ars.els-cdn.com€¦  · web viewkoehler, b., corre, m.d., veldkamp, e. & sueta, j.p. (2009)....

72
Table S1 The 480 estimates of Q 10 values used in this global synthesis. Some soil respiration vs. temperature data are provided in the separated Table S3. No. Country Latitu de Longitu de Altitude (m) Ecosystem type Q 10 References 1 Czech Republic 49.50 18.54 908 Forest 3.74 Acosta et al., 2004 2 Japan 40.00 140.56 Forest 2.67 Atarashi-Andoh et al., 2012 3 United Kingdom 55.17 -2.05 Forest 1.07 Ball et al., 2007b 4 United Kingdom 55.17 -2.05 Forest 1.08 Ball et al., 2007b 5 United Kingdom 55.17 -2.05 Forest 1.13 Ball et al., 2007b 6 Canada 49.69 -74.34 Forest 3.41 Bergeron et al., 2009 7 USA 42.50 -72.20 Forest 3.5 Boone et al., 1998 8 Germany 51.77 9.58 375 Forest 3.7 Borken & Beese, 2005 9 Germany 51.77 9.58 375 Forest 2.98 Borken & Beese, 2005 10 Germany 51.77 9.58 375 Forest 2.82 Borken & Beese, 2005 11 Germany 51.77 9.58 375 Forest 2.74 Borken & Beese, 2005 1

Upload: others

Post on 28-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Table S1 The 480 estimates of Q10 values used in this global synthesis. Some soil respiration vs. temperature data are provided in the separated

Table S3.

No. Country Latitude Longitude Altitude (m) Ecosystem type Q10 References1 Czech Republic 49.50 18.54 908 Forest 3.74 Acosta et al., 20042 Japan 40.00 140.56 Forest 2.67 Atarashi-Andoh et al., 20123 United Kingdom 55.17 -2.05 Forest 1.07 Ball et al., 2007b4 United Kingdom 55.17 -2.05 Forest 1.08 Ball et al., 2007b5 United Kingdom 55.17 -2.05 Forest 1.13 Ball et al., 2007b6 Canada 49.69 -74.34 Forest 3.41 Bergeron et al., 20097 USA 42.50 -72.20 Forest 3.5 Boone et al., 19988 Germany 51.77 9.58 375 Forest 3.7 Borken & Beese, 20059 Germany 51.77 9.58 375 Forest 2.98 Borken & Beese, 200510 Germany 51.77 9.58 375 Forest 2.82 Borken & Beese, 200511 Germany 51.77 9.58 375 Forest 2.74 Borken & Beese, 200512 Germany 51.73 9.65 300 Forest 2.3 Brumme, 199513 Germany 50.13 11.87 770 Forest 2.41 Buchmann, 200014 Germany 50.13 11.87 770 Forest 3.22 Buchmann, 200015 Germany 50.13 11.87 770 Forest 2.86 Buchmann, 200016 Germany 50.13 11.87 770 Forest 2.39 Buchmann, 200017 USA 35.97 -79.13 Forest 2.81 Butnor et al., 200318 USA Forest 2 Butnor et al., 200619 USA Forest 1.6 Butnor et al., 200620 Spain 41.73 1.65 Forest 3 Chang et al., 2016

1

Page 2: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

21 Spain 41.73 1.65 Forest 1.37 Chang et al., 201622 Canada 49.87 -125.34 330 Forest 4.84 Chen et al., 2009a23 China 22.57 112.83 Forest 2.57 Chen et al., 2009b24 China 22.57 112.83 Forest 3.5 Chen et al., 2009b25 China 22.57 112.83 60.7 Forest 2.83 Chen et al., 2009c26 China 22.57 112.83 60.7 Forest 1.79 Chen et al., 2009c27 China 22.57 112.83 60.7 Forest 2.41 Chen et al., 2009c28 China 22.57 112.83 60.7 Forest 1.69 Chen et al., 2009c29 China 40.02 116.38 51 Forest 2.3 Chen et al., 201330 USA 29.73 -82.16 Forest 1.6 Clark et al., 200431 USA 29.73 -82.16 Forest 1.75 Clark et al., 200432 USA 29.73 -82.16 Forest 2.05 Clark et al., 200433 USA 38.90 -120.63 1315 Forest 3.1 Curiel Yuste et al., 200734 USA 38.43 -120.97 177 Forest 1.9 Curiel Yuste et al., 200735 Italy 41.08 12.45 1100 Forest 1.73 De Santo et al., 197636 Italy 41.08 12.45 1000 Forest 1.9 De Santo et al., 197637 USA 41.55 -83.84 Forest 2.97 DeForest et al., 200638 New Zealand -43.20 170.30 Forest 2.21 DeLucia et al., 200339 China 23.33 113.50 Forest 1.86 Deng et al., 201040 China 23.33 113.50 Forest 1.81 Deng et al., 201041 China 23.17 112.60 250 Forest 2.19 Deng et al., 201242 China 23.17 112.60 260 Forest 1.74 Deng et al., 201243 China 23.17 112.60 260 Forest 1.72 Deng et al., 201244 China 23.17 112.60 250 Forest 1.93 Deng et al., 201245 China 23.17 112.60 260 Forest 1.93 Deng et al., 2012

2

Page 3: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

46 China 23.17 112.60 260 Forest 1.91 Deng et al., 201247 China 23.33 113.50 Forest 2.21 Deng et al., 2013a48 China 23.33 113.50 Forest 1.53 Deng et al., 2013a49 Brazil -2.59 -60.12 Forest 1.8 Doff sotta et al., 200450 China Forest 2.4 Du et al., 200751 China Forest 2.49 Du et al., 200752 China Forest 3.72 Du et al., 200753 USA 46.67 -91.25 350 Forest 1.67 Euskirchen et al., 200354 USA 46.67 -91.25 350 Forest 1.74 Euskirchen et al., 200355 USA 46.67 -91.25 350 Forest 1.44 Euskirchen et al., 200356 USA 46.67 -91.25 350 Forest 1.84 Euskirchen et al., 200357 USA 46.67 -91.25 350 Forest 2.04 Euskirchen et al., 200358 China 36.30 111.75 1560 Forest 2.51 Fan et al., 201559 USA 29.73 -82.15 49 Forest 2.5 Fang et al., 199860 China 23.17 112.55 Forest 2.53 Fang et al., 200961 Spain 43.15 -7.75 469 Forest 2.94 Fernandez et al., 201262 Switzerland 46.72 7.77 1510 Forest 3.24 Graf Pannatier et al., 201263 Switzerland 47.17 9.07 730 Forest 3.68 Graf Pannatier et al., 201264 Switzerland 47.27 7.88 480 Forest 2.56 Graf Pannatier et al., 201265 USA 64.75 -148.25 Forest 3.3 Grogan & ChapinIii, 199966 USA 48.30 -124.70 710 Forest 2.96 Guyette et al., 200267 USA 48.30 -124.70 669 Forest 2.72 Guyette et al., 200268 USA 48.30 -124.70 955 Forest 3.25 Guyette et al., 200269 USA 48.30 -124.70 898 Forest 1.91 Guyette et al., 200270 USA 48.30 -124.70 1423 Forest 2.5 Guyette et al., 2002

3

Page 4: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

71 USA 48.30 -124.70 1450 Forest 4.92 Guyette et al., 200272 USA 48.30 -124.70 568 Forest 2.25 Guyette et al., 200273 USA 48.30 -124.70 940 Forest 3.14 Guyette et al., 200274 USA 48.30 -124.70 1383 Forest 1.62 Guyette et al., 200275 USA 48.30 -124.70 480 Forest 2.92 Guyette et al., 200276 USA 48.30 -124.70 175 Forest 3.69 Guyette et al., 200277 Switzerland 46.77 9.87 2180 Forest 2.5 Hagedorn et al., 201078 Switzerland 46.77 9.87 2180 Forest 2.6 Hagedorn et al., 201079 Japan 40.00 140.94 825 Forest 3.45 Hashimoto et al., 200980 Japan 40.00 140.94 825 Forest 3.98 Hashimoto et al., 200981 United Kingdom 53.91 -1.00 Forest 3.04 Heinemeyer et al., 200782 United Kingdom 53.91 -1.00 Forest 4.19 Heinemeyer et al., 200783 Canada 55.88 -98.48 Forest 2 Hirsch et al., 200284 Japan 42.43 142.49 Forest 1.92 Hu et al., 200185 China 26.80 117.97 254 Forest 2.13 Hu et al., 201486 China 51.37 125.48 650 Forest 2.36 Hu et al., 201787 Canada 49.87 -125.33 Forest 2.2 Humphreys et al., 200688 Canada 49.52 -124.90 Forest 2.6 Humphreys et al., 200689 Canada 49.87 -125.28 Forest 2 Humphreys et al., 200690 China 30.00 139.00 120 Forest 1.28 Iqbal et al., 200891 China 30.00 139.00 120 Forest 1.28 Iqbal et al., 200892 Japan 43.67 143.10 1000 Forest 2.46 Ishizuka et al., 200693 Japan 42.97 141.17 322 Forest 2.27 Ishizuka et al., 200694 Japan 42.93 141.27 440 Forest 2.34 Ishizuka et al., 200695 Japan 42.98 141.38 240 Forest 2.72 Ishizuka et al., 2006

4

Page 5: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

96 Japan 42.98 141.38 260 Forest 2.51 Ishizuka et al., 200697 Japan 42.98 141.38 175 Forest 2.34 Ishizuka et al., 200698 Japan 39.98 140.90 825 Forest 3.42 Ishizuka et al., 200699 Japan 39.98 140.40 200 Forest 1.72 Ishizuka et al., 2006100 Japan 39.77 140.72 350 Forest 3.13 Ishizuka et al., 2006101 Japan 36.93 140.58 650 Forest 3.87 Ishizuka et al., 2006102 Japan 36.58 140.58 380 Forest 4.48 Ishizuka et al., 2006103 Japan 36.30 140.15 470 Forest 3.63 Ishizuka et al., 2006104 Japan 36.32 140.15 250 Forest 1.97 Ishizuka et al., 2006105 Japan 36.17 140.18 330 Forest 1.7 Ishizuka et al., 2006106 Japan 36.00 140.13 22 Forest 1.75 Ishizuka et al., 2006107 Japan 35.92 137.32 1350 Forest 3.49 Ishizuka et al., 2006108 Japan 35.85 138.65 2090 Forest 2.56 Ishizuka et al., 2006109 Japan 35.85 138.65 2080 Forest 3.35 Ishizuka et al., 2006110 Japan 35.23 137.13 630 Forest 1.65 Ishizuka et al., 2006111 Japan 35.20 137.57 1010 Forest 2.29 Ishizuka et al., 2006112 Japan 33.08 130.43 165 Forest 3.63 Ishizuka et al., 2006113 Japan 26.52 127.98 100 Forest 5.37 Ishizuka et al., 2006114 Canada 49.85 -125.32 300 Forest 3.7 Jassal et al., 2005115 Canada 49.87 -125.33 Forest 4.72 Jassal et al., 2007116 China 45.38 127.50 Forest 2.81 Jia et al., 2010117 China 45.33 127.57 340 Forest 3.67 Jiang et al., 2005a118 China 45.33 127.57 340 Forest 4.06 Jiang et al., 2005a119 China 42.40 128.10 740 Forest 5.51 Jiang et al., 2005b120 China 23.17 112.38 225 Forest 2.11 Jiang et al., 2013

5

Page 6: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

121 China 23.17 112.38 225 Forest 2.13 Jiang et al., 2013122 China 23.17 112.38 225 Forest 2.14 Jiang et al., 2013123 China 18.73 108.90 870 Forest 2.7 Jiang et al., 2016124 China 18.74 108.86 880 Forest 2.34 Jiang et al., 2016125 China 18.73 108.90 870 Forest 2.45 Jiang et al., 2016126 China 18.74 108.86 880 Forest 2.26 Jiang et al., 2016127 South Korea 37.55 126.98 220 Forest 2.64 Joo et al., 2012128 Canada 45.60 -62.00 10 Forest 2.22 Kellman et al., 2007129 USA 65.33 -146.90 757.5 Forest 1.82 Kelsey et al., 2012130 Germany 51.08 10.45 440 Forest 2.82 Knohl et al., 2008131 Panama 9.10 -79.83 43 Forest 3.96 Koehler et al., 2009132 Panama 8.75 -82.25 1250 Forest 2.7 Koehler et al., 2009133 USA 34.40 -89.83 240 Forest 1.7 Koh et al., 2009134 Finland 61.85 24.28 180 Forest 2.7 Kolari et al., 2009135 Estonia 58.25 27.27 39 Forest 3.5 Kukumägi et al., 2017136 Estonia 58.25 27.27 39 Forest 3.1 Kukumägi et al., 2017137 Estonia 58.25 27.27 39 Forest 2.6 Kukumägi et al., 2017138 Estonia 58.25 27.27 39 Forest 2.6 Kukumägi et al., 2017139 Estonia 58.25 27.27 39 Forest 2.4 Kukumägi et al., 2017140 Estonia 58.25 27.27 39 Forest 2.6 Kukumägi et al., 2017141 Canada 49.16 -78.83 Forest 2.59 Laganière et al., 2012142 Canada 49.16 -78.83 Forest 2.22 Laganière et al., 2012143 Canada 49.16 -78.83 Forest 2.06 Laganière et al., 2012144 China 21.92 101.27 561 Forest 2.87 Lang et al., 2017145 China 21.90 101.27 596 Forest 1.42 Lang et al., 2017

6

Page 7: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

146 China 21.90 101.27 611 Forest 1.6 Lang et al., 2017147 China 21.93 101.23 585 Forest 2.27 Lang et al., 2017148 Canada 53.75 -105.25 Forest 2.35 Lavigne et al., 1997149 Canada 53.75 -105.25 Forest 1.95 Lavigne et al., 1997150 Canada 53.75 -105.25 Forest 1.95 Lavigne et al., 1997151 Canada 47.32 -71.10 700 Forest 2.01 Lavigne et al., 2003152 Canada 47.73 -68.15 400 Forest 2.85 Lavigne et al., 2003153 Canada 46.03 -66.38 50 Forest 2.79 Lavigne et al., 2003154 Canada 46.03 -66.38 50 Forest 2.78 Lavigne et al., 2003155 Canada 46.03 -66.38 Forest 2.72 Lavigne et al., 2004156 Japan 36.13 137.37 825 Forest 1.79 Lee et al., 2008157 USA 37.10 -91.20 Forest 1.73 Li et al., 2012158 USA 37.10 -91.20   Forest 1.77 Li et al., 2012159 USA 37.10 -91.20 Forest 2.19 Li et al., 2012160 Japan 42.73 141.52 125 Forest 2.3 Liang et al., 2004161 Japan 42.73 141.52 125 Forest 3.13 Liang et al., 2010a162 Japan 42.73 141.52 125 Forest 4.39 Liang et al., 2010a163 China 42.00 128.00 798 Forest 2.7 Liang et al., 2010b164 China 42.00 128.00 747 Forest 2.78 Liang et al., 2010b165 China 42.00 128.00 775 Forest 2.28 Liang et al., 2010b166 China 42.00 128.00 751 Forest 2.2 Liang et al., 2010b167 China 42.40 128.47 690 Forest 2.44 Liu et al., 2005168 China 30.37 120.30 150 Forest 2.46 Liu et al., 2011169 China 30.37 120.30 150 Forest 3.23 Liu et al., 2011170 China 30.37 120.30 150 Forest 1.92 Liu et al., 2011

7

Page 8: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

171 China 33.47 111.93 1400 Forest 2.35 Liu et al., 2016172 China 19.92 117.60 300 Forest 1.46 Liu et al., 2017173 China 33.50 112.00 1450 Forest 3.64 Luan et al., 2011174 China 33.50 112.00 1400 Forest 3.8 Luan et al., 2012175 China 33.50 112.00 1400 Forest 4.25 Luan et al., 2012176 China 33.47 111.93 1400 Forest 3.8 Luan et al., 2013177 China 33.47 111.93 1400 Forest 4.25 Luan et al., 2013178 USA 36.97 -119.03 2183 Forest 1.75 Ma et al., 2005179 China 42.41 117.25 1505 Forest 3 Ma et al., 2014180 China 42.41 117.25 1505 Forest 2.83 Ma et al., 2014181 China 42.41 117.25 1505 Forest 2.66 Ma et al., 2014182 Canada 49.17 -88.65 Forest 1.11 Mallik & Hu, 1997183 Canada 49.17 -88.65 Forest 1.73 Mallik & Hu, 1997184 Spain 37.08 3.47 1650 Forest 1.24 Matías et al., 2012185 Italy 43.72 10.28 6 Forest 1.62 Matteucci et al., 2015186 Austria 47.78 13.63 1000 Forest 2.39 Mayer et al., 2017187 USA 43.98 -74.23 530 Forest 2.18 McHale et al., 1998188 Finland 58.98 25.45 78 Forest 2.09 Minkkinen et al., 2007189 Finland 61.37 25.12 115 Forest 2.86 Minkkinen et al., 2007190 Estonia 66.35 26.62 180 Forest 2.64 Minkkinen et al., 2007191 China 23.17 112.17 200 Forest 1.93 Mo et al., 2007192 China 23.17 112.17 125 Forest 2.27 Mo et al., 2007193 China 23.17 112.17 275 Forest 2.4 Mo et al., 2008194 Sweden 60.08 17.48 45 Forest 4.8 Morén & Lindroth, 2000195 Germany 51.08 10.45 430 Forest 2.3 Moyano et al., 2008

8

Page 9: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

196 Germany 50.45 11.46 785 Forest 2.5 Moyano et al., 2008197 Japan 42.67 141.60 80 Forest 2.74 Noh et al., 2016198 Japan 36.13 137.42 1420 Forest 3.55 Noh et al., 2017199 Finland 62.78 30.97 144 Forest 2.7 Pajari, 1995200 USA 35.97 -79.13 Forest 2.79 Palmroth et al., 2005201 USA 35.97 -79.13 Forest 3.06 Palmroth et al., 2005202 Finland 61.83 24.29 Forest 3.03 Pearson et al., 2012203 Canada 45.22 -78.58 418 Forest 3 Peng & Thomas, 2006204 Canada 49.85 -125.32 300 Forest 2.5 Pilegaard et al., 2001205 Thailand 12.20 120.55 Forest 2 Poungparn et al., 2009206 China 21.95 101.20 Forest 2.16 Qiulan Fang & Sha, 2006207 China 21.93 101.25 Forest 2.18 Qiulan Fang & Sha, 2006208 USA 19.75 -155.25 760 Forest 4.4 Raich, 1998209 Switzerland 47.48 8.36 680 Forest 2.66 Ruehr & Buchmann, 2010210 USA 39.40 -123.77 Forest 2.1 Sanderman & Amundson, 2010a211 USA 45.20 -68.73 Forest 3.6 Savage et al., 2009212 China 24.53 101.02 2476 Forest 3.26 Schaefer et al., 2009213 Austria 47.58 11.64 910 Forest 3.73 Schindlbacher et al., 2009214 Austria 47.58 11.64 910 Forest 3.02 Schindlbacher et al., 2009215 China 21.93 101.27 Forest 2.36 Sha et al., 2005216 Canada 44.92 -78.83 Forest 3.55 Shabaga et al., 2015217 China 27.03 118.13 410 Forest 2.1 Sheng et al., 2010218 China 27.03 118.13 410 Forest 2.71 Sheng et al., 2010219 China 27.03 118.13 410 Forest 2.48 Sheng et al., 2010220 China 27.03 118.13 410 Forest 2.45 Sheng et al., 2010

9

Page 10: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

221 China 27.03 118.13 410 Forest 1.66 Sheng et al., 2010222 China 47.17 128.88 Forest 2.66 Shi et al., 2015223 China 47.17 128.88 Forest 3.03 Shi et al., 2015224 China 47.17 128.88 Forest 2.83 Shi et al., 2015225 China 47.17 128.88 Forest 2.86 Shi et al., 2015226 Russia 60.75 89.38 90 Forest 2.76 Shibistova et al., 2002227 Sweden 68.35 18.82 365 Forest 2.04 Sjögersten & Wookey, 2002228 Germany 51.08 10.45 440 Forest 3.02 Søe & Buchmann, 2005229 Canada 53.92 -104.69 Forest 2.3 Striegl & Wickland, 1998230 Canada 53.90 -104.70 Forest 2.16 Striegl & Wickland, 2001231 Canada 53.90 -104.70 Forest 1.98 Striegl & Wickland, 2001232 Canada 53.90 -104.70 Forest 1.98 Striegl & Wickland, 2001233 Canada 53.90 -104.70 Forest 2.38 Striegl & Wickland, 2001234 Germany 50.13 11.87 760 Forest 2.72 Subke et al., 2003235 Germany 50.13 11.87 760 Forest 2.61 Subke et al., 2003236 USA 44.25 -122.17 531 Forest 2.13 Sulzman et al., 2005237 USA 44.25 -122.17 531 Forest 2.16 Sulzman et al., 2005238 Japan 45.05 142.10 66 Forest 2.45 Takagi et al., 2009239 Japan 45.05 142.10 66 Forest 2.33 Takagi et al., 2009240 China 24.53 101.02 2476 Forest 3.05 Tan et al., 2013241 China 23.17 112.53 550 Forest 2.08 Tang et al., 2006242 China 23.17 112.53 550 Forest 2.05 Tang et al., 2006243 China 23.17 112.53 550 Forest 1.96 Tang et al., 2006244 China 29.69 113.88 Forest 1.25 Tang et al., 2015245 China 29.70 113.88 Forest 1.9 Tang et al., 2016a

10

Page 11: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

246 China 29.70 113.88 Forest 2 Tang et al., 2016a247 China 29.68 113.25 Forest 1.82 Tang et al., 2016b248 China 29.68 113.25 Forest 1.77 Tang et al., 2016b249 Italy 42.40 11.92 140 Forest 2.25 Tedeschi et al., 2006250 Japan 31.85 131.30 130 Forest 2.73 Teramoto et al., 2016251 China 26.83 109.75 335 Forest 2.78 Tian et al., 2009252 China 28.11 113.03 100 Forest 3.96 Tian et al., 2010253 China 28.11 113.03 100 Forest 2.62 Tian et al., 2010254 China 28.10 113.02 80 Forest 2.08 Tian et al., 2011255 Turkey 530 Forest 1.45 Tufekcioglu et al., 2009256 Chile -40.17 -73.43 850 Forest 3.49 Urrutia-Jalabert et al., 2017257 Chile -40.17 -73.43 850 Forest 4.39 Urrutia-Jalabert et al., 2017258 USA 35.08 -83.43 850 Forest 2.72 Vose & Bolstad, 2007259 USA 35.08 -83.43 850 Forest 3.67 Vose & Bolstad, 2007260 USA 35.35 -83.93 1050 Forest 2.72 Vose & Bolstad, 2007261 Belgium 51.03 3.72 Forest 4.3 Walle et al., 2007262 China 42.40 128.10 738 Forest 2.92 Wang et al., 2006263 China 31.27 105.47 500 Forest 2 Wang et al., 2008b264 China 42.40 128.10 738 Forest 2.75 Wang et al., 2010a265 China 42.40 128.10 748 Forest 2.78 Wang et al., 2010b266 China 42.40 128.10 746 Forest 2.18 Wang et al., 2010b267 China 42.40 128.10 674 Forest 2.02 Wang et al., 2010b268 China 26.74 115.06 102 Forest 1.79 Wang et al., 2011269 China 26.74 115.06 102 Forest 1.85 Wang et al., 2012270 China 45.33 127.57 Forest 2.82 Wang et al., 2013a

11

Page 12: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

271 China 21.92 101.27 Forest 2.4 Wang et al., 2017a272 China 26.67 109.43 450 Forest 2.1 Wang et al., 2017b273 China 26.67 109.43 Forest 1.88 Wang et al., 2017c274 Austria 47.71 11.64 910 Forest 3.14 Webster et al., 2008275 Canada 47.05 -84.42 Forest 3.64 Webster et al., 2008276 USA 43.93 -71.75 600 Forest 2.4 Weltecke & Gaertig, 2012277 China 21.96 101.20 770 Forest 3.57 Werner et al., 2006278 China 21.92 101.27 550 Forest 1.48 Werner et al., 2006279 USA 64.70 -148.32 120 Forest 3.4 Wickland et al., 2006280 USA 63.88 -145.73 Forest 6.6 Wickland et al., 2010281 USA 63.88 -145.73 Forest 4.2 Wickland et al., 2010282 USA 64.70 -148.32 Forest 3.8 Wickland et al., 2010283 Sweden 60.08 17.50 45 Forest 2.2 Widen & Majdi, 2001284 Austria 47.00 11.00 1950 Forest 4 Wieser, 2004285 China 42.40 128.10 738 Forest 3.5 Wu et al., 2006a286 China 31.70 103.87 1987 Forest 1.69 Wu et al., 2006b287 China 31.70 103.87 1987 Forest 2.97 Wu et al., 2006b288 USA 38.90 -120.63 1315 Forest 1.61 Xu & Qi, 2001289 China 31.58 102.58 3150 Forest 3.47 Xu et al., 2010290 China 31.58 102.58 3150 Forest 3.54 Xu et al., 2010291 China 31.58 102.58 3150 Forest 4.01 Xu et al., 2010292 China 31.58 102.58 3150 Forest 3.92 Xu et al., 2010293 China 23.18 112.54 250 Forest 2.42 Yan et al., 2006294 China 23.18 112.54 260 Forest 2.39 Yan et al., 2006295 China 23.18 112.54 260 Forest 2.28 Yan et al., 2006

12

Page 13: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

296 China 23.15 112.54 250 Forest 2.37 Yan et al., 2009297 China 23.15 112.54 260 Forest 2.31 Yan et al., 2009298 China 23.15 112.54 260 Forest 2.25 Yan et al., 2009299 China 43.75 81.15 660 Forest 1.67 Yan et al., 2011300 China 26.91 109.78 Forest 1.88 Yang et al., 2015301 Japan 36.13 137.37 560 Forest 2.23 Yashiro et al., 2010302 Japan 36.13 137.42 1400 Forest 3.71 Yashiro et al., 2012303 Japan 36.13 137.42 1400 Forest 2.46 Yashiro et al., 2012304 Japan 36.13 137.42 1400 Forest 2.01 Yashiro et al., 2012305 China 22.68 112.90 80 Forest 1.8 Yu et al., 2017306 China 22.68 112.90 80 Forest 1.48 Yu et al., 2017307 China 22.68 112.90 80 Forest 1.79 Yu et al., 2017308 China 22.68 112.90 80 Forest 1.93 Yu et al., 2017309 China 22.68 112.90 80 Forest 1.79 Yu et al., 2017310 China 22.68 112.90 80 Forest 2.27 Yu et al., 2017311 United Kingdom 55.17 -2.05 300 Forest 2.6 Zerva & Mencuccini, 2005312 China 23.17 112.53 Forest 1.79 Zhang et al., 2006b313 China 23.17 112.53 Forest 2 Zhang et al., 2006b314 China 23.17 112.53 Forest 2.38 Zhang et al., 2006b315 China 43.75 81.15 609 Forest 1.55 Zhang et al., 2011316 China 43.75 81.15 609 Forest 1.62 Zhang et al., 2011317 China 43.75 81.15 609 Forest 1.88 Zhang et al., 2011318 China 23.95 101.93 2141 Forest 2.16 Zhao et al., 2014319 China 23.95 101.93 2112 Forest 2.32 Zhao et al., 2014320 China 45.41 127.54 300 Forest 3.61 Zhou et al., 2007a

13

Page 14: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

321 China 45.41 127.54 300 Forest 3.07 Zhou et al., 2007a322 China 18.07 108.88 870 Forest 2.18 Zhou et al., 2013323 China 18.73 108.87 880 Forest 1.86 Zhou et al., 2013324 China 29.80 121.78 Forest 1.97 Zhou et al., 2017325 China 41.85 124.90 670 Forest 2.04 Zhu et al., 2009326 China 26.74 115.06 92 Forest 2.03 Zhu et al., 2009327 China 45.33 127.57 340 Forest 3.34 Zu et al., 2009328 China 45.33 127.57 340 Forest 2.44 Zu et al., 2009329 Italy 41.90 13.60 1025 Grassland 4.31 Bahn et al., 2008330 Switzerland 47.28 7.73 1025 Grassland 3.4 Bahn et al., 2008331 Austria 47.28 11.53 1025 Grassland 4.58 Bahn et al., 2008332 Austria 47.28 11.53 1025 Grassland 2.83 Bahn et al., 2008333 Denmark 47.62 12.58 1025 Grassland 2.78 Bahn et al., 2008334 Denmark 47.62 12.58 1025 Grassland 2.35 Bahn et al., 2008335 Denmark 47.62 12.58 1025 Grassland 2.76 Bahn et al., 2008336 United Kingdom 55.79 -3.40 1025 Grassland 5.94 Bahn et al., 2008337 United Kingdom 55.52 -3.20 1025 Grassland 1.12 Bahn et al., 2008338 Finland 67.72 29.60 1025 Grassland 2.5 Bahn et al., 2008339 China 34.36 92.44 4754 Grassland 2.74 Bai et al., 2011340 United Kingdom 55.17 -2.05 Grassland 1.29 Ball et al., 2007a341 United Kingdom 55.17 -2.05 Grassland 1.18 Ball et al., 2007a342 China 34.72 92.88 4763 Grassland 3.85 Chen et al., 2017343 China 37.46 106.49 1426 Grassland 2.34 Cui & Zhang, 2016344 China 37.48 107.00 1426 Grassland 2.18 Cui & Zhang, 2016345 China 37.48 106.48 1426 Grassland 1.86 Cui & Zhang, 2016

14

Page 15: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

346 China 43.38 116.24 1100 Grassland 1.21 Cui et al., 2000347 China 49.28 119.79 674 Grassland 2.7 Deng et al., 2013b348 Japan 36.13 137.42 Grassland 2.3 Dhital et al., 2010349 USA 41.78 -111.98 Grassland 1.55 Fan et al., 2012350 China 37.62 101.32 3220 Grassland 4.14 Fang et al., 2012351 China 36.03 104.42 2400 Grassland 1.58 Fang et al., 2018352 Canada 49.47 -112.94 951 Grassland 1.83 Flanagan et al., 2013353 China 43.44 117.23 1189 Grassland 1.9 Fu et al., 2006354 China 43.44 117.23 1189 Grassland 1.72 Fu et al., 2006355 China 43.27 116.33 1189 Grassland 1.97 Fu et al., 2009356 China 37.33 101.16 3293 Grassland 3.38 Fu et al., 2009357 China 30.43 91.04 4333 Grassland 2.56 Fu et al., 2009358 China 30.26 91.03 4700 Grassland 2.93 Fu et al., 2010359 China 44.00 116.00 Grassland 1.7 Geng & Luo, 2011360 China 37.31 101.16 3280 Grassland 3.21 Guo et al., 2016361 China 37.31 101.16 3280 Grassland 2.82 Guo et al., 2016362 China 37.31 101.16 3280 Grassland 2.93 Guo et al., 2016363 USA 39.08 -96.58 Grassland 2.22 Harper et al., 2005364 USA 39.08 -96.58 Grassland 2.12 Harper et al., 2005365 United Kingdom 54.00 -1.18 15 Grassland 4.95 Heinemeyer et al., 2012366 Japan 42.43 142.49 Grassland 3.29 Hu et al., 2001367 China 37.31 101.16 3280 Grassland 1.87 Hu et al., 2004368 China 37.31 101.16 3280 Grassland 2.11 Hu et al., 2004369 China 37.31 101.16 3280 Grassland 1.85 Hu et al., 2004370 China 37.31 101.16 3280 Grassland 2.37 Hu et al., 2004

15

Page 16: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

371 China 25.40 114.44 Grassland 2.26 Hu et al., 2011372 China 35.05 102.21 3050 Grassland 1.17 Hu et al., 2016373 Japan 36.13 137.42 1340 Grassland 2.48 Inoue & Koizumi, 2012374 Switzerland 47.20 8.40 400 Grassland 1.83 Joos et al., 2010375 Canada 45.60 -62.00 Grassland 2.52 Kellman et al., 2007376 USA 39.08 -96.58 Grassland 4.08 Knapp et al., 1998377 USA 38.95 -91.94 Grassland 3.35 Kucera & Kirkham, 1971378 America 44.17 -96.68 Grassland 2.7 Lee et al., 2007379 China 37.31 101.14 3200 Grassland 3.33 Li et al., 2005380 China 26.03 119.13 Grassland 2.75 Li et al., 2011381 China 36.11 102.47 2960 Grassland 1.88 Li et al., 2015382 China 36.11 102.47 2960 Grassland 1.87 Li et al., 2015383 China 36.11 102.47 2960 Grassland 1.77 Li et al., 2015384 China 36.11 102.47 2960 Grassland 1.74 Li et al., 2015385 China 32.80 102.55 Grassland 2.62 Li et al., 2017386 China 32.80 102.55 Grassland 5.22 Li et al., 2017387 China 32.80 102.55 Grassland 5.07 Li et al., 2017388 China 44.07 116.16 1129 Grassland 2.32 Liang et al., 2016389 China 44.07 116.16 1129 Grassland 2.19 Liang et al., 2016390 China 37.62 101.20 Grassland 1.43 Lin et al., 2011391 China 37.62 101.20 Grassland 1.54 Lin et al., 2011392 China 37.31 101.16 3200 Grassland 2.8 Liu et al., 2001393 USA 31.10 -97.33 Grassland 2.2 Mielnick & Dugas, 2000394 Australia -22.18 118.83 Grassland 1.07 Muñoz-Rojas et al., 2016395 Australia -22.18 118.83 Grassland 1.09 Muñoz-Rojas et al., 2016

16

Page 17: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

396 China 34.41 92.47 4635 Grassland 2.87 Peng et al., 2015397 China 44.09 115.90 1343 Grassland 1.98 Qi et al., 2010398 China 43.51 116.83 1130 Grassland 2.98 Qi et al., 2010399 China 43.59 116.55 970 Grassland 2.09 Qi et al., 2010400 China 38.21 98.15 3887 Grassland 3.32 Qin et al., 2015401 USA 37.85 -122.50 Grassland 2.5 Sanderman & Amundson, 2010b402 China 30.21 91.04 4333 Grassland 3.2 Shi et al., 2006403 China 30.21 91.04 4333 Grassland 3.4 Shi et al., 2006404 Japan 42.43 142.48 Grassland 3.93 Shimizu et al., 2009405 China 34.27 100.02 3972 Grassland 2.45 Sun et al., 2007406 China 34.24 100.11 3732 Grassland 2.7 Sun et al., 2007407 China 34.24 100.11 3728 Grassland 2.36 Sun et al., 2007408 China 34.23 100.11 3745 Grassland 1.76 Sun et al., 2007409 China 31.07 121.14 Grassland 2.6 Sun et al., 2009410 China 31.07 121.14 Grassland 1.62 Sun et al., 2009411 China 31.16 121.27 Grassland 2.19 Sun et al., 2009412 China 31.16 121.27 Grassland 2.19 Sun et al., 2009413 China 37.30 101.13 3240 Grassland 2.39 Tian et al., 2014414 China 37.30 101.15 3193 Grassland 2.29 Tian et al., 2014415 China 37.30 101.15 3192 Grassland 2.03 Tian et al., 2014416 Turkey 530 Grassland 1.51 Tüfekçioğlu et al., 2009417 USA 35.20 -97.40 Grassland 1.93 Wan & Luo, 2003418 China 34.37 92.45 4778 Grassland 2.97 Wang et al., 2007a419 China 34.37 92.45 4778 Grassland 2.44 Wang et al., 2007a420 China 34.37 92.45 4778 Grassland 2.29 Wang et al., 2007a

17

Page 18: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

421 China 31.13 105.23 Grassland 2.41 Wang et al., 2007b422 China 27.39 99.38 3400 Grassland 4.1 Wang et al., 2008a423 China 27.39 99.38 3400 Grassland 3.59 Wang et al., 2008a424 China 27.39 99.38 3400 Grassland 2.58 Wang et al., 2008a425 China 27.39 99.38 3400 Grassland 2.17 Wang et al., 2008a426 China 31.27 105.47 500 Grassland 2.34 Wang et al., 2008b427 China 49.16 120.03 628 Grassland 2.85 Wang et al., 2013b428 China 49.16 120.03 628 Grassland 2.12 Wang et al., 2013b429 China 37.29 101.17 3250 Grassland 1.3 Wang et al., 2014a430 China 49.16 120.03 Grassland 2.28 Wang et al., 2014b431 China 37.25 101.10 3200 Grassland 2.69 Wang et al., 2014c432 China 37.25 101.10 3200 Grassland 3.78 Wang et al., 2014c433 China 35.48 104.08 1966 Grassland 1.78 Wang et al., 2015434 China 35.48 104.08 1966 Grassland 1.41 Wang et al., 2015435 China 35.22 107.67 1220 Grassland 1.57 Wang et al., 2017d436 China 30.38 90.49 4730 Grassland 3.65 Wei et al., 2012437 China 30.38 90.49 4730 Grassland 2.15 Wei et al., 2012438 China 34.38 98.04 4217 Grassland 1.9 Wen et al., 2014439 China 34.38 98.04 4227 Grassland 1.61 Wen et al., 2014440 China 34.38 98.04 4225 Grassland 1.64 Wen et al., 2014441 China 37.31 101.15 3200 Grassland 2.11 Wu et al., 2005442 China 37.31 101.15 3200 Grassland 2.9 Wu et al., 2005443 China 34.18 100.28 3980 Grassland 4.81 Wu et al., 2010444 China 37.31 101.14 3200 Grassland 1.86 Wu et al., 2011445 China 37.34 101.18 3545 Grassland 3.81 Wu et al., 2013

18

Page 19: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

446 China 38.40 110.18 1219 Grassland 1.49 Xie et al., 2010447 China 38.40 110.18 1223 Grassland 1.49 Xie et al., 2010448 China 42.13 112.39 1184 Grassland 1.88 Xu et al., 2011449 China 42.13 112.39 1184 Grassland 2.22 Xu et al., 2011450 China 42.13 112.39 1184 Grassland 1.69 Xu et al., 2011451 China 32.40 102.28 3600 Grassland 4.53 Yang et al., 2016452 Japan 36.52 138.35 1300 Grassland 3.12 Yazaki et al., 2004453 Japan 36.52 138.35 1300 Grassland 2.8 Yazaki et al., 2004454 China 31.12 90.01 4800 Grassland 2.27 Zhang et al., 2004455 China 30.43 91.04 4330 Grassland 3.1 Zhang et al., 2006a456 China 32.03 118.42 Grassland 1.76 Zhang et al., 2010457 China 34.73 92.94 4700 Grassland 4.43 Zhang et al., 2017458 China 34.73 92.94 4700 Grassland 5.02 Zhang et al., 2017459 China 34.73 92.94 4700 Grassland 2.35 Zhang et al., 2017460 China 34.73 92.94 4700 Grassland 2.75 Zhang et al., 2017461 China Grassland 2.72 Zhao & Zhou, 1999462 China 37.30 101.15 3250 Grassland 3.19 Zhao et al., 2006463 China 30.25 91.03 4330 Grassland 2.08 Zhao et al., 2016a464 China 30.26 91.03 4400 Grassland 1.38 Zhao et al., 2016b465 China 30.26 91.03 4500 Grassland 1.43 Zhao et al., 2016b466 China 30.26 91.03 4650 Grassland 1.86 Zhao et al., 2016b467 China 30.26 91.03 4800 Grassland 1.77 Zhao et al., 2016b468 China 30.26 91.03 4950 Grassland 2.08 Zhao et al., 2016b469 China 30.26 91.03 5100 Grassland 2.92 Zhao et al., 2016b470 China 30.26 91.03 4400 Grassland 1.49 Zhao et al., 2016b

19

Page 20: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

471 China 30.26 91.03 4500 Grassland 1.55 Zhao et al., 2016b472 China 30.26 91.03 4650 Grassland 1.97 Zhao et al., 2016b473 China 30.26 91.03 4800 Grassland 1.97 Zhao et al., 2016b474 China 30.26 91.03 4950 Grassland 2.29 Zhao et al., 2016b475 China 30.26 91.03 5100 Grassland 3.03 Zhao et al., 2016b476 China 30.43 91.06 5200 Grassland 2.78 Zhao et al., 2017477 China 37.51 101.26 3200 Grassland 2.75 Zheng et al., 2009478 USA 34.98 -97.52 Grassland 3 Zhou et al., 2006479 USA 34.98 -97.52 Grassland 2.72 Zhou et al., 2006480 USA 34.98 -97.52 Grassland 2.56 Zhou et al., 2007b

References:Acosta, M., Dalibor, J. & Marek, M. (2004). Soil surface CO2 fluxes in a Norway spruce stand. Journal of Forest Science, 50, 573–578.Atarashi-Andoh, M., Koarashi, J., Ishizuka, S. & Hirai, K. (2012). Seasonal patterns and control factors of CO 2 effluxes from surface litter, soil

organic carbon, and root-derived carbon estimated using radiocarbon signatures. Agricultural and Forest Meteorology, 152, 149–158.Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler, M. et al. (2008). Soil respiration in European grasslands in

relation to climate and assimilate supply. Ecosystems, 11, 1352–1367.Bai, W., Wang, G. & Liu, G. (2011). Effects of elevated temperature on CO2 flux during growth season in an alpine meadow ecosystem of

Qinghai–Tibet Plateau. Chinese Journal of Ecology, 30, 1045–1051 (In Chinese).Ball, T., Smith, K.A. & Moncrieff, J.B. (2007a). Effect of stand age on greenhouse gas fluxes from a Sitka spruce [Picea sitchensis (Bong.)

Carr.] chronosequence on a peaty gley soil. Global Change Biol., 13, 2128–2142.Ball, T.O.M., Smith, K.A. & Moncrieff, J.B. (2007b). Effect of stand age on greenhouse gas fluxes from a Sitka spruce [Picea sitchensis (Bong.)

Carr.] chronosequence on a peaty gley soil. Global Change Biology, 13, 2128–2142.Bergeron, O., Margolis, H.A. & Coursolle, C. (2009). Forest floor carbon exchange of a boreal black spruce forest in eastern North America.

Biogeosciences, 6, 1849–1864.

20

Page 21: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Boone, R.D., Nadelhoffer, K.J., Canary, J.D. & Kaye, J.P. (1998). Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature, 396, 570.

Borken, W. & Beese, F. (2005). Soil respiration in pure and mixed stands of European beech and Norway spruce following removal of organic horizons. Canadian Journal of Forest Research, 35, 2756–2764.

Brumme, R. (1995). Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant and Soil, 168, 593–600.Buchmann, N. (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry, 32, 1625–

1635.Butnor, J.R., Johnsen, K.H., Oren, R.a.M. & Katul, G.G. (2003). Reduction of forest floor respiration by fertilization on both carbon dioxide–

enriched and reference 17-year-old loblolly pine stands. Global Change Biology, 9, 849–861.Butnor, J.R., Johnsen, K.H. & Sanchez, F.G. (2006). Whole–tree and forest floor removal from a loblolly pine plantation have no effect on forest

floor CO2 efflux 10 years after harvest. Forest Ecology and Management, 227, 89–95.Chang, C.T., Sperlich, D., Sabaté, S., Sánchez-Costa, E., Cotillas, M., Espelta, J.M. et al. (2016). Mitigating the stress of drought on soil

respiration by selective thinning: Contrasting effects of drought on soil respiration of two oak species in a Mediterranean forest. Forests, 7, 263.

Chen, B.Z., Black, T.A., Coops, N.C., Krishnan, P., Jassal, R., Brummer, C. et al. (2009a). Seasonal controls on interannual variability in carbon dioxide exchange of a near-end-of rotation Douglas-fir stand in the Pacific Northwest, 1997–2006. Global Change Biology, 15, 1962–1981.

Chen, D., Zhang, Y., Lin, Y., Chen, H. & Fu, S. (2009b). Stand level estimation of root respiration for two subtropical plantations based on in situ measurement of specific root respiration. Forest Ecology and Management, 257, 2088–2097.

Chen, D., Zhang, Y., Lin, Y., Zhu, W. & Fu, S. (2009c). Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations after tree girdling. Plant and Soil, 326, 123.

Chen, W., Jia, X., Zha, T., Wu, B., Zhang, Y., Li, C. et al. (2013). Soil respiration in a mixed urban forest in China in relation to soil temperature and water content. European journal of soil biology, 54, 63–68.

Chen, X., Wang, G., Zhang, T., Mao, T., Wei, D., Song, C. et al. (2017). Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Science of the Total Environment, 601–602, 1389–1399.

Clark, K.L., Gholz, H.L. & Castro, M.S. (2004). Carbon dynamics along a chronosequence of slash pine plantations in north Florida. Ecological Applications, 14, 1154–1171.

21

Page 22: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Cui, H. & Zhang, Y. (2016). Diurnal and seasonal dynamic variation of Soil respiration and its influencing factors of different fenced enclosure years in desert steppec. Environmental Science, 37, 1507–1515 (In Chinese).

Cui, X., Chen, S. & Chen, Z. (2000). CO2 release from typical Stipa grandis grassland soil Chinese Journal of Applied Ecology, 11, 390–394 (In Chinese).

Curiel Yuste, J., Baldocchi, D.D., Gershenson, A., Goldstein, A., Misson, L. & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018–2035.

De Santo, A.V., Alfani, A. & Sapio, S. (1976). Soil metabolism in beech forests of Monte Taburno (Campania Apennines). Oikos, 27, 144–152.Deforest, J.L., Noormets, A., Mcnulty, S.G., Sun, G., Tenney, G. & Chen, J. (2006). Phenophases alter the soil respiration-temperature

relationship in an oak-dominated forest. International Journal of Biometeorology, 51, 135–144.Delucia, E.H., Turnbull, M.H., Walcroft, A.S., Griffin, K.L., Tissue, D.T., Glenny, D. et al. (2003). The contribution of bryophytes to the carbon

exchange for a temperate rainforest. Global Change Biology, 9, 1158–1170.Deng, Q., Cheng, X., Zhou, G., Liu, J., Liu, S., Zhang, Q. et al. (2013a). Seasonal responses of soil respiration to elevated CO2 and N addition in

young subtropical forest ecosystems in southern China. Ecological Engineering, 61, 65–73.Deng, Q., Hui, D., Zhang, D., Zhou, G., Liu, J., Liu, S. et al. (2012). Effects of precipitation increase on soil respiration: a three-year field

experiment in subtropical forests in China. PLOS ONE, 7, e41493.Deng, Q., Zhou, G., Liu, J., Liu, S., Duan, H. & Zhang, D. (2010). Responses of soil respiration to elevated carbon dioxide and nitrogen addition

in young subtropical forest ecosystems in China. Biogeosciences, 7, 315–328.Deng, Y., Liu, X., Yan, R., Wang, X., Yang, G., Ren, Z. et al. (2013b). Soil respiration of hulunber meadow steppe and response of its controlling

factors to different grazing intensities. Acta Prataculturae Sinica, 22, 22–29 (In Chinese).Dhital, D., Yashiro, Y., Ohtsuka, T., Noda, H., Shizu, Y. & Koizumi, H. (2010). Carbon dynamics and budget in a Zoysia japonica grassland,

central Japan. J. Plant Res., 123, 519–530.Doff Sotta, E., Meir, P., Malhi, Y., Donato Nobre, A., Hodnett, M. & Grace, J. (2004). Soil CO 2 efflux in a tropical forest in the central Amazon.

Global Change Biology, 10, 601–617.Du, L. J., Jin, T., Ruan, L. L., Chen, T. & Hu, R.G. (2007). CO2 fluxes from red soil under four land use types in mid–subtropical, China. Huan

Jing Ke Xue, 28, 1607–1613.Euskirchen, E.S., Chen, J., Gustafson, E.J. & Ma, S. (2003). Soil respiration at dominant patch types within a managed northern wisconsin

22

Page 23: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

landscape. Ecosystems, 6, 595–607.Fan, J., Jones, S.B., Qi, L.B., Wang, Q.J. & Huang, M.B. (2012). Effects of precipitation pulses on water and carbon dioxide fluxes in two

semiarid ecosystems: measurement and modeling. Environmental Earth Sciences, 67, 2315–2324.Fan, J., Wang, J., Zhao, B., Wu, L., Zhang, C., Zhao, X. et al. (2015). Effects of manipulated above– and belowground organic matter input on

soil respiration in a Chinese pine plantation. PLOS ONE, 10, e0126337.Fang, C., Li, F., Pei, J., Ren, J., Gong, Y., Yuan, Z. et al. (2018). Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic

respiration in a semi-arid environment. Agricultural and Forest Meteorology, 248, 449–457.Fang, C., Moncrieff, J.B., Gholz, H.L. & Clark, K.L. (1998). Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant and

Soil, 205, 135–146.Fang, H., Cheng, S., Yu, G., Zheng, J., Zhang, P., Xu, M. et al. (2012). Responses of CO2 efflux from an alpine meadow soil on the Qinghai

Tibetan Plateau to multi–form and low-level N addition. Plant and Soil, 351, 177–190.Fang, Y., Gundersen, P., Zhang, W., Zhou, G., Christiansen, J.R., Mo, J. et al. (2009). Soil-atmosphere exchange of N2O, CO2 and CH4 along a

slope of an evergreen broad-leaved forest in southern China. Plant and Soil, 319, 37–48.Fernandez, I., Lvarez-González, J.G., Carrasco, B., Ruíz-González, A.D. & Cabaneiro, A. (2012). Post-thinning soil organic matter evolution

and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle. Canadian Journal of Forest Research, 42, 1953–1964.

Flanagan, L.B., Sharp, E.J. & Letts, M.G. (2013). Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology, 173, 40–52.

Fu, G., Zhou, Y., Shen, Z., Zhang, X., Shi, P., He, Y. et al. (2010). Relationships between ecosystem respiration and environmental factors of alpine grazing meadows along an altitudinal gradient (4300~4700 m). Ecology and Environmental Sciences, 19, 2789–2794 (in Chinese).

Fu, Y., Yu, G., Wang, Y., Li, Z. & Hao, Y. (2006). Effects of water stress on photosynthesis and respiration of leymus chinensis steppe ecosystem in Inner Mongolia. European Journal of Soil Science, 36, 183–193 (In Chinese).

Fu, Y., Zheng, Z., Yu, G., Hu, Z., Sun, X., Shi, P. et al. (2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879–2893.

Geng, Y. & Luo, G. (2011). Influencing factors and partitioning of respiration in a Leymus chinensis steppe in Xilin River Basin, Inner Mongolia, China. Journal of Geographical Sciences, 21, 163–175.

23

Page 24: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Graf Pannatier, E., Dobbertin, M., Heim, A., Schmitt, M., Thimonier, A., Waldner, P. et al. (2012). Response of carbon fluxes to the 2003 heat wave and drought in three mature forests in Switzerland. Biogeochemistry, 107, 295–317.

Grogan, P. & Chapin Iii, F.S. (1999). Arctic Soil Respiration: Effects of Climate and Vegetation Depend on Season. Ecosystems, 2, 451–459.Guo, X., Du, Y., Li, Y., Zhang, F., Li, Q., Liu, S. et al. (2016). CH4, CO2 and N2O flux among three types of alpine meadow in the north regions

of Qinghai-Tibetan Plateau. Pratacultural Science, 33, 27–37 (In Chinese).Guyette, R.P., Muzika, R.M. & Dey, D.C. (2002). Dynamics of an anthropogenic fire regime. Ecosystems, 5, 472–486.Hagedorn, F., Martin, M., Rixen, C., Rusch, S., Bebi, P., Zürcher, A. et al. (2010). Short–term responses of ecosystem carbon fluxes to

experimental soil warming at the Swiss alpine treeline. Biogeochemistry, 97, 7–19.Harper, C.W., Blair, J.M., Fay, P.A., Knapp, A.K. & Carlisle, J.D. (2005). Increased rainfall variability and reduced rainfall amount decreases

soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322–334.Hashimoto, T., Miura, S. & Ishizuka, S. (2009). Temperature controls temporal variation in soil CO2 efflux in a secondary beech forest in Appi

Highlands, Japan. Journal of Forest Research, 14, 44–50.Heinemeyer, A., Hartley, I.P., Evans, S.P., Carreira De La Fuente, J.A. & Ineson, P. (2007). Forest soil CO2 flux: uncovering the contribution and

environmental responses of ectomycorrhizas. Global Change Biology, 13, 1786–1797.Heinemeyer, A., Tortorella, D., Petrovičová, B. & Gelsomino, A. (2012). Partitioning of soil CO2 flux components in a temperate grassland

ecosystem. European Journal of Soil Science, 63, 249–260.Hirsch, A.I., Trumbore, S.E. & Goulden, M.L. (2002). Direct measurement of the deep soil respiration accompanying seasonal thawing of a

boreal forest soil. Journal of Geophysical Research: Atmospheres, 107, 8221.Hu, F., Li, Z., Xiong, P., Zhao, Q. & Zhang, H. (2011). The soil respiration changes of pinus massoniana forest and lawn in red soil area of

Gannan. Journal of Hainan Normal University (Natural Science), 24, 101–107 (In Chinese).Hu, Q., Cao, G., Wu, Q., Li, D. & Wang, Y. (2004). Comparative study on CO2 emissions from different types of alpine meadows during grass

exuberance period. Journal of Geographical Sciences, 14, 167–176.Hu, R., Kusa, K. & Hatano, R. (2001). Soil respiration and methane flux in adjacent forest, grassland, and cornfield soils in Hokkaido, Japan.

Soil Science and Plant Nutrition, 47, 621–627.Hu, T., Sun, L., Hu, H., Weise, D.R. & Guo, F. (2017). Soil respiration of the dahurian larch (Larix gmelinii) forest and the response to fire

disturbance in Da Xing’an mountains, China. Scientific reports, 7, 2967.

24

Page 25: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Hu, X., Chen, J., Yuan, Z., Ren, L., Zhang, D., Shao, X. et al. (2016). Study on soil respiration rate of alpine meadow under different utilization patterns in Sangkok of Gansu. Grassland and Turf, 36, 89–96 (in Chinese).

Hu, Z., He, Z., Huang, Z., Fan, S., Yu, Z., Wang, M. et al. (2014). Effects of harvest residue management on soil carbon and nitrogen processes in a Chinese fir plantation. Forest Ecology and Management, 326, 163–170.

Humphreys, E.R., Black, T.A., Morgenstern, K., Cai, T., Drewitt, G.B., Nesic, Z. et al. (2006). Carbon dioxide fluxes in coastal Douglas–fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140, 6–22.

Inoue, T. & Koizumi, H. (2012). Effects of environmental factors upon variation in soil respiration of a Zoysia japonica grassland, central Japan. Ecological Research, 27, 445–452.

Iqbal, J., Ronggui, H., Lijun, D., Lan, L., Shan, L., Tao, C. et al. (2008). Differences in soil CO2 flux between different land use types in mid–subtropical China. Soil Biology and Biochemistry, 40, 2324–2333.

Ishizuka, S., Sakata, T., Sawata, S., Ikeda, S., Takenaka, C., Tamai, N. et al. (2006). High potential for increase in CO2 flux from forest soil surface due to global warming in cooler areas of Japan. Annals of Forest Science, 63, 537–546.

Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z. & Gaumont–Guay, D. (2005). Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130, 176–192.

Jassal, R.S., Black, T.A., Cai, T., Morgenstern, K., Li, Z., Gaumont-Guay, D. et al. (2007). Components of ecosystem respiration and an estimate of net primary productivity of an intermediate-aged Douglas-fir stand. Agricultural and Forest Meteorology, 144, 44–57.

Jia, S., Wang, Z., Li, X., Sun, Y., Zhang, X. & Liang, A. (2010). N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant and Soil, 333, 325–336.

Jiang, H., Deng, Q., Zhou, G., Hui, D., Zhang, D., Liu, S. et al. (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences, 10, 3963–3982.

Jiang, L., Ma, S., Zhou, Z., Zheng, T., Jiang, X., Cai, Q. et al. (2016). Soil respiration and its partitioning in different components in tropical primary and secondary mountain rain forests in Hainan Island, China. Journal of Plant Ecology, 10, 791–799.

Jiang, L., Shi, F., Li, B., Luo, Y., Chen, J. & Chen, J. (2005a). Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. Tree Physiology, 25, 1187–1195.

Jiang, Y., Zhou, G., Zhao, M., Wang, X. & Cao, M. (2005b). Soil respiration in broad––leaved and korean pine forest ecosystems, Changbai Mountain, China. Acta Phytoecological Sinica, 29, 411–414.

25

Page 26: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Joo, S.J., Park, S.U., Park, M.S. & Lee, C.S. (2012). Estimation of soil respiration using automated chamber systems in an oak (Quercus mongolica) forest at the Nam-San site in Seoul, Korea. Science of the Total Environment, 416, 400–409.

Joos, O., Hagedorn, F., Heim, A., Gilgen, A.K., Schmidt, M.W.I., Siegwolf, R.T.W. et al. (2010). Summer drought reduces total and litter–derived soil CO2 effluxes in temperate grassland clues from a 13C litter addition experiment. Biogeosciences, 7, 1031–1041.

Kellman, L., Beltrami, H. & Risk, D. (2007). Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada. Biogeochemistry, 82, 101–109.

Kelsey, K.C., Wickland, K.P., Striegl, R.G. & Neff, J.C. (2012). Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest. Arct. Antarct. Alp. Res., 44, 457–468.

Knapp, A.K., Conard, S.L. & Blair, J.M. (1998). Determinants of soil CO2 flux from a sub‐humid grassland: effect of fire and fire history. Ecological Applications, 8, 760–770.

Knohl, A., Søe, A.R.B., Kutsch, W.L., Göckede, M. & Buchmann, N. (2008). Representative estimates of soil and ecosystem respiration in an old beech forest. Plant and Soil, 302, 189–202.

Koehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale. Biogeosciences, 6, 2793–2983.

Koh, H.S., Ochs, C.A. & Yu, K. (2009). Hydrologic gradient and vegetation controls on CH 4 and CO2 fluxes in a spring–fed forested wetland. Hydrobiologia, 630, 271–286.

Kolari, P., Kulmala, L., Pumpanen, J., Launiainen, S., Ilvesniem, H., Hari, P. et al. (2009). CO2 exchange and component CO2 fluxes of a boreal Scots pine forest. Boreal Environmental Research, 14, 761–783.

Kucera, C. & Kirkham, D.R. (1971). Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52, 912–915.Kukumägi, M., Ostonen, I., Uri, V., Helmisaari, H.–S., Kanal, A., Kull, O. et al. (2017). Variation of soil respiration and its components in

hemiboreal Norway spruce stands of different ages. Plant and soil, 414, 265–280.Laganière, J., Paré, D., Bergeron, Y. & Chen, H.Y.H. (2012). The effect of boreal forest composition on soil respiration is mediated through

variations in soil temperature and C quality. Soil Biology Biochemistry, 53, 18–27.Lang, R., Blagodatsky, S., Xu, J. & Cadisch, G. (2017). Seasonal differences in soil respiration and methane uptake in rubber plantation and

rainforest. Agriculture, Ecosystems & Environment, 240, 314–328.

26

Page 27: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Lavigne, M.B., Boutin, R., Foster, R.J., Goodine, G., Bernier, P.Y. & Robitaille, G. (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33, 1744–1753.

Lavigne, M.B., Foster, R.J. & Goodine, G. (2004). Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching. Tree Physiology, 24, 415–424.

Lavigne, M.B., Ryan, M.G., Anderson, D.E., Baldocchi, D.D., Crill, P.M., Fitzjarrald, D.R. et al. (1997). Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research: Atmospheres, 102, 28977–28985.

Lee, D.K., Doolittle, J.J. & Owens, V.N. (2007). Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biology Biochemistry, 39, 178–186.

Lee, M.–S., Lee, J.–S. & Koizumi, H. (2008). Temporal variation in CO2 efflux from soil and snow surfaces in a Japanese cedar (Cryptomeria japonica) plantation, central Japan. Ecological Research, 23, 777–785.

Li, D., Cao, G., Hu, Q., Wu, Q., Li, Y. & Wang, Y. (2005). A primary study on CO2 emission from alpine potentilla fruticosa scrub meadow ecosystem. Acta Agrestia Sinica, 13, 144–148 (In Chinese).

Li, G., Mu, J., Liu, Y., Smith, N. & Sun, S. (2017). Effect of microtopography on soil respiration in an alpine meadow of the Qinghai–Tibetan plateau. Plant and Soil, 421, 147–155.

Li, Q., Chen, J. & Moorhead, D.L. (2012). Respiratory carbon losses in a managed oak forest ecosystem. Forest Ecology and Management, 279, 1–10.

Li, W., Cao, W., Liu, H., Li, X., Xu, C., Shi, S. et al. (2015). Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai–Tibet Plateau. Acta Prataculturae Sinica, 24, 22–32 (In Chinese).

Li, X., Yang, Y., Zeng, H., Xie, J., Chen, G., Zhu, N. et al. (2011). Soil respiration of Zoysia matrella turfgrass in subtropics. Acta Ecologica Sinica, 31, 2096–2105 (In Chinese).

Liang, M., Bai, X., Wang, Y., Miao, B., Bao, G., Wang, X. et al. (2016). The effect of moderate grazing on carbon cycle of the typical steppe in Inner Mongolia. Journal of Inner Mongolia University (Natural Science Edition), 47, 278–284 (In Chinese).

Liang, N., Hirano, T., Zheng, Z.M., Tang, J. & Fujinuma, Y. (2010a). Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences, 7, 3447–3457.

Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y. et al. (2004). In situ comparison of four approaches to estimating soil CO2

27

Page 28: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97–117.Liang, Y., Xu, J.W., Hu, Y.M., Chang, Y. & Bu, R.–C. (2010b). Soil respiration of degraded Korean pine forest ecosystem in Changbai

Mountains. Journal of Applied Ecology, 21, 1097–1104.Lin, X., Zhang, Z., Wang, S., Hu, Y., Xu, G., Luo, C. et al. (2011). Response of ecosystem respiration to warming and grazing during the

growing seasons in the alpine meadow on the Tibetan plateau. Agricultural and Forest Meteorology, 151, 792–802.Liu, J., Jiang, P., Wang, H., Zhou, G., Wu, J., Yang, F. et al. (2011). Seasonal soil CO2 efflux dynamics after land use change from a natural forest

to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 262, 1131–1137.Liu, X., Yang, Z., Lin, C., Giardina, C.P., Xiong, D., Lin, W. et al. (2017). Will nitrogen deposition mitigate warming–increased soil respiration

in a young subtropical plantation? Agricultural and forest meteorology, 246, 78–85.Liu, Y., Han, S., Hu, Y. & Dai, G. (2005). Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest.

Journal of Applied Ecology, 16, 1581–1585.Liu, Y., Liu, S., Wan, S., Wang, J., Luan, J. & Wang, H. (2016). Differential responses of soil respiration to soil warming and experimental

throughfall reduction in a transitional oak forest in central China. Agricultural and Forest Meteorology, 226–227, 186–198.Liu, Y., Ou, Y., Cao, G., Luo, J., Zhang, X., Zhao, X. et al. (2001). Soil carbon emission from ecosystems of eastern Qinghai–Tibet Plateau.

Journal of Natural Resources, 16, 152–160 (In Chinese).Luan, J., Liu, S., Wang, J. & Zhu, X. (2013). Factors affecting spatial variation of annual apparent Q10 of soil respiration in two warm temperate

forests. PLOS ONE, 8, e64167.Luan, J., Liu, S., Wang, J., Zhu, X. & Shi, Z. (2011). Rhizospheric and heterotrophic respiration of a warm–temperate oak chronosequence in

China. Soil Biology Biochemistry, 43, 503–512.Luan, J., Liu, S., Zhu, X., Wang, J. & Liu, K. (2012). Roles of biotic and abiotic variables in determining spatial variation of soil respiration in

secondary oak and planted pine forests. Soil Biology Biochemistry, 44, 143–150.Ma, S.Y., Chen, J.Q., Butnor, J.R., North, M., Euskirchen, E.S. & Oakley, B. (2005). Biophysical controls on soil respiration in the dominant

patch types of an old-growth, mixed-conifer forest. For. Sci., 51, 221–232.Ma, Y., Piao, S., Sun, Z., Lin, X., Wang, T., Yue, C. et al. (2014). Stand ages regulate the response of soil respiration to temperature in a Larix

principis-rupprechtii plantation. Agricultural and Forest Meteorology, 184, 179–187.Mallik, A.U. & Hu, D. (1997). Soil respiration following site preparation treatments in boreal mixedwood forest. For. Ecol. Manage., 97, 265–

28

Page 29: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

275.Matías, L., Castro, J. & Zamora, R. (2012). Effect of simulated climate change on soil respiration in a Mediterranean–type ecosystem: rainfall

and habitat type are more important than temperature or the soil carbon pool. Ecosystems, 15, 299–310.Matteucci, M., Gruening, C., Goded Ballarin, I., Seufert, G. & Cescatti, A. (2015). Components, drivers and temporal dynamics of ecosystem

respiration in a Mediterranean pine forest. Soil Biol. Biochem., 88, 224–235.Mayer, M., Matthews, B., Rosinger, C., Sandén, H., Godbold, D.L. & Katzensteiner, K. (2017). Tree regeneration retards decomposition in a

temperate mountain soil after forest gap disturbance. Soil Biol. Biochem., 115, 490–498.Mchale, P.J., Mitchell, M.J. & Bowles, F.P. (1998). Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition.

Canadian Journal of Forest Research, 28, 1365–1372.Mielnick, P. & Dugas, W.A. (2000). Soil CO2 flux in a tallgrass prairie. Soil Biol. Biochem., 32, 221–228.Minkkinen, K., Laine, J., Shurpali, N.J., Makiranta, P., Alm, J. & Penttila, T. (2007). Heterotrophic soil respiration in forestry–drained peatlands.

Boreal Environ. Res., 12, 115–126.Mo, J., Zhang, W., Zhu, W., Fang, Y., Li, D. & Zhao, P. (2007). Response of soil respiration to simulated N deposition in a disturbed and a

rehabilitated tropical forest in southern China. Plant Soil, 296, 125–135.Mo, J., Zhang, W.E.I., Zhu, W., Gundersen, P.E.R., Fang, Y., Li, D. et al. (2008). Nitrogen addition reduces soil respiration in a mature tropical

forest in southern China. Global Change Biol., 14, 403–412.Morén, A.S. & Lindroth, A. (2000). CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 101, 1–14.Moyano, F.E., Kutsch, W.L. & Rebmann, C. (2008). Soil respiration fluxes in relation to photosynthetic activity in broad–leaf and needle–leaf

forest stands. Agricultural and Forest Meteorology, 148, 135–143.Muñoz-Rojas, M., Lewandrowski, W., Erickson, T.E., Dixon, K.W. & Merritt, D.J. (2016). Soil respiration dynamics in fire affected semi–arid

ecosystems: Effects of vegetation type and environmental factors. Sci. Total Environ., 572, 1385–1394.Noh, N.J., Kuribayashi, M., Saitoh, T.M., Nakaji, T., Nakamura, M., Hiura, T. et al. (2016). Responses of soil, heterotrophic, and autotrophic

respiration to experimental open-field soil warming in a cool–temperate deciduous forest. Ecosystems, 19, 504–520.Noh, N.J., Kuribayashi, M., Saitoh, T.M. & Muraoka, H. (2017). Different responses of soil, heterotrophic and autotrophic respirations to a 4–

year soil warming experiment in a cool-temperate deciduous broadleaved forest in central Japan. Agricultural and Forest Meteorology, 247, 560–570.

29

Page 30: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Pajari, B. (1995). Soil respiration in a poor upland site of Scots pine stand subjected to elevated temperatures and atmospheric carbon concentration. Plant Soil, 168, 563–570.

Palmroth, S., Maier, C.A., Mccarthy, H.R., Oishi, A.C., Kim, H.S., Johnsen, K.H. et al. (2005). Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak–Hickory forest. Global Change Biol., 11, 421–434.

Pearson, M., Saarinen, M., Minkkinen, K., Silvan, N. & Laine, J. (2012). Short–term impacts of soil preparation on greenhouse gas fluxes: A case study in nutrient-poor, clearcut peatland forest. For. Ecol. Manage., 283, 10–26.

Peng, F., You, Q.G., Xu, M.H., Zhou, X.H., Wang, T., Guo, J. et al. (2015). Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. Eur. J. Soil Sci., 66, 145–154.

Peng, Y. & Thomas, S.C. (2006). Soil CO2 efflux in uneven-aged managed forests: temporal patterns following harvest and effects of edaphic heterogeneity. Plant Soil, 289, 253–264.

Pilegaard, K., Hummelshøj, P., Jensen, N.O. & Chen, Z. (2001). Two years of continuous CO2 eddy–flux measurements over a Danish beech forest. Agricultural and Forest Meteorology, 107, 29–41.

Poungparn, S., Komiyama, A., Tanaka, A., Sangtiean, T., Maknual, C., Kato, S. et al. (2009). Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. J. Trop. Ecol., 25, 393–400.

Qi, Y., Dong, Y., Liu, L., Liu, X., Peng, Q., Xiao, S. et al. (2010). Spatial–temporal variation in soil respiration and its controlling factors in three steppes of Stipa L. in Inner Mongolia, China. Science China Earth Sciences, 53, 683–693.

Qin, Y., Yi, S., Chen, J., Ren, S. & Wang, X. (2015). Responses of ecosystem respiration to short–term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau. Cold Regions Science and Technology, 115, 77–84.

Qiulan Fang & Sha, L. (2006). Soil respiration in a tropical seasonal rainforest and rubber plantation in Xishuangbanna, Yunnan, SW China. Chin Jour of Plan Ecolo, 30, 97–103.

Raich, J.W. (1998). Aboveground productivity and soil respiration in three Hawaiian rain forests. For. Ecol. Manage., 107, 309–318.Ruehr, N.K. & Buchmann, N. (2010). Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among

microbial and root-rhizosphere respiration. Tree Physiology, 30, 165–176.Søe, A.R.B. & Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an

unmanaged beech forest. Tree Physiology, 25, 1427–1436.Sanderman, J. & Amundson, R. (2010a). Soil carbon dioxide production and climatic sensitivity in contrasting California ecosystems. Soil Sci.

30

Page 31: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Soc. Am. J., 74, 1356–1366.Sanderman, J. & Amundson, R. (2010b). Soil carbon dioxide production and climatic sensitivity in contrasting California ecosystems. Soil

Science Society of America Journal - SSSAJ, 74, 1356–1366.Savage, K., Davidson, E.A., Richardson, A.D. & Hollinger, D.Y. (2009). Three scales of temporal resolution from automated soil respiration

measurements. Agricultural and Forest Meteorology, 149, 2012–2021.Schaefer, D.A., Feng, W. & Zou, X. (2009). Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest

of southwestern China. Soil Biol. Biochem., 41, 1000–1007.Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. (2009). Carbon losses due to soil warming: Do autotrophic and heterotrophic soil

respiration respond equally? Global Change Biol., 15, 901–913.Sha, L.Q., Zheng, Z., Tang, J.W., Wang, Y.H., Zhang, Y.P., Cao, M. et al. (2005). Soil respiration in tropical seasonal rain forest in

Xishuangbanna, SW China. Sci. China Ser. D-Earth Sci., 48, 189–197.Shabaga, J.A., Basiliko, N., Caspersen, J.P. & Jones, T.A. (2015). Seasonal controls on patterns of soil respiration and temperature sensitivity in

a northern mixed deciduous forest following partial-harvesting. For. Ecol. Manage., 348, 208–219.Sheng, H., Yang, Y.S., Yang, Z.J., Chen, G.S., Xie, J.S., Guo, J.F. et al. (2010). The dynamic response of soil respiration to land–use changes in

subtropical China. Global Change Biol., 16, 1107–1121.Shi, B., Gao, W. & Jin, G. (2015). Effects on rhizospheric and heterotrophic respiration of conversion from primary forest to secondary forest

and plantations in northeast China. European Journal of Soil Biology, 66, 11–18.Shi, P., Sun, X., Xu, L., Zhang, X., He, Y., Zhang, D. et al. (2006). Net CO2 exchange and its controlling factors in Kobresia prairie ecosystem on

Tibetan Plateau. Science in China Series D: Earth Sciences, 36, 194–203 (In Chinese).Shibistova, O., Lloyd, J.O.N., Zrazhevskaya, G., Arneth, A., Kolle, O., Knohl, A. et al. (2002). Annual ecosystem respiration budget for a Pinus

sylvestris stand in central Siberia. Tellus B, 54, 568–589.Shimizu, M., Marutani, S., Desyatkin, A.R., Jin, T., Hata, H. & Hatano, R. (2009). The effect of manure application on carbon dynamics and

budgets in a managed grassland of Southern Hokkaido, Japan. Agric., Ecosyst. Environ., 130, 31–40.Sjögersten, S. & Wookey, P.A. (2002). Climatic and resource quality controls on soil respiration across a forest–tundra ecotone in Swedish

Lapland. Soil Biol. Biochem., 34, 1633–1646.Striegl, R.G. & Wickland, K.P. (1998). Effects of a clear–cut harvest on soil respiration in a jack pine – lichen woodland. Canadian Journal of

31

Page 32: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Forest Research, 28, 534–539.Striegl, R.G. & Wickland, K.P. (2001). Soil respiration and photosynthetic uptake of carbon dioxide by ground–cover plants in four ages of jack

pine forest. Canadian Journal of Forest Research, 31, 1540–1550.Subke, J.A., Reichstein, M. & Tenhunen, J.D. (2003). Explaining temporal variation in soil CO 2 efflux in a mature spruce forest in Southern

Germany. Soil Biol. Biochem., 35, 1467–1483.Sulzman, E.W., Brant, J.B., Bowden, R.D. & Lajtha, K. (2005). Contribution of aboveground litter, belowground litter, and rhizosphere

respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry, 73, 231–256.Sun, B., Long, R., Kong, Z. & Feng, R. (2007). A study on CO2 emission rate from alpine meadow in the source region of Yellow River in Guo–

luo, Qinghai province. Acta Agrestia Sinica, 15, 449–453 (In Chinese).Sun, Q., Fang, H., Liang, J., Qian, X., Liu, M., Zhang, Q. et al. (2009). Soil respiration characteristics of typical urbon lawns in Shanghai.

Chinese Journal of Ecology, 28, 1572–1578 (In Chinese).Tüfekçioğlu, A., zbayram, A.K. & Küçük, M. (2009). Soil respiration in apple orchards, poplar plantations and adjacent grasslands in Artvin,

Turkey. J.Environ.Biol., 30, 815–820.Takagi, K., Fukuzawa, K., Liang, N., Kayama, M., Nomura, M., Hojyo, H. et al. (2009). Change in CO2 balance under a series of forestry

activities in a cool-temperate mixed forest with dense undergrowth. Global Change Biol., 15, 1275–1288.Tan, Z.H., Zhang, Y.P., Liang, N., Song, Q.H., Liu, Y.H., You, G.Y. et al. (2013). Soil respiration in an old‐growth subtropical forest: Patterns,

components, and controls. Journal of Geophysical Research: Atmospheres, 118, 2981–2990.Tang, X., Fan, S., Qi, L., Guan, F., Cai, C. & Du, M. (2015). Soil respiration and carbon balance in a Moso bamboo (Phyllostachys heterocycla

(Carr.) Mitford cv. Pubescens) forest in subtropical China. iForest-Biogeosciences and Forestry, 8, 606.Tang, X., Fan, S., Qi, L., Guan, F., Du, M. & Zhang, H. (2016a). Soil respiration and net ecosystem production in relation to intensive

management in Moso bamboo forests. Catena, 137, 219–228.Tang, X., Fan, S., Qi, L., Guan, F., Su, W. & Du, M. (2016b). A comparison of soil respiration, carbon balance and root carbon use efficiency in

two managed Moso bamboo forests in subtropical China. Annals of Forest Research, 59, 3–20.Tang, X., Zhou, G., Liu, S., Zhang, D., Liu, S., Li, J. et al. (2006). Dependence of soil respiration on soil temperature and soil moisture in

successional forests in southern China. Journal of Integrative Plant Biology, 48, 654–663.Tedeschi, V., Rey, A.N.A., Manca, G., Valentini, R., Jarvis, P.G. & Borghetti, M. (2006). Soil respiration in a Mediterranean oak forest at

32

Page 33: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

different developmental stages after coppicing. Global Change Biol., 12, 110–121.Teramoto, M., Liang, N., Takagi, M., Zeng, J. & Grace, J. (2016). Sustained acceleration of soil carbon decomposition observed in a 6–year

warming experiment in a warm-temperate forest in southern Japan. Scientific reports, 6, 35563.Tian, D.L., Yan, W.D., Fang, X., Kang, W.X., Deng, X.W. & Wang, G.J. (2009). Influence of thinning on soil CO 2 efflux in Chinese fir

plantations. Pedosphere, 19, 273–280.Tian, D., Wang, G., Peng, Y., Yan, W., Fang, X., Zhu, F. et al. (2011). Contribution of autotrophic and heterotrophic respiration to soil CO2 efflux

in Chinese fir plantations. Aust. J. Bot., 59, 26–31.Tian, D., Wang, G., Yan, W., Xiang, W. & Peng, C. (2010). Soil respiration dynamics in Cinnamomum camphora forest and a nearby

Liquidambar formosana forest in Subtropical China. Chin. Sci. Bull., 55, 736–743.Tian, L., Zhou, H., Liu, Z., Wei, Q., Yao, B., Wang, W. et al. (2014). Soil respiration variation and its relationship with hydrothermic factor under

different biotopes of alpine meadow distributed area. Pratacultural Science, 31, 1233–1240 (In Chinese).Tufekcioglu, A., Ozbayram, A.K. & Kucuk, M. (2009). Soil respiration in apple orchards, poplar plantations and adjacent grasslands in Artvin,

Turkey. J.Environ.Biol., 30, 815–820.Urrutia‐Jalabert, R., Malhi, Y. & Lara, A. (2017). Soil respiration and mass balance estimation of fine root production in Fitzroya cupressoides

forests of southern Chile. Ecosphere, 8, e01640.Vose, J.M. & Bolstad, P.V. (2007). Biotic and abiotic factors regulating forest floor CO2 flux across a range of forest age classes in the southern

Appalachians. Pedobiologia, 50, 577–587.Walle, I.V., Samson, R., Looman, B., Verheyen, K. & Lemeur, R. (2007). Temporal variation and high–resolution spatial heterogeneity in soil

CO2 efflux in a short-rotation tree plantation. Tree Physiology, 27, 837–848.Wan, S. & Luo, Y. (2003). Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Global

biogeochemical cycles, 17, Wang, D., Wu, G.L., Liu, Y., Yang, Z. & Hao, H.–M. (2015). Effects of grazing exclusion on CO2 fluxes in a steppe grassland on the Loess

Plateau (China). Ecol. Eng., 83, 169–175.Wang, H., Liu, W., Wang, W. & Zu, Y. (2013a). Influence of long–term thinning on the biomass carbon and soil respiration in a larch (Larix

gmelinii) forest in Northeastern China. The Scientific World Journal, 2013, 1–9.Wang, H., Wang, S. & Li, J. (2017a). Soil respiration seasonal dynamic and main factors affecting analysis of Syzygium oblatum community in

33

Page 34: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Yunnan Xishuangbanna, China. Journal of Central South University of Forestry & Technology, 38, 111–116 (in Chinese).Wang, H., Yu, L., Chen, L., Wang, C. & He, J. (2014a). Responses of soil respiration to reduced water table and nitrogen addition in an alpine

wetland on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 619–625 (In Chinese).Wang, J., Sha, L., Li, J. & Feng, Z. (2008a). CO2 efflux in subalpine meadow under different grazing management in Shangrila, Yunnan. Acta

Ecologica Sinica, 28, 3574–3583 (In Chinese).Wang, J., Wang, G., Wang, Y. & Li, Y. (2007a). Effects of degradation of swamp and alpine meadow grassland on CO 2 emissions during growth

period in Qinghai-Tibet Plateau. Science Bulletin, 52, 1554–1560 (In Chinese).Wang, M., Guan, D.X., Han, S.J. & Wu, J.L. (2010a). Comparison of eddy covariance and chamber–based methods for measuring CO2 flux in a

temperate mixed forest. Tree Physiology, 30, 149–163.Wang, Q., Yu, Y., He, T. & Wang, Y. (2017b). Aboveground and belowground litter have equal contributions to soil CO 2 emission: an evidence

from a 4-year measurement in a subtropical forest. Plant Soil, 421, 7–17.Wang, Q., Zhang, W., Sun, T., Chen, L., Pang, X., Wang, Y. et al. (2017c). N and P fertilization reduced soil autotrophic and heterotrophic

respiration in a young Cunninghamia lanceolata forest. Agricultural and Forest Meteorology, 232, 66–73.Wang, R., Sun, Q., Wang, Y., Liu, Q., Du, L., Zhao, M. et al. (2017d). Temperature sensitivity of soil respiration: Synthetic effects of nitrogen

and phosphorus fertilization on Chinese Loess Plateau. Sci. Total Environ., 574, 1665–1673.Wang, X., Jiang, Y., Jia, B., Wang, F. & Zhou, G. (2010b). Comparison of soil respiration among three temperate forests in Changbai Mountains,

China. Canadian Journal of Forest Research, 40, 788–795.Wang, X., Yan, R., Deng, Y., Yan, Y. & Xin, X. (2014b). Effect of grazing on the temperature sensitivity of soil respiration in hulunber meadow

steppe. Environmental Science, 35, 1909–1914 (In Chinese).Wang, X., Yan, Y., Yan, R., Yang, G. & Xin, X. (2013b). Effect of rainfall on the seasonal variation of soil respiration in Hulunber Meadow

Steppe. Acta Ecologica Sinica, 33, 5631–5635 (In Chinese).Wang, X., Zhou, G., Jiang, Y. & Li, F. (2006). Comparison of soil respiration in broad–leaved koren pine foretst and reclaimed cropland in

changbai mountains, China. Acta Phytoecological Sinica, 30, 887–893.Wang, X., Zhu, B., Gao, M., Wang, Y. & Zheng, X. (2008b). Seasonal variations in soil respiration and temperature sensitivity under three land–

use types in hilly areas of the Sichuan Basin. Soil Research, 46, 727–734.Wang, X., Zhu, B., Wang, Y. & Zheng, H. (2007b). Soil respiration and its sensitivity to temperature under different land use conditions. Acta

34

Page 35: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Ecologica Sinica, 27, 1960–1968 (In Chinese).Wang, Y., Li, Q., Wang, H., Wen, X., Yang, F., Ma, Z. et al. (2011). Precipitation frequency controls interannual variation of soil respiration by

affecting soil moisture in a subtropical forest plantation. Canadian Journal of Forest Research, 41, 1897–1906.Wang, Y., Liu, H., Chung, H., Yu, L., Mi, Z., Geng, Y. et al. (2014c). Non‐growing‐season soil respiration is controlled by freezing and thawing

processes in the summer monsoon‐dominated Tibetan alpine grassland. Global Biogeochemical Cycles, 28, 1081–1095.Wang, Y., Wang, H., Wang, Z.L., Zhang, W., Guo, C., Wen, X. et al. (2012). Optimizing manual sampling schedule for estimating annual soil

CO2 efflux in a young exotic pine plantation in subtropical China. European Journal of Soil Biology, 52, 41–47.Webster, K.L., Creed, I.F., Bourbonnière, R.A. & Beall, F.D. (2008). Controls on the heterogeneity of soil respiration in a tolerant hardwood

forest. Journal of Geophysical Research: Biogeosciences, 113, G03018.Wei, D., Wang, Y., Wang, Y., Liu, Y. & Yao, T. (2012). Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the

Tibetan Plateau, China. Plant Soil, 359, 45–55.Weltecke, K. & Gaertig, T. (2012). Influence of soil aeration on rooting and growth of the Beuys–trees in Kassel, Germany. Urban forestry &

urban greening, 11, 329–338.Wen, J., Zhou, H., Yao, B., Li, Y., Zhao, X., Chen, Z. et al. (2014). Characteristics of soil respiration in different degraded alpine grassland in the

source region of Three-River. Chinese Journal of Plant Ecology, 28, 209–218 (In Chinese).Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R. et al. (2006). N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a

rubber plantation in Southwest China. Plant Soil, 289, 335–353.Wickland, K.P., Neff, J.C. & Harden, J.W. (2010). The role of soil drainage class in carbon dioxide exchange and decomposition in boreal black

spruce (Picea mariana) forest stands. Canadian Journal of Forest Research, 40, 2123–2134.Wickland, K.P., Striegl, R.G., Neff, J.C. & Sachs, T. (2006). Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black

spruce lowland. Journal of Geophysical Research: Biogeosciences, 111, G02011.Widen, B. & Majdi, H. (2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal

variation. Can. J. For. Res.-Rev. Can. Rech. For., 31, 786–796.Wieser, G. (2004). Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps. Tree

Physiology, 24, 475–480.Wu, J., Guan, D., Wang, M., Pei, T., Han, S. & Jin, C. (2006a). Year–round soil and ecosystem respiration in a temperate broad–leaved Korean

35

Page 36: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Pine forest. For. Ecol. Manage., 223, 35–44.Wu, L., Gu, S., Zhao, L., Xu, S., Zhou, H., Feng, C. et al. (2010). Variation in net CO2 exchange, gross primary production and its affecting

factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai–Tibetan Plateau of China. Chinese Journal of Plant Ecology, 34, 770–780 (In Chinese).

Wu, Q., Cao, G., Hu, Q., Li, D., Wang, Y. & Li, Y. (2005). A primary study on CO2 emission from soil–plant systems of kobresia humilis meadow. Resource Science, 27, 96–102 (In Chinese).

Wu, Q., Hu, Q., Gm, C. & Li, D. (2011). CO2 emission from an alpine Kobresia humilis meadow in winters. Acta Ecologica Sinica, 31, 5107–5112 (in Chinese).

Wu, Q., Li, Y., Liu, X., Li, H. & Mao, S. (2013). Ecosystem respiration and carbon sink strength of the aalpine weeds meadow in Qinghai–Tibetan plateau under grazing Gradient. Chinese Journal of Agrometeorology, 34, 390–395 (In Chinese).

Wu, Y., Liu, G., Fu, B., Liu, Z. & Hu, H. (2006b). Comparing soil CO 2 emission in pine plantation and oak shrub: dynamics and correlations. Ecol. Res., 21, 840–848.

Xie, H., Fan, J., Qi, L. & Hao, M. (2010). Seasonal characteristics of soil respiration and affecting factors under typical vegetations in the water–wind erosion crisscross region of the loess plateau. Environmental Science, 31, 2995–3003 (In Chinese).

Xu, H., Hou, X. & Na, R. (2011). Dynamics of soil respiration under different grazing systems in a Stipa brevif lora desert steppe. Acta Prataculturae Sinica, 20, 219–226 (In Chinese).

Xu, M. & Qi, Y. (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles, 15, 687–696.

Xu, Z., Wan, C., Xiong, P., Tang, Z., Hu, R., Cao, G. et al. (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant Soil, 336, 183–195.

Yan, J., Wang, Y., Zhou, G. & Zhang, D. (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biol., 12, 810–821.

Yan, J., Zhang, D., Zhou, G. & Liu, J. (2009). Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biol. Biochem., 41, 991–999.

Yan, M., Zhang, X., Zhou, G., Gong, J. & You, X. (2011). Temporal and spatial variation in soil respiration of poplar plantations at different developmental stages in Xinjiang, China. J. Arid Environ., 75, 51–57.

36

Page 37: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

Yang, Q., Liu, L., Zhang, W., Xu, M. & Wang, S. (2015). Different responses of stem and soil CO 2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees, 29, 1207–1218.

Yang, X., Ashe, X., Miao, Y. & Liu, Y. (2016). Response of soil respiration rate to grazing patterns in an alpine meadow, Northwestern Sichuan, China. Acta Ecologica Sinica, 36, 5371–5378 (In Chinese).

Yashiro, Y., Lee, N.Y.M., Ohtsuka, T., Shizu, Y., Saitoh, T.M. & Koizumi, H. (2010). Biometric–based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J. Plant Res., 123, 463–472.

Yashiro, Y., Shizu, Y., Adachi, T., Ohtsuka, T., Lee, N.Y., Iimura, Y. et al. (2012). The effect of dense understory dwarf bamboo (Sasa senanensis) on soil respiration before and after clearcutting of cool temperate deciduous broad–leaved forest. Ecol. Res., 27, 577–586.

Yazaki, Y., Mariko, S. & Koizumi, H. (2004). Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. Ecol. Res., 19, 511–520.Yu, S., Chen, Y., Zhao, J., Fu, S., Li, Z., Xia, H. et al. (2017). Temperature sensitivity of total soil respiration and its heterotrophic and

autotrophic components in six vegetation types of subtropical China. Sci. Total Environ., 607–608, 160–167.Zerva, A. & Mencuccini, M. (2005). Short–term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation. Soil Biol.

Biochem., 37, 2025–2036.Zhang, D., Shi, P., He, Y., Xu, L., Zhang, X. & Zhong, Z. (2006a). Quantification of soil heterotrophic respiration in the growth period of alpine

steppe-medow on the Tibetan Plateau. Journal of Natural Resources, 21, 458–464 (In Chinese).Zhang, D., Sun, X., Zhou, G., Yan, J., Wang, Y., Liu, S. et al. (2006b). Seasonal dynamics of soil CO2 effluxes with responses to environmental

factors in lower subtropical forests of China. Science in China Series D: Earth Sciences, 49, 139–149.Zhang, G., Xu, J., Wang, G., Wu, S. & Ruan, H. (2010). Soil respiration under different vegetation types in Nanjing urban green space. Chinese

Journal of Ecology, 29, 274–280 (In Chinese).Zhang, J., Shangguan, T. & Meng, Z. (2011). Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest

China. Ecol. Res., 26, 153–161.Zhang, T., Wang, G., Yang, Y., Mao, T. & Chen, X. (2017). Grassland types and season–dependent response of ecosystem respiration to

experimental warming in a permafrost region in the Tibetan Plateau. Agricultural and Forest Meteorology, 247, 271–279.Zhang, X., Shi, P., Liu, Y. & Ou, Y. (2004). Soil CO2 emission and carbon balance in alpine steppe ecosystem of Qinghai–Tibet Plateau. Science

in China Series D: Earth Sciences, 34, 193–199 (In Chinese).Zhao, J., Li, R., Li, X. & Tian, L. (2017). Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the

37

Page 38: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

central Tibetan Plateau. Catena, 159, 84–92.Zhao, J., Li, X., Li, R., Tian, L. & Zhang, T. (2016a). Effect of grazing exclusion on ecosystem respiration among three different alpine

grasslands on the central Tibetan Plateau. Ecol. Eng., 94, 599–607.Zhao, J., Luo, T., Li, R., Li, X. & Tian, L. (2016b). Grazing effect on growing season ecosystem respiration and its temperature sensitivity in

alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau. Agricultural and forest meteorology, 218, 114–121.Zhao, J., Wang, S., Chen, Q., Wang, Y.H. & Xiong, H. (2014). Soil respiration and its affecting factors in yong and mature forests of Pinus

yunnanensis in middle Yunnan plateau, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 38, 71–76 (in Chinese).Zhao, L., Li, Y., Xu, S., Zhou, H., Gu, S., Yu, G. et al. (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine

shrubland on Qinghai‐Tibetan plateau. Global Change Biol., 12, 1940–1953.Zhao, X.Q. & Zhou, X.M. (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem

research station. Ambio, 28, 642–647.Zheng, Z.M., Yu, G.R., Fu, Y.L., Wang, Y.S., Sun, X.M. & Wang, Y.H. (2009). Temperature sensitivity of soil respiration is affected by

prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biol. Biochem., 41, 1531–1540.Zhou, G., Zhou, X., Zhang, T., Du, Z., He, Y., Wang, X. et al. (2017). Biochar increased soil respiration in temperate forests but had no effects in

subtropical forests. For. Ecol. Manage., 405, 339–349.Zhou, H.X., Zhang, Y.D., Sun, H.L. & Wu, S.Y. (2007a). Soil respiration in temperate secondary forest and Larix gmelinii plantation in

Northeast China. J. Appl. Ecol., 18, 2668–2674.Zhou, X., Sherry, R.A., An, Y., Wallace, L.L. & Luo, Y. (2006). Main and interactive effects of warming, clipping, and doubled precipitation on

soil CO2 efflux in a grassland ecosystem. Global Biogeochem. Cycles, 20, Zhou, X., Wan, S. & Luo, Y. (2007b). Source components and interannual variability of soil CO 2 efflux under experimental warming and

clipping in a grassland ecosystem. Global Change Biol., 13, 761–775.Zhou, Z., Jiang, L., Du, E., Hu, H., Li, Y., Chen, D. et al. (2013). Temperature and substrate availability regulate soil respiration in the tropical

mountain rainforests, Hainan Island, China. J. Plant Ecology, 6, 325–334.Zhu, J., Yan, Q., Fan, A.N., Yang, K. & Hu, Z. (2009). The role of environmental, root, and microbial biomass characteristics in soil respiration

in temperate secondary forests of Northeast China. Trees, 23, 189–196.Zu, Y.G., Wang, W.J., Wang, H.M., Liu, W., Cui, S. & Koike, T. (2009). Soil CO2 efflux, carbon dynamics, and change in thermal conditions

38

Page 39: ars.els-cdn.com€¦  · Web viewKoehler, B., Corre, M.D., Veldkamp, E. & Sueta, J.P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the

from contrasting clear-cut sites during natural restoration and uncut larch forests in northeastern China. Clim. Change, 96, 137–159.

39