applications of dsp 1.imaging 2.medical imaging 3.bandwidth compression 4.sgraphic 5.spectrum...

82
Applications of DSP 1. Imaging 2. Medical Imaging 3. Bandwidth compression 4. sGraphic 5. Spectrum Analysis 6. Array Processors 7. Control and Guidance 8. Radar

Upload: aiden-montgomery

Post on 26-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Applications of DSP

1. Imaging2. Medical Imaging3. Bandwidth compression4. sGraphic5. Spectrum Analysis6. Array Processors7. Control and Guidance8. Radar

Page 2: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Reason for Processing of signals

• Signals are carriers of information– Useful and unwanted– Extracting, enhancing, storing and transmitting

the useful information• How signals are being processed?---

– Analog Signal Processing– Digital Signal Processing

Page 3: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

DSP

PrF ADC DSP DAC PoFAnalog Analog

Equivalent analog signal processor

PrF: antialiasing filtering

PoF: smooth out the staircase waveform

Page 4: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Comparison of DSP over ASP

-Advantages • Developed Using Software on Computer;• Working Extremely Stable;• Easily Modified in Real Time ;• Low Cost and Portable;• Flexible

Page 5: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Comparison of DSP over ASP Contd…

-Disdvantages• Lower Speed and Lower Frequency• Can not be used at Higher frequency• Skilled manpower is required• Weak Signals can not be able to process

Page 6: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

The two categories of DSP Tasks

• Signal Analysis:– Measurement of signal properties– Spectrum(frequency/phase) analysis– Target detection, verification, recognition

• Signal Filtering– Signal-in-signal-out, filter– Removal of noise/interference– Separation of frequency bands

Page 7: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Digital Filter Specification

• Digital Filter designed to pass signal components of certain frequencies without distortion.

• The frequency response should be equal to the signal’s frequencies to pass the signal. (passband)

• The frequency response should be equal to zero to block the signal. (stopband)

Page 8: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Basic Filter Types

• Low pass filters• High Pass filters• Band pass filters• Band reject filters

Page 9: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Digital Filter Specification

• 4 Types

Page 10: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Digital Filter Specification Contd…

• The magnitude response specifications are given some acceptable tolerances.

Page 11: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Digital Filter Specification Contd…

Transition band is specified between the passband and the stopband to permit the magnitude to drop off smoothly.

In Passband

In Stopband

Where δp and δs are peak ripple values, ωp are passband edge frequency and ωs are stopband edge frequency

ppj

p foreG ,1)(1

ssj foreG ,)(

Page 12: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• Digital filter specification are often given in terms of loss function,

A(ω) = -20 log10 |G(ejω)|

• Loss specification of a digital filter– Peak passband ripple, αp = -20 log10 (1 – δp)

dB– Minimum stopband attenuation, αs = -20

log10 (δs) dB

Digital Filter Specification Contd…

Page 13: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• The magnitude response specifications may be given in a normalized form.

Digital Filter Specification Contd…

Page 14: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

14

• In practice, passband edge frequency and stopband edge frequency are specified in Hz

• For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using

TFF

F

F pT

p

T

pp

2

2

TFFF

F sT

s

T

ss 2

2

sFpF

Digital Filter Specification Contd…

Page 15: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

15

• Example - Let kHz, kHz, and kHz

• Then

7pF 3sF25TF

56.01025

)107(23

3

p

24.01025

)103(23

3

s

Digital Filter Specification Contd…

Page 16: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Digital Filter Type

n

nznhzH ][)(

• Objective of digital filter design is to develop a causal transfer function meeting the frequency response specification.

• For IIR digital filter design

Page 17: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• For FIR digital filter design

– The degree N of H(z) must be small, for a linear phase, FIR filter coefficient must satisfy the constraint

N

n

nznhzH0

][)(

][][ nNhnh

Digital Filter Type Contd…

Page 18: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR FILTERS

Page 19: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique

• Simplest FIR the filter design is window function technique

• An ideal frequency response may express

where

( ) [ ]j j nd d

n

H e h n e

1[ ] ( )

2j j n

d dh n H e e d

Page 20: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique Contd…

• To get this kind of systematic causal FIR to be approximate, the most direct method intercepts its ideal impulse response!

[ ] [ ] [ ]dh n w n h n

( ) ( ) ( )dH W H

Page 21: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique Contd…

• 1.Rectangular window

• 2.Triangular window (Bartett window)

1, 0[ ]

0,

n Mw n

otherwise

2 , 0 22[ ] 2 , 2

0,

n MnMn Mw n n MM

otherwise

Page 22: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique Contd…

• 1.Rectangular window • 2.Triangular window (Bartett window)

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n

)

Rectangular window

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n

)

Bartlett window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-50

0

50

100

pi unitsF

requ

ency

res

pons

e T

(jw)(

dB) Rectangular window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-50

0

50

100

pi units

Fre

quen

cy r

espo

nse

T(jw

)(dB

) Bartlett window

Page 23: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique Contd…

• 3.HANN window

• 4.Hamming window

1 21 cos , 0

[ ] 2

0,

nn M

w n M

otherwise

20.54 0.46cos , 0

[ ]0,

nn M

w n Motherwise

Page 24: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-50

0

50

100

pi unitsF

requ

ency

res

pons

e T

(jw)(

dB) Hanning window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-50

0

50

100

pi units

Fre

quen

cy r

espo

nse

T(jw

)(dB

) Hamming window

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n)

Hanning window

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n)

Hamming window

FIR Filter Design by Window function technique Contd…

• 3.HANN window• 4.Hamming window

Page 25: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design by Window function technique Contd…

• 5.Kaiser’s window

• 6.Blackman window

20

0

2[ 1 (1 ) ]

[ ] , 0,1,...,[ ]

nI

Mw n n MI

2 40.42 0.5cos 0.08cos , 0

[ ]0,

n nn M

w n M Motherwise

Page 26: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-50

0

50

100

pi unitsF

requ

ency

res

pons

e T

(jw)(

dB) Blackman window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-150

-100

-50

0

50

100

pi units

Fre

quen

cy r

espo

nse

T(jw

)(dB

) Kaiser window

• 5.Kaiser’s window• 6.Blackman window

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n

)

Blackman window

0 10 20 30 40 50 600

0.5

1

sequence (n)

T(n

)

Kaiser window

FIR Filter Design by Window function technique Contd…

Page 27: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Type of the window Transition Bandwidth Minor Lobe attenuation in dB

Rectangular 4π/M -21

Triangu;ar 8π/M -26

Hanning 8π/M -44

Hamming 8π/M -53

Blackmann 12π/M -74

Kaiser variable variable

Window Table

Page 28: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

351M Digital Signal Processing

Filter Design by Windowing• Simplest way of designing FIR filters• Method is all discrete-time no continuous-time involved• Start with ideal frequency response

• Choose ideal frequency response as desired response• Most ideal impulse responses are of infinite length• The easiest way to obtain a causal FIR filter from ideal is

• More generally

n

njd

jd enheH

deeH21

nh njjdd

else0

Mn0nhnh d

else0

Mn01nw where nwnhnh d

Page 29: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Rectangular Window

else0

Mn01nw

• Narrowest main lob– 4/(M+1)– Sharpest transitions at

discontinuities in frequency

• Large side lobs– -21 dB– Large oscillation around

discontinuities

• Simplest window possible

Page 30: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Bartlett (Triangular) Window

else0

Mn2/MM/n22

2/Mn0M/n2

nw

• Medium main lob– 8/M

• Side lobs– -25 dB

• Hamming window performs better

• Simple equation

Page 31: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Hanning Window

else0

Mn0M

n2cos1

21

nw

• Medium main lob– 8/M

• Side lobs– -44 dB

• Hamming window performs better

• Same complexity as Hamming

Page 32: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Hamming Window

else0

Mn0M

n2cos46.054.0nw

• Medium main lob– 8/M

• Good side lobs– -53 dB

• Simpler than Blackman

Page 33: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Blackman Window

else0

Mn0M

n4cos08.0

Mn2

cos5.042.0nw

• Large main lob– 12/M

• Very good side lobs– -73 dB

• Complex equation

Page 34: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Lowpass filter• Desired frequency response

• Corresponding impulse response

c

c2/Mj

jlp 0

eeH

)(

sin)(

n

nnh c

Page 35: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Highpass filter

• Corresponding impulse response

)(

sin)(sin)(

n

nnnh c

Page 36: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Bandpass Filter

• The Impulse Response is

)(

sin)(sin)( 12

n

nnnh cc

Page 37: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• The Impulse Response is

)(

sin)(sin)(sin)( 12

n

nnnnh cc

Bandreject Filter

Page 38: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design Procedure

• Step1:Draw the response of the given problem.

• Step2:Convert the Analog frequencies in to the Digital frequencies

• Step3:Calculate the Transition Band width.

• Step4:Calculate the order of the filter by equating the calculated Transitions band width to the transition band width in the table.

Page 39: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• Step5:Calculate the Ʈ parameter Ʈ =(M-1)/2

• Step6:Choose the Window to be used by considering the attenuation.

• Step7:Calculate ht(n)

• Step8:Calculate w(n) for the choosen window.

FIR Filter Design Procedure Contd…

Page 40: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

FIR Filter Design Procedure Contd…

• Step9:Then calculate h(n)=ht(n) x w(n)

• Step10: For verifying the design use the equation for calculating the magnitude response and the frequency response.

1

0

)(cos)(*2)()(

n

jj nnhheeH

Page 41: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Table: Frequency Response

Ѡ Ø

Attenuation20log

0

0.2π

0.4π

0.6π

0.8π

π

HH

Page 42: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

42

Kaiser Window Filter Design Method• Parameterized equation forming a set of

windows– Parameter to change main-lob width

and side-lob area trade-off

– I0(.) represents zeroth-order modified Bessel function of 1st kind

else0

Mn0I

2/M2/Mn

1Inw

0

2

0

Page 43: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Determining Kaiser Window Parameters• Given filter specifications Kaiser developed empirical equations

– Given the peak approximation error or in dB as A=-20log10

– and transition band width • The shape parameter should be

• The filter order M is determined approximately by

21A0

50A2121A07886.021A5842.0

50A7.8A1102.04.0

ps

285.2

8AM

• After the kaiser window design follow the same procedure for the filter design

Page 44: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

IIR FILTER

Page 45: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

n

nznhzH ][)(

• The transfer function of the IIR Filters will be of the form

IIR Filter Design

Page 46: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Commonly used analog IIR filters

• Butterworth filter • Chebyshev filters

Page 47: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Butterworth filters

• It is governed by the magnitude squared response

n

c

jH 2

1

1

Page 48: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• The response is maximally flat at the origin• Magnitude square is having a value of 0.5 at

the cutoff frequency• It is a monotonically decreasing function

beyond the cutoff frequency.

Butterworth filters-Properties

Page 49: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Butterworth Polynomial

Order Butterworth polynomial

1 S+1

2 S2+√2 S+1

3 (S2+S+1)(S+1)

This Polynomial may be obtained by finding the roots for n is odd and evenThen by considering the left half side poles the butterworth polynomial may be

constructed

Page 50: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Butterworth filter design

Step1:Find the order of the filtern=log[(10(k1/10)-1)/ (10(k2/10)-1)]/2log(Ω1/Ω2)

Step2:Obtain the normalised transfer function Hn(s)=1/Bn(s)

Step3:By substituting the value of s from the analog transformation Table the actual filter transfer function may be obtained

Page 51: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Analog Transformation

Filter Type

Normalised Response

Analog Transformation

Actual Response

Backward Equation

Low pass filter S=S/ΩC ΩS=Ω2/Ω1

High Pass Filter S=ΩC /S ΩS=Ω2/Ω1

Page 52: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• Relative linear scale– The lowpass filter specifications on the magnitude-squared

response are given by

||,1

|)(|0

||,1|)(|1

1

2

2

sa

pa

AjH

jH

Where epsilon is a passband ripple parameter, Omega_p is the passband cutoff frequency in rad/sec, A is a stopband attenuation parameter, and Omega_s is the stopband cutoff in rad/sec.

Chebyshev filter design- Some Prelimnaries

Page 53: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

sa atA

jH 2

2 1|)(|

pa atjH

2

2

1

1|)(|

Analog Filter response

Page 54: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

n=log[(g+(g2-1)1/2 ]/log(Ωr/(Ωr2-1)1/2

Design Procedure for chebyshev filters

Step1: Calculate the order of the filter

\Where

g-[(A2-1)/ϵ2]1/2

Ωr= Ω2/Ω1

A=10-K2/20

Step2:Obtained the normalised transfer function Hn(s)=k/(Sn+bn-I Sn-1+…+b1S+b0)

Page 55: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar
Page 56: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Analog to Digital Conversion

• Impulse Invariance Transformation• Bilinear Transformation

Page 57: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Impulse Invariance method

• The most straightforward of these is the impulse invariance transformation

• Let be the impulse response corresponding to , and define the continuous to discrete time transformation by setting

• We sample the continuous time impulse response to produce the discrete time filter

( )ch t

( )cH s

( ) ( )ch n h nT

Page 58: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Impulse Invariance method contd…

• The impulse invariance transformation does map the -axis and the left-half s plane into the unit circle and its interior, respectively

j

Re(Z)

Im(Z)

1

S domain Z domain

sTe

j

Page 59: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• is expanded a partial fraction expansion to produce

• We have assumed that there are no multiple poles

• And thus

( )cH s

1

( )N

kc

k k

AH s

s s

1

( ) ( )k

Ns t

c kk

h t A e u t

1

( ) ( )k

Ns nT

kk

h n A e u n

11

( )1 k

Nks T

k

AH z

e z

Impulse invariance method contd…

Page 60: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

11)( Zeas aT

• Hence it is sufficient if we substitute

Impulse invariance method contd…

Page 61: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

• Example:

Expanding in a partial fractionexpansion, it produce

The impulse invariant transformation yields a discrete time design with thesystem function

2 2( )

( )c

s aH s

s a b

1/ 2 1/ 2( )cH s

s a jb s a jb

( ) 1 ( ) 1

1/ 2 1/ 2( )

1 1a jb T a jb TH z

e z e z

Impulse invariance method contd…

Page 62: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Bilinear transformation method

• The most generally useful is the bilinear transformation.• To avoid aliasing of the frequency response as

encountered with the impulse invariance transformation.

• We need a one-to-one mapping from the s plane to the z plane.

• The problem with the transformation is many-to-one. sTz e

Page 63: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Bilinear transformation method Contd…

• We could first use a one-to-one transformation from to , which compresses the entire s plane into the strip

• Then could be transformed to z by with no effect from aliasing.

s 's

Im( ')sT T

's's Tz e

j

'

j

/T

/T

s domain s’ domain

Page 64: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

TZ

Zs

2

1

11

1

• Hence by using this equation a digital transfer function may be obtained

Bilinear transformation method Contd…

Page 65: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Feb.2008 DISP Lab 65

• The discrete-time filter design is obtained from the continuous-time design by means of the bilinear transformation

• Unlike the impulse invariant transformation, the bilinear transformation is one-to-one, and invertible.

1 1(2/ )(1 )/(1 )( ) ( ) |c s T z z

H z H s

Bilinear transformation method Contd…

Page 66: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Filter Realization

Page 67: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Filter Structures

•Direct form I

•Direct form II

•Cascaded form

•Parallel form

Page 68: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Basic elements of digital filter structures

Adder has two inputs and one output. Multiplier (gain) has single-input, single-output. Delay element delays the signal passing through it by

one sample. It is implemented by using a shift register.

z-1

a z-1

a

Page 69: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

a1

z-1

z-1a2

b0)(nx )(ny

)(nx )(ny

a1

a2

b0

z-1

z-1

1 2

3

4

5

)2()1()()()()()2()1()()()(

)2()1()()1()1()(

)()(

210501

2142315

34

23

2

nyanyanxbnwnxbnwnyanyanwanwanw

nynwnwnynwnw

nynw)2()1()()( 210 nyanyanxbny

Page 70: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Introduction

Computational complexity refers to the number of arithmetic operations (multiplications,

divisions, and additions) required to compute an output value y(n) for the system.

Memory requirements refers to the number of memory locations required to store the

system parameters, past inputs, past outputs, and any intermediate computed values.

Finite-word-length effects in the computations refers to the quantization effects that are inherent in any digital

implementation of the system, either in hardware or in software.

The major factors that influence the choice of a specific structure

Page 71: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

IIR Filter Structures

The characteristics of the IIR filter IIR filters have Infinite-duration Impulse Responses The system function H(z) has poles in ||0 z

)(11)()(

)(1

1

110

1

0N

N

MM

N

k

kk

M

k

kk

zaza

zbzbb

za

zb

zXzY

zH

The order of such an IIR filter is called N if aN≠0

M

kk

N

kk knxbknyany

01

)()()(

Page 72: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Direct form

In this form the difference equation is implemented directly as given. There are two parts to this filter, namely the moving average part and the recursive part (or the numerator and denominator parts). Therefore this implementation leads to two versions: direct form I and direct form II structures

N

kk

M

kk knyaknxbny

10

)()()(

N

k

kk

M

k

kk

za

zbzH

1

0

1)(

Page 73: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Direct form I

)(2 ny)(nx

b1

b2

b0

z-1

z-1

bM-1

z-1bM

)1( nx

)2( nx

)1( Mnx

)( Mnx

)(ny

a1

a2

z-1

z-1

aN-1

z-1aN

)1( ny

)2( ny

)1( Nny

)( Nny

)(1 ny

N

kk

M

kk knyaknxbny

10

)()()(

Page 74: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Direct form II

b1

b2

b0

z-1

z-1

bM-1

z-1bM

)(nx )(nyz-1

z-1

z-1

a1

a2

aN-1

aN

For an LTI cascade system, we can change the order of the systems without changing the overall system response

Page 75: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Cascade form

In this form the system function H(z) is written as a product of second-order sections with real coefficients

21

21

1

11

1

1

1

11

1

1

1

0

)1)(1()1(

)1)(1()1(

1)(

N

kkk

N

kk

M

kkk

M

kk

N

k

kk

M

k

kk

zdzdzc

zqzqzpA

za

zbzH

21

21

1

22

11

1

1

1

22

11

1

1

)1()1(

)1()1()(

N

kkk

N

kk

M

kkk

M

kk

zazazc

zbzbzpAzH 21

21

22NNNMMM

Page 76: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Parallel form Structures

Parallel form

In this form the system function H(z) is written as a sum of sections using partial fraction expansion. Each section is implemented in a direct form. The entire system function is implemented as a parallel of every section.

21

12

21

1

110

110

1

0

111

)(N

k kk

kkN

k k

kN

k

kk

M

k

kk

zaza

zbb

zc

AG

za

zbzH

21 2NNN

Suppose M=N

Page 77: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

Example

1111

111

)21

21(1)

21

21(1)

811)(

431(

)21)(321)(

211(10

)(zjzjzz

zzzzH

1

4

1

3

1

2

1

1

)21

21(1)

21

21(1)

811()

431(

)(

zj

A

zj

A

z

A

z

AzH

57.1425.12 ,57.1425.12 ,68.17 ,93.2 4321 jAjAAA

21

1

21

1

211

82.2650.24

323

871

90.1275.14)(

zz

z

zz

zzH

Page 78: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Copyright © 2005. Shi Ping CUC

21

1

21

1

211

82.2650.24

323

871

90.1275.14)(

zz

z

zz

zzH

-12.9z-17/8

-3/32 z-1

-14.75

26.82z-11

-1/2 z-1

24. 5

)(nx )(ny

Page 79: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Conclusions

• Discussed about the FIR filter design• IIR Filter design• Realization of structures

Page 80: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Feb.2008 DISP Lab 80

References

• [1]B. Jackson, Digital Filters and Signal Processing, Kluwer

Academic Publishers 1986 • [2]Dr. DePiero, Filter Design by Frequency Sampling,

CalPoly State University • [3]W.James MacLean, FIR Filter Design Using Frequency

Sampling • [5]Maurice G.Bellanger, Adaptive Digital Filters second

edition, Marcel dekker 2001

Page 81: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

Feb.2008 DISP Lab 81

References

• [6] Lawrence R. Rabiner, Linear Program Design of Finite Impulse Response Digital Filters, IEEE 1972

• [7] Terrence J mc Creary, On Frequency Sampling Digital Filters, IEEE 1972

• WWW.GOOGLE.COM

Page 82: Applications of DSP 1.Imaging 2.Medical Imaging 3.Bandwidth compression 4.sGraphic 5.Spectrum Analysis 6.Array Processors 7.Control and Guidance 8.Radar

THANK YOU