ars.els-cdn.com  · web viewsupporting information. noble . amine-functionalized iron trimesate...

18
Supporting Information Noble Amine-Functionalized Iron Trimesate with Enhanced Peroxidase-like Activity and their Applications for Fluorescent Assay of Choline and Acetylcholine Anil H. Valekar, # [a,b] Bhagwan S Batule, # [c] Moon-Il Kim, [d] Kyung-Ho Cho, [a] Do-Young Hong, [a,b] U-Hwang Lee, [a,b] Jong-San Chang [a,e] , Hyun-Gyu Park * [c] and Young Kyu Hwang* [a,b] a Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea b Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong, Daejeon 305-350, Korea c Chemical & Biomolecular Engineering, KAIST, 291 Deahakro, Yuseong-gu, Daejeon 305-701, Korea d Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea

Upload: vodat

Post on 11-Dec-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Supporting Information

Noble Amine-Functionalized Iron Trimesate with Enhanced Peroxidase-

like Activity and their Applications for Fluorescent Assay of Choline and

Acetylcholine

Anil H. Valekar, # [a,b] Bhagwan S Batule, # [c] Moon-Il Kim, [d] Kyung-Ho Cho, [a] Do-Young

Hong, [a,b] U-Hwang Lee, [a,b] Jong-San Chang[a,e] , Hyun-Gyu Park *[c] and Young Kyu

Hwang*[a,b]

a Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology,

Daejeon 305-600, Korea

b Department of Advanced Materials and Chemical Engineering, University of Science and

Technology (UST), 217 Gajeong-Ro, Yuseong, Daejeon 305-350, Korea

c Chemical & Biomolecular Engineering, KAIST, 291 Deahakro, Yuseong-gu, Daejeon 305-

701, Korea

d Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-

gu, Seongnam, Gyeonggi 13120, Republic of Korea

e Department of Chemistry, Sungkyunkwan University, Suwon 440-476, Korea

E-mail: [email protected] and ykhwang @krict.re.kr

# These authors contributed equally to this work.

Figure S1 Pore size distribution (PSD) calculated by DFT analysis of pristine and amine-

grafted MIL-100(Fe).

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

ODA-MIL-100(Fe), SBET= 900 m2g-1, PV= 0.62 cm3g-1

Relative pressure (P/P0)

Volu

me

of N

2 ads

orbe

d (cm

3 g-1)

5 10 15 20 25 30

10000

11000

12000

13000

14000

ODA-MIL-100(Fe)

2 (deg.)

Inte

nsity

(CPS

)

Figure S2 (a) XRPD pattern and (b) N2 adsorption isotherm at 77 K of ODA-MIL-100(Fe)

b)

a)

Figure S3 Comparison of Peroxidase-mimic activity of pristine and various amines grafted

MIL-100(Fe) in presence of TMB substrate. 1. MIL-100 (Fe), 2. ED-MIL-100 (Fe), 3.

DMPDA-MIL-100 (Fe), 4. TMBDA-MIL-100 (Fe), 5. ODA-MIL-100(Fe). Reaction

condition: 5 mM Tris acetate buffer (pH 7), 1 mM H2O2, 0.2mg/mL MOF, 50 µM AUR, 25 oC

for 30 min, Ex-540 nm, Em- 588nm.

1 2 3 4 50

5000

10000

15000

20000

25000

Fluo

resc

ence

inte

nsit

y (a

.u.)

Figure S4 Peroxidase-like activity of TMBDA-MIL-100(Fe) for AUR substrate. Reaction

condition: 5mM Tris acetate buffer (pH 7), 1 mM H2O2, 0.2 mg/mL MOF, 50 µM AUR, 25

oC for 30 min, Ex-540 nm, Em-588nm.

570 580 590 600 610 620 630 640 6500

2000

4000

6000

8000

10000

12000

14000

16000

18000

1) AUR

2) AUR + H2O2

3) AUR+ H2O2 + TMBDA-MIL-100(Fe)

4) AUR + TMBDA-MIL-100(Fe)

5) TMBDA-MIL-100(Fe)

Wavelength (nm)

Fluo

resc

ence

inte

nsit

y

Figure S5 Effects of (a)

temperature, (b) pH, (c) MOF concentration, (d) buffer concentration on the peroxidase-like activity

of TMBDA-MIL-100(Fe), and (e) H2O2 concentration-dependent change of the fluorescence intensity

(λ max = 588 nm). Inset: Linear range between H2O2 concentration (1–30 µM).

0

4000

8000

12000

16000

20000

24000

0 200 400 600 800 1000 1200 1400 1600

(F-F

0)

H2O2 (µM)

y = 172.26x + 2353.3R² = 0.9904

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30

(F-F

0)

H2O2 (µM)

e)

Figure S6 (a) Reproducibility of TMBDA-MIL-100(Fe) with optimized reaction parameters;

5mM Tris acetate buffer (pH 7), 1 mM H2O2, 0.2 mg/mL MOF, 50 µM AUR, 25 oC for 30

min, Ex-540 nm, Em-588 nm. The relative activity (%) was determined by calculating the

ratio of the residual activity to the initial activity and (b) SEM analysis before and after five

recycle test of TMBDA-MIL-100(Fe)

AfterBefore

a)

b)

Figure S7 Steady-state kinetic assays of the TMBDA-MIL-100(Fe). (a) The concentration of

H2O2 was 0.2 mM and the TMB concentration was varied in tris acetate buffer at pH 4.0,

inset: double-reciprocal plots of activity of TMBDA-MIL-100(Fe). (b) The concentration of

TMB was 0.2 mM and the H2O2 concentration was varied in tris acetate buffer at pH 4.0;

inset: double-reciprocal plots of activity of TMBDA-MIL-100(Fe).

b)a)

Figure S8. Selectivity of this assay toward choline. The concentration of choline is 10 µM

while those for negative control samples are all 100 µM. Error bars represent the standard

deviation of three independent measurements.

Figure S9. Selectivity of this assay toward ACh. The concentration of ACh is 10 µM while

those for negative control samples are all 100 µM. Error bars represent the standard deviation

of three independent measurements.

Table S1 Physicochemical properties, nitrogen content, and zeta potential of the parent and

amine-grafted MIL-100(Fe)

SamplesSBET

(m2/g)PV

(cm3/g)“N” content

(mmol/g)Amine content

(mmol/g)Zeta potential

(mV)

MIL-100(Fe) 2060 1.07 0.0 NA -21.7

ED-MIL-100(Fe) 1504 0.74 0.71 0.36 -24.3

DMPDA-MIL-100(Fe) 1309 0.64 0.64 0.32 -30.3

TMBDA-MIL-100(Fe) 1270 0.63 0.57 0.29 -27.4

Table S2 Structure and molecular size of amines used for grafting on CUSs of MIL-100(Fe).

Amine Molecular size* (Å)

(ED)3.745

(DMPDA)7.412

(TMBDA)8.653

(ODA)11.366

*All geometry optimizations were carried out using density functional theory (DFT) as implemented in the Jaguar 9.0 suite of ab initio quantum chemistry programs. Distance between N-N (ED and ODA) or C-C (DMPDA and TMBDA) were considered for the calculation of molecular size.

NH2H2N

NH

NH

NN

H2NNH2

Table S3 Comparison of choline detection of TMBDA-MIL-100(Fe) with previously

reported biosensors.

Methods BiosensorsLOD (μM)

Detection range (μM)

R2 Reference

Colorimetric

Fluorescence

Fluorescence

Fluorescence

Amperometric

Fluorescence

PtNPs

Carbon dots

Carbon dots

Quantum dots

F127M

MIL-100(Fe)*

2.5

0.025 

0.1

0.1 

5.0 

0.027

6 to 400

0.025 to 50 

0.1–40

5–150 

5.0–800

0.1-10

0.998

0.9939

0.9935

Not given

0.99

0.9907

(He et al. 2014)

(Ren et al. 2015)

(Wei et al. 2014)

(Chen et al. 2011)

(Shimomura et al. 2009)

This work

*TMBDA-MIL-101(Fe)

Table S4 Recovery after standard addition of choline in milk

SamplesAdded value

(μM)Measured

Value (μM)RSD

(%, n=3)Recovery

(%)Relative error

(%)

1

2

3

4

6

8

4.03

6.05

8.03

8

15

8

100.94

100.91

100.38

0.94

0.91

0.38

Table S5 Comparison of acetylcholine detection of TMBDA-MIL-100(Fe) with previously

reported biosensors

Methods Biosensor LOD

(nM)

Detection

range (μM)

R2 References

Amperometry Ni-C Nafion nanocomposite

49.33 0.24–828 0.9994 (Sattarahmady et al. 2010)

Chemiluminescence [Cn-D] complex

50 0.05-100Not

given(Korbakov et

al. 2008)

Colorimetric PtNPs 2840 10 to 200  0.998 (He et al. 2014)

Fluorescence TMBDA-MIL-100(Fe)

36 0.1-10 0.9907 This work

Table S6 Recovery after standard addition of acetylcholine in human serum

Sample Added value (μM)

Measured Value (μM)

RSD(%, n=3)

Recovery (%)

Relative error (%)

1

2

3

2

4

6

1.94

4.15

6.07

3.11

3.30

4.48

97.23

103.85

101.22

-2.76

3.85

1.22

References

Chen, Z., Ren, X., Meng, X., Chen, D., Yan, C., Ren, J., Yuan, Y., Tang, F., 2011. Biosens

Bioelectron 28(1), 50-55.

He, S.B., Wu, G.W., Deng, H.H., Liu, A.L., Lin, X.H., Xia, X.H., Chen, W., 2014. Biosens

Bioelectron 62, 331-336.

Korbakov, N., Timmerman, P., Lidich, N., Urbach, B., Sa'ar, A., Yitzchaik, S., 2008.

Langmuir 24(6), 2580-2587.

Ren, X., Wei, J., Ren, J., Qiang, L., Tang, F., Meng, X., 2015. Colloids Surf B Biointerfaces

125, 90-95.

Sattarahmady, N., Heli, H., Moosavi-Movahedi, A., 2010. Biosensors and Bioelectronics

25(10), 2329-2335.

Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F., Ono, M., 2009. Talanta 78(1), 217-220.

Wei, J., Ren, J., Liu, J., Meng, X., Ren, X., Chen, Z., Tang, F., 2014. Biosens Bioelectron 52,

304-309.