approaches to robot motion approaches to desigining robot ... › 2.166 › www › handouts ›...

12
1 Approaches to Robot Motion Planning and Control 2.166 Fall 2008 Approaches to desigining robot control software: Traditional model-based approach vs. Subsumption Architecture Historical Context • Early robots, such as Shakey and Hilare, employed a “traditional” decomposition of intelligence • Separate modules for: – Perception – Mapping/World Modeling – Decision Making – Motion Planning – Control Shakey: 1960’s

Upload: others

Post on 28-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

1

Approaches to Robot Motion Planning and Control

2.166Fall 2008

Approaches to desigining robot control software:

Traditional model-based approach vs.

Subsumption Architecture

Historical Context

• Early robots, such as Shakey and Hilare, employed a “traditional”decomposition of intelligence

• Separate modules for:–Perception –Mapping/World Modeling–Decision Making–Motion Planning–Control

Shakey: 1960’s

Page 2: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

2

1970’s: Stanford Cart (Moravec) Early 1980’s: Hilare (France)

Geometric Motion Planning Hilare in Action (1981)

Page 3: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

3

Model-based Control (Conventional Approach)

Illustration courtesy of Siegwart and Nourbakhsh

Traditional Decomposition

perception

modeling

planning

task execution

motor control

sensors actuators

a.

Figures copyright Rodney A. Brooks, MIT

avoid hitting things

locomote

explore

build maps

manipulate the world

actuatorsensors

b.

An Alternative Approach: Decomposition by Functionality in the World/

Layers of increasing complexity

Figures copyright Rodney A. Brooks, MIT

An Early Subsumption Robot

Page 4: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

4

Behavior-based Control of the Roomba (2004)

Video courtesy of David Moore

Example: Roomba

Moore et al., Sensys 2004

Contrast with Roomba

Data from Moore et al., Sensys 2004

0 50 100 150 200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20 Localized pathTrue path

Distance (cm)

Robot path over timeGenghis Walking Robot (1988)

Figures copyright Rodney A. Brooks, MIT

Page 5: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

5

Genghis control architecture

for/backpitch

alphacollide

betapos

legdown

up legtrigger

betaforce

betabalance

s

i

i

IRsensors

walk

steer

s

d

alphaadvance

alphabalance s alpha

pos

prowl feelers

Figures copyright Rodney A. Brooks, MIT

Genghis Walking Robot (1988)

Figures copyright Rodney A. Brooks, MIT

Genghis Walking Robot (1988) Origins of Subsumption: circa 1989, MIT• Example: The Collection Machine,

Connell and Brooks

Page 6: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

6

Traditional Approaches to Robot Motion Planning

For an excellent source of information, see the book “Planning Algorithms” by Steve Lavalle, ©2005

Available for free at:

• http://msl.cs.uiuc.edu/planning/

Approaches to Robot Motion Planning

• “bug” algorithms

• Configuration Space

• Cell decomposition methods

• Roadmap methods

• Potential field methods

• Sampling based methods

Bug Algorithms • Assumptions:

– “point” robot – limited local sensing (e.g., tactile)– perfect navigation– static environment

Illustration: Choset et al., MIT Press 2005

Algorithm “Bug1”(Lumelsky and Stepanov, 1987)

Algorithm: Choset et al., MIT Press 2005

Page 7: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

7

Algorithm “Bug1”(Lumelsky and Stepanov, 1987)

Illustration: Choset et al., MIT Press 2005

Algorithm “Bug1”(Lumelsky and Stepanov, 1987)

Illustration: Choset et al., MIT Press 2005

Algorithm “Bug2”(Lumelsky and Stepanov, 1987)

Algorithm: Choset et al., MIT Press 2005

Algorithm “Bug2”(Lumelsky and Stepanov, 1987)

Illustration: Choset et al., MIT Press 2005

Page 8: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

8

Q: Does Bug2 always do better than Bug1?

Illustration: Choset et al., MIT Press 2005

Approaches to Robot Motion Planning

• “bug” algorithms

• Configuration Space

• Cell decomposition methods

• Roadmap methods

• Potential field methods

Configuration Space

start

goalgoal

start

• Shrink robot to a point• Expand obstacles to include any positions

where the robot and the obstacle positions would intersect

• Q: How does this simplify the problem?

Illustration: R. Brooks

Example: 2-Joint Robot Arm

Source: Russell and Norvig, AIMA, Chapter 25

Page 9: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

9

Example: 2-Joint Robot Arm

Source: Russell and Norvig, AIMA, Chapter 25

Robot Arm Configuration Space

Example: Robot Arm

Source: Russell and Norvig, AIMA, Chapter 25

Approaches to Robot Motion Planning

• “bug” algorithms

• Configuration Space

• Cell decomposition methods

• Roadmap methods

• Potential field methods

Cell Decomposition Methods

Source: AIMA, Chapter 25

Page 10: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

10

Cell Decomposition Methods

Illustration: R. Brooks

• Basic idea: transform a continuous problem into a (discrete) graph search

Approaches to Robot Motion Planning

• “bug” algorithms

• Configuration Space

• Cell decomposition methods

• Roadmap methods

• Potential field methods

Example: Ski Trail Map (Aspen) Roadmap Methods

Source: Russell and Norvig, AIMA

Voronoi Diagram Probabilistic Roadmap

Need methods to search the graph as well as how to get on and off the roadmap (on-ramps/off-ramps on “highways”)

Page 11: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

11

Approaches to Robot Motion Planning

• “bug” algorithms

• Configuration Space

• Cell decomposition methods

• Roadmap methods

• Potential field methods

Potential Field Methods

• Define a vector field• The robot is a “particle” in this field• Goal generates an attractive force• Obstacles generate repulsive forces• Let the particle follow the field to get to the goal• E.g., fluid flow or gravity analogy

Right: H. J. Feder, 1998Left: http://astron.berkeley.edu/~jrg/ay202/img1680.gif

2-D Robot Example Again

Source: Russell and Norvig, AIMA

2-D Robot Example Again

Source: Russell and Norvig, AIMA

Page 12: Approaches to Robot Motion Approaches to desigining robot ... › 2.166 › www › handouts › 2166_motion... · Approaches to Robot Motion Planning and Control 2.166 Fall 2008

12

Sampling Based Methods

From: Lavalle, Planning Algorithms, 2006

From: Lavalle, Planning Algorithms, 2006

RRT Motion Planning

From: Lavalle, Planning Algorithms, 2006

Sampling-Based Motion PlanningRRT with obstacles