JTAG cable and use a 1K resistor to

make the signal pull down to GND for programming the Efuse.

(3) FUSE_CLK should connect to CME JTAG cable 10 pin header pin8.

7.2 Pin List

7.2.1 LQFP144 Package Pin List

Page 71: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 70

Table 49 LQFP144 Package Pin List

No. LQFP144

1 VCCIO_0

2 GND

3 IO1_0

4 IO2_0

5 IO3_0

6 IO4_0

7 IO5_0

8 IO6_0

9 IO7_0

10 IO8/nCS_0

11 IO9_0

12 VCCINT

13 IO10_0

14 IO11/SDI_0

15 IO12_0

16 IO13_0

17 IO14_0

18 IO15_0

19 IO16_0

20 IO17_0

21 IO18_0

22 IO19_0

23 VCCIO_0

24 GND

25 IO20_0

26 IO21_0

27 IO22_0

28 IO23_0

29 IO24_0

30 VCCINT

31 IO25_0

32 IO26_0

33 IO27_0

34 IO28_0

35 GND

36 VCCIO_0

37 IO29_1

38 IO30_1

39 GND

No. LQFP144

40 IO31_1

41 VCCIO_1

42 IO32_1

43 IO33_1

44 VCCINT

45 IO34_1

46 IO35_1

47 GND

48 IO36_1

49 IO37_1

50 IO38_1

51 IO39_1

52 VCCIO_1

53 IO40_1

54 IO41_1

55 GND

56 IO42_1

57 IO43_1

58 IO44_1

59 IO45_1

60 IO46_1

61 IO47_1

62 IO48/CLK0_1

63 IO49/CLK1_1

64 VCCIO_1

65 IO50/CLK2_1

66 IO51/CLK3/FUSE_CLK_1

67 IO52_1

68 IO53_1

69 IO54_1

70 VDDQ_1

71 XIN_1

72 XOUT_1

73 VCCA_PLL _2

74 nCONFIG_2

75 TMS_2

76 TDI_2

77 TCK_2

78 TDO_2

No. LQFP144

79 CONF_DONE_2

80 IO56/MSEL_2

81 IO57/SDO_2

82 VCCIO_2

83 IO58/SCLK_2

84 IO59_2

85 GND

86 VCCINT

87 IO60_2

88 IO61_2

89 VCCIO_2

90 GND

91 IO62_2

92 IO63_2

93 IO64_2

94 VCCINT

95 IO65_2

96 IO66_2

97 GND

98 IO67_2

99 IO68_2

100 IO69_2

101 IO70_2

102 IO71_2

103 IO72_2

104 VCCIO_2

105 IO73_2

106 IO74_2

107 IO75_2

108 IO76_2

109 RTCXI_3

110 RTCXO_3

111 VCCRTC

112 GNDRTC

113 IO77_3

114 IO78/CLK4_3

115 IO79/CLK5_3

116 VCCIO_3

117 IO80/CLK6_3

Page 72: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 71

No. LQFP144

118 IO81/CLK7_3

119 IO82_3

120 IO83_3

121 IO84_3

122 GND

123 IO85_3

124 IO86_3

125 IO87_3

126 IO88_3

127 IO89_3

128 VCCIO_3

129 IO90_3

130 IO91_3

131 IO92_3

132 IO93_3

133 IO94_3

134 IO95_3

135 GND

136 IO96_3

137 VCCINT

138 IO97_3

139 IO98_3

140 IO99_3

141 VCCIO_3

142 GND

143 IO100_3

144 IO101_3

Page 73: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 72

7.2.2 TQFP100 Package Pin List

Table 50 TQFP-100 Package Pin List

No. TQFP100

1 VCCIO_0

2 GND

3 IO1_0

4 IO2_0

5 IO3_0

6 IO4_0

7 IO5_0

8 IO6/nCS_0

9 IO7_0

10 VCCINT

11 IO8_0

12 IO9/SDI_0

13 IO10_0

14 IO11_0

15 IO12_0

16 IO13_0

17 GND

18 IO14_0

19 IO15_0

20 IO16_0

21 IO17_0

22 IO18_0

23 IO19_0

24 IO20_0

25 VCCIO_0

26 VCCINT

27 IO21_1

28 IO22_1

29 VCCIO_1

30 IO23_1

31 IO24_1

32 GND

33 IO25_1

34 IO26_1

35 IO27_1

36 IO28_1

No. TQFP100

37 IO29_1

38 IO30 _1

39 IO31/CLK0_1

40 IO32/CLK1_1

41 VCCIO_1

42 IO33/CLK2_1

43 IO34/CLK3/FUSE_CLK_1

44 IO35_1

45 IO36_1

46 IO37_1

47 VDDQ_1

48 GND

49 XIN_1

50 XOUT_1

51 VDDA _2

52 nCONFIG_2

53 TMS_2

54 TDI_2

55 TCK_2

56 TDO_2

57 CONF_DONE_2

58 IO39/MSEL_2

59 IO40/SDO_2

60 VCCIO_2

61 IO41/SCLK_2

62 GND

63 VCCINT

64 IO42_2

65 IO43_2

66 IO44_2

67 VCCINT

68 GND

69 IO45_2

70 IO46_2

71 IO47_2

72 IO48_2

No. TQFP100

73 IO49_2

74 VCCIO_2

75 IO50_2

76 IO51_3

77 IO52/CLK4_3

78 IO53/CLK5_3

79 VCCIO_3

80 IO54/CLK6_3

81 IO55/CLK7_3

82 IO56_3

83 IO57_3

84 GND

85 IO58_3

86 IO59_3

87 IO60_3

88 IO61_3

89 IO62_3

90 VCCIO_3

91 IO63_3

92 IO64_3

93 IO65_3

94 IO66_3

95 GND

96 IO67_3

97 VCCINT

98 IO68_3

99 IO69_3

100 IO70_3

Page 74: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 73

7.2.3 FBGA256 Package Pin List

Table 51 FBGA256 Package Pin List

No. BGA256

M14 VCCIO_0

H7 GND

H8 GND

N13 IO1_0

M12 IO2_0

L12 IO3_0

K12 IO4_0

N14 IO5_0

P15 IO6_0

P16 IO7_0

D2 IO8_0

R16 IO9_0

K11 IO10_0

G6 VCCINT

N16 IO11_0

N15 IO12_0

H2 IO13_0

L14 IO14_0

L13 IO15_0

L16 IO16_0

L15 IO17_0

J11 IO18_0

K16 IO19_0

K15 IO20_0

J16 IO21_0

J15 IO22_0

K14 VCCIO_0

G14 VCCIO_0

H9 GND

H10 GND

J14 IO23_0

J12 IO24_0

J13 IO25_0

G16 IO26_0

G15 IO27_0

F13 IO28_0

F16 IO29_0

G7 VCCINT

F15 IO30_0

No. BGA256

B16 IO31_0

F14 IO32_0

D16 IO33_0

D15 IO34_0

G11 IO35_0

C16 IO36_0

C15 IO37_0

E12 IO38_0

J7 GND

J8 GND

E14 VCCIO_0

F12 IO39_1

H12 IO40_1

H13 IO41_1

C14 IO42_1

D14 IO43_1

J9 GND

J10 GND

D11 IO44_1

D12 IO45_1

A13 IO46_1

B13 IO47_1

A16 VCCIO_1

C13 VCCIO_1

A14 IO48_1

B14 IO49_1

E11 IO50_1

E10 IO51_1

A12 IO52_1

B12 IO53_1

G8 VCCINT

A11 IO54_1

B11 IO55_1

C11 IO56_1

F10 IO57_1

F9 IO58_1

F11 IO59_1

B2 GND

B15 GND

No. BGA256

A15 IO60_1

A10 IO61_1

B10 IO62_1

C9 IO63_1

D9 IO64_1

E9 IO65_1

A9 IO66_1

B9 IO67_1

A8 IO68_1

B8 IO69_1

C8 IO70_1

C10 VCCIO_1

C7 VCCIO_1

D8 IO71_1

E8 IO72_1

F8 IO73_1

A7 IO74_1

B7 IO75_1

F6 IO76_1

F7 IO77_1

C6 IO78_1

A6 IO79_1

C5 GND

C12 GND

B6 IO80_1

E7 IO81_1

E6 IO82_1

A5 IO83_1

A2 IO84_1

B5 IO85_1

A4 IO86_1

B4 IO87_1

E2 IO88/CLK0_1

E1 IO89/CLK1_1

C4 VCCIO_1

A1 VCCIO_1

M2 IO90/CLK2_1

M1 IO91/CLK3/FUSE_CLK_1

D5 IO92_1

Page 75: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 74

No. BGA256

D6 IO93_1

A3 IO94_1

B3 IO95_1

C3 IO96_1

D3 IO97_1

M5 VDDQ_1

G9 VCCINT

D7 GND

D10 GND

H15 XIN_1

H16 XOUT_1

D13 VDDA0_2

H5 nCONFIG_2

J5 TMS_2

H4 TDI_2

H3 TCK_2

J4 TDO_2

H14 /CONF_DONE_2

G12 IO99/MSEL_2

D4 IO100_2

C1 IO101_2

E5 IO102_2

E3 VCCIO_2

F5 IO103_2

B1 IO104_2

H1 IO105_2

C2 IO106_2

E4 GND

E13 GND

G10 VCCINT

F3 IO107_2

D1 IO108_2

G5 IO109_2

F2 IO110_2

F1 IO111_2

G2 IO112_2

G1 IO113_2

J2 IO114_2

J1 IO115_2

G3 VCCIO_2

K3 VCCIO_2

G4 GND

No. BGA256

G13 GND

J6 IO116_2

K6 IO117_2

L6 IO118_2

K2 IO119_2

K1 IO120_2

L2 IO121_2

L1 IO122_2

H6 VCCINT

L3 IO123_2

N2 IO124_2

N1 IO125_2

K4 GND

K13 GND

K5 IO126_2

L4 IO127_2

R1 IO128_2

P2 IO129_2

P1 IO130_2

M3 VCCIO_2

N3 IO131_2

P3 IO132_2

R3 IO133_2

J3 RTCXI_3

N4 RTCXO_3

L5 VCCRTC_3

F4 GNDRTC_3

M4 GND

M13 GND

H11 VCCINT

T3 IO134_3

T2 IO135_3

R4 IO136_3

T4 IO137_3

N5 IO138_3

E15 IO139/CLK4_3

E16 IO140/CLK5_3

T1 VCCIO_3

P4 VCCIO_3

M15 IO141/CLK6_3

M16 IO142/CLK7_3

N6 IO143_3

No. BGA256

M6 IO144_3

P6 IO145_3

M7 IO146_3

K8 IO147_3

R5 IO148_3

T5 IO149_3

R6 IO150_3

N7 GND

N10 GND

T6 IO151_3

L7 IO152_3

R7 IO153_3

T7 IO154_3

L8 IO155_3

M8 IO156_3

N8 IO157_3

P8 IO158_3

R8 IO159_3

T8 IO160_3

R9 IO161_3

P7 VCCIO_3

P10 VCCIO_3

T9 IO162_3

K9 IO163_3

L9 IO164_3

M9 IO165_3

N9 IO166_3

R10 IO167_3

T10 IO168_3

R11 IO169_3

T11 IO170_3

P5 GND

P12 GND

R2 GND

R12 IO171_3

T12 IO172_3

K10 IO173_3

L10 IO174_3

P9 IO175_3

K7 VCCINT

P11 IO176_3

R13 IO177_3

Page 76: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 75

No. BGA256

T13 IO178_3

M10 IO179_3

N11 IO180_3

T14 IO181_3

T15 IO182_3

No. BGA256

P13 VCCIO_3

T16 VCCIO_3

R15 GND

R14 IO183_3

P14 IO184_3

No. BGA256

L11 IO185_3

M11 IO186_3

N12 IO187_3

Table 52 FBGA256 Footprint

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

VCCIO_

1

IO84_1 IO94_1 IO86_1 IO83_1 IO79_1 IO74_1 IO68_1 IO66_1 IO61_1 IO54_1 IO52_1 IO46_1 IO48_1 IO60_1

VCCIO_

1

A

B

IO104_

2

GND IO95_1 IO87_1 IO85_1 IO80_1 IO75_1 IO69_1 IO67_1 IO62_1 IO55_1 IO53_1 IO47_1 IO49_1 GND IO31_0 B

C

IO101/

SDO_2

IO106_

2

IO96_1

VCCIO_

1

GND IO78_1

VCCIO_

1

IO70_1 IO63_1

VCCIO_

1

IO56_1 GND

VCCIO_

1

IO42_1 IO37_0 IO36_0 C

D

IO108_

2

IO8/nC

S_0

IO97_1

IO100_

2

IO92_1 IO93_1 GND IO71_1 IO64_1 GND IO44_1 IO45_1

VCCAP

LL _2

IO43_1 IO34_0 IO33_0 D

E

IO89/

CLK1_1

IO88/

CLK0_1

VCCIO_

2

GND

IO102_

2

IO82_1 IO81_1 IO72_1 IO65_1 IO51_1 IO50_1 IO38_0 GND

VCCIO_

0

IO139/

CLK4_3

IO140/

CLK5_3

E

F

IO111_

2

IO110_

2

IO107_

2

GNDRT

C_3

IO103_

2

IO76_1 IO77_1 IO73_1 IO58_1 IO57_1 IO59_1 IO39_1 IO28_0 IO32_0 IO30_0 IO29_0 F

G

IO113_

2

IO112_

2

VCCIO_

2

GND

IO109_

2

VCCINT VCCINT VCCINT VCCINT VCCINT IO35_0

IO99/M

SEL_2

GND

VCCIO_

0

IO27_0 IO26_0 G

H

IO105/S

CLK_2

IO13/S

DI_0

TCK_2 TDI_2

nCONFI

G_2

VCCINT GND GND GND GND VCCINT IO40_1 IO41_1

CONF_

DONE_

2

XIN_1

XOUT_

1

H

J

IO115_

2

IO114_

2

RTCXI_

3

TDO_2 TMS_2

IO116_

2

GND GND GND GND IO18_0 IO24_0 IO25_0 IO23_0 IO22_0 IO21_0 J

K

IO120_

2

IO119_

2

VCCIO_

2

GND

IO126_

2

IO117_

2

VCCINT

IO147_

3

IO163_

3

IO173_

3

IO10_0 IO4_0 GND

VCCIO_

0

IO20_0 IO19_0 K

L

IO122_

2

IO121_

2

IO123_

2

IO127_

2

VCCRT

C_3

IO118_

2

IO152_

3

IO155_

3

IO164_

3

IO174_

3

IO185_

3

IO3_0 IO15_0 IO14_0 IO17_0 IO16_0 L

M

IO91/CL

K3/FUS

E_CLK_

1

IO90/

CLK2_1

VCCIO_

2

GND

VDDQ_

1

IO144_

3

IO146_

3

IO156_

3

IO165_

3

IO179_

3

IO186_

3

IO2_0 GND

VCCIO_

0

IO141/

CLK6_3

IO142/

CLK7_3

M

N

IO125_

2

IO124_

2

IO131_

2

RTCXO

_3

IO138_

3

IO143_

3

GND

IO157_

3

IO166_

3

GND

IO180_

3

IO187_

3

IO1_0 IO5_0 IO12_0 IO11_0 N

P

IO130_

2

IO129_

2

IO132_

2

VCCIO_

3

GND

IO145_

3

VCCIO_

3

IO158_

3

IO175_

3

VCCIO_

3

IO176_

3

GND

VCCIO_

3

IO184_

3

IO6_0 IO7_0 P

R

IO128_

2

GND

IO133_

2

IO136_

3

IO148_

3

IO150_

3

IO153_

3

IO159_

3

IO161_

3

IO167_

3

IO169_

3

IO171_

3

IO177_

3

IO183_

3

GND IO9_0 R

Page 77: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 76

T

VCCIO_

3

IO135_

3

IO134_

3

IO137_

3

IO149_

3

IO151_

3

IO154_

3

IO160_

3

IO162_

3

IO168_

3

IO170_

3

IO172_

3

IO178_

3

IO181_

3

IO182_

3

VCCIO_

3

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

VCCINT VCCIO_2 IOXXX_0 IOXXX_3

VCCIO_0 VCCIO_3 IOXXX_1

VCCIO_1 GND IOXXX_2

7.2.4 QFN68 Package Pin List

Table 53 QFN68 Package Pin List

No. QFN68

1 VCCIO_0

2 IO1_0

3 IO2_0

4 IO3_0

5 IO4_0

6 IO5_0

7 VCCINT_0

8 IO6 _0

9 IO7_0

10 IO8_0

11 IO9_0

12 IO10_0

13 IO11_0

14 VCCIO_0

15 IO12_0

16 IO13_0

17 IO14_0

18 VCCINT_1

19 VCCIO_1

20 IO15_1

21 IO16_1

22 IO17_1

23 IO18_1

24 IO19_0/CLK0_1

No. QFN68

25 IO20_0/CLK1_1

26 VCCIO_1

27 IO21/CLK2_1

28 IO22/CLK3/FUSE_CLK_1

29 IO23_1

30 IO24_1

31 IO25_1

32 VDDQ_1

33 XIN_1

34 XOUT_1

35 VDDA_2

36 nCONFIG_2

37 TMS_2

38 TDI_2

39 TCK_2

40 TDO_2

41 CONF_DONE_2

42 IO27_2

43 IO28_2

44 VCCIO_2

45 VCCIO_2

46 VCCINT_2

47 IO29_2

48 IO30_2

No. QFN68

49 IO31_2

50 IO32_2

51 IO33_2

52 IO34_3

53 IO35/CLK4_3

54 IO36/CLK5_3

55 VCCIO_3

56 IO37/CLK6_3

57 IO38/CLK7_3

58 IO39_3

59 IO40_3

60 IO41_3

61 IO42_3

62 IO43_3

63 IO44_3

64 IO45_2

65 VCCIO_3

66 IO46_3

67 IO47_3

68 VCCINT_3

Note: The exposed pad at the center of the chip backside should be connected to GND.

Page 78: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 77

7.3 Package Information

7.3.1 LQFP144 Low-profile Quad Flat-Pack Package Specifications

PIN 1

IDENTI

FIER

1

14

4

37 72

73

10

8

10

9

D 1

D1 24

E

1

E1

2

36

A A2

A1 6 e b 0.08 C

C SEATING PLANE

θ2

θ3

S

θ1

R1

R2

L

L1

θ

.25

GAGE PLANE

B

B

SECTION A-A

b 5 3

c

5

c1

5

b1 5

SECTION B-B

WITH PLATING

BASE METAL

A A

SymbolDimension in mm

Min Nom Max

A

A1

A2

b1

b

c1

c

D

D1

E

E1

e

L

L1

R

R1

S

θ1

θ2

θ3

θ

1.60

0.05

1.35 1.40 1.45

0.17 0.22 0.27

0.20 REF

0.12 0.20

0.13 REF

21.85 22.00 22.15

19.90 20.00 20.10

21.85 22.00 22.15

19.90 20.00 20.10

0.50 BSC

0.45 0.60 0.75

1.00 REF

0.15 REF

0.15 REF

0.19 REF

7° REF

12° REF

12° REF

0° 3.5° 7°

TO BE DETERMINED AT SEATING PLANE

DIMENSION D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION

D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSION

INCLUDING MOLD MISMATCH.

DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION

DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS

OR THE FOOT.

EXACT SHAPE OF EACH CORNER IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD

BETWEEN 0.10 mm AND 0.25 mm FROM THE LEAD TIP.

A1 IS DEFINED AS THE DISTANCE FROM THE SEATING

PLANE

TO THE LOWEST POINT OF THE PACKAGE BODY.

CONTROLLING DIMENSION : MILLIMETER.

REFERENCE DOCUMENT : JEDEC MS–026 , BFB

C

2

3

4

5

6

7

8

1

Figure 39 LQFP144 package

Page 79: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 78

7.3.2 TQFP100 Thin Quad Flat-Pack Package Specifications

PIN 1

IDENTI

FIER

1

10

0

26 5

0

51

75

76

D 1

D1 24

E

1

E1

2

25

A A2

A16 e b cccCC

SEATING PLANE

θ2

θ3

S

θ1

R1

R2

L

L1

θ

.25

GAGE PLANE

B

B

SECTION A-A

b 5 3

c

5c1

5

b1 5

SECTION B-B

WITH PLATING

BASE METAL

SymbolDimension in mm

Min Nom Max

A

A1

A2

b1

b

c1

c

D

D1

E

E1

e

L

L1

R

R1

S

θ1

θ2

θ3

θ

1.20

0.05

0.95 1.00 1.05

0.17 0.22 0.27

0.09 0.20

0.50 BSC

0.45 0.60 0.75

0° 3.5° 7°

SEE DETAIL A-A

(4x)

(4x)

0.15

0.17 0.20 0.23

0.09 0.16

14.00 BSC

16.00 BSC

14.00 BSC

16.00 BSC

0.15 REF

0.08

0.08 0.20

0.20

11° 12° 13°

11° 12° 13°

ccc 0.08SPECIAL CHARACTERISTICS C CLASS : ccc

TO BE DETERMINED AT SEATING PLANE

DIMENSION D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION

D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSION

INCLUDING MOLD MISMATCH.

DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR

THEFOOT.

EXACT SHAPE OF EACH CORNER IS OPTIONAL.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD

BETWEEN 0.10 mm AND 0.25 mm FROM THE LEAD TIP.

A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE

TO THE LOWEST POINT OF THE PACKAGE BODY.

CONTROLLING DIMENSION : MILLIMETER.

REFERENCE DOCUMENT : JEDEC MS–026 , BFB

C

2

3

4

5

6

7

8

1

9

DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION

Figure 40 TQFP100 package

Page 80: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 79

7.3.3 FBGA256-Pin FineLine Ball-Grid Array (FBGA) – THIN – Wire Bond

Figure 41 FBGA256 package

Controlling dimension is in millimeters.

Pin A1 may be indicated by an ID dot, or a special feature, in its proximity on package

surface.

Page 81: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 80

7.3.4 QFN68 Package Specifications

Figure 42 QFN68 package

Page 82: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 81

8 Developer Kits

Capital Microelectronics developer kits can achieve 2 designs for CME-M5 family: FPGA design and

embedded software design.

Capital Microelectronics Primace Integrated Design Environment (IDE) supports all CME’s chips, and

can implement synthesis, mapper, placement, routing, bitgen, simulation etc, and support 3rd

-party EDA

tools: Modelsim as well.

AGDI is developed by Keil (Keil is a part of ARM), as a general purposed debugger interface to Keil-C

IDE, with which designers can compile and debug 8051 firmware online. The CME-M5 family device has

on-chip debug (OCDS) capability, which can help the user debug 8051 program easily. For more

information, please refer to CME 8051 Debugger User Manual.

If you want to program, compile, debug 8051, or perform other 8051 related operations, please purchase

Keil-C software tool. For more information, please refer to http://www.keil.com/c51 .

Currently, the CME-M5 family device does not support other 3rd

-party development environment. If you

have any questions or suggestions, please contact us at: [email protected] .

OCDS debugging interface of MSS share the same JTAG interface with FPGA.

Page 83: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 82

9 Ordering Information

All part numbers have the following conventions:

Table 54 Part number conventions

Vendor Product

Series

Device

Type

LUT

Density

NVM

Density

Package

Type

Temperature

Range

Speed

Grade

CME- M5 C 06 N3 L144 C 7

Product Series

M5 JINSHAN family

Device Type

P FPGA

R FPGA + SRAM

C FPGA + SRAM + MCU

LUT Density

06 6K LUTs

03 3K LUTs

01 1K LUTs

Configuration NVM (SPI-flash) Option

N0 Without internal SPI-flash

N1 With 1Mb internal SPI-flash

N2 With 2Mb internal SPI-flash

N3 With 4Mb internal SPI-flash

N4 With 8Mb internal SPI-flash

Package Type: <type><#>

T Thin Quad Flat Pack (TQFP)

L Low profile quad flat package (LQFP)

Q Plastic Quad Flat Pack (QFN)

F Fineline BGA

# Pin number (208 for 208pin, 100 for 100pin…)

Temperature Range

C Commercial (0℃ to 85℃)

I Industrial (-40℃ to 125℃)

Page 84: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 83

Speed Grade

# Speed (7 for speed 7, 6 for speed 6, …)

Example: CME-M5C06N3L144C7

CME- M5 C 06 N3 L144 C 7Vendor

CME

Product Series

M5: JINSHAN family

Device Type

P: FPGAR: FPGA + SRAMC: FPGA + SRAM + MCU

LUT Density06:6K LUTs03:3K LUTs01:1K LUTs

NVM Density

N0:Without SPI-flashN1: With 1Mb SPI-flash N2: With 2Mb SPI-flashN3: With 4Mb SPI-flashN4: With 8Mb SPI-flash

Package Type

T:TQFP L:LQFPQ:QFNF:BGA

Temperature Range

C: Commercial (0℃~85℃)

I: Industrial (-40℃~+125℃)

Speed Grade

7: speed 76: speed 6

Page 85: AstroII Datasheet 1

CME-M5 Family Data Sheet

http://www.capital-micro.com 84

10 Legends

Abbreviation Full Name

AES Advanced Encryption Standard

ALU Arithmetic-Logic Unit

AS Active Serial

CAP Configurable Application Platform on Chip

CCU Compare Capture Unit

CMS Control Mux Switch

CPU Control Processor Unit

DPRAM Dual Port RAM

DC Direct Current

DSP Digital Signal Processor

EMB Embedded Memory Block

IAP In Application Programming

I2C Inter-IC – a serial interface designed by Philips Semiconductors

ISC In System Configuration

ISP In System Programming

ISR Interrupt Service Routine Unit

LE Logic Element

LP Logic Parcel

LSB Least Significant Bit

MAC Multiply Accumulate Counter

MDU Multiplication-Division Unit

MOVC Move Program Memory

MOVX Move External Memory

MSB Most Significant Bit

MSS Microcontroller Subsystem

OCDS On-Chip Debug Support

OCI On-Chip Instrumentations

PLB Programmable Logic Block

PMU Power Management Unit

PS Passive Serial

RTC Real Time Clock

SFR Special Function Register

SPI Serial Peripheral Interface