applidifferentiation_part2_iry14

59
7/26/2019 AppliDifferentiation_part2_IRY14 http://slidepdf.com/reader/full/applidifferentiationpart2iry14 1/59 Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 4 Applications of Derivatives (Part 2)

Upload: isaac-mering-ating

Post on 02-Mar-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 1/59

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 4Applications of Derivatives (Part 2)

Page 2: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 2/59

4 - 2

Subtopics

Error Analysis

Indeterminate Forms and L’ Hopital’s Rule 

 Newton Raphson Method

Taylor/Maclaurin polynomial

© 2012, 2007 Pearson. All rights reserved.

Page 3: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 3/59

Error Analysis

Page 4: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 4/59

Page 5: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 5/59

4 - 5

Error Analysis (cont)

If two quantities a and b are measured withabsolute error a and b respectively, thena)Error for p = a  b The largest possible value is

 p+ p = (a+b)+(a + b)

The smallest possible value is p- p = (a+b)-(a + b)

  p = a + b

Page 6: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 6/59

4 - 6

Cont’: Example ( p=a+b)

a) Two lines AB and BC, part of a straight

line AC are measured as

AB = 120 0.005m ; BC = 300   0.005m

AC = (120 + 300)   (0.005 + 0.005)

= 420   0.01m

The true value of AC could be anywhere

from 419.99 to 420.01m 

A B C

Page 7: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 7/594 - 7

Cont’ : Example ( p=a-b)

b) If a line PQ is measured 280.00 0.005m

and PR (part of the line PQ) is measured

as 114.57 0.005m,

RQ = PQ-PR

RQ = (280 – 114.57)  (0.005+0.005)

= 165.43 0.01

P QR

Page 8: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 8/594 - 8

Cont’  b) Error for p = ab 

The largest possible value is p+ p = (a+a)(b+b)=ab+ab+ba+ab

The smallest possible value is

 p- p = (a-a)(b-b)=ab-(ab+ba)+ab 

p r p 

   

Negligible  p = ba + ab

abba

abab

 p pr  p    

 p=abRelative

error  

Page 9: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 9/594 - 9

c) Error for p=a/b 

For relative error, it is the same as the case

where p = ab, thus

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

2babba p           

b

b

a

a

 p

 pr  p

      

Page 10: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 10/594 - 10

Cont’: Example ( p=ab)

c) A rectangular block of land is measured as 20 0.005m by 40 0.005m. Find p the area, therelative error in p, and the absolute error in p,ie. p .

Area, p =20x40=800m2

40

005.0

20

005.0

b

b

a

ar  p

  

000375.0000125.000025.0    pr 

 p

 pr  p

    2

3.0000375.0800   m pr  p  p    

b

b

a

a

 p

 p

r  p      

Page 11: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 11/594 - 11

Error analysis

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

Measurement,

p

Absolute error

,  p 

Measurement 

 p = a + b  p =a +b 

 p = a - b  p =a +b 

 p = ab

 p = a/b

 p = ba + ab

2b

abba p

        

 

p r p 

   

b

b

a

a

 p

 pr  p

      

Page 12: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 12/594 - 12

cont’: Try This! (p=a/b) 

The voltage drop, V , across a resistor is

measured as 12.0 0.05 volts, and the current I  

is measured as 2.74 0.005 amps. Given that

resistance R = V/I ,find (i) R ; (ii) the relative error in R  and (iii) R ,

the absolute error in R. 

Ans: (i)4.3796ohms; (ii)0.0059914; (iii)0.0262ohms

b b 

a a 

p p r  p 

      

p r  p 

  

Page 13: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 13/59

4 - 13

(i)

(ii)

(iii)

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

Solution:

Page 14: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 14/59

4 - 14

Error for y = f ( x)

If x is measured with a maximum error of x and y is calculated from x using a

formula y = f ( x), then the maximum error  y in y can be found by considering the graphof  y = f ( x)

Page 15: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 15/59

4 - 15

The gradient at the point P is d y/d x.

If  x is small, then

and we have 

dx

dp

 x

 p

 

 

 x

dx

dp p         

Page 16: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 16/59

4 - 16

Example

A circular oval has its radius measured as 63.660.005m.Calculate its area and the maximum error in its area, andthe perimeter and its maximum error

Area, A =r 2= (63.66)2=12731.6sq.m.

dr 

dA

r  A

 

 

2

2

00.2)005.0)(66.63(22             r r r dr 

dA A

..00.260.12731  m sq A  

 xdx

dp p          ||

Ans:399.990.03m

Page 17: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 17/59

4 - 17

Cont’ 

Perimeter, P :

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

  m r    99.39966.6322       

03142.099.399

03142.0)005.0(2

2

r dr 

dP P 

dr 

dP 

     

 

Page 18: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 18/59

4 - 18

Example (Try This!)

The radius of a circle is increased from 2.00 to

2.20m.

a) Estimate the resulting change,  A in area,  A.

b) Express the estimate as a percentage of

the circle’s original area. 

dr 

dA A          ||

Page 19: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 19/59

4 - 19

Answer

a)

 b)

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

5133.2)2.0)(2(22

2

2.022.2

2

      

 

 

  

r r  A

r dr 

dA

r  A

%20%100

)2(   22

 A

 A

r  A

  

  

dr 

dA A       

Page 20: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 20/59

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.5Indeterminate Forms and

L’ Hopital’s Rule ^

-Using derivative to calculate limits of fraction

Page 21: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 21/59

Page 22: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 22/59

4 - 22

L’Hopital’s Rule 

When gives an indeterminate

form (and the limit exists)

It is possible to find a limit by

 Note: this only works when the originallimit gives an indeterminate form

( )lim

( ) x c

 f x

 g x

'( )lim'( ) x c

 f x g x

001 0

0

Page 23: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 23/59

4 - 23

L’Hopital’s Rule 

Page 24: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 24/59

4 - 24

Example: L’Hô pital’s Rule 

20

cos1lim

 x x

 x

 x

00

 x

 x

 x x

 x

 x x 21

sinlim

cos1lim 020

01

0

21

sinlim

0

 x

 x

 x

2

1

2

coslim0

 x

 x

Limit isfound!

Page 25: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 25/59

4 - 25

Example:

0

0

0

0

2

0

211

lim

 x

 x x

 x

 x

 x

 x 2

2

1)1)(

2

1(

lim

2

1

0

2

)1)(4

1(

lim

2

3

0

 x

 x   8

1

Limit is found!

Page 26: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 26/59

4 - 26

Other Indeterminate Forms /, 0 or- 

L’Hopital’s Rule applies to the determinate

form 0/0 as well as to /.

If f ( x)  and g ( x)  as xa  , then

)('

)('

lim)(

)(

lim  x g 

 x f  

 x g 

 x f  

a xa x  

Page 27: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 27/59

4 - 27

Example:

 x

 x

 x

2

lnlim

 x

 x

 x /1

/1lim

 x x

1lim

  0

Limit is found!

Page 28: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 28/59

4 - 28

1

1 1lim

ln 1 x

 x x

1

1 lnlim

1 ln x

 x x

 x x

0

0

1

11

lim1

ln x

 x x

 x

 x

Use L’Hôpital’s rule.

1

1lim

1 ln x

 x

 x x x

0

0

Example:

1

1lim

1 1 ln x

 x

Use L’Hôpital’s 

rule again.1

2=

Limit is found!

Continue..

Page 29: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 29/59

4 - 29

Indeterminate Power 1, 00, 0 

 x

 x x   /1

lim

0Limit leads to

First by taking logarithm of the function.

Second, use l’HÔpital Rule to find the Limit of thelogarithm expression.

Then, exponentiate the result to find the originalfunction limit.

Page 30: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 30/59

4 - 30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Indeterminate Power 1, 00, 0 

 L x f  

a xa x ee x f    

)(ln

lim)(lim

 L x f  a x

)(lnlim

Here a may be either finite or infinite.

Page 31: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 31/59

4 - 31

Example:   x

 x x   /1

lim

 x

 x x f  

1

)(   Let and find )(lnlim   x f   x  

 x

 x x x f     x

  lnln)(ln

1

 x

 x x f  

 x x

lnlim)(lnlim

  0

1

/1lim  

 x

 x

Find

1limlim)(lim  0)(ln

1

e e x x f    x f  

x x 

Exercise:   x

 x x

/1

lim

TryThisquestion

Page 32: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 32/59

4 - 32

Example 2:

© 2012, 2007 Pearson. All rights reserved.

Find   x

 x x

/1

lim

 x x x f  1

)(   Let and find )(lnlim   x f   x  

)(ln   x f  

)(lnlim   x f   x

)(ln1

limlim)(lim   x f  

 x

 x

 x xe x x f  

Page 33: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 33/59

4 - 33 © 2012, 2007 Pearson. All rights reserved.

Extra example:

Page 34: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 34/59

4 - 34

Exercise (Try These!)

 

 

 x

 x

 x

11lim

0

  2

1

30

sinlim

 x

 x x

 x

  6

1

Page 35: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 35/59

4 - 35

Solutions:

Page 36: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 36/59

4 - 36

Exercise (Try These!!)

a)  

 b)  

c)  

 x

 x x

 x

sin3lim

0

2

0

2lim  x

e x

 x  

 x

 x x 2

lnlim

Page 37: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 37/59

4 - 37

Solutions:

Page 38: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 38/59

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.7 Newton’s Method 

-A technique to approximate the solution to anequation f ( x) = 0

Page 39: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 39/59

4 - 39 © 2012, 2007 Pearson. All rights reserved.

Page 40: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 40/59

4 - 40 © 2012, 2007 Pearson. All rights reserved.

Page 41: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 41/59

4 - 41

Page 42: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 42/59

4 - 42

The Intermediate Value Theorem

© 2012, 2007 Pearson. All rights reserved.

If f ( x) is a continuous function on [a, b],then for every d  between f (a)and f (b), there exists a value c in between a 

and b such that f (c) = d .Example:Show that the function  f (x) = ln (x) -1 has a solution between 2 and 3.Solution:

Sub x = 2 and x= 3 into f ( x), f (2) = ln(2)-1 = -0.307 f (3) = ln(3) -1 = 0.099

By the Intermediate Value Theorem, f ( x) must have a solution between 2 and 3.

Different sign

Page 43: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 43/59

4 - 43

Find the x-coordinate of the point where the curve y = x3 - x crosses the horizontal line y = 1

Solution: x3 - x = 1  f ( x) = x3 - x - 1 = 0By the intermediate Value

Theorem, there is a root

in (1,2)

Page 44: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 44/59

4 - 44

cont’ 

Starting the value x0=1, 

 f ( x) = x3 - x - 1 = 0, 

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

13)('   2   x  x  f      13

1

)('

)(

2

3

1

1

n

nn

nn

n

nnn

 x

 x x x x

 x  f  

 x  f   x x

  347826087.175.5

875.0

5.115.13

15.15.1

5.1

5.1113

1111

2

3

2

2

3

1

 x

 x

Continue to substitute the value till the value is consistent. 

...

325200399.11)347826087.1(3

1347826087.1347826087.1347826087.1

4

2

3

3

 x

 x

Page 45: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 45/59

4 - 45

cont’ 

Starting the value x0=1, 

 f ( x) = x3 - x - 1 = 0, 

Copyright © 2007 Pearson Education, Inc. Publishing as

Pearson Addison-Wesley

13)('   2   x  x  f      13

1

)('

)(

2

3

1

1

n

nn

nn

n

nnn

 x

 x x x x

 x  f  

 x  f   x x

Root

Page 46: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 46/59

4 - 46

Page 47: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 47/59

4 - 47 © 2012, 2007 Pearson. All rights reserved.

E i

Page 48: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 48/59

4 - 48

Newton’s method: 

Exercise:

,...3,2,1 '

1    n x f 

 x f  x  x 

n

n

nn

By using ,approximate the root of x4 − 4x + 1 = 0 and continuethe approximation procedure until two successive approximationsdiffer by less than 0.0001.

00   x

Page 49: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 49/59

4 - 49

Solution:

Page 50: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 50/59

4 - 50

Exercise:

Use the Newton Method to find a solutionfor the following equations

a)  x  –  cos x = 0, let x0 = 1b)  x5  –  5 x3  –  2 = 0; x > 0. Let x0 = 2

ANS: a) 0.7391 b) 2.2738 )(')(1

n

nnn

 x f   x f   x x  

(Hint: use Radian mode in calculatorto solve trigonometry function)

Page 51: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 51/59

Taylor and Maclaurin Series

-A function f ( x) with derivatives of all ordersexists on an interval I, can be expressed as a power

series

Page 52: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 52/59

4 - 52

Page 53: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 53/59

4 - 53

Expand

Solution:

By using formula for the nth Taylor with a=0,

11

1)(  

 x x f   around a=0, to get

3rd degree of approximations.

)0('''),0(''),0('),0(   f  f  f  f  

nn

n   a x

n

a f  a x

a f  a xa f  a f   x P    )(

!

)(...)(

!2

)(''))((')()(

)(2

Calculate 

Page 54: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 54/59

4 - 54

11

1)(  

 x x f  

0)0(    f  

3)1(

2)(''

 x x f  

2)1(

1)('

 x x f  

  4)1(

6)('''

 x x f  

1)0('    f     2)0(''    f     6)0('''    f  

!3

))(('''

!2

))((''))((')()(

32

3

a xa f  a xa f  a xa f  a f   x P 

 

3232

!3

6

!2

2))(1(01

1

1 x x x

 x x x

 x

3 rd  degree approx. :

Page 55: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 55/59

4 - 55

Exercise: 

Find the Taylor series generated by f ( x)=e x

 at x = 0up to n degrees.

621)(

32

3

 x x x x P   

1)0()(

1)0()(

1)0(')('

)0()(

33

22

0

 f  e x f  

 f  e x f  

 f  e x f  

e f  e x f  

 x

 x

 x

 x

!3

))(('''

!2

))((''))((')()(

32

3

a xa f  a xa f  a xa f  a f   x P 

 

Example:

Page 56: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 56/59

4 - 56

Find the Taylor series and theTaylor polynomial generated

 by f ( x) = e x at x = 0.

Example:

Page 57: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 57/59

4 - 57

Page 58: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 58/59

4 - 58

Exercise

Find the Taylor series generated by  f ( x) =1/ x at a = 2.

Find the Maclaurin series generated by f ( x) = 1/(1+ x).

ANS:

  13

2

22

21...

2

2

2

2

2

1

n    x x x 

n n x x x x    )1(...1

  32

nn

n   a xn

a  f  a x

a  f  a xa  f  a  f   x P    )(

!

)(...)(

!2

)(''))((')()(

)(2

Page 59: AppliDifferentiation_part2_IRY14

7/26/2019 AppliDifferentiation_part2_IRY14

http://slidepdf.com/reader/full/applidifferentiationpart2iry14 59/59

~End Of Application of Derivative Part 2~