arpes studies of unconventional

26
Hong Ding Institute of Physics, Chinese Academy of Sciences ARPES studies of unconventional superconductors Heavy Fermion Physics Workshop, January 9, 2012

Upload: silvester-walters

Post on 18-Jan-2018

225 views

Category:

Documents


0 download

DESCRIPTION

Phase diagrams pnictide SC heavy fermion SC organic SC cuprate SC

TRANSCRIPT

Page 1: ARPES studies of unconventional

Hong Ding

Institute of Physics, Chinese Academy of Sciences

ARPES studies of unconventionalsuperconductors

Heavy Fermion Physics Workshop, January 9, 2012

Page 2: ARPES studies of unconventional

Phase diagrams

cuprate SC

pnictide SC

organic SC

heavy fermion SC

Page 3: ARPES studies of unconventional

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

Momentum

0

0

π

Unoccupiedstates

Occupied statesBinding energy (eV)

Binding energy (eV)

Fermi surface mapping of cuprates

Tight binding fitting

Large FS, area = 1-x: Luttinger’s theorem

Bi2Sr2CaCu2O8

Page 4: ARPES studies of unconventional

d-wave superconducting gap in cuprates

dx2-y2 + +

-

-

θ

0

10

20

30

40

0 20 40 60 80FS angle

115

MMΓ

Y1 15Half-Integer Flux Quantum Effect

Page 5: ARPES studies of unconventional

0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1

0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1 0.2 0.1 0.0 -0.1Binding Energy (eV)

14K 40K 70K

200K120K90K

Tc = 83 K, at Fermi surface along M-Y

pseudogapT* = 170K

Pseudogap in underdoped cuprates

0

100

Doping (e/Cu)

Temperature

AFM S.C.State

underdopedoverdoped

Page 6: ARPES studies of unconventional

Phase diagram of Ba122 system

Hole doping

Electron doping

Electron-hole asymmetry?M. Neupane et al., PRB 83, 094522 (2011)

Page 7: ARPES studies of unconventional

ARPES observation of five bands and five FSs

Page 8: ARPES studies of unconventional

Fermi surface evolution in “122”

Electron doping

Hole dopingParent

Heavily OD Slightly OD OPT UD

OPTUD Heavily OD

Tc = 3 K Tc = 22 K Tc = 37 K Tc = 26 K

Tc = 0 K Tc = 11 K Tc = 25 K Tc = 0 KTN = 135 K

QAF QAF QAF QAF

QAFQAF QAF

8

Page 9: ARPES studies of unconventional

ARPES observation of superconducting gap

2/Tc ~ 7H. Ding et al., EPL 83, 47001 (2008)

Page 10: ARPES studies of unconventional

Nodeless SC gap in Ba0.6K0.4Fe2As2 (Tc = 37K)

K. Nakayama et al., EPL 85, 67002 (2009)H. Ding et al., EPL 83, 47001 (2008)

Page 11: ARPES studies of unconventional

K. Seo, A. B. Bernevig, J. Hu PRL 101, 206404 (2008)

Order parameters in momentum Space

coskxcosky, s±-wave

Real space configuration of pairing symmetry

--

-

-

+++

local interactionsJ1- J2

pnictides: large J2 and FS topology favor

cuprates: large J1 and FS topology favor coskx–cosky)/2, d-wave

J1 – J2 model predicts almost isotropic s± gap

Page 12: ARPES studies of unconventional

I. MazinPRB 79, 060502 (2009)

D.H. Lee EPL 85, 37005 (2009)

S. GraserNJP 11, 025016 (2009)

when

Most weak-coupling theories predict anisotropic s± gap

Page 13: ARPES studies of unconventional

overdoped Ba0.3K0.7Fe2As2 (Tc ~ 20K)

K. Nakayama et al., PRB 83, 020501(R) (2011)

Page 14: ARPES studies of unconventional

underdoped Ba0.75K0.25Fe2As2 (Tc = 26K)

Y.-M. Xu et al., Nature Communications2, 392 (2011)

Page 15: ARPES studies of unconventional

Doping dependence of the SC gaps in Ba1-xKxFe2As2

K. Nakayama et al., PRB 83, 020501(R) (2011)

Page 16: ARPES studies of unconventional

Electron doped BaFe1.85Co0.15As2 (Tc = 25.5K)

K. Terashima et al, PNAS 106, 7330 (2009)

Page 17: ARPES studies of unconventional

kz dependence of SC gapssingle gap function

Y.-M. Xu et al., Nature Physics 7, 198 (2011)

Jab = 30Jc = 5

2/1

≈ Jc/Jab

≈ 0.17

Page 18: ARPES studies of unconventional

“111” - NaFe0.95Co0.05As (Tc = 18K)

Z.-H. Liu et al., arXiv:1008.3265, PRB

Page 19: ARPES studies of unconventional

“11” - FeTe0.55Se0.45 (Tc = 13K)

Page 20: ARPES studies of unconventional

J1 = -34J2 = 22J3 = 6.8

2/3

≈ J2/J3

≈ 0.3

H. Miao et al., arXiv:1107.0985

Page 21: ARPES studies of unconventional

(Tl,K)Fe2-xSe2 (Tc ~ 30K)

T. Qian et al., PRL (2011)

Page 22: ARPES studies of unconventional

Isotropic SC gap on electron FS

X.-P. Wang et al., EPL 93, 57001 (2011)J1 < 0, FM, d-wave is not favored

Page 23: ARPES studies of unconventional

Selection Rules of Pairing Symmetry

Overlap strength between pairing form factor and Fermi surface

OS =

Self-consistent meanfield equation for t-J model

Page 24: ARPES studies of unconventional

Three classes of high-Tc superconductors

J1 J2 J2+J3

Page 25: ARPES studies of unconventional

Three classes of high-Tc superconductors

J1 J2 J2+J3

Page 26: ARPES studies of unconventional

Summary

1.The SC gap of all iron-based superconductors measured by ARPES can by described approximately by J1-J2-J3 model

1.A possible unified paradigm of high-Tc

superconductivity: local AFM magnetic exchange + collaborative FS topology

J.-P. Hu and H. Ding, arXiv:1107.1334