artculo ambientaal

Upload: juanka-g-julio

Post on 01-Jun-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 artculo ambientaal

    1/8

    Journal of Hazardous Materials 279 (2014) 322329

    Contents lists available at ScienceDirect

    Journal ofHazardous Materials

    j ournal homepage: www.elsevier .com/ locate / jhazmat

    New approach to solar photo-Fenton operation. Raceway ponds astertiary treatment technology

    Irene Carra a,b, Lucas Santos-Juanes a,b, Francisco Gabriel Acin Fernndeza,Sixto Malato b,c,Jos Antonio Snchez Prez a,b,

    a Department of Chemical Engineering, University of Almera, 04120,Almera, Spainb CIESOL, Joint Centre of theUniversity of Almera-CIEMAT, 04120,Almera, Spainc Plataforma Solar de Almera (CIEMAT), 04200, Tabernas, Almera, Spain

    h i g h l i g h t s

    Raceway ponds are used for the first

    time as photo-Fenton reactors. Raceway ponds are effective and have

    high treatment capacity (48 mg/h m2

    for 360 L). The highest treatment capacity

    occurs with 5.5 mg Fe/L and 15cm

    liquid depth. Low iron concentrations are enough

    to oxidise the pesticide mixture. Raceway ponds are a simple and low-

    cost alternative for micropollutant

    removal.

    g r a p h i c a l a b s t r a c t

    a r t i c l e i n f o

    Article history:

    Received 28 May 2014

    Received in revised form 8 July 2014

    Accepted 9 July 2014

    Available online 17 July 2014

    Keywords:

    Acetamiprid

    Thiabendazol

    Photoreactor

    Treatment capacity

    Micropollutant degradation

    a b s t r a c t

    The photo-Fenton process has proven its efficiency in the removal ofmicropollutants. However, the high

    costs usually associated with it prevent a spread ofthis technology. An important factor affecting costs is

    the kind ofphotoreactor used, usually tubular with a reflecting surface. Tubular reactors like compound

    parabolic collectors, CPCs, involve high capital costs. In comparison, the application ofless costly reactors

    such as the extensive raceway ponds (RPRs) would help to spread the use ofthe photo-Fenton process

    as tertiary treatment at commercial scale. As far as the authors know, RPRs have never been used in

    advanced oxidation processes (AOPs) applications. This work isaimed at studying the applicability ofRPRs

    to remove micropollutants with solar photo-Fenton. For this purpose, a pesticide mixture ofcommercial

    acetamiprid (ACTM) and thiabendazole (TBZ) (100g/Leach) was used in simulated secondary effluent.

    Iron concentration (1, 5.5 and 10 mg/L) and liquid depth (5, 10 and 15 cm) were studied as process

    variables. TBZ was removed at the beginning ofthe treatment (less than 5 min), although ACTM removal

    times were longer (2040 min for the highest iron concentrations). High treatment capacity per surface

    area was obtained (48 mg/h m2 with 5.5 mg Fe/Land 15 cm liquid depth), proving the feasibility ofusingRPRs for micropollutant removal.

    2014 Elsevier B.V. All rights reserved.

    Corresponding author at: Department of Chemical Engineering, University of

    Almera, 04120, Almera, Spain. Tel.: +34 950015314; fax: +34 950015484.

    E-mail address:[email protected] (J.A. Snchez Prez).

    1. Introduction

    The detection of low concentration (g/Lng/L) of persistentpollutants, also called micropollutants, in aquatic systems has

    drawn the attention of the scientific community in recent years.

    http://dx.doi.org/10.1016/j.jhazmat.2014.07.010

    0304-3894/ 2014 Elsevier B.V. All rightsreserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.jhazmat.2014.07.010http://www.sciencedirect.com/science/journal/03043894http://www.elsevier.com/locate/jhazmatmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.jhazmat.2014.07.010http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.jhazmat.2014.07.010mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.jhazmat.2014.07.010&domain=pdfhttp://www.elsevier.com/locate/jhazmathttp://www.sciencedirect.com/science/journal/03043894http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.jhazmat.2014.07.010
  • 8/9/2019 artculo ambientaal

    2/8

    I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329 323

    Certainly, small amounts of common substances such as caffeine,

    nicotine and pharmaceuticals, among others, have been detected

    in surface waters such as lakes or rivers [13].

    Urban wastewater treatment plants (WWTPs) are usually based

    on biological treatments which are not effective in micropollutant

    removal [4,5]. Likewise, WWTPs may also receive effluents from

    industries with specific contamination. For instance, effluents can

    easily contain low concentration of pollutants such as pesticides,

    which are used in crops [6]. The small amounts in which micropol-

    lutants are found in WWTP effluents can be hazardous for aquatic

    systems, and their accumulation results eventually in chronic tox-

    icity and other effects of environmental concern. In this regard,

    advanced oxidation processes (AOPs) arise as an effective alterna-

    tivethanks to the oxidationof micropollutants by hydroxylradicals

    [7]. Indeed, AOPs efficiency in micropollutant removal makes them

    firm candidates for tertiary treatment. Ozonation, heterogeneous

    and homogeneous photocatalysis are some of the AOPs whichhave

    already been studied in this sense with successful results [8,9].

    Specifically, homogeneous photocatalysis or photo-Fenton process

    has provento bevery efficientin this regard[10]. In this process, the

    generation of radicals is catalysed by iron, with hydrogen peroxide

    as the oxidant. Iron is cyclically reduced and oxidised in a redox

    cycle. The oxidationtakes place in a fast reaction represented in Eq.

    (1). Its reduction, though, can take place in the presence of UVvisirradiance (Eq. (2)) or in the dark (Eq. (3)). The presence of UVvis

    irradiance enhances the process rate though, since Reaction (2) is

    faster thanReaction(3). This factimplies thatirradiance absorption

    is essential to the process performance.

    Fe2++H2O2 Fe3++HO+HO (1)

    Fe3++H2O+hv Fe2++HO+H+ (2)

    Fe3++H2O2 Fe2++HO2

    +H+ (3)

    Nevertheless, the main drawback in the application of these

    techniques at commercial scale is the cost. The operating costs in

    the case of the photo-Fenton process may be reduced with the

    use of solar light. Even so, amortisation costs are its main weak-

    ness. Two factors are crucial: photoreactor cost and reaction time[11]. With regard to the first factor, the most popular photoreac-

    tors are compound parabolic collectors (CPCs), developed for these

    applications at the end of the nineties [12]. They are constituted by

    borosilicate glasstubeson the axis of a compoundparabolic surface

    (madeof aluminium).The cost forthe installation andpurchase of a

    large scale CPC plant for solar photo-Fenton has been estimated as

    400D/m2, including pumps, piping and accessories (Final results of

    CADOX Project,Contract n EVK1-CT2002-00122) [13]. Withregard

    to reaction time, long process times increase the solar collector

    surface needed and energy consumption for pumping, thus, rais-

    ing the costs. In this sense, 80W/m3 was reported for a 104m2

    photo-Fenton plant with solar compound parabolic collectors [11].

    The use of photoreactors such as CPCs comes from the need of

    making the most of the solar beams that reach the system. Photoncapture is crucial whenthe need ofhydroxylradicals is largesuchas

    for macropollutant (mg/Lg/L) removal, as is the case of industrial

    wastewater [14]. When the treatment is aimed at micropollutant

    oxidationthough, the pollutant concentrationis at leasta thousand

    times lower than for macropollutant oxidation. Therefore, the pro-

    cess needs less hydroxyl radicals and, consequently, less irradiance

    (less photons) to achieve removal [15]. From this arises the ques-

    tion whether other kind of photoreactors, less efficient in photon

    capture andmore simple, could be usedfor micropollutant removal.

    An interesting choice would be an extensive and non-

    concentrating reactor. Some examples are the Thin Film Fixed

    Bed Reactor (TFFBR) or Double Skin Sheet Reactor (DSSR) [16].

    Also, shallow pond configurations and flat-plate reactors were

    studied in the nineties [1820]. All of them were mainly tried for

    macropollutants degradation with TiO2. Nevertheless few cases

    have been published for photo-Fenton applications, Rosseti et al.,

    modelled formic acid degradation in a flat-plate reactor [21]. Sim-

    ilar to this kind of reactors are the Raceway Pond Reactors (RPRs),

    which have been widely applied for microalgal mass culture [22].

    In RPRs the liquid depth can be varied and the flow is controlled.

    They are extensive reactors withchannels through which the water

    is recirculated. They are made of low cost materials, mainly plastic

    liners, giving rise to low construction costs of about 100,000 D/ha,

    that is 10 D/m2 [23]. Additionally, the power requirements for

    mixing are also small over 4 W/m3. Due to their flexibility

    and easy scale-up, raceway reactors are the most used devices

    for microalgal applications [22] and production costs have been

    reported to be markedly lower than for tubular photobioreactors,

    such is the case for fuel production from microalgae [24,25] and

    much lower than CPCs. Effective, extensive and low-cost (per

    surface unit) photoreactors such as RPRs would spread the use of

    the photo-Fenton process as tertiary treatment.

    In the light of these facts this work was aimed at studying the

    applicability of extensive RPRs to remove micropollutants with

    solar photo-Fenton. For this purpose, a mixture of commercial

    pesticides, acetamiprid (ACTM) and thiabendazole (TBZ), 100g/Leach, was used in simulated secondary effluent as model pollutant

    mixture, avoiding the disturbance of daily variations in real efflu-ents. Both pesticides are commonly applied to citrus crops in the

    Mediterranean area. To assess the best process conditions, first the

    effect of iron concentration (1, 5.5 and 10mg/L) and liquid depth

    (5,10 and15 cm, which correspondedto the same illuminatedarea

    but different water volume, up to 360L) was studied using tap

    water as matrix instead of simulated secondary effluent to avoid

    disturbances due to other organics but with a ionic composition

    close to secondary effluents. Results were confirmed in simulated

    secondary effluent.

    2. Materials and methods

    2.1. Chemicals

    Sulphuric acid (9597%) and hydrogen peroxide (35%) were

    obtained from J.T. Baker and ferrous sulphate (99%) from Fluka.

    CaSO42H2O, MgSO4, KCl, (NH4)2SO4, NaHCO3, beef extract,

    peptone, humic salts, sodium lignin sulfonate, sodium lauryle

    sulphate, acacia gum powder, formic acid and Arabic acid were

    acquired from SigmaAldrich. Commercial formulations of pesti-

    cides were used: EPIK (20%, w/w ACTM) and TEXTAR (60%, w/v

    TBZ). HPLC grade acetonitrile from Carlo Erba Reagents andMilli-Q

    grade water were used in the chromatographic analysis.

    2.2. Experimental set-up

    Theexperiments were carried outin a fibreglass-RPR pilot plantat pH 2.8. This pH value was chosen because it is the optimum

    for the photo-Fenton process [22] and allows a higher solubility

    of iron, allowing evaluating properly the efficiency of RPRs. Future

    work will be focused on working at circumneutral pH in RPRs, rec-

    ommended to treat micropollutants [26]. The fibreglass-RPR has

    a maximum capacity of 360 L , a length of 3.85 m and width of

    0.64m. It is separated by a central wall, forming two canals. The

    RPR includes a paddle wheel connected to an engine to obtain a

    mixed and homogeneous system. The engine was linked to a vari-

    able frequency drive to control the paddles speed. A scheme of the

    plant is presented in Fig. 1.

    Iron concentration and liquid depth (treated volume) were the

    process variables studied. A one-factor-at-a-time strategy was

    followed, changing an individual variable and keeping the other

  • 8/9/2019 artculo ambientaal

    3/8

    324 I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329

    Fig. 1. RPR scheme.

    one constant. Iron concentration was kept to low values, from 1

    to 10mg/L, typically used for micropollutant removal [27,28]. Low

    concentrations of iron contribute to prevent large generation of

    iron sludge when neutralising the effluent after the treatment.

    Liquid depth, which determines irradiance path length, was varied

    from 5 cm to 15 cm. The first value was taken as the common

    diameter used in tubular reactors such as CPCs [29]. The last depthvalue is the maximum allowed by the configuration of the RPR

    reactor. The Reynolds number wasestimated for each liquid height

    [22] and a turbulent regime was used: 6105, 7105 and 7105

    for 5cm, 10cm and 15cm liquid depth, respectively.

    The central operating condition (5.5mg Fe/L and 10cm height)

    was replicated five times to determine the experimental error.

    Hydrogen peroxide concentration was added at the beginning of

    the process in a concentration of 50mg/L in all cases to ensure

    excess. As the liquid depth changes, so does the treated water vol-

    ume in each case. To ensure similar mixing times the paddle wheel

    speed waschangedaccording to thetreated volume. Theresult was

    a 2.5min mixing time for all cases.

    UV radiationwas measured using a global UV radiometer (Delta

    Ohm, LP UVA 02 AV) with a spectral response range from 327 to384nm, mounted on a horizontal platform,providing data in terms

    of incidentUV radiation(W/m2).Also,theplantisequippedwithpH

    and temperature probes. The variables were monitored on-line by

    means of a LabJack USB/Ethernet data acquisition device connected

    to a computer.Prior to thebeginning of theexperiments,the reactor

    was covered and pH was adjusted to 2.80.05 with sulphuric acid.

    A recirculation time of 5 min was allowed for homogenisation after

    the addition of the pesticide mixture and iron salt, corresponding

    to twice the mixing time in the photoreactor. Then the reactor was

    uncoveredand hydrogenperoxidewas added, starting thereaction.

    The reactor was continuously mixed during the experiments with

    the paddle wheel. The experiments were always run at noon (from

    12 to 13.30 p.m.), when solar irradiance was practically constant.

    The average UV irradiance was 153W/m2. Average temperaturewas 282 C.

    Both ACTM and TBZ are commonly used in citrus crops which

    predominate in the Mediterranean agriculture (e.g. lemon, orange

    trees) [30,31]. ACTM is a neonicotinoid insecticide and it has been

    reported to be more resistant to oxidation than other pollutants

    typically found in WWTP effluents [15,32]. TBZ is a widely used

    benzimidazole fungicide. Thus, ACTM and TBZ serve the purpose of

    model pollutants.

    To study the effect of iron concentration and liquid depth, tap

    water was used as matrix. The main properties of tap water are

    presented in Table 1. Dissolved organic carbon (DOC) due to the

    tap water was negligible. The small concentration of commercial

    ACTM and TBZ (100g/L each) did not result in significant DOC

    concentration either (less than 1 mg DOC/L).

    Table 1

    Tap water properties.

    Parameter Concentration (mg/L)

    Sulfate 29.5

    Chloride 206.1

    pH 7.9

    Conductivity 0.85 mS/cm

    To confirm the best operating conditions obtained in tapwater, experiments were carried out in simulated secondary

    effluent from an urban WWTP used in previous works [15].

    The constituents of the simulated secondary effluent were

    CaSO42H2O (60 mg/L), MgSO4 (60mg/L), KCl (4mg/L), (NH4)2SO4(23.6 mg/L), K2HPO4 (7.0mg/L), NaHCO3 (96mg/L), beef extract

    (1.8mg/L), peptone (2.7mg/L), humic salts (4.2mg/L), sodium

    lignin sulfonate(2.4 mg/L), sodium lauryle sulphate (0.9mg/L),aca-

    cia gum powder (4.7mg/L), and Arabic acid (5.0mg/L) [33]. The

    dissolved organic carbon, DOC, of the initial water was 14mg/L.

    2.3. Determination of the optical thickness

    Regarding the absorption of the incident radiation, the ferric

    iron species in solution are dominant for UV-light absorption ashydrogen peroxide and ferrous iron do not absorb any radiation

    over 300 nm [21]. Absorption of ACTM, TBZ and generated inter-

    mediates was checked and found negligible at the concentration

    used in the experiments.

    The absorption spectra of ferric iron in tap water were obtained

    at different iron concentrations and making use of solar power

    emission spectrum the spectral-averaged specific absorption coef-

    ficient kA(mM1 m1) of solution species was determined, Eq. (4):

    kA =

    maxmin

    Id

    maxmin

    Id(4)

    where I is the solar power at the corresponding wavelength and

    is the specific absorption coefficient of the solution at the cor-responding wavelength (mM1 m1). The wavelength limits in

    Eq. (4) were those corresponding to radiometer spectral response

    (327384nm). The specific absorption coefficient for ferric iron

    species at pH 2.8 in tap water was 46mM1 m1.

    The optical thickness, , was calculated as follows:

    = kA CFe D (5)

    where CFeis the iron concentration (mM) and D is the liquid depth

    (m).

    2.4. Chemical analysis

    The sample volume was 10mL. All samples were immediately

    filtered (nylon filters from Millipore with pores of 0.20m-diameter) and the filter was washed with 1 mLof acetonitrile and

    mixed with the filtered water sample. This is because acetoni-

    trile acts as an HO scavenger, stopping the reaction [34], and also

    sweeps out any trace of pollutant that may have been retained by

    the filter and avoid any possible adsorption.

    Hydrogen peroxide was measured by a colorimetric method

    using ammonium metavanadate, measuring the absorbance at

    450nm [35]. The concentration of iron was determined accord-

    ing to the o-phenantroline standardised procedure (ISO 6332) and

    the red complex formed was determined spectrophotometrically

    at 510 nm. DOC determinations were carried out in a Shimadzu-

    V CPH TOC analyser. Anion concentrations were determined using

    ion chromatography (Metrohm 881 Compact IC pro). The column

    was an anionic MetroSep Supp 7 column (250/4.0mm5m) from

  • 8/9/2019 artculo ambientaal

    4/8

    I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329 325

    Metrohm. The eluent used was a solution of 3.6 mM Na2CO3 and

    the flow rate was 0.8 mL/min.

    ACTM and TBZ concentrations were determined by means of

    liquid chromatography (UPLC Agilent 1200 Series equipped with

    a column oven, degasser, autosampler and diode array detec-

    tor) with a reversed-phase column (Agilent XDB-C18). The mobile

    phase consisted of a gradient mixture of acetonitrile and 1% (v/v)

    formic acid in water. Retention times were 6.1 min for TBZ, 9.6

    for ACTM. The detection wavelengths were 300nm for TBZ and

    248nm for ACTM. The gradient used was initially set at 5% ace-

    tonitrile, progressively increasing the concentration to 100% in a

    12-min method. The limit of detection (LOD) was 2g/L for ACTMand 1g/L for TBZ.

    3. Results and discussion

    3.1. Effect of liquid depth and iron concentration on pesticide

    removal

    In this work the solar photo-Fenton process was applied as

    tertiary treatment, focusing on the effects of liquid depth and

    iron concentration in the RPR operation. The degradation profilesobtained for the commercial pesticide mixture during the photo-

    Fenton process are shown in Figs.2 and 3. The experimental error,

    obtained from five replicates of the central operating condition

    (5.5mg Fe/L10 cm liquidheight) waslowerthan 5% forACTM, TBZ

    and hydrogen peroxide concentrations.

    Either for ACTM or TBZ, two oxidation steps were clearly

    detected, regardless of the liquid depth. The first step was always

    marked by high and fast oxidation of the compounds due to the

    initial reaction of Fe2+ with hydrogen peroxide (Eq. (1)) (Fenton

    effect). It is rather fast, directly proportional to Fe2+ concentration

    andgenerates a great amount of hydroxylradicals[36]. In said reac-

    tion, Fe2+ is oxidised. On the second reaction step, Fe3+ is reduced

    (Eq. (2)), establishing a continuous iron redox cycle (Eqs. (1) and

    (2)). In this step, degradation is progressive, not as fast as in thefirst step because the ferric iron reduction is rate limiting.

    Of the two compounds, ACTM presented slower degradation

    rate than TBZ. As the most persistent compound of the mixture,

    ACTMwas theone which gavefurtherinsight intothe results.Fig.2a

    illustrates ACTM oxidation with 1 mg Fe/L for all liquid depths (5,

    10 and 15cm). The first oxidation step, previously described, gave

    rise to 19% removal. As this step is dependent on iron concentra-

    tion, it was the same for all liquid depths. The second oxidation

    step fitted an exponential decrease with similar degradation rates

    for the three liquid depths. In all cases approximately 75% ACTM

    removal was measured after 90min of solar photo-Fenton.

    For 5.5mg Fe/L (Fig. 2b) the first oxidation due to Eq. (1) is

    more significant as there was more initial Fe2+, reaching54% ACTM

    removal in 2.5 min. In addition, there was a significant increase inthe process rate and complete removal was achieved in 40min for

    all liquid depths with solar photo-Fenton. This short reaction time

    is animportant factas it is one of the factors which affects costs the

    most [11]. As observed with 1 mg Fe/L, the profiles were analogous

    for the three liquid depths. This is also a significant effect. When

    the liquid depth was 5cm, the treated volume was 120L. When

    the liquid depth was increased to 10cm and 15cm, the treated

    volumes were 240 and 360 L, respectively. So, the number of iron

    ions present that needed to be photoactivated in the system was 2

    and 3 times greater and so was the number of pesticide molecules.

    However, the photons reaching the system remain the same as the

    photoreactor surface did not change. Even so, the oxidation rate

    with solar photo-Fenton was the same, regardless of the volume.

    This meant that all iron ions were photoactivated for the three

    Fig. 2. ACTM degradation by solar photo-Fenton and Fenton with 1, 5.5 and 10mg

    Fe/L(243 WUV/m2 and 282 C).

    liquid depths and the concentration of hydroxyl radicals generated

    was similar.

    When 10mg Fe/Lwas used(Fig.2c), there was an increase in the

    process rateas well. However,it wasnot linearly proportionalto the

    increase in iron concentration. The first degradation step involved

    69%ACTMremovalfor allliquid depths, incomparisonwiththe 54%

    achieved with 5.5mg Fe/L. This first degradation step wasthesame

    for all liquid depthssince it is independent of irradiation.However,

    in the second degradation step, there was a remarkable difference

    with respect to the two lowest iron concentrations: the oxidation

  • 8/9/2019 artculo ambientaal

    5/8

    326 I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329

    Table 2

    Kinetic constantsfor ACTMand H2O2.

    Fe concentration (mg/L) Liquid height (cm) kACTM(min1) kH2O2 (mMmin

    1)

    Mean Standard deviation Mean Standard deviation

    1 5, 10 and 15 0.02 0.002 0.003 0.0003

    5.5 5, 10 and 15 0.08 0.004 0.012 0.0008

    10 10 and 15 0.08 0.003 0.013 0.0009

    10 5 0.13 0.021

    of ACTM was faster in 5c m than in 10c m or 15c m liquid depth.

    Indeed, complete removal time was 20min in 5cm liquid depth

    and 40min in the other two.

    This can be explained as follows, taking into account that the

    amount of photons reaching the surface is the same for all liquid

    depths but not the amountof iron ions: in 5 cmdepth with10 mg/L

    of Fe there are 1.31022 iron ions in 120L which need certain

    amount of photons to be photoactivated. When the treated volume

    is increased to 240L or 360L, the number of iron ions is 2.61022

    or 3.91022, respectively, but the amount of photons reaching the

    system remains the same. Another approach to study this effect is

    the optical thickness,which was calculated according to section 2.3

    for every iron concentration and liquid depth. The maximum opti-cal thickness for 1 mg Fe/L was 0.12, and for 5 mg Fe/L, it was 0.68.

    An optical thickness of 1 means that 90% of the photons entering

    the reactor are absorbed. Therefore, there were enough photons

    for both iron concentrations. Thus, for 1 and 5.5mg Fe/L all iron

    ions were photoactivated for the three different depths as shown

    in Fig.2a andb. Althoughthe highest optical thicknesswas obtained

    for10mg/L(itrangedfrom0.41to1.24),solarradiationstillreached

    the bottomof the reactor. However, with 10 and15 cm liquiddepth

    theprocesscould become photo-limited. Nonetheless, these optical

    thickness values are below the optimal range reported for photo-

    catalytical reactors (1.83.4), pointing out that liquid depth could

    still be increased keeping low iron concentration [37].

    Fig.3 shows TBZdegradationprofilesfor 1 mg Fe/L and thethree

    liquid depths. As previously mentioned, it was oxidised faster thanACTM and difficult to evaluate any effect at concentration >1mg

    Fe/L. For 5.5 and 10mg Fe/L degradation was so fast it could not

    be tracked. Indeed, for 5.5mg Fe/L complete removal was achieved

    in 5min; while for 10mg Fe/L, the first degradation step (Fenton

    effect) was already enough to completely remove all TBZ. This is

    likely due to differences between the reactivity of hydroxyl radicals

    towards ACTM and TBZ (hydroxyl radical is more reactive towards

    Fig. 3. TBZ degradation by solar photo-Fenton and Fenton with 1 m g Fe/L

    (24WUV/m2 and 282 C).

    TBZ than ACTM). This is important since if only TBZ had been used

    the effect of photo-limitation would not have been detected. The

    first degradation step for 1mg Fe/L by Reaction 1 was more sig-

    nificant as TBZ is likely more reactive towards hydroxyl radicals

    than ACTM; andthe secondoxidation step also follows a fast expo-

    nential decrease. Nevertheless, the profiles tendency proved to be

    analogous to ACTM in the same conditions: the degradation rate

    was similar for the three treated volumes. The discussion of TBZ

    degradation follows the explanation given for ACTM above.

    In addition to the photo-Fenton tests, the Fenton process was

    alsocarriedoutasblank(Figs.2and3). The Fenton process is mainly

    dependenton theconcentrationof iron andthe liquiddepth is nota

    variable in this case. Additionally, the reduction of Fe3+ takes placethrough Eq. (3) instead of Eq. (2). As Eq. (3) is very slow [38], so the

    most significant degradation occurred in the first degradation step,

    which also happened in solar photo-Fenton. In no case was com-

    plete ACTM removal accomplished in 90min, but high percentage

    was obtained with 10mg Fe/L, 90%. This means the Fenton effect is

    rather important in micropollutant removal only if high iron con-

    centration is used. As a result, a combination of solar photo-Fenton

    and Fenton (for cloudy days and nights) could be made to operate

    continuously. This is essential for the commercial development of

    this technology: extensive, less costly reactors which can operate

    in continuous mode.

    Aside from micropollutant concentration, hydrogen peroxide

    consumption is crucial to corroborate the effects observed. In this

    case, the reactant concentration was in light excess, 50mg/L, toensure that the micropollutant oxidation was not conditioned by

    lackof hydrogenperoxide. Theevolution of hydrogenperoxide con-

    centration with time is shown in Fig. 4. At first glance it can be

    appreciated that the effects observed in ACTM degradation were

    reflected in H2O2 concentration.

    The factthat ACTMandH2O2profiles matched is especiallyclear

    for10mg Fe/L, whereprofiles forthe 5-cm liquiddepth were differ-

    entwithrespectto10cmand15cm(Fig.4c). H2O2 consumptionfor

    different liquid depths with 10mg Fe/L corroborates the idea that

    not all iron ions are photoactivated for 10-cm and 15-cm depth.

    With 1 and 5.5mg Fe/L the degradation of H2O2 was similar

    for all liquid depths (Fig. 4a and b). At the end of the test, 10%

    H2O2 was still in the system for 5.5 m g Fe/L. When 1mg Fe/L

    was used, only 30% H2O2 was consumed. This is consistent sinceH2O2 consumption rate is proportional to the concentration of

    catalyst.

    These results show the efficiency of the RPRs as extensive sys-

    tems for micropollutant removal. A kinetic analysis was also made

    to compare the value of the constants. For the calculation of the

    kinetic constants, the first degradation step (Fenton) was omitted

    since it was mainly a result of the first ferrous iron oxidation, as

    described in Eq. (1), yielding a great amount of HO. It isin the sec-

    ond degradation stage (photo-Fenton) whenthe Fe redoxcycle was

    established as iron reductionis theslowestreaction inthe cycle and

    is seriously affected by radiation absorption and, therefore, liquid

    depth [15].

    ACTM and TBZ profiles adjusted an exponentially decreasing

    function, following a pseudo-first order degradation. ACTM

  • 8/9/2019 artculo ambientaal

    6/8

    I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329 327

    Fig. 4. Hydrogen peroxide concentration profiles during pesticide degradation by

    solar photo-Fentonand Fentonwith 1, 5.5 and 10mg Fe/L.

    pseudo-first order kinetic constants were calculated as well after

    the first degradation stage and included in Table 2. Hydrogen per-

    oxide profiles adjusted a linear decrease after the first degradation

    stage, so pseudo-zero order kinetic constants were calculated

    (Table 2). As kinetic constants for TBZ could not be obtained for

    5.5 and 10mg Fe/L due to fast degradation, only ACTM constants

    are presented. Since the degradation rate for 5, 10 and 15cm liq-

    uid depth was the same for 1 and 5.5mg Fe/L, a mean value was

    calculated. Standard deviation of ACTM and H2O2 constants were

    Fig. 5. ACTM degradation and hydrogen peroxide consumption in simulated sec-

    ondary effluentby solarphoto-Fentonin 15 cm liquid-depth-RPR with5.5 and10 mg

    Fe/L, and in 5cm diameter-CPC with 5.5mg Fe/L.

    included. For 10mg Fe/L and 5 cm, there was only one experiment,

    so the kinetic values were not averaged.It could be seen that either for ACTM and H2O2 an increase in

    catalyst concentration from 1 to 5.5 mg/L raised the kinetic con-

    stant values four times: from 0.02min1 to 0.08min1 in the case

    of ACTM; and from 0.003 mMmin1 to 0.012 mMmin1 for H2O2.

    However, when the catalyst concentration was increased to 10mg

    Fe/L, the kinetic constants were over 1.5 times greater only for

    5 cm liquid depth (0.13 min1 and 0.021mM min1 for ACTM and

    H2O2, respectively); while at the higher liquid depths the constants

    remainedpractically the samethan for 5.5 mg Fe/L.This contributes

    to the explanation given above that there was excess of catalyst for

    10mg Fe/L at 10 and 15cm liquiddepth. Therefore, with the fastest

    operating conditions (10 mg Fe/L and 5cm liquid depth) 120L of

    water were treated in 20min. On the contrary, using 5.5mg Fe/L

    with 10cm depth, 240L of water were treated in 40min and 360 Lwith 15cm liquid depth. As a result, the best operating condition

    was 5.5 mg/L of Fe concentration and 15cm liquid depth.

    3.2. Micropollutant removal in simulated secondary effluent

    In simulated secondary effluent, the RPR was operated at the

    highest liquid depth, 15cm, and two iron concentrations, 5.5 and

    10mg Fe/L. Thefirst as the best operatingcondition obtained in tap

    water and the second, to check if the use of a different matrix

    with organic matter (14 mg/L DOC) could have an effect on the

    process, for example, decreasing reaction rate as DOC scavenges

    HO or augmenting water light absorption. In bothcases, increasing

    Fe concentration would produce a clear effect increasing reaction

    rate.Additionally, for comparison purposes, the same pesticide mix-

    ture was degraded in a CPC photoreactor of 5 cm diameter, 0.48m2

    collector area and 7L total volume, with 5.5mg/L of iron. More

    CPC details and operation procedure are described elsewhere [39].

    ACTM and hydrogen peroxide concentrations are shown in Fig. 5.

    TBZ concentration is not shown as its degradation was too fast (it

    was removed in less than 5 min).

    Inthe RPR, ACTM as well as hydrogenperoxide degradationpro-

    files were analogous for both iron concentrations, validating the

    effects observed in tap water and excluding a detrimental effect

    provoked by scavengers of HO or light absorption. Nevertheless

    the acetamiprid degradation kinetic constantwas 0.01min1 inthe

    secondaryeffluent;while theconstant intap water was0.08min1.

    This is dueto thedifference inorganicmatterandsalts inbothwater

  • 8/9/2019 artculo ambientaal

    7/8

    http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0155http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0150http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0145http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0140http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0135http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0130http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0125http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0120http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0115http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0110http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0105http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0100http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0095http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0090http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0080http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0075http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0070http://www.psa.es/webeng/projects/cadox/index.phphttp://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0060http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0055http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0050http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0045http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0040http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0035http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0030http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0025http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0020http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0015http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0010http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0005
  • 8/9/2019 artculo ambientaal

    8/8

    I. Carra et al. / Journal of HazardousMaterials 279 (2014) 322329 329

    [32] J. Gomis, A. Bianco Prevot, E. Montoneri, M.C. Gonzlez, A.M. Amat, D.O. Mr-tire, A. Arques, L. Carlos, Waste sourced bio-based substances for solar-drivenwastewater remediation: photodegradation of emerging pollutants, Chem.Eng. J. 235 (2014) 236243.

    [33] R. Zhang, S. Vigneswaran, H. Ngo, H. Nguyen, A submerged membrane hybridsystem coupled with magnetic ion exchange (MIEX) and flocculation inwastewater treatment, Desalination 216 (2007) 325333.

    [34] S. Mitroka, S. Zimmeck, D. Troya,J.M. Tanko, Howsolvent modulateshydroxylradicalreactivity in hydrogen atom abstractions, J. Am. Chem. Soc. 132 (2010)20132907.

    [35] R.F.P. Nogueira, M.C. Oliveira, W.C. Paterli ni, Simple and fast spec-

    trophotometric determination of H2O2 in photo-Fenton reactions usingmetavanadate, Talanta 66 (2005) 8691.

    [36] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewatertreatmentII: hybrid methods, Adv. Environ. Res. 8 (2004) 553597.

    [37] G. LiPuma, Modeling of thin-film slurry photocatalytic reactors affected byradiation scattering, Environ. Sci. Technol. 37 (2003) 57835791.

    [38] K. Ikehata, M.G. El-Din, Aqueous pesticide degradation by hydrogen perox-ide/ultraviolet irradiation and Fenton-type advanced oxidation processes: areview, J. Environ. Eng. Sci. 5 (2006) 81135.

    [39] I. Carra,E. Ortega-Gmez, L. Santos-Juanes, J.L. Casas Lpez,J.A. Snchez Prez,Cost analysis of different hydrogen peroxide supply strategies in the solar:photo-Fentonprocess, Chem. Eng. J. 224 (2013) 7581.

    [40] S. Malato Rodrguez, J. Blanco Galvez, M.I. Maldonado Rubio, P. FernandezIbanez, D. Alarcon Padilla, M. Collares Pereira, J. Farinha Mendes, J. Correia deOliveira, Engineering of solar photocatalytic collectors, Sol. Energy 77 (2004)513524.

    Further reading

    [17] F.G. Acin Fernndez, J.M. Fernndez Sevilla, E. Molina Grima, Photobioreac-tors for the production of microalgae, Rev. Environ. Sci. Biotechnol. 12 (2013)131151.

    http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0160http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0160http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0160http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0160http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0160http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0165http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0170http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0170http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0170http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0170http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0170http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0175http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0180http://refhub.elsevier.com/S0304-3894(14)00571-8/sbref0180http://refhub.