asteroseismology of compact stars

80
Asteroseismology of compact stars Steven Kawaler Iowa* State University 1 * Boyhood home of Herbert Hoover & site of his Presidential Library: West Branch, Iowa

Upload: others

Post on 28-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Asteroseismology of compact stars

Asteroseismology of compact stars

Steven Kawaler!Iowa* State University

�1

* Boyhood home of Herbert Hoover & site of his Presidential Library: West Branch, Iowa

Page 2: Asteroseismology of compact stars

Asteroseismology of compact stars

Steven Kawaler!Iowa* State University

�1

* Boyhood home of Herbert Hoover & site of his Presidential Library: West Branch, Iowa

“Hoover, Democratic propaganda to the contrary, did not cause the Great Depression nor was he indifferent to his people's sufferings. A brilliant, decent man, he was absolutely the unluckiest President.”

Page 3: Asteroseismology of compact stars

•Overview of evolution!•White dwarf pulsation classes & selected results of

boutique analyses!•g-mode period spacings and masses!•diffusion and layer thickness!• rotation rates and ‘inversion’!

•white dwarf rotation and prior angular momentum evolution!•Hot subdwarf (sdB) - apologies for tight focus on rotation!!

• “wholesale” rotation rate determinations!•connecting sdB rotation with WD rotation!

•Future prospects (space-based) for verifying asteroseismic rotation measurements

�2

This afternoon’s trajectory

Page 4: Asteroseismology of compact stars

Pulsating stars in the HR diagram

diagram courtesy J. Christensen-Dalsgaard �3

Page 5: Asteroseismology of compact stars

Pulsating stars in the HR diagram

diagram courtesy J. Christensen-Dalsgaard �3

Page 6: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�4diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 7: Asteroseismology of compact stars

evolutionary channel to the WD regime �5

3 Mo!(yields 0.75Mo WD)

MS

Page 8: Asteroseismology of compact stars

evolutionary channel to the WD regime �5

3 Mo!(yields 0.75Mo WD)

RGBHB

MS

Page 9: Asteroseismology of compact stars

evolutionary channel to the WD regime �5

3 Mo!(yields 0.75Mo WD)

AGB

RGBHB

MS

Page 10: Asteroseismology of compact stars

evolutionary channel to the WD regime �5

3 Mo!(yields 0.75Mo WD)

AGB

TP-AGB

RGBHB

MS

Page 11: Asteroseismology of compact stars

evolutionary channel to the WD regime �5

3 Mo!(yields 0.75Mo WD)

AGB

TP-AGB

RGBHB

MS

To WD Cooling Track

Page 12: Asteroseismology of compact stars

�6WD Spectral types and chemical evolution

Page 13: Asteroseismology of compact stars

�7mixed modes in giants - a preview to compact pulsators

red clump

secondary clump

Bedding et al. 2011

Page 14: Asteroseismology of compact stars

Bedding et al. 2011

�8mixed modes in giants - a preview to compact pulsators

red clump

secondary clump

shell burning, degenerate He core (WD)

non-degen, He burning core (sdB)

Page 15: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�9diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 16: Asteroseismology of compact stars

• spacing depends on l

�10

g-modes: ~ equally spaced in period

n n+1 n+2 n+3 n+4n+5 n+6n-1n-2

......Period

n n+1 n+2 n+3n+4n+5 n+6n-1n-2

...

......

...

Period

l=1

l=2

⇧nl

= n⇧

opl(l + 1)

; ⇧o

= 2⇡2

"Zb

a

N

rdr

#�1

Page 17: Asteroseismology of compact stars

• period of ‘radial fundamental’ ~ tff ~ sound crossing time

�11

Pulsation periods

p-modes g-modes

Periods P < tff P > tff

restoring force pressure buoyancyasymptotic behavior ν ∝ νo × n P ∝ Πo × n

examplesCepheids

solar-like pulsators red giants

white dwarfs sdBs

Page 18: Asteroseismology of compact stars

�12PG 1159-035: a g-mode pulsator

P P-390390 0424 34 ?451 61 3 x 20.3495 105 5 x 21.0516 126 6 x 21.0539 149 7 x 21.3645 255 12 x 21.3832 442 21 x 21.0

Page 19: Asteroseismology of compact stars

�13PG 1159-035: a g-mode pulsator

Corsico et al. 2008 [WET]

Page 20: Asteroseismology of compact stars

�14g-mode period spacing -> mass

Corsico et al. 2007

GW Vir stars DBV stars

Bradley & Winget 1994

Page 21: Asteroseismology of compact stars

Bedding et al. 2011

�15mixed modes in giants - a preview to compact pulsators

red clump

secondary clump

shell burning, degenerate He core (WD)

non-degen, He burning core (sdB)

Page 22: Asteroseismology of compact stars

• multiple triplets!

• 3.3 µHz splitting!

• rotation period of 1.75 days

�16

a DB pulsator in the Kepler field Østensen et al. 2011

Page 23: Asteroseismology of compact stars

• asymptotic g-mode pulsator !

• 36.3s period spacing!

• M ~ 0.56 Msun

�17

a DB pulsator in the Kepler field Østensen et al. 2011

150

200

250

300

350

400

0 8 16 24 32 40

Perio

d [s

]

Period modulo 36.3 s

Page 24: Asteroseismology of compact stars

•Best fit mass !• 0.570 Msun!

•Best fit Teff!• 29,200K!• much hotter than

spectroscopic value

�18

DB seismic modeling Bischoff-Kim & Østensen 2011

Page 25: Asteroseismology of compact stars

�19WD Spectral types and chemical evolution

Page 26: Asteroseismology of compact stars

Surface Core

diffusive separation of He from C/O (proposed in 1995 by Dehner)

Page 27: Asteroseismology of compact stars

�21

Period Spacing Variations

Modes ‘trapped’ by!composition

transition zone

Manifest as modes that fall below mean

period spacing

Page 28: Asteroseismology of compact stars

• Best fit mass !• 0.570 Msun!

• C/O core size!• 0.36 Msun!

• Central O abund.!• 0.6 - 0.65

�22

DB seismic modeling Bischoff-Kim & Østensen 2011

Page 29: Asteroseismology of compact stars

• Best fit mass !• 0.570 Msun!

• C/O core size!• 0.36 Msun!

• Central O abund.!• 0.6 - 0.65

�23

a DB pulsator in the Kepler field Østensen et al. 2011

150

200

250

300

350

400

0 8 16 24 32 40

Untitled 1

Perio

d [s

]

Period modulo 36.3 s

Page 30: Asteroseismology of compact stars

• Best fit mass !• 0.570 Msun!

• C/O core size!• 0.36 Msun!

• Central O abund.!• 0.6 - 0.65

�23

a DB pulsator in the Kepler field Østensen et al. 2011

150

200

250

300

350

400

0 8 16 24 32 40

Untitled 1

Perio

d [s

]

Period modulo 36.3 s

150

200

250

300

350

400

0 8 16 24 32 40

Page 31: Asteroseismology of compact stars

• Best fit mass !• 0.570 Msun!

• C/O core size!• 0.36 Msun!

• Central O abund.!• 0.6 - 0.65

DB seismic modeling Bischoff-Kim & Østensen 2011

Page 32: Asteroseismology of compact stars

Surface Core

diffusive separation of He from C/O (proposed in 1995 by Dehner)

Page 33: Asteroseismology of compact stars

�26

Rotational Splitting in Kepler DB pulsator

•Δν = 3.3 μHz!• Prot ~ 1.75 days!• implied vrot= 0.4 km/s

Page 34: Asteroseismology of compact stars

�26

Rotational Splitting in Kepler DB pulsator

•Δν = 3.3 μHz!• Prot ~ 1.75 days!• implied vrot= 0.4 km/s

Page 35: Asteroseismology of compact stars

�26

Rotational Splitting in Kepler DB pulsator

•Δν = 3.3 μHz!• Prot ~ 1.75 days!• implied vrot= 0.4 km/s

Page 36: Asteroseismology of compact stars

Star Prot [h] vrot [km/s] Type M/Mo v sin iEC 20058 2 8.73 DBV 0.54 Sullivan

KIC 8626021 41 0.43 DBV 0.56 OstensenGD 358 29 0.60 DBV! 0.61

HL Tau 76 53 0.33 C-ZZ Ceti 0.55R548 37 0.47 H-ZZ Ceti 0.60

HS0507 41 0.43 C-ZZ Ceti 0.6G29-38 32 0.55 C-ZZ Ceti 0.6 45 km/s Koester! GD 165 50 0.35 H-ZZ Ceti 0.63 29 km/s Koester

KUV11370+4222 5.56 3.14 C-ZZ Ceti 0.63 *G185-32 15 1.16 H-ZZ Ceti 0.64GD 154 55 0.32 C-ZZ Ceti 0.70L19-2 13 1.34 H-ZZ Ceti 0.71 38 km/s Koester

G226-29 9 1.94 H-ZZ Ceti 0.78J1612+0830 0.93 18.77 ZZ Ceti 0.8 *J1916+3936 18.8 0.93 ZZ Ceti 0.82 *J1711+6541 16.4 1.06 ZZ Ceti 1.00 *

PG 0122 37 0.66 GW Vir 0.56 Corsico NGC 1501 28 0.87 GW Vir 0.56PG 1707 16 1.53 GW Vir 0.56RX J2117 28 0.87 GW VIr 0.57PG 1159 33 0.74 GW Vir 0.60PG 2131 5 4.89 GW Vir 0.60

some asteroseismic WD rotation

rates

�27

Mean = 26 +/- 20 hours

These values represent decades of ground-based effort

Page 37: Asteroseismology of compact stars

Star Prot [h] vrot [km/s] Type M/Mo v sin iEC 20058 2 8.73 DBV 0.54 Sullivan

KIC 8626021 41 0.43 DBV 0.56 OstensenGD 358 29 0.60 DBV! 0.61

HL Tau 76 53 0.33 C-ZZ Ceti 0.55R548 37 0.47 H-ZZ Ceti 0.60

HS0507 41 0.43 C-ZZ Ceti 0.6G29-38 32 0.55 C-ZZ Ceti 0.6 45 km/s Koester! GD 165 50 0.35 H-ZZ Ceti 0.63 29 km/s Koester

KUV11370+4222 5.56 3.14 C-ZZ Ceti 0.63 *G185-32 15 1.16 H-ZZ Ceti 0.64GD 154 55 0.32 C-ZZ Ceti 0.70L19-2 13 1.34 H-ZZ Ceti 0.71 38 km/s Koester

G226-29 9 1.94 H-ZZ Ceti 0.78J1612+0830 0.93 18.77 ZZ Ceti 0.8 *J1916+3936 18.8 0.93 ZZ Ceti 0.82 *J1711+6541 16.4 1.06 ZZ Ceti 1.00 *

PG 0122 37 0.66 GW Vir 0.56 Corsico NGC 1501 28 0.87 GW Vir 0.56PG 1707 16 1.53 GW Vir 0.56RX J2117 28 0.87 GW VIr 0.57PG 1159 33 0.74 GW Vir 0.60PG 2131 5 4.89 GW Vir 0.60

some asteroseismic WD rotation

rates

�28

Mean = 26 +/- 18 hours

These values represent decades of ground-based effort

Page 38: Asteroseismology of compact stars

�29

IAU Symp. 215: Stellar Rotation page 12

Trouble enroute to paradise?

Koester et al. (‘98) Seismology Star v sin i (km/s) vrot (km/s)

L19-2 38 +/- 3 0.55 +/- 0.05

GD165 29 +/- 7 0.50 +/- 0.05

G29-38 45 +/- 5 0.55 +/- 0.05

0.35

1.34

Koester & Kompe (2007): ! Broadening caused by ! velocity fields of the pulsations

Page 39: Asteroseismology of compact stars

Star Prot [h] vrot [km/s] Type M/Mo v sin iEC 20058 2 8.73 DBV 0.54 Sullivan

KIC 8626021 41 0.43 DBV 0.56 OstensenGD 358 29 0.60 DBV! 0.61

HL Tau 76 53 0.33 C-ZZ Ceti 0.55R548 37 0.47 H-ZZ Ceti 0.60

HS0507 41 0.43 C-ZZ Ceti 0.6G29-38 32 0.55 C-ZZ Ceti 0.6 45 km/s Koester! GD 165 50 0.35 H-ZZ Ceti 0.63 29 km/s Koester

KUV11370+4222 5.56 3.14 C-ZZ Ceti 0.63 *G185-32 15 1.16 H-ZZ Ceti 0.64GD 154 55 0.32 C-ZZ Ceti 0.70L19-2 13 1.34 H-ZZ Ceti 0.71 38 km/s Koester

G226-29 9 1.94 H-ZZ Ceti 0.78J1612+0830 0.93 18.77 ZZ Ceti 0.8 *J1916+3936 18.8 0.93 ZZ Ceti 0.82 *J1711+6541 16.4 1.06 ZZ Ceti 1.00 *

PG 0122 37 0.66 GW Vir 0.56 Corsico NGC 1501 28 0.87 GW Vir 0.56PG 1707 16 1.53 GW Vir 0.56RX J2117 28 0.87 GW VIr 0.57PG 1159 33 0.74 GW Vir 0.60PG 2131 5 4.89 GW Vir 0.60

some asteroseismic WD rotation

rates

�30

These values represent decades of ground-based effort

Mean = 26 +/- 18 hours

Page 40: Asteroseismology of compact stars

Star Prot [h] vrot [km/s] Type M/Mo v sin iEC 20058 2 8.73 DBV 0.54 Sullivan

KIC 8626021 41 0.43 DBV 0.56 OstensenGD 358 29 0.60 DBV! 0.61

HL Tau 76 53 0.33 C-ZZ Ceti 0.55R548 37 0.47 H-ZZ Ceti 0.60

HS0507 41 0.43 C-ZZ Ceti 0.6G29-38 32 0.55 C-ZZ Ceti 0.6 45 km/s Koester! GD 165 50 0.35 H-ZZ Ceti 0.63 29 km/s Koester

KUV11370+4222 5.56 3.14 C-ZZ Ceti 0.63 *G185-32 15 1.16 H-ZZ Ceti 0.64GD 154 55 0.32 C-ZZ Ceti 0.70L19-2 13 1.34 H-ZZ Ceti 0.71 38 km/s Koester

G226-29 9 1.94 H-ZZ Ceti 0.78J1612+0830 0.93 18.77 ZZ Ceti 0.8 *J1916+3936 18.8 0.93 ZZ Ceti 0.82 *J1711+6541 16.4 1.06 ZZ Ceti 1.00 *

PG 0122 37 0.66 GW Vir 0.56 Corsico NGC 1501 28 0.87 GW Vir 0.56PG 1707 16 1.53 GW Vir 0.56RX J2117 28 0.87 GW VIr 0.57PG 1159 33 0.74 GW Vir 0.60PG 2131 5 4.89 GW Vir 0.60

some asteroseismic WD rotation

rates

�31

Mean = 26 +/- 17 hours

These values represent decades of ground-based effort

Page 41: Asteroseismology of compact stars

�32

Rota

tion

Perio

d [h

ours

]

0

15

30

45

60

0.50 0.60 0.70 0.80 0.90 1.00

Period vs. mass

Page 42: Asteroseismology of compact stars

•A: rotation kernels suggest that it’s a ‘global average’ weighted (heavily) by the envelope:

�33

Q: what parts of the DA white dwarf are rotational splittings sampling?

Page 43: Asteroseismology of compact stars

•A: rotation kernels suggest that it’s a ‘global average’ weighted (heavily) by the envelope:

�34

Q: what parts of the DB white dwarf are rotational splittings sampling?

Page 44: Asteroseismology of compact stars

•A: rotation kernels suggest that it’s a true ‘global average’ with mode trapping effects playing a role

�35

Q: what parts of the GW Vir star are rotational splittings sampling?

Page 45: Asteroseismology of compact stars

•handful of splittings available!•difficult to optimize kernels!•‘regularized’ inversion necessary!•also parametric approach - test classes of rotation curves

and minimize forward-computed splitting differences!•Kawaler, Sekii & Gough (1999): inconclusive results for!

•GD 358 (DBV)!•PG 1159-035 (GW Vir)!

•Charpinet et al (2009): PG 1159!•solid body rotation!

•Corsico et al. (2011): PG 0122!•some differential rotation

�36

rotational inversions?

Page 46: Asteroseismology of compact stars

•pattern of period spacing matches pattern of splitting variation (mode trapping effects both)!

•suggests slightly faster core rotation than envelope

�37

Kawaler, Sekii & Gough (1999): PG 1159

Page 47: Asteroseismology of compact stars

•pattern of period spacing matches pattern of splitting variation (mode trapping effects both)!

•suggests slightly faster core rotation than envelope!•‘regularized’ inversion agrees - small slope

�38

Kawaler, Sekii & Gough (1999): PG 1159

Page 48: Asteroseismology of compact stars

�39

Charpinet et al (2009): PG 1159 (GW Vir)

Page 49: Asteroseismology of compact stars

�40

Charpinet et al (2009): PG 1159 (GW Vir)

Page 50: Asteroseismology of compact stars

�40

Charpinet et al (2009): PG 1159 (GW Vir)

Page 51: Asteroseismology of compact stars

�40

Charpinet et al (2009): PG 1159 (GW Vir)

Page 52: Asteroseismology of compact stars

�40

Charpinet et al (2009): PG 1159 (GW Vir)

Page 53: Asteroseismology of compact stars

�41

Corsico et al. (2011): PG0122•Regularized inversion - core faster than envelope!•Linear rotation curve - similar χ2 as inversion

Page 54: Asteroseismology of compact stars

what to expect for WD rotation

�42

Page 55: Asteroseismology of compact stars

Angular momentum channels to the WD regime �43

3 Mo!(yields 0.75Mo WD)

AGB

TP-AGB

RGBHB

MS

To WD Cooling Track

Page 56: Asteroseismology of compact stars

•Low mass case!•post-MS coupling: Prot ~ 5 hr!•max. coupling: Prot ~ infinity

�44

MS to RGB core rotation to HB/Clump!(Tayer & Pinsonneault 2013)

2.5 Mo

~0.9 Mo

•High mass case!•post-MS coupling: Prot ~ 0.7 hr!•max. coupling: Prot ~ >1000 d

Page 57: Asteroseismology of compact stars

Angular momentum channels to the WD regime!Tayar & Pinsonneault (2013) “style”

�45

M < 1.3 MoM > 1.2 Mo!

M < 2.3 MoM > 2.3 Mo

Main Sequencemagnetic braking, !

slow start!20 days

no dJ/dt,!fast start!20 hours

no dJ/dt,!fast start!20 hours

RGB / He ignition

mass, J loss at RGB tip!5 hours

mass, J loss at RGB tip!

~0.7 hours

no mass loss, !no J loss!0.7 hours

Helium core burning

post-flash!horizontal branch!

50 hours

post-flash!HB / Clump!~ 7 hours

non-degen!ignition, clump!

~0.7 hours

AGB / post-AGB

sudden!dM/dt and dJ/dt at

termination!5 hours

sudden!dM/dt and dJ/dt at

termination!~0.7 hours

sudden!dM/dt and dJ/dt at

termination!~0.07 hours

MS

RGB

HB

Page 58: Asteroseismology of compact stars

�46

M < 1.3 MoM > 1.2 Mo!

M < 2.3 MoM > 2.3 Mo

Main Sequencemagnetic braking, !

slow start!20 days

no dJ/dt,!fast start!20 hours

no dJ/dt,!fast start!20 hours

RGB / He ignition

mass, J loss at RGB tip!5 hours

mass, J loss at RGB tip!

~0.7 hours

no mass loss, !no J loss!0.7 hours

Helium core burning

post-flash!horizontal branch!

50 hours

post-flash!HB / Clump!~ 7 hours

non-degen!ignition, clump!

~0.7 hours

AGB / post-AGB

sudden!dM/dt and dJ/dt at

termination!5 hours

sudden!dM/dt and dJ/dt at

termination!~0.7 hours

sudden!dM/dt and dJ/dt at

termination!~0.07 hours

MS

RGB

HB

AGBTP-

AGB

These are ‘fast’ limits for core rotation - no coupling (aside convection) with envelope

Angular momentum channels to the WD regime!Tayar & Pinsonneault (2013) “style”

Page 59: Asteroseismology of compact stars

WD initial-final mass relation

• from Kalirai (2008, 2013)!

•MOST isolated white dwarfs are in the intermediate case regime

• 2.25 Mo > Minitial > 1.3 Mo

�47

Page 60: Asteroseismology of compact stars

WD initial-final mass relation

• from Kalirai (2008, 2013)!

•MOST isolated white dwarfs are in the intermediate case regime

• 2.25 Mo > Minitial > 1.3 Mo

�47

Page 61: Asteroseismology of compact stars

•conclusion from limiting cases, accounting for MS angular momentum redistribution (and loss) as initial conditions for RGB (to AGB & beyond):!

•core @RGB Tip: !•M < 1.3 Mo - ‘slow’ core (> 5 h)!•M > 1.3 Mo - ‘fast’ core ( > 0.7 h)!

•core @ HB / clump / sdB:!•M < 1.3 Mo - ‘slow’ core (> 50 h)!•M > 1.3 Mo - ‘medium’ core ( 0.7h - 7h lower limit)!

•Core as a White Dwarf!•Mwd < 0.56, P > 5 h!•0.65 > Mwd > 0.56, P > 0.7 h!•Mwd > 0.65 , P > 0.07h

�48

so…what is ‘fast’ for a WD?

Page 62: Asteroseismology of compact stars

�49

Rota

tion

Perio

d [h

ours

]

0

15

30

45

60

0.50 0.60 0.70 0.80 0.90 1.00

Minitial > 2.25Minitial < 1.3

Period vs. mass

Page 63: Asteroseismology of compact stars

•“SLOW ROTATION” (> several hours) means! more / faster coupling on RGB/AGB ! ! ! ! ! ! ! BUT

•any rotation = imperfect coupling on RGB/AGB

�50

what is ‘fast’ for a WD?

Page 64: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�51diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 65: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�51diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 66: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�51diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 67: Asteroseismology of compact stars

• White Dwarf pulsators!

• DB (He - surface)!

• DA (H - surface)!

• DOZQ (He/C/O surface)

• sdB (horizontal branch) pulsators!

• p-mode pulsators (hotter)!

• g-mode pulsators (cooler)

�51diagram courtesy J. Christensen-Dalsgaard

Post-giant stars in the HR diagram

Page 68: Asteroseismology of compact stars

Østensen 2008

red/green = short period purple = long-period

Page 69: Asteroseismology of compact stars

Horizontal Branch Basics

Post helium core flash structure...!our Sun in ~ 5 billion years

HHe

H burning shell (if MH big enough)

convective core

Page 70: Asteroseismology of compact stars

�54

HHe

H burning shell (if MH big enough)

convective core

Charpinet et al. 2002, 2013

Period spacing pattern depends on

layer thickness

Page 71: Asteroseismology of compact stars

�55

what we see

Page 72: Asteroseismology of compact stars

period spacings in sdB stars via KeplerStar ∆P1 ∆P2 ∏o

10670103 251 s 146 s 355 / 3582697388 241 s - 3413527751 - 154 s 3777664467 262 s - 3702991403 247 s 136 s 349 / 33311179657 252 s 136 s 356 / 33311558725 249 s 143 s 352 / 350KPD 1943 243 s - 344

Van Grootel (model) 240 s 139 s 339 / 340

Page 73: Asteroseismology of compact stars

Bedding et al. 2011

�57mixed modes in giants - a preview to compact pulsators

red clump

secondary clump

shell burning, degenerate He core (WD)

non-degen, He burning core (sdB)

Page 74: Asteroseismology of compact stars

sdB / EHB rotation• Kepler pulsating sdB stars show clear signs of rotational splitting!

• Isolated sdB periods range from 23-88 days; median of ~30 d!

• This suggests rather strong coupling.

�58

KIC

Page 75: Asteroseismology of compact stars

�59

Q: what parts of the sdB are rotational splittings sampling?

•A: ‘global average’ weighted (heavily) by area between the convective core & H/He shell

Page 76: Asteroseismology of compact stars

�60

sdB rotation via KeplerKIC Teff log g

Rotation Period![days]

vrot![km/s]

Binary Period ref

11179657 26000 5.14 7.4 1.38 0.40 d Pablo et al. 2012

B4 = 2438324 27100 5.69 9.6 1.06 0.40 d Pablo et al. 2011

2991403 27300 5.43 10.3 0.99 0.44 d Pablo et al. 2012

10139564 31859 5.67 25.6 0.40 - Baran et al. 2012

3527751 27900 5.37 25 0.41 - Reed et al. 2013

11558725 27910 5.41 45 0.23 10.05 d Telting et al. 2012

2697388 23900 5.32 45 0.23 - Baran 2012

10670103 20900 5.11 88 0.12 - Reed et al. 2013

Median = 25.3 days!Mean = 32 +/- 16 days

Page 77: Asteroseismology of compact stars

•reverse this process to project WD rotation velocity from HB!

•factor of 10 decrease in moment of inertia!

•sdB median = 25.3 d!• projected WD period

~ 3.2 d (2 x observed)!•suggests minimal

residual coupling post-HB (i.e. AGB)

�61

post-He flash core slowing!(Kawaler & Hostler 2005)

pre core flash (degenerate)

He core burning

Page 78: Asteroseismology of compact stars

�62

if I have any time (probably not…)

Page 79: Asteroseismology of compact stars

•‘traditional’ asteroseismic analysis of white dwarfs is a mature field - tests of equation of state, internal structure, and diffusion!

•asteroseismic rotation measurements of WDs (and sdBs) as a final ‘boundary condition’ for angular momentum evolution!• (single) sdB rotation periods are ~ 26 days!

• (single) white dwarf rotation periods are ~ 1 day!•much (most?) core-envelope coupling is prior to AGB!

•independent tests of asteroseismic rotation measurements are needed - precise photometry to the rescue?!

•Kepler transformed sdBs from “boutique” modeling to class properties!

•K2 promises to do the same for white dwarfs

�67

summary

Page 80: Asteroseismology of compact stars

�68

a local Puls(at)ion boutique