application of unsaturated soil mechanics to …不飽和土質力学の地盤工学への適用...

3
不飽和土質力学の地盤工学への適用 Application of Unsaturated Soil Mechanics to Geotechnical Engineering 概要 平成22年度 地盤工学会 研究業績賞 東京農工大学大学院 農学研究院 向後 雄二 ・フィルダムの築堤と貯水時 の安定問題 ・降雨時の斜面安定問題 ・地下水位の低下による 地盤沈下 ・斜面の地震時の安定問題 ・不飽和地盤材料の力学特性 ・不飽和地盤材料の力学挙動 発現メカニズム ・弾塑性モデル ・水分特性曲線モデル 不飽和土質力学 地盤工学 飽和不飽和 圧密解析法 適用

Upload: others

Post on 24-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Application of Unsaturated Soil Mechanics to …不飽和土質力学の地盤工学への適用 Application of Unsaturated Soil Mechanics to Geotechnical Engineering 概要 平成22年度地盤工学会研究業績賞

不飽和土質力学の地盤工学への適用Application of Unsaturated Soil Mechanics to

Geotechnical Engineering

概要

平成22年度 地盤工学会 研究業績賞

東京農工大学大学院 農学研究院向後 雄二

・フィルダムの築堤と貯水時の安定問題

・降雨時の斜面安定問題・地下水位の低下による

地盤沈下・斜面の地震時の安定問題

・不飽和地盤材料の力学特性・不飽和地盤材料の力学挙動

発現メカニズム・弾塑性モデル・水分特性曲線モデル

不飽和土質力学 地盤工学

飽和不飽和圧密解析法

適用

Page 2: Application of Unsaturated Soil Mechanics to …不飽和土質力学の地盤工学への適用 Application of Unsaturated Soil Mechanics to Geotechnical Engineering 概要 平成22年度地盤工学会研究業績賞

*不飽和土の典型的な力学的挙動①飽和土と比べて大きなせん断強度を有し,浸水により強度が低下する。②一定荷重下で浸水させると,圧縮(飽和コラプス;地盤が締まる)あるいは膨張(地盤が緩む)を示す。③飽和土と比べて剛性が高い。④同密度,同拘束圧であれば,飽和土よりもより過圧密側の挙動を示す。つまり,せん断時の体積変化は小さく,応力-ひずみ関係はより軟化挙動を示す。⑤降伏応力が飽和土より大きい。

サクションs

s =ua-uw

ua:間隙空気圧uw:間隙水圧

有効応力の増加

降伏応力の増加

不飽和土の力学的挙動*の発現

不飽和土の力学挙動の発現メカニズムモデルの提案

(a) Insular air saturation (b) Pendular saturation

(c) Fuzzy saturation

Soil particle

Pore water

Pore air

不飽和土の弾塑性モデル

q

p’

降伏面s = s2

降伏面s = s1

s1 < s2

0

水分特性曲線のモデル化

f w f c c r c c

f w f c h c

0

01

r rr

r

rd r

rd rw

S Sr

S S

飽和度 Sr

サク

ショ

ンs

(kP

a)

Srw SrdSr

現在の点再吸水開始点

Srd0

吸水

脱水

共役点

飽和度 Sr

サク

ショ

ンs

(kP

a)

Srw SrdSr

現在の点再吸水開始点

Srd0

吸水

脱水

共役点

再吸水線

e d e c c r c c

e d e c h c

r rw

rd rw

S Sr

S S

再脱水線

有限要素飽和不飽和圧密解析法

水分保持状態

Page 3: Application of Unsaturated Soil Mechanics to …不飽和土質力学の地盤工学への適用 Application of Unsaturated Soil Mechanics to Geotechnical Engineering 概要 平成22年度地盤工学会研究業績賞

要素実験のシミュレーション

0 1 2 3 4 5 6 7

0

100

200

300

400

500

600

Soaked during shearing (Experimental)

Soaked during shearing (Calculated)

Saturated(Experimental)

Unsaturated(Experimental)

q

(kP

a)

Axial Strain   (%)

0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

Soaked during shearing (Experimental)

Soaked during shearing (Calculated)

Saturated(Experimental)

Unsaturated(Experimental)

Volu

metric

Strain

 (%

Axial Strain (%)0 1 2 3 4 5 6 7

0

100

200

300

400

500

600

Soaked during shearing (Experimental)

Soaked during shearing (Calculated)

Saturated(Experimental)

Unsaturated(Experimental)

q

(kP

a)

Axial Strain   (%)

0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

0

Soaked during shearing (Experimental)

Soaked during shearing (Calculated)

Saturated(Experimental)

Unsaturated(Experimental)

Volu

metric

Strain

 (%

Axial Strain (%)

(a) ロック材の三軸圧縮試験

(c) 水分特性曲線と繰り返し弾塑性モデルの適用例

(b) ロック材の圧密試験

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

0.2

0.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Vertical stress ( )kPa

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

v

v

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

S r0 = 25.0%

S r0 = 83.2%

S r0 = 48.4%

S r0 = Initial degree of saturation

Void

rati

o e

Vertical stress (kPa)v

v

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

0.2

0.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Vertical stress ( )kPa

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

v

v

0.2

0.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

0.2

0.3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Vertical stress ( )kPaVertical stress ( )kPa

Sr0 = 24.7% soaked

Sr0 = 49.2% soaked

Soaking

Soaking

Symbols = Experimental results

Solid lines = Simulation results

Void

rati

o e

v

v

v

v

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

S r0 = 25.0%

S r0 = 83.2%

S r0 = 48.4%

S r0 = Initial degree of saturation

Void

rati

o e

Vertical stress (kPa)v

v

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

Sr0 = 25.0%

Sr0 = 83.2%

Sr0 = 48.4%

Sr0 = Initial degree of saturation

Void

rati

o e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1000 10000

Symbols = Experimental results

Solid lines = Simulation results

S r0 = 25.0%

S r0 = 83.2%

S r0 = 48.4%

S r0 = Initial degree of saturation

Void

rati

o e

Vertical stress (kPa)v

vVertical stress (kPa)v

v

v

v

0

5

10

15

20

25

30

0 20 40 60 80 100

Degree of saturation Sr (%)

Su

ctio

n s

(

kP

a)

0.80

1.00

1.20

1.40

1.60

1.80

1 10 100 1000

Effective mean stress (kPa)

Void

rat

io

Simulation

Experimental

モデルまたは実構造物の解析

stage 5

stage 3

stage 2

stage 7

stage 8

stage 6

stage 5

stage 3

stage 2

stage 7

stage 8

stage 6

100 200100 200

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

stage 1

stage 4

stage 3

stage 2

stage 5

100 200

00

100 200

00

100 200

0

0

100 200

0

0

100 200

0

0

100 200

0

0

stage 7

stage 8

stage 6

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

経過時間(日)

水位

 (m

Measured

Analysis

Elapsed Time (day)

Upstr

eam

wate

r le

vel (m

)

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

経過時間(日)

水位

 (m

Measured

Analysis

Elapsed Time (day)

Upstr

eam

wate

r le

vel (m

)

100 200100 200

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

stage 1

stage 4

stage 3

stage 2

stage 5

100 200

00

100 200

00

100 200

0

0

100 200

0

0

100 200

0

0

100 200

0

0

stage 7

stage 8

stage 6

100 200100 200

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

100 200

0

stage 1

stage 4

stage 3

stage 2

stage 5

100 200

00

100 200

00

100 200

0

0

100 200

0

0

100 200

0

0

100 200

0

0

stage 7

stage 8

stage 6

100 200

00

100 200

00

100 200

0

0

100 200

0

0

100 200

0

0

100 200

0

0

stage 7

stage 8

stage 6

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

経過時間(日)

水位

 (m

Measured

Analysis

Elapsed Time (day)

Upstr

eam

wate

r le

vel (m

)

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

経過時間(日)

水位

 (m

Measured

Analysis

Elapsed Time (day)

Upstr

eam

wate

r le

vel (m

)

1390

1420

1450

1480

1510

1540

0

60

120

180

240

300

01-Apr-00

01-Aug-00

01-Dec-00

02-Apr-01

02-Aug-01

02-Dec-01

03-Apr-02

03-Aug-02

03-Dec-02

04-Apr-03

04-Aug-03

04-Dec-03

04-Apr-04

04-Aug-04

04-Dec-04

05-Apr-05

05-Aug-05

FL o

r R

WL

(E

L m

PW

P o

r V

TE

P

(×10kP

a)

Date

PWP measured

VTEP measured

VTEP estimated

Reservoir water Level

Fill Level

PWP estimated

1390

1415

1440

1465

1490

1515

1540

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

01-Apr-00

01-Aug-00

01-Dec-00

02-Apr-01

02-Aug-01

02-Dec-01

03-Apr-02

03-Aug-02

03-Dec-02

04-Apr-03

04-Aug-03

04-Dec-03

04-Apr-04

04-Aug-04

04-Dec-04

05-Apr-05

05-Aug-05

FL o

r R

WL (

EL m

Sett

lem

ent

m)

Estimated

Measured

Reservoir Water Level

Fill Level

Date

図-4 各種計測器の配置

1420

1460

1500

1380

1540E.L.(m)

凡例

○:間隙水圧計

●:土圧,間隙水圧計

:層別沈下計

pwp

EP & PWP

Cross Arm

PWP

EP & PWP

Cross arm

飽和不飽和圧密解析法の適用例

フィルダム湛水時の遠心実験解析(a)水平応力(b)変位

実フィルダム湛水時の解析

(a)

(b)