artificial intelligence lecture no. 10 dr. asad ali safi assistant professor, department of...

28
Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology (CIIT) Islamabad, Pakistan.

Upload: elvin-patterson

Post on 17-Dec-2015

230 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Artificial IntelligenceLecture No. 10

Dr. Asad Ali Safi

Assistant Professor,Department of Computer Science,

COMSATS Institute of Information Technology (CIIT) Islamabad, Pakistan.

Page 2: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Summary of Previous Lecture

• A knowledge-based agent• The Wumpus World• Syntax , semantics• Entailment• Logic as a KR language

Page 3: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Today’s Lecture

• Logic• Propositional logic• Pros and cons of propositional logic• First-order logic• Syntax of FOL: Basic elements• Atomic/complex sentences• Connections between Quantifiers

Page 4: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

4

No independent access to the world • The reasoning agent often gets its knowledge about

the facts of the world as a sequence of logical sentences and must draw conclusions only from them without independent access to the world.

• Thus it is very important that the agent’s reasoning is sound!

Page 5: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

LANGUAGES

Page 6: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

What is logic?

• We can also think of logic as an “algebra” for manipulating only two values: true (T) and false (F)

• We will cover:– Propositional logic--the simplest kind

Page 7: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Propositional logic• Propositional logic consists of:

– The logical values true and false (T and F)– Propositions: “Sentences,” which

• Are atomic (that is, they must be treated as indivisible units, with no internal structure), and

• Have a single logical value, either true or false

– Operators, both unary and binary; when applied to logical values, yield logical values

• The usual operators are and, or, not, and implies

Page 8: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Propositional logic: Syntax• Propositional logic is the simplest logic – illustrates basic

ideas• The proposition symbols P1, P2 etc are sentences

– If S is a sentence, ¬S is a sentence (negation, not)– If S1 and S2 are sentences, S1 S2 is a sentence (conjunction, ∧

AND)– If S1 and S2 are sentences, S1 S2 is a sentence (disjunction, ∨

OR)– If S1 and S2 are sentences, S1 S2 is a sentence (implication, ⇒

IMPLIES)– If S1 and S2 are sentences, S1 S2 is a sentence ⇔

(biconditional)

Page 9: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Truth tables• Logic, like arithmetic, has operators, which apply to

one, two, or more values (operands)• A truth table lists the results for each possible

arrangement of operands– Order is important: x op y may or may not give the

same result as y op x

• The rows in a truth table list all possible sequences of truth values for n operands, and specify a result for each sequence– Hence, there are 2n rows in a truth table for n

operands

Page 10: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Unary operators• There are four possible unary operators:

Only the last of these (negation) is widely used (and has a symbol,¬ ,for the operation

X Constant T Constant F

Identity ¬X

T T F T F

F T F F T

Page 11: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Useful binary operators• Here are the binary operators that are traditionally used:

Notice in particular that material implication (⇒) only approximately means the same as the English word “implies”

Any other binary operators can be constructed from a combination of these (along with unary not, ¬)

X YANDX ∧ Y

ORX ∨ Y

IMPLIESX ⇒ Y

BICONDITIONAL

X ⇔ YT T T T T T

T F F T F F

F T F T T F

F F F F T T

Page 12: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Logical expressions• All logical expressions can be computed with some combination

of and (∧), or (∨ ), and not (¬) operators• For example, logical implication can be computed this way:

Notice that ¬X ∨ Y is equivalent to X ⇒ Y

X Y ¬X ¬X ∨ Y X ⇒ Y

T T F T T

T F F F F

F T T T T

F F T T T

Page 13: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Pros and cons of propositional logic

Propositional logic is declarative

Propositional logic allows partial/disjunctive/negated information(unlike most data structures and databases)

–– Propositional logic is compositional:

meaning of B1,1 P1,2 is derived from meaning of B1,1 and of P1,2

–– Meaning in propositional logic is context-independent

(unlike natural language, where meaning depends on context)–– Propositional logic has very limited expressive power

– (unlike natural language)– E.g., cannot say "pits cause breezes in adjacent squares“

• except by writing one sentence for each squar

Page 14: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

First-order logic• While propositional logic assumes the world contains

facts,• first-order logic (like natural language) assumes the world

contains• Objects: people, houses, numbers, colors, baseball games, wars, …

–– Relations: red, round, prime, brother of, bigger than, part of, comes

between, …

– Functions: father of, best friend, one more than, plus, …–“Evil King John ruled England in 1200.”– Object: John, England, 1200; Relation; ruled; Properties: evil, king

Page 15: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Logics in General

• Ontological Commitment: – What exists in the world — TRUTH– PL : facts hold or do not hold.– FOL : objects with relations between them that hold or do

not hold

• Epistemological Commitment: – What an agent believes about facts — BELIEF

Page 16: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Syntax of FOL: Basic elements

• Constant Symbols:– Stand for objects– e.g., KingJohn, 2, UCI,...

• Predicate Symbols– Stand for relations– E.g., Brother(Richard, John), greater_than(3,2)...

• Function Symbols– Stand for functions– E.g., Sqrt(3), LeftLegOf(John),...

Page 17: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Syntax of FOL: Basic elements• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives , , , ,

• Equality =

• Quantifiers ,

Page 18: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Relations

• Some relations are properties: they state some fact about a single object: Round(ball),

Prime(7).

• n-ary relations state facts about two or more objects: Married(John,Mary), LargerThan(3,2).

• Some relations are functions: their value is another object: Plus(2,3), Father(Dan).

Page 19: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Atomic sentencesTerm = function (term1,...,termn) or constant or variable• A logical expression that refers to an object

– LeftLegOf(Richard)

• There are 2 kinds of terms:– constant symbols: Table, Computer– function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc

Atomic sentence = predicate (term1,...,termn) or term1 = term2

• An Atomic sentence is formed from a predicate symbol followed by list of terms. • Examples: LargerThan(2,3) is false. Brother_of(Mary,Pete) is false.

Married(Father(Richard), Mother(John)) could be true or false

• Note: Functions do not state facts and form no sentence: – Brother(Pete) refers to John (his brother) and is neither true nor false.

• Brother_of(Pete,Brother(Pete)) is True. Binary relation Function

Page 20: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Complex Sentences• We make complex sentences with connectives

(just like in propositional logic).( ( ), ) ( ( ))Brother Lef tLeg Richard J ohn Democrat Bush

binary relation

function

property

objects

connectives

Page 21: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

More Examples• Brother(Richard, John) Brother(John, Richard)

• King(Richard) King(John)

• King(John) => King(Richard)

• LessThan(Plus(1,2) ,4) GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Page 22: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Variables

• Person(John) is true or false because we give it a single argument ‘John’

• We can be much more flexible if we allow variables which can take on values in a domain. e.g., all persons x, all integers i, etc.– E.g., can state rules like Person(x) => HasHead(x) or Integer(i) => Integer(plus(i,1)

Page 23: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Universal Quantification • means “for all”

• Allows us to make statements about all objects that have certain properties

• Can now state general rules:

x King(x) => Person(x)

x Person(x) => HasHead(x) " i Integer(i) => Integer(plus(i,1))

Note that " x King(x) Person(x) is not correct! This would imply that all objects x are Kings and are People

x King(x) => Person(x) is the correct way to say this

Page 24: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Existential Quantification • x means “there exists an x such that….” (at least one object x)

• Allows us to make statements about some object without naming it

• Examples:

x King(x)

x Lives_in(John, Castle(x))

i Integer(i) GreaterThan(i,0)

Note that is the natural connective to use with

(And => is the natural connective to use with )

Page 25: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Combining Quantifiers

x y Loves(x,y) – For everyone (“all x”) there is someone (“y”) who

loves them

$ y x Loves(x,y) - there is someone (“y”) who loves everyone

Clearer with parentheses: y ( x Loves(x,y) )

Page 26: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Connections between Quantifiers

• Asserting that all x have property P is the same as asserting that does not exist any x that don’t have the property P

x Likes(x, 271 class) x Likes(x, 271 class)

In effect: - is a conjunction over the universe of objects - is a disjunction over the universe of objects Thus, DeMorgan’s rules can be applied

Page 27: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

De Morgan’s Law for Quantifiers( )

( )

( )

( )

x P x P

x P x P

x P x P

x P x P

( )

( )

( )

( )

P Q P Q

P Q P Q

P Q P Q

P Q P Q

De Morgan’s Rule Generalized De Morgan’s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,always switch between them (or and, and or).

Page 28: Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi  Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology

Summery of Today’s Lecture• logic• Propositional logic• Pros and cons of propositional logic• First-order logic• Syntax of FOL: Basic elements• Atomic/complex sentences• Connections between Quantifiers