associative tolerance to nicotine analgesia in the rat tail flick and hot plate tests

Upload: aa031987

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    1/8

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/13560751

    Associative tolerance to nicotine analgesia inthe rat: Tail-flick and hot-plate tests

     Article  in  Experimental and Clinical Psychopharmacology · September 1998

    Impact Factor: 2.71 · DOI: 10.1037//1064-1297.6.3.248 · Source: PubMed

    CITATIONS

    21

    READS

    60

    3 authors, including:

    Antonio Cepeda-Benito

    University of Vermont

    31 PUBLICATIONS  861 CITATIONS 

    SEE PROFILE

    All in-text references underlined in blue are linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Antonio Cepeda-Benito

    Retrieved on: 27 April 2016

    https://www.researchgate.net/profile/Antonio_Cepeda-Benito2?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_4https://www.researchgate.net/profile/Antonio_Cepeda-Benito2?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_5https://www.researchgate.net/?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_1https://www.researchgate.net/profile/Antonio_Cepeda-Benito2?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_7https://www.researchgate.net/institution/University_of_Vermont?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_6https://www.researchgate.net/profile/Antonio_Cepeda-Benito2?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_5https://www.researchgate.net/profile/Antonio_Cepeda-Benito2?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_1https://www.researchgate.net/publication/13560751_Associative_tolerance_to_nicotine_analgesia_in_the_rat_Tail-flick_and_hot-plate_tests?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_3https://www.researchgate.net/publication/13560751_Associative_tolerance_to_nicotine_analgesia_in_the_rat_Tail-flick_and_hot-plate_tests?enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3&el=1_x_2

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    2/8

    Experimental and Clinical Psvchopliarniat-ology

    1998, Vol. 6, No. 3, 248-254

    Copyright 1998 by

     the

     Am

    Associative Tolerance to Nicotine Analgesia in the Rat:

    Tail-Flick and

     Hot-Plate

     Tests

    Antonio Cepeda-Benito,

     Jose Reynoso, and Eric H.

     McDaniel

    Texas A&M University

    Previous

      assessments of

      associative  nicotine

      tolerance may  have

      confounded  associative

    effects  with novelty-induced stress

     effects,

      instrumental learning

     effects,

      or both.

     That

      is,

    subjects  were

     tested in

     novel environments, allowed

      to

      practice

      the

      test

      response, or both

    during

     the tolerance

     development phase.

     In the first study, 32 male

     Sprague-Dawley rats were

    injected

     with various doses of

     nicotine

     and tested for

     nociception

     in the

     tail-flick

     and hot-plate

    tests  to  assess nicotine's

     analgesic  effects.

      In the  second  study, 35 rats

      received

      nicotine

    explicitly  paired  or unpaired with a distinctive

      test

      context.  A l l  animals  were equally

    preexposed to the test environment, and none had the opportunity to practice the test response.

    Paired

     rats developed greater nicotine tolerance

     than

     unpaired rats. This context-dependent

    (associative)

     tolerance effect was found with both

     tail-flick

     and hot-plate tests.

    Drug tolerance

      is a

     decrease

     in the

     effects

      of a

     drug dose

    following

      repeated

     drug administrations. Drug tolerance

      is

    central

      to the  definition  of

      drug dependence (American

    Psychiatric

     Association, 1994), and several theorists assign

    tolerance, or the  mechanisms  that  produce  tolerance,  an

    important role in the genesis and maintenance of addictive

    behaviors (see Ramsay & Woods, 1997;

      Trujillo

      & Akil.

    1995). For example, smokers may smoke more to compen-

    sate for the  development of  tolerance  of the  reinforcing

    effects

      of

     nicotine. Likewise, tolerance

     of the ill

     effects

      of

    nicotine may increase tobacco consumption by  allowing

    smokers

     to smoke more without feeling sick  (Alexander &

    Hadaway, 1982;

      Pomerleau,

      1995;  Trujillo  &

     Akil).

     Thus,

    nicotine tolerance can be a symptom of physical dependence

    on nicotine (American Psychiatric Association, 1994) and a

    contributor to the severity of the smoker's physical and

    psychological

     dependence (Pomerleau).

    There is considerable evidence  that  many examples of

    drug tolerance represent the operation of classical condition-

    ing  (Young & Goudie, 1994), and some theorists have

    proposed  that  learning  is the primary  underlying  cause

    (Ramsay & Woods, 1997, p. 170) of all drug tolerance

    phenomena. Most

      of the

      support

      for the  role  of  classical

    conditioning

     in the development of

      drug tolerance comes

    from

      investigations of tolerance  to the  analgesic

     effects

      of

    morphine. In associative tolerance studies, animals

     receiv-

    ing

     morphine explicitly paired with a distinctive test context

    Antonio Cepeda-Benito,

     Jose

     Reynoso, and Eric H. McDaniel,

    Department of Psychology, Texas A&M University.

    This  research was supported by  Grant  DA10576-01  from  the

    National

      Institute

      on

      Drug Abuse.

      We

      thank

      Anissa

      Norrell,

    Thomas Cross,

     Andrea

     Szabo, Michael Drake,

     Eddy

     Badrina, Paige

    Bonner, Amber

     Shipp, Enrique Pizana, Sarah

     Manning,

     and Jason

    Murphy for

     help

     in

     conducting

     Ihe experiment.

    Correspondence concerning this article

      should

     be addressed to

    Antonio

     Cepeda-Benito,

     Department of Psychology, Texas A&M

    University,  College Station,  Texas 77843-4235.  Electronic  mail

    may

     be sent to [email protected].

    are more tolerant to morphine's analgesic  effects  than

    animals receiving

      the

      same drug exposure regimen

      in an

    environment other than the distinctive context (e.g., Cepeda-

    Benito &

     Tiffany,

      1996a). The conditioning explanation for

    these  findings

      is

     that

      the

      distinctive  context

     has

     become

     a

    conditioned stimulus (CS)

     that

     elicits associative tolerance

    effects  (Baker  &

     Tiffany,

      1985; Poulos  &  Cappell,

      1991;

    Siegel, 1975). Some authors have also proposed that the

    interoceptive  effects  of  drugs  may  also  function  as CSs

    capable

      of

      producing associative tolerance  effects  (e.g.,

    Cepeda-Benito & Short, 1997; Grisel, Wiertelak, Watkins, &

    Maier, 1994).

    Despite

      the prominence of learning accounts of drug

    tolerance, we know of only five studies that

     investigated

     the

    impact of cue

     associations

     on the

      development

     of

     nicotine

    tolerance (Caggiula

     et

     al, 1991, 1993; Caggiula, Epstein,

     

    Stiller,  1989; Epstein, Caggiula, Perkins, McKenzie, &

    Smith, 1991; Epstein, Caggiula, & Stiller, 1989). These

    studies investigated tolerance to nicotine's (a) anorectic

    effects

      (Caggiula  et al.,  1989, 1991),  (b)  corticosterone-

    elevating  effects  (Caggiula

      et

      al., 1991),

      (c) tachycardiac

    effects  (Epstein

      et

      al., 1991),

      and (d)

      analgesic  effects

    (Caggiula et

     al.,

     1993; Epstein et

     al.,

      1989). These research-

    ers found evidence of nicotine tolerance in subjects tested in

    the  same context  in  which they  had  received repeated

    administrations

     of

     nicotine. However, these subjects failed

    to

      display tolerance  effects  when they were tested

      in the

    presence

     of a

     novel

     set of

     contextual stimuli (challenge test).

    Thus,  the

      researchers

      concluded  that  these subjects  had

    developed a context-dependent, or associative, form of

    nicotine tolerance.

    Alternatively, when animals

     are

     tested

     in a

     novel environ-

    ment, an apparent loss of tolerance also may be accounted

    for by the  presence  of  novelty-induced stress  in the  test

    situation. That is, environmental stress may interact with a

    drug dose to augment the drug effects  being measured. For

    example, exposure to a novel environment can elevate

    corticosterone levels (e.g., Caggiula et al.,  1993) or induce

    analgesia (e.g., Netto,

      Siegfried,

      &

      Izquierdo, 1987; Sher-

    248

    https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/15328222_Acute_stress_or_corticosterone_administration_reduces_responsiveness_to_nicotine_Implications_for_a_mechanism_of_conditioned_tolerance?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/20657075_Environment-specific_tolerance_to_nicotine?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    3/8

    TOLERANCE

      TO NICOTINE

     ANALGESIA

     IN THE RAT

    249

    man,

      1979). Various investigations have demonstrated that

    some examples

      of

      context-specific  drug tolerance

      may

    reflect the presence of stress

     effects

      rather than the presence

    of absence of associative tolerance

      effects

      (e.g., Bardo &

    Hughes, 1979; Sherman, 1979; Sherman, Proctor, & Strub,

    1982).

    In the two  studies that investigated  the  development of

    tolerance to the analgesic effects of nicotine (Caggiula et

     al.,

    1993; Epstein et

      al.,

      1989), the subjects were allowed to

    practice

     the

     test response during

     the

     tolerance development

    phase. This method could be problematic because

      animals

    permitted to practice a task while drugged can develop more

    tolerance  to the  disruptive

     effects

      of  the  drug  on  perfor-

    mance  than  animals given  as  much drug but  without  the

    opportunity

     for

     drugged practice (sec reviews

     by

     Goudie

     &

    Demellweek, 1986;

     Wolgin,

     1989;

     Young

     & Goudie, 1994).

    Some investigators have argued that  this  intoxicated-

    practice

      effect

      represents

      the

      operation

      of

      instrumental

    conditioning resulting in the learning of specific compensa-

    tions for  drug-induced disruptions in performance, that is,

    behavioral contingent tolerance (e.g., LeBlanc,

     Gibbins,

     &

    Kalant, 1973).

     In all fairness,

     some theorists

     do not

     concep-

    tually  differentiate  between instrumental  and  associative

    forms

     of

     drug tolerance (see Poulos

     &

     Cappell, 1991).

    Our  main objective  was to  obtain contextual nicotine

    tolerance

      effects  by

      using procedures

      that

      minimize

      the

    influence

      of  novelty and

      instrumental

     confounding factors

    during testing. Given that nicotine has analgesic properties

    (e.g., Rogers & Iwamoto, 1993), we modeled our procedures

    after  those of studies that have produced robust associative

    tolerance to morphine's analgesic

     effects

      (e.g., Carter 

    Tiffany,

      1996; Cepeda-Benito  &

      Tiffany,

      1992, 1996a,

    1996b).

     In

     these associative tolerance studies,

     the  influence

    of

     novelty-induced stress

     was

     controlled

      or minimijed  by

    extensively prchabituating the animals to the experimental

    and tolerance  assessment  procedures (sec also Ramsay &

    Woods, 1997). These associative tolerance investigations

    also showed that intoxicated practice is not

     necessary

     for the

    production of robust associative tolerance (e.g., Cepeda-

    Benito

     & Tiffany,

      1992).

    Study 1

    We

      designed

      Study

      1 to  verify

      that

      we

      could assess

    nicotine's

     antinociceptive effects  in a

     dose-dependent man-

    ner

      with tail-flick

      and

      hot-plate devices. Although

      it is

    generally accepted that nicotine reliably produces analgesic

    effects  in

     rats,

     in

     some cases

      the

      antinociceptive

     effects  of

    nicotine in the  tail-flick  test have not been observed (e.g.,

    Yang,

     Wu, & Zbuzek, 1992). Unlike previous dose-related

    analyses (Caggiula, Epstein, Perkins, & Saylor, 1995; Rog-

    ers & Iwamoto, 1993), our analyses attempted to minimize

    stress

     factors during

     the

     test session

     by

     extensively prehabitu-

    ating

      the

     rats

      to the

     experimental procedures

     and the

      test

    environment.

    Epstein et al.

     (1989) demonstrated

     the

     presence

     of

     toler-

    ance

      of  nicotine's

     analgesic

     effects  by

      snowing  that

     with

    repealed administrations, nicotine lost its

     ability

     to increase

    tail-withdrawal

     latencies.

     In order to

     establish

     the

     specificity

    or  generality of  this reported nicotine tolerance  effect  in

    tail-flick  reflexes,  we  measured responses mediated both

    spinally (tail flick) and supraspinally (hot plate).

    Method

    Subjects.  The

     subjects,

     32

     experimentally naive, male Sprague-

    Dawley rats, weighed between 300 and 350 g at the beginning of

    the experiment. They were

      housed

      individually

      in plastic

      cages

    with a bed of wood shavings.

     The

      colony was constantly illumi-

    nated, and the rats had continuous access to food and water in their

    home cages.

    Drugs.  Nicotine bitartrate was dissolved in physiological sa-

    line

     to

     produce

     the

     following  nicotine concentrations:  0.125,  0.25,

    0.375, 0.50, 0.60,

      and

     0.75,

      mg/ml. All

     solutions were

      subcutane-

    ously injected in the scruff of the neck (1 ml/kg of body weight).

    Tail-jllck  analgesia

      assessment.

      The

     tail-nick

     test

     measures

     the

    latency  for the rat to move its tail away

      from

      a hot beam of light

    (e.g.,

     Cepeda-Benito &

     Tiffany, 1996a).

     A rat was

     restrained

     in an

    opaque cylinder (6.8

     x 22 cm)

     that

     had a

     Plexiglas base (5.5

      X 22

    cm). Ventilation

     holes

     were made on top of and in front of the tube.

    The rat's tail

     protruded

     from the back of the tube and was placed in

    a

     grooved plate such that

     the

     tail

     was

     directly under

     the

     light source

    (HTC tail

     flick,

     model

     33B).

     When

     the rat

     moved

     its

     tail away  from

    the

      light beam,

      a

      photosensitive cell tripped

      a

      timer

      and the

    tail-flick latency was automatically

     recorded.

     To avoid interactions

    between tail  area stimulated  and  degree  of  analgesia (Yoburn,

    Morales, Kelly, & Inturrisi,

      1984),

     each

     assessment

     was the mean

    of  three consecutive trials with the location of the beam

      being

    varied

      among the proximal,  middle,  and  distal thirds of  the rat's

    tail.

     The

     beam intensity

     was

     adjusted such that undrugged  animals

    nicked their  tails

     at

      about

      4 s. A 15-s limit was

      used

     to

      prevent

    damage to the tail. The tester was blind to the rat's group condition.

    Hot-plate analgesia

      assessment.  The hot-plate test measures a

    rat's latency  to  lick  a paw or

     jump

      (e.g., Caggiula  el al.,  1995;

    Cepeda-Benito

      &

     Tiffany,  1996b;

     Krank,

     1987).

     A rat was

     confined

    to the hot-plate's surface in a chamber (30 X 30 X30 cm) with a

    clear  Plexiglass  lid.  The hot plate consisted of a  metal  surface

    thermostatically

      controlled to a

      constant temperature

      of 50° C

    (IITT hot

     plate, model 35D).

      Two independent observers,

     blind

     to

    the

      rat's

      group condition,

      timed

      to the nearest

      hundredth

      of a

    second

     each rat's

     latency

     to

     either

     lick a paw or

     jump, whichever

    came

     first

      (e.g., Krank).

     The response

     latency

     was the

     mean

     of the

    two observations. The median difference between observers was 1.47 s.

    Rats were removed

     from

     the hot plate as soon as they either licked a paw

    or jumped. Animals that neither licked a paw nor jumped after 60 s were

    removed

      from the

     apparatus

     to

     prevent tissue

     damage.

    Tail-flick  prehahituation  and

      testing phase.

      After

      1

      week

      of

    accommodation  to  their  new  home environment,  the  rats

      were

    weighed  once  daily for 3 days and weighed twice daily for an

    additional

      3

      days.  Rats  were then habituated

      to

      injection

      and

    mock-testing procedures. Rats

     received

     five saline injections paired

    with

     a

     distinctive context

     and five

     saline injections paired with

     their

    home cage environment.

      The

      interval between distinctive context

    injections

      was 48

     hr.  Each home

     cage

      injection

      was

      given

     24 hr

    after

      each

      distinctive

      context

      exposure.  For  distinctive context

    exposures, each  rat was weighed, individually carried in a  small

    plastic  container  to the distinctive  context  room, injected with

    saline, placed  inside

     a

      tube,

      placed  in a

      dark cabinet,

      and

      mock

    tested  in the tail-flick device 4, 8, and

      13

     min after the injection. In

    the  distinctive

      context room,

      the

      room's  light

      was

      dimmed,

    apple-cinnamon air

      fresheners scented

      the

      holding cabinet,

      and

    white noise was continuously played. Rats were not removed from

    their holding tubes. Each

     mock

     tail-flick test  consisted of  placing

    https://www.researchgate.net/publication/20657075_Environment-specific_tolerance_to_nicotine?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/20657075_Environment-specific_tolerance_to_nicotine?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3https://www.researchgate.net/publication/20657075_Environment-specific_tolerance_to_nicotine?el=1_x_8&enrichId=rgreq-99eb7359-a013-480a-9527-99d4119e2b4e&enrichSource=Y292ZXJQYWdlOzEzNTYwNzUxO0FTOjEwMjU4NzMwMjk0MDY4MUAxNDAxNDcwMTI3NTk3

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    4/8

    250

    CEPEDA

     BENITO,

     REYNOSO, AND

      McDANIEL

    the rat in the

      tail -f l ick

      apparatus  an d going through th e motions of

    conducting three

     tail - f l ick tests

      i.e., without aiming

     the l ighl

     beam

    at  the

      tail).

      Af te r

      each mock  test,

      the rats

      were returned

      to the

    scented cabinets. Rats were returned

     to

      their home cage environ-

    ments 3 3 minafter

      th e

     last mock lesl. For home cage

     injections ,

      th e

    rats were individually weighed

      and

      placed back

      in  their

      home

    cages. Each

      rat was

     then removed from

     its

     home cage, injected with

    saline, and

     returned

     to its

     cage.

    Rats

     were

      tested

     in the

     distinctive context

     48 hr

      after

     the

      fifth

    distinctive context exposure session

     (or 24 hr

     after

     the

      last home

    cage injection). Rats were randomly divided into five groups,  with

    on e group receiving  saline  an d  each

      r e m a i n i n g

      group receiving a

    different  test dose

     of

     nicotine (0.25, 0.5, 0.6,

     and

     0.75 mg/kg). Rats

    were tested  in  actual

      tail-flick

      trials  4, 8, and 13 m in  after  being

    injected with nicotine.

    Hot-plale  prehabituation  and testing phase.  Rats began

      five

    additional  d is t inc t ive

      context

      exposure

      sessions  48 hr  after

      they

    were tested with the  tail-flick  device. Except for mock tests, these

    exposure sessions were identical to the

     tail -f l ick

     exposure sessions.

    For

     each mock

     test,

     the rat was removed

     from

      it s tube a nd placed on

    a nonfunctional  ho t  plate  for 60 s. The rat was then  placed back

    inside  its  tube and returned to the scented cabinet. Rats received

    saline injections

      in

     their home cage  environment

     24 hr

      after each

    distinctive

     context exposure.

    Rats were tested

      in the

     distinctive context

      48 hr

      after

      th e

      last

    distinctive context exposure session

     (or 24 hr

      after

     the

      last home

    cage injection). Rats were randomly divided

      into  five

     groups,

      with

    one

     group

      r ece iv ing

      saline  an d  each remaining group receiving a

    different

      dose

      of

      nicotine

      (0.125,

      0.25,

      0.375, and

      0.50

      mg/kg) .

    Rats  were tested

     in actual hot-plate trials 4, 8, and 13 min

      after

    being injected with nicotine.

    Results

    Animals responded to

     nicotine

     in a

     dose-related

     manner.

    Thai is, tail-flick and

     hot-plate

     latencies increased as nico-

    tine doses were raised. Figure  1A

      tail-flick

      test)

     and

     Figure

    2A

      hot

      plate  test) depict  the

      mean

     response

      latencies

      for

    each nicotine

     dose

     at each testing point. Figures

      1B

     and 2B

    depict mean  dose-response curves across  the  three  testing

    points.

      Within

      each

      testing

      method,  mean

      latencies

      across

    the assessments conducted

     4, 8, and 13 min

     after

     the nicotine

    injections were

      subjected  to  simple

      regression

      analysis

    (Cohen

     & Cohen,  1975). Latencies were

     regressed

     on log

    dose  level of nicotine. These analyses  showed statistically

    significant effects with  both

      the

      tail-flick

      test, tf

    2

      =

      .23,

    F(\, 24) = 1.12,p 

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    5/8

    TOLERANCE

     TO

     NICOTINE ANALGESIA

     IN THE RAT

    251

    A

    Hot-Plate   Test

    60

    50

    oj

    « 40

    30

    20

    10

    .25

     nic

    .125

     nic

    saline

    B

    Testing Time min)

    Dose-Response

     Curve

    13

    60

     50

    o

     40

      30

      D

    ra  20

    10

    0.125 0.25 0.375 0.5

    Logarithmic Scale of Nicotine Dose mg/kg)

    Figure

      2.  Hot-plate latencies. Each point represents the

      mean

    hot-plate  latency obtained for each  nicotine  (nic) dose at each

    testing time

      after

      nicotine administration

      A) and

     across testing

    times (B).  The

     horizontal

      bar  represents  the  mean latency  for

    animals injected with saline.

      Brror

     bars depict

     SE

     above and below

    the

     mean.

    The

     interval between context exposures

     was 72

     hr. During

     the 2

    days that followed each

      context

     exposure session,

     rats

     received

     a

    daily injection

      in

     their home cage environment.

     DC

     rats received

    nicotine

      in the

      distinctive context

      an d

      saline

      in the

     home cage

    environment. HC rats received saline in the distinctive context and

    nicotine and saline for the first and second home cage  injections,

    respectively.

     SC rats received saline in both

     environments.

    Tolerance development in the hot-plate phase.  Following the

    tail-flick

     test sessions, animals received two daily saline injections

    in

      their home cages for 2 days. Then,

      each

      rat was given 5

    injections

     paired with the  distinctive context and 20 injections in its

    home

      cage environment. That is, the ratio of saline to nicotine

    injections

      was greater  in the hot-plate phase

      than

      in the

      tail-flick

    phase. Previous research has shown

      that

     these cues can support

    associative tolerance

     effects in HC

     animals (e.g.,

     Cepeda-Benito &

    Tiffany,  1995). After observing

      high

     levels

      of

     tolerance

      in HC

     rats

    in

      the

      tail-flick

     assay,

      we

     were concerned that

     H C

     rats were

      using

    injection

     cues to support associative tolerance

      effects.

      Therefore.

    we reduced the likelihood of rats receiving nicotine in the presence

    of

     injection cues.

    The interval between context exposures continued to be 72 hr,

    bu t

     home cage injections were administered twice daily

     after

     each

    distinctive

     context exposure. The first of the home cage injections

    consisted

      of

      nicotine

      for the HC

      animals.

     All

      other home cage

    injections consisted

     of saline for these

     animals.

     The

     interinjection

    interval for

     each

      daily

      pair

      of

     home cage injections

     was 4 hr. DC

    animals continued

     to

     receive nicotine

     in the

     distinctive context

     and

    saline for their home cage injections. SC animals received saline in

    both environments. All other experimental procedures were  the

    same as those used in the hot-plate prehabituation phase of Study

      1.

    Tail-flick  an d  hot-plate analgesia assessments.

      Analgesia

      as -

    sessments were identical to those conducted in Study 1. Each rat

    received a

      1 - m g / k g

     dose

     of nicotine

     and was

     tested

     4,

      8,

     and

      13

     m in

    after

      the injection. Tail-flick and hot-plate test sessions were

    conducted 72 hr  after the eighth and last

     nicotine

     context pairings,

    respectively.

    Data  analysis.  Within each testing method, the  data  were

    studied

      with

     a one-between,

      one-within

     repeated measures analy-

    ses of variance. Mean response latency was the dependent variable,

    group

     Condition

      was the

     betweenfactor,

      an d

     testing

      time was the

    within

      factor. To

      control

      fo r

      heterogeneity

      of covariance

      across

    repeated measures, we used the Greenhouse-Geisser (1959) tech-

    nique

      to  adjust  the degrees of freedom for the error terms.

    Following a

      priori

      directional  hypothesis , we

      compared mean

    response latencies between SC and HC rats and between HC and

    DC

     rats.

    Results

    Tail

      flick.

      Figure

      3

     depicts

     mean tail-flick

      latencies

     for

    each

      group  of rats at each of the three testing

     times.

     The

    tail-flick

      latencies

      differed  between groups  and

      declined

    with the passage of time, and this decline was

     not uniform

    across groups. This description

     of the

     results

     was

     corrobo-

    rated by a significant condition effect,  F(2,  32) — 16.00, p <

    .001,

      a significant

     time effect,  F(2,

     64) = 49.99

    ;

     p 

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    6/8

    252 CEPEDA-BENITO, REYNOSO, AND

     McDANIEL

    0.95. p >  .05. However, tail-flick latency decrements were

    significantly

     higher for HC

     rats

     than for SC rats

     (M  ~

      3.25,

    SD

     = 3.47), f(21) =

      2.88, p

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    7/8

    TOLERANCE

      TO

     NICOTINE ANALGESIA

     IN THE RAT

    253

    design. First, testing

     of the

     same rats

     first in the

     tail-flick  test

    and then in the hot-plate test did not allow us to compare

    tolerance  effect  sizes across both testing methods. That is,

    the tail-flick

     test

      was given after  8 conditioning sessions,

    whereas  the  hot-plate test  was  given  after  14 nicotine

    context

      pairings. Therefore,  any

      effect

      size differences

    between the two methods could not be interpreted. More-

    over,

     we did not control for the possibility that testing of the

    rats

      in the  tail-flick

      test

      first

      could have

      influenced  the

    hot-plate

      test

      results.

      These

      problems could have been

    avoided by counterbalancing the order of testing across

    measurements

      or by

      testing independent groups

     of

      rats

     in

    each testing device. Nevertheless, we believe that it is safe to

    affirm  that the order of testing docs not compromise our

    interpretation of  the results. That is, compared to DC rats,

    HC

     rats

     had a lower probability of receiving nicotine inside

    the distinctive context and a higher probability of receiving

    nicotine outside the distinctive context in both test sessions.

    Both sets

      of

     probabilities

      are

     congruent with

     the

     prediction

    that  DC

      animals would develop

      a

      stronger context-drug

    association than

      HC

      animals (see Rescorla

      &

      Wagner,

    1972).

    The experimental design also could have been improved

    by  including

     a

      placebo test control group

      for

      each

      of the

    three conditions, SC, HC, and DC. Given that we repeatedly

    paired

     the

     testing environment with nicotine

     for DC but not

    SC and HC  rats,  undrugged control latencies could have

    helped

      to

     clarify

      whether the context

      effects

      were attribut-

    able to differential  changes  in distinctive context baseline

    latencies across groups.

      For

      example,

      the

     development

      of

    contextual tolerance could have been mediated

      by a

     condi-

    tioned hyperalgesic response (e.g., Siegel, 1975).

    References

    Alexander,

     B. K., & Hadaway, P. K

     (1982). Opiate addiction:

     The

    case

      for an

      adaptive orientation. Psychological

      Bulletin, 92,

    367-381.

    American Psychiatric Association. (1994).  Diagnostic and statisti-

    cal

      manual

      of

      mental disorders  (4th ed.).  Washington,  DC:

    Author.

    Baker,

      T. B., &  Tiffany,  S. T.

      (1985). Morphine tolerance

      as

    habituation.

     Psychological Review, 92, 78-108.

    Bardo,

     MT., &

     Hughes,

     R.

     W. (1979). Exposure

     to a nonfunctional

    hotplate

      as a

      factor

      in the

      assessment

      of

     morphine-induced

    analgesia and analgesic tolerance in rats. Pharmacology Biochem-

    istry

     and Behavior,

     70,481^185.

    Caggiula,

     A.

     R., Epstein,

     L. H., Antelman, S. M.,

     Saylor,

     S., Knopf,

    S., Perkins,

      K.  A.,  &

      Stiller,

      R. L.

      (1993). Acute stress

      or

    corticosterone  administration  reduces  responsiveness to nico-

    tine: Implications for a mechanism of conditioned tolerance.

    Psychopharmacology,

    I I I 499-507.

    Caggiula,

     A. R., Epstein, L.

     H.,

     Antelman, S.

     M.,

      Seymour, M.,

    Saylor,  S., Perkins,

      K.

      A., Knopf, S.,

      &

      Stiller,

      R. L.

     (1991).

    Conditioned tolerance to the anorectic and  corticosterone-

    clevating

     effects

      of  nicotine. Pharmacology Biochemistry  and

    Behavior,

     40, 53-59.

    Caggiula, A. R., Epstein, L.

     H.,

     Perkins, K. A., & Saylor, S. (1995).

    Different

     methods of assessing nicotine-induced antinociception

    may

     engage different  neural mechanisms. Psychopharmacology,

    122, 301-306.

    Caggiula, A. R., Epstein, L. H., & Stiller, R. L. (1989). Changing

    environmental  cues reduces tolerance to nicotine-induced an-

    orexia.

     Psychopharmacology,

      99, 389-392.

    Carter,

     B. L., &

     Tiffany.

     S. T.

     (1996). Cross-tolerance

      of

     associative

    and  nonassociative

     morphine tolerance

     in the rat

     with

     mu- and

    kappa-specific

     opioids. Psychopharmacology,  123, 289-296.

    Cepeda-flenito. A., & Short, P. (1997). Morphine's interoceptive

    stimuli  as  cues  for the  development  of  associative morphine

    tolerance in the

     rat.

     Psychobiology, 25, 236-240.

    Cepeda-flenito.

      A., & Tiffany,  S, T.

     (1992).

      Effect  of

      number

     of

    conditioning

      trials on the development of associative tolerance

    to morphine. Psychopharmacology,  109,

     172-176.

    Cepeda-Benito,

      A.,

      Tiffany,  S. T. (1995). Role of drug-

    administration

      cues

      in the

      associative control

      or

      morphine

    tolerance

     in the rat. Psychopharmacology,  122, 312-316.

    Cepeda-Benito, A., &  Tiffany,  S. T. (1996a). The failure of

    noncontingent morphine exposure to disrupt context-specific

    morphine

     tolerance. Pharmacology Biochemistry and Behavior,

    54,  575-580.

    Cepeda-Benito,  A., & Tiffany. S. T. (1996b). Test-specific manifes-

    tations

      of

      associative tolerance

      to the

      analgesic

      effects

      of

    morphine

     in the

     rat.

     Psychobiology, 24,

     327-332.

    Cohen, J.. & Cohen, P. (1975).

      Applied multiple regression/

    correlational analysis

     for the

     behavioral sciences. Hillsdale, NJ:

    Erlbaum.

    Epstein, L.

     H..

     Caggiula, A. R., Perkins, K. A., McKenzic, S. J., &

    Smith,  J. A. (1991). Conditioned tolerance to the heart rate of

    smoking. Pharmacology Biochemistry

      and

     Behavior,

     39,

     15-19.

    Epstein,

     L.

     H., Caggiula,

     A. R., &

     Stiller,

     R. L. (1989).

     Environment-

    specific

      tolerance to nicotine.  Psychopharmacology, 97,  235-

    237.

    Goudie, A. J., & Demellweek, C. (1986). Conditioning factors in

    drug tolerance. In S. R.

      Goldberg

      & I. P. Stolerman

      (Eds.),

    Behavioral analysis of  drug  dependence  (pp.

     225-285).  New

    York: Academic Press.

    Greenhouse, S.  W.,  & Geisser, S. (1959). On methods in the

    analysis of

     profile

     data. Psychometrika, 24,  9 5 — 1 1 2 .

    Grisel, J. E., Wiertelak, E. R.'Watkins, L. R., & Maicr, S. F. (1994),

    Route of morphine administration modulates conditioned analge-

    sic

     tolerance and hyperalgesia. Pharmacology Biochemistry and

    Behavior,

     49, 1029-1035.

    Krank, M. D.  (1987).  Conditioned hyperalgesia depends on the

    pain

      sensitivity measure.  Behavioral Neuroscience,  101, 854—

    857.

    LeBlanc,

     A.

     E..

     Gihhins, R. J., &  Kalant,  H.

     (1973).

      Behavioral

    augmentation of tolerance to ethanol in

     the

     rat. Psychopharmaco-

    logia. JO, 117-122.

    Netto, C.  A.,  Siegfried,  B.,  & Izquierdo, I. (1987). Analgesia

    induced

      by

     exposure

      to a

     novel

      environment in

      rats:

     Effect  of

    concurrent  and  post-training stressful  stimulation.  Behavioral

    and Neural

     Biology, 48, 304-309.

    Pomerleau,

      O. F.

     (1995). Individual

     differences  in

      sensitivity

      to

    nicotine: Implications

      for

      genetic research

      on

      nicotine  depen-

    dence. Behavior Genetics, 25, 161-177.

    Poulos, C. X., & Cappell, H. (1991). Homeostatic theory of drug

    tolerance: A general model of physiological adaptation.

     Psycho-

    logical Review,

     98, 390-408.

    Ramsay,

     D.

     S.,

     &

     Woods,

     S. C.

     (1997). Biological consequences

     of

    drug administration: Implications for acute and chronic toler-

    ance. Psychological Review,

     104,

     170-193.

    Rescorla,

      R. A., &

     Wagner,

     A. R.

      (1972).

     A

     theory

     of Pavlovian

    conditioning: Variations  in the

     effectiveness

      of reinforcement

    and

     nonreinforcement.

     In A. H. Black & W. F. Prokassy (Eds.),

    Classical conditioning

      11:

     Current research

      and

      theory

      (pp.

    64-99). New

     York: Appleton-Century-Crofts.

  • 8/17/2019 Associative Tolerance to Nicotine Analgesia in the Rat Tail Flick and Hot Plate Tests

    8/8

    254

    CEPEDA-BENITO, REYNOSO, AND McDANIEL

    Rogers, D. T., & Iwamoto, E. T. (1993). Multiple

     spinal

      mediators

    in parenteral nicotine-induced antinociception. Journal  of Phar-

    macology and

     Experimental

      Tlicrapeutics, 267,

     341-349.

    Sherman, J. E. (1979). The

      effects

      of conditioning and novelty on

    the

     rat's analgesic

     and

     pyretic

     responses to

     morphine.

     Learning

    and Motivation,  10, 381-418.

    Sherman,  J.

      E., Proctor,

      C., &

      Strub,

      H.  (1982).

      Prior

      hotplate

    exposure enhances morphine analgesia in tolerant and drug-

    naive rats.

     Pharmacology Biochemistry and

     Reluivior,

      17,

     229-

    232.

    Siegel, S. (1975). Evidence

     from

      rats that

     morphine

     tolerance is a

    learned

      response.

      Journal of Comparative and Physiological

    Psychology,

      89,

     498-506.

    Stevens,  i.

      (1992).  Applied

      multivariate

      statistics

     for the

      social

    sciences

     (2nd ed.).

     Hillsdale, NJ:

     Erlbaum.

    Tiffany,

      S.

      T.,  Drobes,

      D.

      J.,

      & Cepeda-Benito, A.

      (1992).

    Contribution

     of

     associative

     and

     nonassocialive

     processes to the

    development of morphine tolerance.

      Psvchopharmacology, 109,

    185-190.

    Tiffany,  S.  T.,  &

      Maude-Griffin,

      P. M. (1988). Tolerance to

    morphine in the  rat:

     Associative

      and nonassociative

      effects.

    Behavioral Neuroscience,

     102,

     534-543.

    Trujillo,

     K.

     A., & Akil, H. (1995). Excitatory ainino acids and drugs

    of  abuse:  A  role  for W-methyl-D-asparate  receptors  in  drug

    tolerance,  sensitization  and

      physical dependence.

      Drug and

    Alcohol Dependence,

     38,

     139-154.

    Wolgin,  D. L. (1989). The role of instrumental learning in

    behavioral tolerance to drugs. In A. J. Goudie and M. W.

    Emmit-Ogiesby

      (Eds.),  Pxvchoactive drugs: Tolerance

      and

    sensitization

     (pp.

     17-114). Clifton,

     NJ: Humana Press.

    Yang, C., Wu, W., &

     Zbuzek,

     V. K.

     (1992). Antinociceptive

     effect

    of chronic nicotine and  nociceptive  effect  of its

      withdrawal

    measured by hot-plate  and

      tail-flick

      in rats.

      Psvchopharmacol-

    ogy, 106,

     417-420.

    Yobiirn, B.

     C.,

     Morales, R.. Kelly, D.

     D.,

     & mturrisi, E. C. (1984).

    Constraints on the

      tail-flick

      assay: Morphine analgesia and

    tolerance

      are  dependent  upon

      locus

      of  tail stimulation.  Life

    Sciences,

     34,

     1755-1762.

    Young,

      A. M., & Goudie, A. J. (1994). Adaptive processes

    regulating

      tolerance

      to

      behavioral  effects

      of

      drugs.

      In F. E.

    Bloom & D. J.

     Kupfer

      (Eds.), Pxychopharmacology: The fourth

    generation  of

     progress

     (pp.

     657-811).

     New York:

     Raven

     Press.

    Received November

      18,

     1997

    Revision

     received March

     24,

     1998

    Accepted March 25, 1998

    Low

     Publication Prices for P Members and ffiliates

    Keeping you up to date. All APA Fellows, Members, Associates, and Student

     Affiliates

    receive—as part of their annual dues—subscriptions to the

     American Psychologist

      and

    APA Monitor.

     High School Teacher and International

      Affiliates

      receive subscriptions to

    the

     APA Monitor,

     and they may subscribe to the

     American Psychologist

      at a significantly

    reduced rate. In addition, all Members and Student

     Affiliates

     are eligible for savings of up

    to 60%

     (plus

     a

     journal credit)

     on all

     other

     APA

     journals,

     as

     well

     as significant

     discounts

     on

    subscriptions from

     cooperating societies and

     publishers (e.g.,

     the American Association for

    Counseling and Development, Academic Press, and Human Sciences Press).

    Essential resources. APA members and

     affiliates

     receive special rates for purchases of

    APA books, including the

     Publication Manual

     of the

     American Psychological Association,

    and on dozens of new topical books each year.

    Other  benefits  Of

     membership.  Membership in APA also provides eligibility for

    competitive insurance plans, continuing education programs, reduced APA

     convention

     fees,

    and specialty divisions.

    More information.

     Write to American Psychological Association, Membership Services,

    750

     First Street,

     NE,

     Washington,

     DC

      20002-4242.