application of mass spectrometry to coordination chemistry

16
INTEGRATED PAPER INTEGRATED PAPER 腊腏腎腋腂腉腌腆腈腄腂腍腇 Application of Mass Spectrometry to Coordination Chemistry 膥臋Ryuichi AG6@6L6 膒臈臕膍膄膍臇膢膍臲 Department of Chemistry and Materials Engineering, Kansai University, Suita, OSAKA, JAPAN Application of electrospray ionization mass spectrometry (ESI-MS) to coordination chemistry has been extended in recent years. Here, we examined a number of polynuclear ruthenium(II), rhodium(III), and cobalt(III) bipyridine complexes by ESI-MS. It was shown that ESI-MS is a useful tool for identifying metal complexes and detecting contamination, because ESI mass spectra for the complexes displayed a mass pattern simple enough for easy structural assignment. In coordination chemistry, the actual advantages of ESI-MS are as follows: (1) ionic metal complexes exhibit simple mass spectra that can be analyzed easily using the characteristic isotope distribution of transition metals, (2) the metal complexes yield multiply charged ions with loss of counter ions so that the multinuclearity of polymetallic complexes and self-assembled complexes in a solution can be determined, and (3) most importantly, since preformed ions in bulk solution are extracted to the gas phase in the soft ESI process, the observed mass spectra qualitatively reflect only the intact ions in the solution. We detected unstable species of Se or W complexes that exists only in very strongly basic or acidic solvents using the nanospray technique. Moreover, we also studied the application of chiral recognition using antimony potassium tartrate and the characterization of the self-assembly of ferrocenedicarboxylic acid in a solution by ESI-MS. The ESI technique combined with a flow-through reaction cell is a powerful tool for the detection of reaction intermediates and primary products. Finally, photosubstitution of Ru(II) complexes, photo-induced metal release/inclusion of crowned malachite green leuconitrile derivatives, and electrolytic oxidations of Ru(II) and Os(II) complexes were investigated using online ESI-MS systems. (Received August 20, 2008; Accepted September 10, 2008) 1. 腃腀腅腁 膫臓腚膣臎膈臉腙腊腇腕X 臌膉臊臺腠 nuclear mag- netic resonance (NMR) 臶膟臺腗臰膌腑腕膴 臶臉 (mass spectrometry: MS) 臺腋腢臣腢腥腤臶膮臂臸腛膽 腘腇腚腖膘臼腚臔膿腗腘腤膫臓腚 X 臌膉臊臺腠 NMR 臶膟臺腙腡腤膈臉腌膩臥腘臁膨腙腚腝臶臉臺 腙腡腤膈臉腌膦腦腥腕腇腓腑腋腑腘腌腢膙臩膫臓膄 膍腚臶腖膴臶臉臺腌腡腎腇腄腐腥腤腡腈腙腘腔腓腲腱腘腨腪腺膄臺腖腆腤腩腸腫腱腹腮腳腸腂膴臶臉臍臘 腚膧臅自膄腗腗腟腙膶腻腇腌膐臷腖腚膱腖臄臶 臝臡腚臗腇臏臜膲膑腖膚臑膫臓腚臢臜腠膣臎膈臉腌膆自腙 腘腔腓腏腗腌膵膀腖腆腤腗膤腉腢腥腤膔膄膨臵腊腡腜膔膚臑膫臓腛臱膓臬臅腖臨臱腼臜腘 腟腚腌臒腇腚腖腾臯腙臠膮腨腪腺膄 (electron ioniza- tion: EI) 臺腚腡腈腙膱腧膕膄腑腕腋腢腨腪腺膄腒腤臹 臺腛臥腑腇腑腓腌腔腕膚臑膫臓腚膴臶臉腛腯腲腱腘 腨腪腺膄臺腖腆腤臠膊腨腪腺膄 (field desorption: FD), 臐膞膮膾膛腨腪腺膄 (fast atom bombardment: FAB) 臦膳腨腪腺膴臶臉 (secondary ion mass spectro- metry: SIMS), 腸腂腭腂臖(laser desorption: LD) 臺腙 腡腔腕膦腦腥腕腍腓臤腙FAB 腙腡腤膫臓膄膨臵腚膴臶臉腛腆腤臝臡腚臆膠腧腊腐腞腓腌臫腽膮腋腢腚腳腹腱 腺膁腍臭腍臫腽膮腚臖腊腡腜臘膏腚至臮膃腙腡腤腨腪 腺臇臆腌膝腢腥腤腚腖臶膮腨腪腺腚膗臡腌膼腐腎腮腴 腫腱腷腌致膬腘腚腌臥臞腖腆腤膙臩腡腣腯腲腱腘腨腪腺膄臺腗腑腕腩腸腫腱腹腮腳 腸腂腨腪腺膄 (electrospray ionization: ESI) 1) 腠腵腱 腶腰腫腮膰膂腸腂腭腂臖腨腪腺膄(matrix-assisted laser desorption/ionization: MALDI) 2), 3) 腌膋臬腐腥腓ESI-MS 腚臤臙腛膪腟腯腲腱腘腨腪腺膄臺腖臒膅腨 腪腺腧膡腡腎臏臜腖腍腤腏腗腖腆腤 4), 5) 腏腚臛膻腧膎 腋腑腕臄臒腎腚膚臑膫臓腚膴臶臉腙 ESI-MS 腇腄腥腕腇腤1990 臩腙 Chait 腚腬腷腂腳 6) 腙腡腔腕膺腞腕膚臑膫臓 Ru(bpy) 3 Cl 2 (bpy2,2-bipyridine) ESI 腵腮腮腴腫腱 Correspondence to: Ryuichi AG6@6L6, Department of Chemistry and Materials Engineering, Kansai University, 3335 Yamate-cho, Suita, Osaka 5648680, JAPAN, e-mail: [email protected] 膥臋腾腀 膒臈臕膍膄膍臇膢膍臲腀 腅5648680 臃臟膯膭 膷臚 3335 臻膜膖腛 2007 臩臡臧臻膴臶臉膍膇膍膇臀腧膸臀腑腓腁 J. Mass Spectrom. Soc. Jpn. Vol. 56, No. 6, 2008 247

Upload: others

Post on 21-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

INTEGRATED PAPERINTEGRATED PAPER

�����������

Application of Mass Spectrometry to Coordination Chemistry

����Ryuichi AG6@6L6

��������� Department of Chemistry and Materials Engineering, Kansai University,

Suita, OSAKA, JAPAN

Application of electrospray ionization mass spectrometry (ESI-MS) to coordination chemistry has beenextended in recent years. Here, we examined a number of polynuclear ruthenium(II), rhodium(III), and cobalt(III)bipyridine complexes by ESI-MS. It was shown that ESI-MS is a useful tool for identifying metal complexes anddetecting contamination, because ESI mass spectra for the complexes displayed a mass pattern simple enoughfor easy structural assignment. In coordination chemistry, the actual advantages of ESI-MS are as follows: (1)ionic metal complexes exhibit simple mass spectra that can be analyzed easily using the characteristic isotopedistribution of transition metals, (2) the metal complexes yield multiply charged ions with loss of counter ionsso that the multinuclearity of polymetallic complexes and self-assembled complexes in a solution can bedetermined, and (3) most importantly, since preformed ions in bulk solution are extracted to the gas phase in thesoft ESI process, the observed mass spectra qualitatively reflect only the intact ions in the solution. We detectedunstable species of Se or W complexes that exists only in very strongly basic or acidic solvents using thenanospray technique. Moreover, we also studied the application of chiral recognition using antimony potassiumtartrate and the characterization of the self-assembly of ferrocenedicarboxylic acid in a solution by ESI-MS. TheESI technique combined with a flow-through reaction cell is a powerful tool for the detection of reactionintermediates and primary products. Finally, photosubstitution of Ru(II) complexes, photo-induced metalrelease/inclusion of crowned malachite green leuconitrile derivatives, and electrolytic oxidations of Ru(II) andOs(II) complexes were investigated using online ESI-MS systems.

(Received August 20, 2008; Accepted September 10, 2008)

1. � � �

� ���������� X����� nuclear mag-

netic resonance (NMR) ���� !"�#���(mass spectrometry: MS) �$%&%'(�)*+,-.��/� 0�,� 12�34�.(� �X�����NMR����5(��678.9:��;� #�����5(��6<='��>? "$".6%� @A� � �����/#����65B��C'(5D�.E>? FGH.IJK��/L(MNOHPQRNS#���TU�VWX���Y�� Z[�6\]/� -��^�/_�`a�b�cdef/gh� �id�����6jX�.E>k�6l.m/L(�no%'(?p�:q�5r�pgh� ,stuW/vswd.Y�6x��/� �y�z)IJK� (electron ioniza-

tion: EI) ��5D�^�{|�"�$%IJK�}(~�,8"�?">6E��gh� �#���,�FGH.IJK��/L(z�IJK� (field desorption: FD), V��)��IJK� (fast atom bombardment: FAB)

�� ��IJK#��� (secondary ion mass spectro-

metry: SIMS), NS�S�� (laser desorption: LD) ��5E�<='��>?��� FAB�5(� �:q�#���,L(`a���{�C�>6� ��)$%�RPHK����� ��)����5rU������5(IJK�6�%'(�/� �)IJK��a6�CB� Q�OH�6��.�68�/L(?@A� 5�FGH.IJK���"�MNOHPQRNSIJK� (electrospray ionization: ESI) �1)��H� OQ¡¢NS�S��IJK� (matrix-assistedlaser

desorption/ionization: MALDI) �2), 3)6£uC'>? ��� ESI-MS��¤,� ¥YFGH.IJK��/x¦IJK{§ 5Bcd/�(k�/L(4), 5)? k�¨©{ª$"�_xB�gh� �#���� ESI-MS6��C'��(?

1990A� Chait�«�SR6)�5E�¬��gh� Ru(bpy)3Cl2 (bpy­2,2�-bipyridine) � ESI�QQ�OH

Correspondence to: Ryuichi AG6@6L6, Department of

Chemistry and Materials Engineering, Kansai University, 3�3�35 Yamate-cho, Suita, Osaka 564�8680, JAPAN, e-mail:[email protected]����� ���������� ®564�8680 ¯°±²³´ 3�3�35µ¶·, 2007Aa¸µ#����¹�¹º{»º">?

J. Mass Spectrom. Soc. Jpn. Vol. 56, No. 6, 2008

�247�

�������� ��������� ��� Fig. 1

���� Ru(bpy)32���������� ��� (col-

lision-induced dissociation: CID) ��� bpy������������� ����� ESI-MS � !�" # $��%���&'�� �()*+ (II),-.-/��0" 12 !��!�3 ���45�6�78�9�����:�1;<�=> � ?@��AB�C�D��E��BF�� G �H2 ��;<�=>��I�J;<�=>��K�L��6FB2 � Ru(bpy)3

2� MG �! 8NO"$ ?@�P�Q&��BF�� ��RS2 T0" [URu(bpy)2(CN)2V2Ru(bpy(COO)2)2]2W

18"$�6XY�(Z#[\�AB$]2TiO2%! �^# _& �F��`'a�#(�b �2c3���)����0" de 18NO�&��fg��# $� h*a�+iBF�� �j&�0" �ekA��]2G " �,�����l-�&�X.mn�o�p/&!�" ��AB2ESI-MS��FB0q���r1�2����]�� 3e4��12 !�" ESIs��tuv� w5�&?@2 x������yk z�6�7 mass

spectrometry/mass spectrometry (MS/MS) 6����%� {|�}FB~�� ���2 " NO�6XESI-MS 78�y�AB2 ;�uv����>�|9 ���:���"$���meA������ ESI-MS

$�;�}FB����� <=��'B28"$2��"$2 NO"$&� "$>3 Myk?��@��A����,��]������ � ����� ESI-MS

�61B�> "$z� ?@�C_&������

����

2. �����������

ESI ���Nz��AB2 B�>����D�ABF��� (preformed ion) ���&E��F��u>��"G����GABQ����G�f��2 �H��XI���BF� A��'B2 !��2 Cz�2 �����E}!�" &� ���a��1 ESI-MS�h*��� ���2 ��v�N:�1Na���J��9�t� ¡2 :�10¢ �j���v�N�£KEESI6�C_��� A�A&��2 B�>�>a���ABD��¤e12 �H� ESIs��tuv��2��1p/��� A�A2 1) ESI |9�9��JNO��¡¥u�"$2 2) ¦F¢N\��FB�� ��bNO¢N62 3) Y�§-!����¨© ���\�L��M6&��7�AB2 ESIs��tuv��2����]��M2MALDI612NªH3� «O�o¬�P­e�b� MALDI-time-of-flight mass spectrometer (MALDI-

TOF-MS) ��'B 105 DaQ® «O���h*���A��'B2 ¯�°u«2 R±N?2 0¢&� y ²��6�7ek²�� ��O���7���BF� A�A2 MALDI1 ESI�S�B³´v&���N6�&F �" NO# $�;1µ&F�

Fig. 2 1 Ru(bpy)3X2 (X¶ClW, ClO4W) Y�v)v-

�B�>�6X·����>¡ ESIs��tuv��2 �Y)�� ¸¹�T��E ��� EA� �tuv��J�> Uº�"»ABF &�S2 ��

Fig. 1. Structures of bidentate and bridging ligands. bpy¶2,2�-bipyridine, bpz¶2,2�-bipyrazine, dmbpy¶3,3�-dimethyl-2,2�-bipyridine, ampy¶2-(aminomethyl)pyridine, dmbpbim¶1,1�-dimethyl-2,2�-bis(2��-pyridyl)-6,6�-bibenzimidazole,bbbpyH2¶2,2�-bis(2��-benzimidazolyl)-4,4�-bipyridine, dmbbbpy¶2,2�-bis(N-methylbenzimidazole-2-yl)-4,4�-bipyridine.

R. Arakawa

�248�

������� Cl� �� Ru(bpy)3Cl�� ClO4� �

������������������ �� �� ! "#$�����%����� ���&'�()*���+ Cl�,ClO4

�-.�� /�&'��0$-+Ru(bpy)3(ClO4)���+ Cl��1����-.�������� 2&�34 Fig. 1 �56678 #+9:��;���<2=�0$�>� (intact) )*�?@A24��BC������� � � Ru(tpy)2X2 (tpyD2,2� : 6�,2��-terpyridine) �1��EFG?H�� 2I2 ESIJ&+MALDI�-���&56678 #� FAB�1��K�LM:��;?NO��P24�������+QR-.�� /���+ %�S�T��UV�WX���YZ��� FAB-+T�+5 "[86$��������0UV-����� ESI-+\��2&��]�0�$������-�M(G���4���MALDI-+^_�`ab[ c�����I2&T�?5 "[86��d���2�efFgh��� 2&�34 ESI�MALDI�678 #+i��0��;UV?�j��P24�k��l�mn�op� ESI-MS�q�c�����rsI.�� 1) )*�t^_l�678 #+ >u v�1�wk�xy �z Na�!{���|})*��>~2k��-��k678 #?H�1�|�� /24��^_?�<l-+/�^_"����`a�?�s�- /�?��24l����#��k�� 2)

ESI +�)*��\$���>~��|})*�?(%�r@A2 /�}�?678 #I�#�������-���- |�lo���0$����UV����

(-.�� 3) ����&k�+ ESI��� k)*�h��� preformed)*���j�0$I�9:��A����- NMRz�9h�'����E�K�0$�)*������24������-��� �kZ� ESI-MS-����9:�)*�+����0$�����)*�?�%24���- ��)*�h���K�$t v?)*�h24�( �?�K�-+k��

3. ESI�������

�)��v�*z ¡#¢a�*�mn��&k)*�t� Ru(II)� bpyl� ESI56678 #+�|r+£��4��7)¤16)� ,�v C3S5

2� �^_l+u���t?�� /�¥h�¦��t?��&'�§-��&�4��� ��� C3S5

2� l+.¨k/)*�678 #�����17)¤22)� J& ��^_�|�©U*"ª5al�����34 ESI-MS�l�|��?«���&'�(k��-.���?H2&23)¤31)� ��-+ "�|�l� ESI56678 #�"¬�s�4�­���

3.1 ����Ru(bpy)2 dMe(ClO4)2� Ru(bpy)2 BgH(ClO4)2�N)*�678 #-+ /�®� 2})*� [M�2X]2� �¯a6°a8?H� (Fig. 3)� ,�v dMe, BgH �±²+Fig. 1 �H�� Ru(bpy)2BgH(ClO4)2+ ,�v BgH��$t�xy �?�34���- 1})*�� [M�2X�H]��@A���7), 8)�Ru(bpy)3Cl2zRu(phen)3Cl2 (phen

D1,10-phenanthroline) � ESI56678 #�o�4 ESI)*�³0�6´5aµ�¶ ·¸1 ¡#¢a DV¹� 90 eVºc�k�� CID��342»,�v�\$2& Ru(bpy)2�, Ru(bpy)2

� )*��>~���

Fig. 2. Positive ion ESI mass spectra of Ru(bpy)3X2 (a)XDCl� and (b) ClO4

� in acetonitrile, where L isbpy. (Reprinted from ref. 13 with copyrightpermission.)

Fig. 3. Positive ion mass spectra of Ru(II) mononuclearcomplexes in acetonitrile: (a) Ru(bpy)2dMe(ClO4)2

and (b) Ru(bpy)2BgH(ClO4)2. M represents amolecule, L is bpy, and XDClO4

�. (Reprintedfrom ref. 7 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�249�

���� [Ru(bpy)2]2dMe(ClO4)4, � [Ru(bpy)2]2BbH2

(ClO4)4,������ 2� � 4������� [M�nX]n� (n�2�4) ������ (Fig. 4)���� !������"#�$%&��'(����)*�����+�� ,-��.) RuL2

2�, RuL2B2� /L�bpy, B�01,-2 �����3��� (Fig. 4a)� BbH2,-������� ���45� (pKa�5.0) � �6789�� Fig. 4b �3���6:� [M�4X�H]3� �;'�<'��=>?9��

Ru(II)(bpy)2dPrRh(III)(bpy)2(ClO4)5�@A������2� � 5�B��CD����.)������EF���7), 8)� Co(III)(bpy)3(ClO4)3����������GH��) Co(II)��������I�J�� KLMN� O��P�QR������ Co(II)���ST��*��=9� U�VW�.?� ESI���X�YZ�[\��]^_�=�`�B)� CID�6� Co(III)aCo(II)GHb��c�5�J�� �de'&�f DV�50 � 100

eVgh?i�jkl'mno�p)�IM� Co(II)�����[6q bpy����8��rs�no.)� .)�>? Co(II) ����tu� CID �6� Co(bpy)3

3�aCo(bpy)2

2��bpy��6:=�`�vw����3.2 �����/��������Cx�� �x���yV-�z(��^[6qz(��^{���.?�Fig. 5� star-burst|}��� [Met(II)

(bpy)2B]3Ru(ClO4)8 /Met�Ru or Os, B�� NV-m~���01,-2 � ESIe�����m�{ (Fig.

6)8), 10), 12)� [Os(bpy)2dmbbbpy]3Ru(ClO4)8^A��[9?� 01,- B�dmbbbpy���5�z(��mK>?9=9�� 3� � 8��������{�? [M�nX]n� (n�3�8) ����6:����� ClO4

� ��

��6����tuJ�� U.?������'������{�������EF��?9=9 (Fig. 6a)� ��� B�bbbpyH2� bbbpy2� �01,-��z(��^[6qz(��^�����U�������J�� .)�>?� �������� z(��� z(�� o���A�p�6�9M9M=����������� (Fig. 6b, c)� . .� �!=�"!���=9�� #�����������$m��{�I���=9�9M9M= star-burst|�}����[9?� ��5z(��mK)=9����A� ;'�<'�� 5����� [M�5X]5�J�� %&�� B�bbbpyH2����[M�8X�3H]5� B) B�bbbpy2� ���� [M�2X�3H]5�� 5�����;'�<'��=�� 5������+�=�� star-burst�����5� ¡.?9��¢���� [M�5X]5� ��������£¤D¥� [Met

(bpy)2B]2� ����� ClO4� �U��� 1¦��§A.

)���=�� %&��£¤D¥�&�$%�$%&��'(����¨��=�6:�� �£¤D¥� � 1¦��z(��^.)�� [M�8X�3H]5�[6qz(��^.)�� [M�2X�3H]5��+�J��¢����I�6:� ESI-MS������%��'(=©)J7� U�������P�������m�ª.?9��¢����}���� CID���� «*}¬­|�"!®¯m�9?� d°<�±'²� 250³� i�jkl' 50 eV,

Ari�´��f( 1.2 mTorr�µ¶·>)� ¸5=���mK)=9}���� CID������ bpyB)�01,-� O2

� �+¹.)��������)�I�6:=º»�� Met(bpy)3X2 (Met�Ru, Fe and X�ClO4

�, PF6�, Cl�) � CID �[9?K����� bpy �

O2� �6:=,����+¹.) [Met(bpy)2X�]� (X��

Fig. 4. ESI mass spectra of Ru(II) binuclear complexesin acetonitrile: (a) Ru(bpy)2dMe(ClO4)2 and (b)Ru(bpy)2BgH(ClO4)2. (Reprinted from ref. 7 withcopyright permission.)

Fig. 5. Schematic representation of the starburst-typetetranuclear complex. btfmb�4,4�-bis(trifluoro-methyl)-2,2�-bipyridine.

R. Arakawa

�250�

O2�, F�, Cl�) ��������� ��������

��������������� CID�� �!����"#$�%��

3.3 ����&�'(")�*�+��,-��� ./�

ESI-MS01"23�%�� 4�5� ����67 8�����9:;<=>?�*��@A�BC��D��%�� ����EF�GHIJKL�*�67�MN����%�� O�PQ�>?��RS� Pt'((NH3)2Pt(Cl)2 " NaT67(�>? ESIUVVWX�H�YZ�[�32)� \� Ag(I)"]^ _^�)>?GHIJKL�*�F`�67a����� bc Henderson

R33)"&�IHdeHKLE� Ru3(CO)12�f�Ag(I)

�*�gGHhijk (OR�) �*��l7�����F [MTAg]T, [MTOR]� �*��>? ESI-MS�ma������no>?���pq�r�st(��]Euv�w� xy�I�zHu{�)>? 0.8 V |}~ ���f���X��V�

���S��[ �u��;;�?��������u�E���]E��������?��IHI�*������� ������u�E���" KebarleR34)

� BerkelR35)��?�>����S?���\� �f&�Ge*��vA�&��vA��C������? '(I�*��������%�36)�

4. MALDI�����

c� � ¡¢£@A¤ (self-assembled monolayer:

SAM) "¥¦a�§��>?�¨�S?��� Auu{�©ª>?�*�r���g«^u{�>?�� atomic

force microscopy cantilever-tip �E�©ª>?��¬­E�@®�ma�¦a�67�����9�%��\� ¯V��°V�@A±²E�³���>?jX�´iV�J� SAM���no�S?��� SAMµ@®"¶� SIMS�·-S?[��

Ultraviolet (UV) ��¸�¹���? n-alkanethiol

(C10, C12)/Au SAM º�»�]E��37) alkane-

Fig. 6. ESI mass spectra of tetranuclear complexes in acetonitrile: (a) [Os(bpy)2dmbbbpy]3Ru(ClO4)8 and (b) [Os(bpy)2

(bbbpyH2)]3Ru(ClO4)8, [Os(bpy)2(bbbpy2�)]3Ru(ClO4)2. M and X represent the complex and ClO4�, respectively.

Application of Mass Spectrometry to Coordination Chemistry

�251�

thiol SAM � MALDI ��������� �������������38)� ��������� !"#$��%&'(�� !)*+�,&-./�01� ���23!4567��39)�8�9:561;7< �6=$/>?%@561;7 SAMA� ;B6C S�AuDE$�F56G SAM$HI� JKLM SAM�9:ANOG(�

'0G< ��$A 3PQ� disulfideDE�RS)�T1CU RuLM�VWX SAM1-3 (Fig. 7) ��FT1� Y6(�MALDI���Z�[�\]/U;1^_740)<MALDI ���Z�[A� ���� DHB (2,5 -

dihydroxybenzoic acid) �`�T1� FinniganMAT

V2000 ��;1a23!b�c$deTG<

Fig. 7. Structures of SAM1, SAM2 and SAM3. (Reprinted from ref. 40 with copyright permission.)

Fig. 8. MALDI-TOF mass spectra of SAM2: (a) MALDI and (b) LD. (Reprinted from ref. 40 with copyright permission.)

R. Arakawa

�252�

SAM1�������� ����� � ����������� ������� S�Au��������� [M�2X H] ! m/z 1009 "#$��% �&�M��'!�X����� PF6!�(%)����*+ 16, 32,

48 Da,��-.����#$/��% )�0����� sulfoxide, sulfinate/disulfoxide, sulfonate "1��2�$�3"(4"5678!9:;�<)=!>(%/0"� ����!������ 2�?"1�(<[2M�4X H] ��� m/z 2017 "#$/��)=@0614 disulfide�� (RS-SR) !AB���=CD�<% )�)=�E�"FG�� SAM� ���=� ����4� SAM�'��HI �JK<)=!>L�;�<% M?=Au!��/N;�< octanethiol��������#$/�K@O�%

SAM2 ������"P�; (Fig. 8)� 1,4-thiobutyl-

phosphanate4QRST8�� base layer @0���;� XU PF6 ������� [M� 2 X� Zr�2(SC4H8PO3) H] m/z 725 "VWX�4YZ/��%)�[@" m/z 707, 644 "\�WX�!YZ��% )�0� m/z 725 ���@0]I^�7�������"1�(<% _�^`��!�K� LD _������4�� )�0����&:a�a�4#$/��%SAM3������� SAM2 =��K�����4bO�% SAM1 ���� benzimidazoyl "���� N-

octanethiol���K@O�� SAM2, SAM3 4�N-octadecyl������3c� SH!�d alkane

4b+�ec�f�!��K��g=CD�<%^�7�h�ijkl4mn�� SAM2, 3 ���� ���� base

layer !op���!YZ4.K@O�% )��� alkane-

thiol SAM �qr4� thiobutyl ion YZ/�K�=�st3��u=v�(<%LD�����4��MALDI*+ fragment ionABI(w� [Ru(L)(tpyPO3)], [Ru(L18)

(tpyPO3)] "1�(<����YZ/�K@O�%

5. ESI-MS���

ESI-MS�� xy�K���8�4YZz��{��4� �|}?��~���"��4b<% ��������X(<���(���"���|��!�+�:;��|}?� AG�!��"YZ���4.<�����ESI-MS!���� ����|�����"��K��4b<)=!��<%

5.1 ���5.1.1 �������� ���ESI��������(���"������|��!�+�:� ESI-MS��!���� Ru(II)M?����'���|"|����"d�;��<41)�46)% ���'!�dE M?�!P*¡���'���|��Scheme 1 �*s""¢#"�|£p=¤¥0�<% ¦�§$4 ���'¨�����}?�©ª«%/�;�<% ¦�*sK}?�©ª�� RuL2BX2 [LUbpy, BUdmbpy ¬�� ampy (dmbpyU3,3�-dimethyl-

2,2�-bipyridine, ampyU2-(aminomethyl)pyridine), XUClO4

�] �M?!�;­@g<)=4.<42)% Fig. 9b

�� Ru(bpy)2(dmbpy)(ClO4)2 �®��j�^� (AN) ��" Xe����¯°� ±&'²420 nm³ !´µ��=.�¶��������!>(% �´µ�K�=.������ (Fig. 9a) =(·(<=� �|AG�� 2 � RuL2

(AN)n2 (nU0�2) = 1 � RuL2(AN)2X ���YZ/�;�<% /0"� )�0�����|}?=¤¥0�< RuL2B(AN)2 = RuL2B(AN)X ���� (KD¸ ���' dmbpy�¨����}?¹g;�~���/��% )�*sK¨����}?� Ru(bpy)3

2 IRu(bpz)3

2 (bpzU2,2�-bipyrazine) �º4�YZ(<)=�4.K�% ��|"*O;AG�� 5����¨�}? RuL2B2 �»¼�X����;�=�M?")<@� ¬���*AN=���;¨�}? RuL2B(AN)2

"K<@����@4b< (Scheme 1)% »¼�X�8"

Scheme 1. Stepwise processes of thermal and photoligand substitution of metal complexes withbidentate ligands. (Reprinted from ref. 42with copyright permission.)

Fig. 9. Positive ion ESI mass spectra of Ru(bpy)2

(dmbpy) (ClO4)2 (dmbpyU3,3�-dimethyl-2,2�-bipyridine) in acetonitrile (AN) obtained (a)without irradiation and (b) with cell irradiation(l²420 nm). L is bpy, B is dmbpy, and X isClO4

�. The underlined ions represent inter-mediates with a monodentate B ligand.

Application of Mass Spectrometry to Coordination Chemistry

�253�

���� dmbpy��������� ��������������������������� ������ dmbpy� �����!��"#�$��%&�'()� *�+,-�.&����� dmbpy����/0123452 dmbpyH6�"#78��)�

Fenn9�:/�.&�� ;<=10>/<:?� @)A B��+CD�EFG�F78��)� H���'�� I�A �� 0.5 mm��7� Taylor-Cone, �7�1 mm ��B� ColumnJ��A ���=:02���.)�KL��M�&�NB� PlumeOP%&��)� Plume�� @)��A ��Q�� 1 mm. J����� 10 m/s'()� *�J�� �R�S104T�U!78)� ��.�%"V�WXY�Z%)�[\'�+3C�[�]��#^)���� H���OP� 3 mm�8� Plume$%�+,- _>/<:,-` ���� a�,-�\b�Z%)cd&452�"#e)���'f%O&�� �O�� '(����!�� RuL2B(AN)26 �RuL2B(AN)X6��&f��g)e)���'f�� cd��OP452�"#e)��*e)?!�� a�,-�2 min ����>/<:,-� 10 ms �+��'� .�+h,��!��g)�$�'()� Ru(bpy)2 (ampy)

(ClO4)2 �a�,-� ���� '(�-.�����ampy (Fig. 1) ����!��"#'f�� 7P�� -/i0j' ampy� 2��1k0i3��lm4n2��Ru(bpy)2(ampy-2H)26�cd�"#'f��

5.1.2 ���������� �����op1=0nqr��+�.&�3b&�Zs3�t��� uv>w=1��23e)xy'()� +�.)&s�z{�$�'()��� |�s&}����~�������8��)� �3� =��2;:����4452���56s��&�7�e)� ���&�� =��2;:����89��op1=0n�==��23b&�� +�.)�4452��d�z{��:'f)� J�'� �;�<��4452��d�+z{�=��� 1�o����2���=��2��89��=��23���419�:2 [bis(crown ether) malachite green:

BCMGCN] 3b&�>=��� BCMGCN��4452�����?'�!'()� �O�� ��+,-�.)BCMGCN��?23�@�4523�.&�������ft����4452�A#78) (Scheme 2)� =��23���419�:2���d+z{'()�4452� �¡¢/A#£B� ESI-MS'��g)��¤¥�~�'()47)S51)�

BCMGCN� Li6, Na6, Ka6 452�Cl�¦a1�1��-A��?� @)§452>w=1�� Fig.

10a �¨e� =��2;:�����4452��d�De) [M6metal]6 �452� .©�4452� 2ªJ8«8�=��2�� �¡*8�452�g)78�� ��'M� BCMGCN%���e� ED� 15-=��2-5F8��G'�� Na6 ����Hf%��d56s�¨e� >w=1��¬P8).��K6��� �¡­

��� ���=��2�'�®I'()� e%�¯�BCMGCN�J�e)���=��2;:���' K6 �°¢¡�±����d���)� �3� lm=��23CMGCN'� Na6 ���7�e)��� ESI�>>w=1�OP²K'f)��4452��d��=��23���419�:2�op1=0nqr�Hf�³´e)�µ¶P8)� 30L!���+,-�.�� -A�M·OP¸·�23e)�+Zs3��4452�A#��%�)���%¹º�Fig. 10b �¨e47)� ��¶»� BCMGCN/K6Y��>>w=1�'�� +,-e)�� �?'K�P8����

Scheme 2

Fig. 10. ESI-MS spectra of biscrowned malachite greenleuconitrile (BCMGCN) and equimolar MetClO4

(Met¼Li, Na, and K) under (a) dark and (b)photoirradiated conditions in acetonitrile.UV-light of 240�400 nm for 30 s.

R. Arakawa

�254�

���������� ������� [M�CN]������������� ������ !"#$%&'(�)*����+��,-.�/�01,2 3456�BCMGCN0� all-or-none7489��:;<�=�>?0@,-.AB/��2

5.2 ��������ESI-MS�CDE� FG7�HIAJ�4DKL�MA�N3,-.�OP0@,2 -�QA�R��.�E� �S�TU:VS�3,W��HXYU�Z!A[\�� ] ^_`a����M�HIAJ�b,c��d5�ED,2 -�e0�HX -ESI-MS�fg�hL�0�eie4�jAkl0D,2 �.mn� o�p!TJ�qHrAHXZ!�Hst�uv3,-.� wx�HX��y3D z �#{|014D-.� B+}~�wx��D-.4�0@,2 -�$��jQ�� YU����0�����7�HX��4D-.��,J�0@,2�-0� HXZ!�L?��WA���E� �s���s��.�s.�t������:��A[���Hs���UYU�Z!A����2 ��HXZ!�hL�� [Ru(bpy)3](PF6)2, [Os(bpy)3](PF6)2 �FHM] ��B+�������2 �$�� [Ru(bpy)2(en)](ClO4)2 (en�ethylenediamine) 8��HX] `a�C�,� ��|

0����D`aKt�AB+����� |A��,52)2¡¢)* Ru, Os � 2£C�¤ 3£�¥M£A.,-.�01,2 �-0� HXZ!ADE� �¦K�)*8��¥M£A 2£. 3£.�t0§¨��©3,-.�>?0@,2 Fig. 11 � [Ru(bpy)3](PF6)2 �FHM] :ª�T!0@,2 m/z 285 � 2£�� [Ru(II)(bpy)3]2� �«¬����­®¯.F°3,2 ��UYU�Z!�1.8 V [vs. ��±U²!Hs (saturated calomel elec-

trode:SCE)]�H¬A#�EHX��.1�m/z190� 3£� [Ru(bpy)3]3��³{��, (Fig. 11b)2 [Os(bpy)3](PF6)2

�´zJ«�� 3£� [Os(bpy)3]3� AB+01,2[Ru(bpy)2(en)](ClO4)2 �� µZT¶T·!K�CDE

Ru(II)¸Ru(III) �§¹3, 0.96 V (vs. SCE) �>º4] ^_»AJ¼2 ��E� 1.15 V�CDEHX] AdR

Fig. 11. Positive ion ESI spectra of [Ru(bpy)3](PF6)2 inacetonitrile solution by dissolving 0.3 mM ofthe complex together with 1.0 mM of thesupporting electrolyte LiCF3SO3. Theelectrolysis is (a) o# and (b) on. The insetshows the isotope distribution of [Ru(bpy)3]2�.(Reprinted from ref. 52 with copyrightpermission.)

Fig. 12. ESI spectra of the 1.0 mM acetonitrile solutionof [Ru(bpy)3(en)](PF6); the electrolysis reactionis (a) o# and (b) on. (c) The ESI spectrum ofthe labeled complex [Ru(bpy)3(ed)](PF6), whereed�H2NC2D4NH2 during electrolysis. (Reprintedfrom ref. 52 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�255�

������������� �� ������������������ ����� ������ ��!��"�#� �$ Ru(III) %&'�()*������+����,"���� Fig. 12 -� [Ru(bpy)2

(en)](ClO4)2 �.��/�'�� '0 1$�2� ESI

3445678���9�� /�":��2-� [Ru

(bpy)2(en)]2; � [Ru(bpy)2(en)](ClO4); �'��<="$(Fig. 12a)� 0.9 V (vs. SCE) �/"$�2� m/z 237 � ����-� /�":��2����>:?�������-/�@A� B�C� 4D:��'� [Ru

(bpy)2(en-4)]2; �B�C� 2D:��'� [Ru(bpy)2(en-

2)]2; �EF"������9G�� (Fig. 12b)� HI�� � [Ru(bpy)3](ClO4)2 �/JK�LM� B�C�2N$- 4D:��'�-O��2:P?$��� ����- bpy����-:Q� en�������R�?�������2�� "$�?�� ��S��'�-T�U��������MeyerS��,"$)*����!��V�S��� "P"� WX#.��!��Y�#�� [Ru(bpy)2(en)]3; �'�-<=�2:P?$� N$� Z����[�\��!��V�S�� en�����]��"$ [Ru(bpy)2(en)(AN)]2; �'�-O� �:P?$�

[Ru(bpy)2(en-2)]2; �^���SP���$_�� `&a������`&a����bc���["$�de� [Ru(bpy)2(ed)](ClO4)2 (edfH2NC2D4NH2, ethylene-

d4-diamine) �JK�g?$� /�@?�� [Ru(bpy)2

(ed-6)]2; � [Ru(bpy)2(ed-3)]2; ��'�h�����2Q:?��� (Fig. 12c)����- [Ru(bpy)2(en)](ClO4)2

�ie@AWj��Y�� ��LM� MeyerS��k"$�\+ �lm��� '�n��/ ESI-MS�@?��!�o":)*���p�!��#q$%r<=������2$� &�� /s8�'tA�(uv�\s8�'�n���Le"$ ESI-MS�)��� *w+: Cu(II), Zn(II)

� Phenoxyl Radical ��53)x55)�@y�\�!��<=������2$56)x59)�

5.3 ��������� ESI�� �#,�� -hrhz{./��� ESI-MS-� 4|a}��E~�z��=�$_�T��+�o"�Y��B���0�������2�� D:Q��$_�� �*4|a}1�@�C� nL/min�23��4|a}"T����4 ��5�67�Y�60), 61)�

5.3.1 ����� Se�������sa�-��8sa��9+�sa�� Se8:�� ���W.� ��S���sa�-#,�:�./�-./":�� "P"� hz{�����"�;S�� DBU

(1,8-diazabicyclo[5.4.0]undec-7-ene; pKaf12.5) ( DBN

(1,5-diazabicyclo[4.3.0]non-5-ene; pKaf12.7) ���sa������� sa��#<./".������=���� ��@X:>�8N$-�8�hN$-hz{�./"$�2�.���v�?�@/����-c7�

Y�60)��8sa����� DBU�@y DBN�.P"�AB.��C�"� T���b���s7�7�8���"��D.����� DBU���'�45678�-� [M;H]; (m/z 153), [2M;H]; (305) ����'��<= �� (Fig. 13a)� DBU� Se�.P"$.��45678(Fig. 13b) �-� S� [(M�2H);Se;H]; (m/z 231),

[2(M�2H);nSe;H]; (381, 461, 541, and 621 for nf1x4) ��'��O� ��� m/zE- 80Se�{��� ¡"$� sa�-C¢� ���W.� £�¤-� m/z

461 (nf2) �¥}6� ������ T���- [2(M�2H);2Se;H]; � ¡E�#F���

m/z 461 �'��|¦§67�'�344567845678 (Fig. 13c)�-� [(M�2H);H]; (m/z 151), [(M�2H);Se;H]; (231), [(M�2H);2Se;H]; (311), [2(M�2H);Se;H]; (381) �0n¨©�7�'��<= ��� "$�?�� m/z 461 �'�-� Se� DBU����(M�2H) PS^F ��Ge��'� [2(M�2H);2Se

;H]; � + ��� T�H� nf1, 3, 4 ��'��.�� &�LM�IS����� T�S��'�W DBU���� 2��� SePS^F ��Ge��'��Y����tP�� Se�Ge��'��h�-�C�ª 1«!�t$?�45678�+¬�-:Q� [2(M�2H);nSe

;H]; �­J¥}6h�-� 70® (nf2), 17® (nf3), 9®(nf4), 1® (nf1) �Y�� &�� DBN� Se�.P"$.��45678����� [3(M�2H);16;H]; (m/z 383), [3(M�2H);Se;H]; (447), [3(M�2H);Se;16;H]; (463), [3(M�2H);2Se;H]; (527) �<= ��� m/z 447 �¥}6� ����- ¡E�#F��� N$� m/z 447 �'��|¦§67�'�344567845678PS� [2(M�2H)

;H];, [2(M�2H);Se;H]; �0n¨©�7�'��<= ����� DBU� &� DBN���� (M�2H) �Se�Ge��'��Y����tP�� Se�./����Ge�-� DBU�ie- DBU���� 2��PS^F �� #K DBN�ie-���� 3��PS^F �������tP�� "P"� T�@-�SP�:��

Se�hz{���� DBU��./���"��Scheme 3 ��\��, ��� N¯�8sa��xSe�Sex Le�#<� DBU�@A°� �� ���sa�±²� Se2³ �EF��� �� Se2���@� DBU��PS�����\�R�A� H2Se2�E~���W� a,b-*AB����EF��� ´���� a,b-*AB����Se2��\"e� (1)�EF"� ���WX 1���*AB����µyL�"� ����� (2)�EF���¶+ ����·� H2Se2�EF�¸P_�$_�� DBU�sa���\ª� sa� 1M��J" 1-¹¦)¹º� 4M������N�\ 1$� IS�$»���O���-GC-MS�)�� C4H9SeSeC4H9� + �$� "$�?�� Se2� DBUPS���¼2P��� H2Se2�EF"$

R. Arakawa

�256�

Fig. 13. ESI spectra of the 1.0 mM acetonitrile solution of [Ru(bpy)3(en)](PF6); the electrolysis reaction is (a) o# and (b) on.(c) The ESI spectrum of the labeled complex [Ru(bpy)3(ed)](PF6), where ed�H2NC2D4NH2 during electrolysis.(Reprinted from ref. 60 with copyright permission.)

Scheme 3. (Reprinted from ref. 60 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�257�

������ �� DBU��� ��������1H-NMR�������� d4.2��� d5.3�������� !"#$%�&�' DBU(���)���%*+�,-.��%/�01.� �'��2345� Scheme 3 �6��78�,-.�

5.3.2 ������������ �������������

�9:�;�<�: (HSO3F; pKa=>10) 0 ?�@AB����CDEF�G�H��I���J�K�(M(CO)(NO)2; M=W, Mo) ��L% MN��O�',-���(�P'��K�����.��QR�0S.�P�0 HSO3F����-� ESI-MS�. [fac-M(CO)

(NO)2(SO3F)3]> (M=W, Mo) �TU�VW�61)� V�QScheme 4 XY,Z[��� Fig. 14 � m/z 568 Q [W

(CO)(NO)2(SO3F)3]> 0S.���"#$��\� �Q]^��_��.� 15NO��-��1�WK�Q 14NO��1�` 2 DaJ;���Aa$��%��'��0 NO

% 2b�\�,-.������5.4 �������(cd�e f�g��� ��.h� f!�.ij��k��"l#Q �m�e.$�ij�nZ%�o&pq, MNrs���tuv��w-� !xZ'�y�TU�.��S.� ��0Q A�� 9��ij�ez{:|�}C�GD~��(z{potassium

antimony tartrate, K2[Sb2(tart)2]���-, thiazolidine

)*��_c0S. 2-thiazolidinecarboxylic acid (2-

THC) �ij�k$+�,��62)� thiazolidine)*�Q�%N��-0S` 2-THCQ.%��/� 9-|��

:<iJ�#�0�.�h0S.� 2-THCQ MN�s�4���0��j �n�.��%1�'-.���j �n2Y, (z{� 2-THC �xZ���<�9'���3n% 2-THC� (�)-� (>)-�0�4�3n����5�01.� xZ���[6-e ��tuv��-, (z{� Sb � 2-THC � S l�����78%�-e9��3��,-.� �'��5�� -,:�xZCF���W:, MS�23�S��, (�),

(>)-2-THC ��0�;����VW.� �� ij�e(z{�<�� D�L�� CoK��<� [Co(A-ala)2

(en)]� %�! ��2Z��xZ���<�9'�ESI-MS0TU�, MNrs���xZ'y�����63)� P�23�)�2Z�. ��CF�0��01.��(� CoK��ij��k�4�s�T<���

5.5 ����� �!" �%�-2Z8�`�=�ce%.� ¡Z�`�5¢5e£>�4c?¤K�%�[�'.64)¥72)� ¦;�e�<�n!0S. ESI-MSQ ��0?�\����?§@%tuv��,� ¡Z%����4*+� ��¨©ªA©�BZ��£C�,-!6��«¬01.48e­D0S.64), 65)� � ¡Z©E�®¯�°±��, Hopfgartner�%+Y�²³���´���¨£>�� � [Co2L3](ClO4)4 �LQ Nl��?!µ¶?·�\�� �°±%S.66)� 0�<�%���� [M>4X]4� �<���\�"#$�m/z% 0.25¸c�',-.���«��P��<�% 4¹0S.���/����ESI-MS

�.FGQ� ��<��º¹»%¼�01.�0 P�� ¡Z©E��f01.��0S.�

Fig. 14. Negative-ion ESI mass spectrum of [W(CO)(NO)2(SO3F)3]> in HSO3F.

Scheme 4

R. Arakawa

�258�

1,1�-��������� (Fe(Cp-COOH)2) �� � �� 2�������������� �������� � !"#$%&'(����)*+, -�./012������345$6(27� 1�89)2& 2�� !"#)":*4��� -;<#1�$=>(?@�A+, B)�� "CD)� 2�E(5FGHB+'($XI��JK�L7MNOAF>+, 5�5� �PD�Q9+'�R#��-;<#ST�34)*U4�67),

5V��W��XYZ[\!\ XClO4 (X]Li, Na, K,

Rb, Cs) �� ^_�`@�abcd�e�P�fghi�� Fig. 15a �jB, 4�E� Nak`E [4MkNa]k

$ldfmdh(5FnoOA� Nak$�pq�`5F>+'($r�+, 4�Est�u� �vXwxd��ESIy�bd��yf�z��{d��)|'+ CID�L}F 4�E��~��(?@�A+, 5�$}F� {d���� 50�� 60 V��RO��(�� 4�E���5� (Fig. 15b), u� ��vXwxdyv��� �� CID

[��Q>F� 4�E��As����E��~����)*+,�PD�Q>F��2 Nak` 4�E���[���

2�7$?@�A+, ���� �PD) Fe(Cp-COOH)2 $-���2�S 4�E�����5� h����d���L4�Nak(���B+,�z��Nak$-;<#�Q9

+�(27� ��2 4�E���B+(>4[�)*+,'�z��[��� B+����yv�xffghi����5�('U� 1�E [M�H]� ( 2�E [2M�H]�

��$noOA�, '�'(�L7� �PD)������� 4�E)�2&"CD(��� 2�E)*+'($r�+, L}F� Nak$�(2}F 4�E$��OA+�z�[��(+'($?@�A+, ������ 1,2-

benzenedicarboxylic acid � 1,3 -benzenedicarboxylic

acid )� [MkH]k, [MkNa]k �L4� 1�E�yv�5�noOA2>, Fe(Cp-COOH)2$ Nak`5� 4�E(5F-;<#B+��� � ��z��������$-�./018��)*+(�@+, '�L4�ESI-MS�� �PD)� �"#¡�¢>£¤¥�)-;<#5�¦� �#E��§¨��B+��2©ª)*+'($r�+,YZ�«¬"#�­5F�� R5�®Xxd¯�E�JK��� °�=�J1� ESI-FT-MS$��2�±�2+, Fig. 16 �� ²³S� Re(II)8��E� ESIxffghi��´��J1�=> µOrbitrap¶ ¯ FT-MS)��5���)*+72), '�� �"#¡�®Xxd¯�E�yv�¡)*+�)� 6W·v��J���4 4¸8¹����¹yv��fghi�(5Fº�A+, »�L4�=�J1xffghi�$º�A+�)� Re(II)YZ��¼

Fig. 15. Positive ESI mass spectra of 1,1�-ferrocenedicarboxylic acid in methanol (0.1 mM) with equimolar alkali metalsalts XClO4 (X]Li, Na, K, Rb, and Cs) (0.02 mM). The cone voltage DV](a) 50 and (b) 60 V. (Reprinted from ref.67 with copyright permission.)

Application of Mass Spectrometry to Coordination Chemistry

�259�

������������ ��������������� ����� [M�8X]8������ ���� !"�#$%&'()*+,��

6. � � � �

-./0�1�23%45� ESI-MS�6�7��8�� 9:(;<=�>�� -./0?��� �@AB�C9DE�� F����GH%&=/01��FI;������E�� 4&J�KL%>�%MN>� pre-

formed����OP���E��Q�� E���?R%&S+� ESI-MS�1�23����T'E����U,��VBW%US+,�� ?%� X��Y� ESIZ��[\���],��� ^_`>`>ab>�cdeBf�FI/01�gh�i�j�UkX�i����lmn�+,����Q�� ESIZ��[\�� ESI��ABop�qCrs>�E�%&= t%uvwWCx=y5�E�������� uvLz�g{l|}����%�~�Q�� *��S+� �����Y���[\�

QS+9� wWguv�Crs>�E�%&=,``���n�U�S����23�g��2j�CGH>�E��lm���� �N� 1�23������%ab*+4=� ����Q�1������n�MS���C]'��*+,�� *��S+� ��������7%MS�1�23����C��*+� `�`��9�+,����C�=�+&:��Q=`����

� � E�`�%��g3����4��%US�F'� �¡¢£�¤�%¥'¦§,�*`>� `�� ¨U��v©� ª�*+'�n,`*�¡¢«�F'��¬%9­��4�®*7¯`>� �*+�¡¢C 2007°;�±�Z��3�3�²%³´*+'�n,`*�µ¶·¸�� �¹º»�¼|%­��¦§,�*`>�

� �

1) C. M. Whitehouse, R. N. Dreyer, M. Yamasita, and J. B.Fenn, Anal. Chem., 57, 675 (1985).

Fig. 16. ESI positive ion mass spectra of a Re(II) octamer complex by high-resolution “orbitrap” FT-MS. The belowspectra are the observed and calculated isotope distribution of the �8 ion.

R. Arakawa

�260�

2) K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T.Yoshida, Rapid Commun. Mass Spectrom., 2, 151 (1988).

3) M. Karas and F. Hillenkamp, Anal. Chem., 60, 2299(1988).

4) J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M.Whitehouse, Mass Spectrom. Rev., 9, 37 (1990).

5) R. Colton, A. D’Agostino, and J. C. Traeger, Mass Spec-

trom. Rev., 14, 79 (1995).6) V. Katta, S. K. Chowdhury, and B. T. Chait, J. Am. Chem.

Soc., 112, 5348 (1990).7) R. Arakawa, T. Matsuo, H. Ito, I. Katakuse, K. Nozaki, T.

Ohno, and M. Haga, Org. Mass Spectrom., 29, 289 (1994).8) R. Arakawa, T. Matsuo, K. Nozaki, T. Ohno, and M.

Haga, Inorg. Chem., 34, 2464 (1995).9) M. Haga, K. Hiratsuka, M. Kato, H. Kurosaki, M. Goto, R.

Arakawa, and S. Yano, Chem. Lett., 24, 1143 (1995).10) M. Haga, M. M. Ali, and R. Arakawa, Angew. Chem. Int.

Ed., Engl., 35, 76 (1996).11) R. Arakawa, S. Mimura, G. Matsubayashi, and T.

Matsuo, Bunseki Kagaku, 45, 619 (1996).12) R. Arakawa, G. Matsubayashi, N. Ohashi, S. Furuuchi, T.

Matsuo, M. M. Ali, and M. Haga, J. Mass Spectrom., 31,861 (1996).

13) R. Arakawa, J. Mass Spectrom. Soc. Jpn., 46, 219 (1998).14) M. Haga, H. Hong, Y. Shiozawa, Y. Kawata, H. Monju-

shiro, T. Fukuo, and R. Arakawa, Inorg. Chem., 39, 4566(2000).

15) R. Arakawa, N. Kubota, T. Fukuo, O. Ishitani, and E.Ando, Inorg. Chem., 41, 3749 (2002).

16) T. Maikawa, M. Nakano, R. Arakawa, G. Matsubayashi,and W. Mori, Z. Naturforsch., 50b, 1748 (1995).

17) G. Matsubayashi, T. Maikawa, H. Tamura, M. Nakano,and R. Arakawa, J. Chem. Soc., Dalton Trans., 1539(1996).

18) G. Matsubayashi, K. Natsuaki, M. Nakano, H. Tamura,and R. Arakawa, Inorg. Chim. Acta, 262, 103 (1997).

19) M. Nakano, A. Kuroda, H. Tamura, R. Arakawa, and G.Matsubayashi, Inorg. Chim. Acta, 279, 165 (1998).

20) K. Natsuaki, M. Nakano, G. Matsubayashi, and R. Ara-kawa, Inorg. Chim. Acta, 299, 112 (2000).

21) G. Matsubayashi, M. Nakano, K. Saito, T. Yonemine, andR. Arakawa, J. Organomet. Chem., 611, 364 (2000).

22) G. Matsubayashi, T. Ryowa, H. Tamura, M. Nakano, andR. Arakawa, J. Organomet. Chem., 645, 94 (2002).

23) K. Yamanari, I. Fukuda, T. Kawamoto, Y. Kushi, A.Fuyuhiro, N. Kubota, T. Fukuo, and R. Arakawa, Inorg.

Chem., 37, 5611 (1998).24) K. Yamanari, I. Fukuda, S. Yamamoto, Y. Kushi, A.

Fuyuhiro, N. Kubota, T. Fukuo, and R. Arakawa, J.

Chem. Soc., Dalton Trans., 2131 (2000).25) K. Yamanari, S. Yamamoto, R. Ito, Y. Kushi, A. Fuyu-

hiro, N. Kubota, T. Fukuo, and R. Arakawa, Angew.

Chem. Int. Ed., 40, 2268 (2001).26) K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyu-

hiro, K. Fujioka, and R. Arakawa, Inorg. Chem., 41, 6824(2002).

27) K. Yamanari, R. Ito, S. Yamamoto, T. Konno, A. Fuyu-hiro, M. Kobayashi, and R. Arakawa, J. Chem. Soc.,Dalton Trans., 380 (2003).

28) Y. Hasegawa, M. Iwamuro, K. Murakoshi, Y. Wada, R.Arakawa, T. Yamanaka, N. Nakashima, and S. Yana-gida, Bull. Chem. Soc. Jpn., 71, 2573 (1998).

29) M. Alajarin, A. Lopez-Lazaro, A. Pastor, P. D. Prince, J.W. Steed, and R. Arakawa, Chem. Commun., 2, 169(2001).

30) M. AlajarIn, A. Pastor, R. Orenes, J. W. Steed, and R.Arakawa, Chem. Eur. J., 10, 1383 (2004).

31) S. Okeya, M. Hashimoto, F. Nakamura, Y. Kusuyama, M.Kobayashi, and R. Arakawa, Chem. Lett., 29, 1130(2000).

32) G. K. Poon, P. Mistry, and S. Lewis, Biol. Mass Spectrom.,20, 687 (1991).

33) W. Henderson and B. K. Nicholson, J. Chem. Soc., Chem.

Commum., 2531 (1995).34) A. T. Blades, M. G. Ikonomou, and P. Kebarle, Anal.

Chem., 63, 2109 (1991).35) G. J. Van Berkel and F. Zhou, Anal. Chem., 67, 3958

(1995).36) T. J. Cardwell, R. Colton, N. Lambropoulos, J. C. Traeger,

and P. J. Marriott, Anal. Chim. Acta, 280, 239 (1993).37) J. R. Scott, L. S. Baker, W. R. Everett, C. L. Wilkins, and I.

Fritsch, Anal. Chem., 69, 2636 (1997).38) A. H. Brockman, B. S. Dodd, and R. Orlando, Anal.

Chem., 69, 4716 (1997).39) S. Okuno, K. Oka, and R. Arakawa, Anal. Sci., 21, 1449

(2005).40) T. Fukuo, H. Monjushiro, H. Hong, M. Haga, and R.

Arakawa, Rapid Commun. Mass Spectrom., 14, 1301(2000).

41) R. Arakawa, L. Jian, A. Yoshimura, K. Nozaki, T. Ohno,H. Doe, and T. Matsuo, Inorg. Chem., 34, 3874 (1995).

42) R. Arakawa, S. Tachiyashiki, and T. Matsuo, Anal.

Chem., 67, 4133 (1995).43) R. Arakawa, S. Mimura, G. Matsubayashi, and T.

Matsuo, Inorg. Chem., 35, 5725 (1996).44) R. Arakawa, F. Matsuda, G. Matsubayashi, and T.

Matsuo, J. Am. Soc. Mass Spectrom., 8, 713 (1997).45) R. Arakawa, K. Abe, M. Iwai, T. Fukuo, and Y. Naka-

bayashi, J. Mass Spectrom. Soc. Jpn., 49, 183 (2001).46) R. Arakawa, K. Abe, T. Abura, and Y. Nakabayashi,

Bull. Chem. Soc. Jpn., 75, 1983 (2002).47) K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, G.

Matsubayashi, M. Okamoto, and H. Doe, J. Am. Chem.

Soc., 119, 2062 (1997).48) K. Kimura, T. Utsumi, T. Teranishi, M. Yokoyama, H.

Sakamoto, M. Okamoto, R. Arakawa, H. Moriguchi, andY. Miyaji, Angew. Chem. Int. Ed. Engl., 36, 2452 (1997).

49) K. Kimura, R. Mizutani, M. Yokoyama, and R. Arakawa,Anal. Chem., 71, 2922 (1999).

50) K. Kimura, H. Sakamoto, S. Kado, R. Arakawa, and M.Yokoyama, Analyst, 125, 1091 (2000).

51) K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, andY. Sakurai, J. Am. Chem. Soc., 122, 5448 (2000).

52) R. Arakawa, T. Abura, T. Fukuo, H. Horiguchi, and G.Matsubayashi, Bull. Chem. Soc. Jpn., 72, 1519 (1999).

53) S. Ito, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa,N. Sakurada, R. Arakawa, and S. Fukuzumi, J. Inorg.

Biochem., 74, 309 (1999).54) S. Ito, M. Taki, S. Takayama, S. Nagatomo, T. Kitagawa,

N. Sakurada, R. Arakawa, and S. Fukuzumi, Angew.

Chem., Int. Ed., 38, 2774 (1999).55) S. Ito, M. Taki, H. Kumei, S. Takayama, S. Nagatomo, T.

Kitagawa, N. Sakurada, R. Arakawa, and S. Fukuzumi,Inorg. Chem., 36, 3708 (2000).

56) M. Okamoto, H. Doe, K. Mizuno, T. Fukuo, and R. Ara-kawa, J. Am. Soc. Mass Spectrom., 9, 966 (1998).

57) M. A. Rahman, H. Doe, M. Okamoto, and R. Arakawa,Electrochim. Acta, 44, 39 (1998).

58) M. S. Bakshi, H. Doe, N. Sakurada, and R. Arakawa,Chem. Lett., 28, 1059 (1999).

59) M. A. Rahman, H. Doe, N. Sakurada, and R. Arakawa,Electrochim. Acta, 47, 623 (2001).

60) R. Arakawa, A. Sasao, and N. Sonoda, J. Mass Spectrom.,40, 66 (2005).

Application of Mass Spectrometry to Coordination Chemistry

�261�

61) Q. Xu, N. Tsumori, L. Jiang, M. Kondo, and R. Arakawa,Chem. Asian J., 2, 599 (2007).

62) R. Arakawa, M. Kobayashi, T. Fukuo, and T. Shiraiwa,Rapid Commun. Mass Spectrom., 15, 685 (2001).

63) R. Arakawa, M. Kobayashi, and T. Ama, J. Am. Soc.

Mass Spectrom., 11, 804 (2000).64) A.-M. Rigault, A.-D. Gervais, A. Van Dorsselaer, and J.-M.

Lehn, Chem. Eur. J., 2, 1395 (1996).65) B. Hasenknopf, J.-M. Lehn, N. Boumediene, A.-D. Ger-

vais, A. Van Dorsselaer, B. Kneisel, and D. Fenske, J. Am.

Chem. Soc., 119, 10956 (1997).66) G. Hopfgartner, C. Piguet, J. D. Henion, and A. F. Wil-

liams, Helv. Chim. Acta, 76, 1759 (1993).67) N. Kubota, T. Fukuo, and R. Arakawa, J. Am. Soc. Mass

Spectrom., 10, 559 (1999).

68) T. Abura, T. Fukuo, S. Shinoda, H. Tsukube, and R.Arakawa, J. Mass Spectrom. Soc. Jpn., 47, 270 (1999).

69) R. Arakawa, A. Sasao, T. Abura, T. Suzuki, and N.Fujitake, Eur. J. Mass Spectrom., 7, 467 (2001).

70) V. V. Borovkov, J. M. Lintuluoto, H. Sugeta, M. Fujiki, R.Arakawa, and Y. Inoue, J. Am. Chem. Soc., 124, 2993(2002).

71) V. V. Borovkov, J. M. Lintuluoto, G. A. Hembury, M.Sugiura, R. Arakawa, and Y. Inoue, J. Org. Chem., 68,7176 (2003).

72) O. Ishitani, private communication.

Keywords: Electrospray ionization mass spectrometry(ESI-MS), Photoreaction intermediate, Self-assembled mono-layer (SAM), Electrolytic oxidation, Chiral recognition

R. Arakawa

�262�