application of design-of-experiment methods and …bilicz/research/phd/phd_bilicz_pres.pdf ·...

52
Motivation, framework and objectives Eddy-Current Testing Surrogate Modeling & Design-of-Experiments Research goals Optimization-based inversion Expected Improvement Simple illustration ENDE examples Conclusions Surrogate modeling by functional kriging Adaptive sampling Simple illustration ENDE examples Conclusions Output space-filling Adaptive sampling Simple illustration ENDE examples Conclusions Perspectives Application of Design-of-Experiment Methods and Surrogate Models in Electromagnetic Nondestructive Evaluation PhD Defense, 30 May 2011 Sándor BILICZ “Co-tutelle” thesis Advisors: Marc LAMBERT and Szabolcs GYIMÓTHY Département de Recherche en Électromagnétisme Laboratoire des Signaux et Systèmes UMR8506 (CNRS-SUPELEC-Univ Paris Sud 11) Department of Broadband Infocommunications and Electromagnetic Theory Budapest University of Technology and Economics 1 / 38

Upload: doananh

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Application of

Design-of-Experiment Methods and Surrogate Models in

Electromagnetic Nondestructive Evaluation

PhD Defense, 30 May 2011

Sándor BILICZ

“Co-tutelle” thesis

Advisors:

Marc LAMBERT and Szabolcs GYIMÓTHY

Département de Recherche en ÉlectromagnétismeLaboratoire des Signaux et Systèmes

UMR8506 (CNRS-SUPELEC-Univ Paris Sud 11)

Department of Broadband Infocommunications and Electromagnetic TheoryBudapest University of Technology and Economics

1 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Outline

Introduction & framework

Electromagnetic Nondestructive Evaluation – illustrativeexample

Surrogate Modeling and Design-of-Experiments – some generaltools

Research goals

The backbone of the work: three independent approaches

Self-consistent entities

Same illustrative examples

Perspectives

2 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Eddy-Current Nondestructive Testing (ECT)

Probe coil

SpecimenDefect

Magnetic field

Eddy-current paths

Conductive specimen

Enclosed defect

Magnetic field→ eddy-currents

Defect→ impedance variation

Forward problem:defect→ response

Model/simulation

Usually straightforward

Computationally demanding

Inverse problem:response→ defect

Ill-posedness

A priori assumptions ?

Forward solver needed

3 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Our nondestructive evaluation framework

Parametric defect descriptionp = [p1, p2, . . . , pN]

T

︸ ︷︷ ︸input vector

∈ P ⊂ RN

︸ ︷︷ ︸input space

(geometry, constitutive properties, . . . )

Functional responseF p︸ ︷︷ ︸

forwardoperator

= q(t), t ∈ T︸ ︷︷ ︸output data

(measurement over a volume and/or time. . . )

Black-box model ofF

No need to know the inner structure Mathematical model: Maxwell’s equations Simulator:expensive-to-run(FEM, FD, integral eq.+MoM, . . . )

Simulator at hand

Thin crack(s)→ plane surface(s), current-dipole layer

Surface integral equation + MoM→ linear system of equations

Computer code: J. Pávó, CEA & BUTE project4 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Single-crack configuration

1) 2-parameter example (A = B = 0)

1 mm≤ L ≤ 10 mm5 %≤ D ≤ 90 %

2) 4-parameter example

−2 mm≤ A ≤ 2 mm−3 mm≤ B ≤ 3 mm

1 mm≤ L ≤ 10 mm5 %≤ D ≤ 90 %

r1

r2

ba

x

yy

z

L L

DA

B

d

coilcoilcrack

scanned area

|∆Z| (mΩ)

x (mm)

y (

mm

)

−2 −1 0 1 2−8

−6

−4

−2

0

2

4

6

8

5

10

15

20

25

30

35

40

45

arg ∆Z (rad)

x (mm)

y (

mm

)

−2 −1 0 1 2−8

−6

−4

−2

0

2

4

6

8

−0.5

0

0.5

1

1.5

2

5 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Double-crack configuration

3) 6-parameter example (D1 = D2 = 40 %)

−1 mm≤ A ≤ 1 mm0.25 mm≤ h ≤ 2 mm−3 mm≤ B1,B2 ≤ 3 mm

1 mm≤ L1, L2 ≤ 10 mm

4) 8-parameter example

−1 mm≤ A ≤ 1 mm0.25 mm≤ h ≤ 2 mm−3 mm≤ B1,B2 ≤ 3 mm

1 mm≤ L1, L2 ≤ 10 mm5 %≤ D1,D2 ≤ 80 %

r1

r2

ba

x

yy

zA

d

L1L1

D1

h

B1

L2L2

D2

B2

coilcoilcrack

scanned area

|∆Z| (mΩ)

x (mm)

y (

mm

)

−2 −1 0 1 2−8

−6

−4

−2

0

2

4

6

8

10

20

30

40

50

60

70

80

90

100

arg ∆Z (rad)

x (mm)

y (

mm

)

−2 −1 0 1 2−8

−6

−4

−2

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

6 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Surrogate Modeling (SM) and Design-of-Experiments (DoE)

“Expensive” true modelF

SurrogateModeling

−−−−−−−−−→ Approximate modelF Reducing computational complexity

(CPU, memory, price of commercial code, . . . )

Often interpolation supported by some pre-computed results

Fp1, Fp2, . . . , Fpn −→ Fp

Criterion: “small error” using “few” samples

Choice ofp1, p2, . . . , pn −→ Design-of-Experiments Systematically performing observations for a specific purpose

n = ? Error = ?

“Real” experiments / computer simulations

Classical methods (pi )

Model-oriented methods (pi , F )

Adaptive methods (pi , F , Fpi )

7 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Surrogate Modeling (SM) and Design-of-Experiments (DoE)

“Expensive” true modelF

SurrogateModeling

−−−−−−−−−→ Approximate modelF Reducing computational complexity

(CPU, memory, price of commercial code, . . . )

Often interpolation supported by some pre-computed results

Fp1, Fp2, . . . , Fpn −→ Fp

Criterion: “small error” using “few” samples

Choice ofp1, p2, . . . , pn −→ Design-of-Experiments Systematically performing observations for a specific purpose

n = ? Error = ?

“Real” experiments / computer simulations

Classical methods (pi )

Model-oriented methods (pi , F )

Adaptive methods (pi , F , Fpi )

7 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Sampling by means of classical Design-of-Experiments

Goals

filling “well” P by the samplesp1, p2, . . . , pn

representing “well” the effect of each coordinate ofP

. . .

Examples

Full-Factorial (FF) design:K levels inN dimensions:n = KN

Latin Hypercube (LH) design:n intervals along each axis→ n points

8 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Approximation of scalar and functional data by kriging

Scalar (classical,∼1960) Functional (recent,∼2004)Observations: Q(p1), . . . , Q(pn) qp1(t), . . . , qpn(t)

Model: Gaussian processξ(p) Functional Gaussian proc.ξp(t)

• Mean: m(p) m(p, t)

• Covariance: k(pi − pj) kT(pi − pj) =

Tk(pi − pj , t)dt

Prediction: ξ(p) =n∑

i=1λi(p)ξ(pi) ξp(t) =

n∑i=1

λi(p)ξpi (t)

Properties: “Best” Linear Unbiased Predictor (BLUP)

Coefficients: linear system of∼n equations

Interpolation : Q(p) =n∑

i=1λi(p)Q(pi) qp(t) =

n∑i=1

λi(p)qpi (t)

“Uncertainty”: σ2(p) = E

[(ξ(p)− ξ(p)

)2]

σ2T(p) =

TE

[(ξp(t)− ξp(t)

)2]

dt

9 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Choice of the covariance

Parametric covariance model: the Matérn function

k(h |σ20, ν) = σ

20(2√ν h)ν Kν(2

√ν h)

2ν−1Γ(ν), h =

√√√√ N∑k=1

(p(k)

i − p(k)j

ρi

)2

Variance:σ20

Smoothness:ν

Scaling factors:ρ1, ρ2, . . . , ρN →anisotropic distance

more. . .

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ν = 0.25

ν = 1

ν = 4

hρ (ρ = 0.25)

k(h)

Estimation of the parameters:

(Restricted) Maximum Likelihood

Cross-Validation

Numerical implementation (partly) by E. Vazquez, Supélec10 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme

2. A generic surrogate model to reduce the interpolation error

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

11 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme Global minimization of a data-misfit function Kriging model Adaptive sampling (“expected improvement”)

2. A generic surrogate model to reduce the interpolation error

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

11 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Optimization-based inversion

Measured data:q(t)

Parametric model:q(t) = Fp Data-misfit→ objective function:Q(p) = ‖q(t)−Fp‖ The regularized inverse problem:

p⋆ = arg minp∈P

Q(p)

Simulator

Measurement Strategy

q(t)

Fpp

Q(p)

Challenges:Q(p) expensive-to-evaluate

might be multimodal

−→ “Efficient Global Optimization”

kriging model (Surrogate Model)

sequential sampling (DoE)

12 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

The “Expected Improvement” sampling criterion

Sequential sampling for the solution of

p⋆ = arg minp∈P

Q(p), p1, p2, p3, . . . p⋆

0. Initial observations:Q(p1), Q(p2), . . . , Q(pn)

1. Qmin = min[Q(p1), . . . , Q(pn)

]

2. Kriging prediction:ξ(p) ∈ N(

Q(p), σ2(p))

(normally distributed)

Improvement atp by evaluatingQ there:I(p) = Qmin − ξ(p)

“Expected Improvement” atp:

η(p) := E

[I(p)

∣∣∣ I(p) > 0]

closed-form expression available

3. The next evaluation:pn+1 = arg max

p∈Pη(p)

4. Update the model withQ(pn+1). UNTIL the stopping criterion is met,increasen := n+ 1 and GOTO step1.

13 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

A simple illustrationHigh expected improvement:

Low Q(p) : “promising” p

High σ2(p) : “unexplored”p ⇒ Balanced local/global search

14 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Numerical ENDE examples Normalized misfit function:Q(p) =

‖q(t)−Fp‖‖q(t)‖

Synthetic data ( ) Initial samples (N ): Latin Hypercube design Sequential sampling (• ) until n = nmax

N 2 4 6 8ninit 10 40 60 80nmax 40 160 240 320

A 2-parameter example (L = 2.5 mm,D = 75 %)

15 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Numerical ENDE examples

A 2-parameter case

0

0.05

0.1

0.15

0.2

Qm

in

0 5 10 15 20 25 30 35 40

−8

−6

−4

−2

0

Iterations

lg η

max

A 6-parameter case

0

0.05

0.1

0.15

Qm

in

0 50 100 150 200−20

−15

−10

−5

Iterations

lg η

max

A 4-parameter case

0

0.2

0.4

Qm

in

0 20 40 60 80 100 120 140 160

−4

−3

−2

−1

0

Iterations

lg η

max

A 8-parameter case

0.1

0.2

0.3

Qm

in

0 50 100 150 200 250 300

−3

−2

−1

Iterations

lg η

max

16 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Conclusions

Pros

Usually “few” iterations F is black-box→ generalization Gradient-free Implementation:

→ access to the precision ofdefect reconstruction

Cons

Not always few iterations Initial design ? Stopping criteria ? Gradient-free “Curse-of-Dimensionality”

Covariance parameters Exponential increase ofP

Perspectives

Gradient available: improved kriging model / stopping criterion

Combined stopping criteria (n, Qmin, ηmax)

Two-stage optimization

Related articleS. Bilicz, E. Vazquez, M. Lambert, Sz. Gyimóthy, and J. Pávó,“Characterization of a 3D defect using the Expected Improvement algorithm,”COMPEL, 28(4), pp. 851-864, 2009.

17 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme

2. A generic surrogate model to reduce the interpolation error

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

18 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme

2. A generic surrogate model to reduce the interpolation error Functional kriging model ofF Error estimation in a statistical framework Adaptive sampling

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

18 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Interpolation-based generic surrogate modeling

A 2-stage approach

1. Database:Dn =(p1, q1(t)) , . . . , (pn, qn(t))

, qi(t) = Fpi

time-consuming, performed onlyonceby “experts”

2. Interpolation:Fp ≃ Fp, ∀p ∈ P and Fpi ≡ Fpi, ∀pi

“real-time”, performed by the“end-user”

Properties

Error: ε(p) = ‖Fp − Fp‖,

with a function norm, e.g.:‖·‖ ≡√

1|T|

T

| · |2dt

General purpose→ general criteria forε(p) all overP :

εmax = maxp∈P

ε(p), εRMS =

√1|P|

p∈P

ε2(p)dp, . . .

Reducedn, as far as possible

19 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Interpolation-based generic surrogate modeling

A 2-stage approach

1. Database:Dn =(p1, q1(t)) , . . . , (pn, qn(t))

, qi(t) = Fpi

time-consuming, performed onlyonceby “experts”

2. Interpolation:Fp ≃ Fp, ∀p ∈ P and Fpi ≡ Fpi, ∀pi

“real-time”, performed by the“end-user”

Properties

Error: ε(p) = ‖Fp − Fp‖,

with a function norm, e.g.:‖·‖ ≡√

1|T|

T

| · |2dt

General purpose→ general criteria forε(p) all overP :

εmax = maxp∈P

ε(p), εRMS =

√1|P|

p∈P

ε2(p)dp, . . .

Reducedn, as far as possible

19 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

. . . how to choose the observations?−→ DoE

Classical sampling plans: Full-Factorial, Latin Hypercube, . . .

. . . are not adapted either toF or qi(t)

Adaptive sequential DoE

Initial samples F

Add sample

No

Stop? Final dataset

Small number of initial samples (Dninit )

Add samples one-by-one driven by asmart strategy

Stop when the stopping criterion is met

20 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Sequential sampling strategy:p1, p2, . . . , pn → pn+1 =???

Implicit formulas

pn+1 = arg minp∈P

[ε(n+1)max

], pn+1 = arg min

p∈P

[ε(n+1)RMS

], . . .

Towards realizable explicit approximations

pn+1 = arg maxp∈P

[ε(n)(p)

]still computationally intractable. . .

Variance-driven sampling: Kriging (trace) varianceσ2

T(p) ∼ interpolation errorε(p)

Use the “jackknife-variance”σ2T,Jack(p)

more. . .

Naive sampling:

pn+1 = arg maxp∈P

[σ2

T,Jack(p)]

Two-factor product (heuristic):

pn+1 = arg maxp∈P

[σ2

T,Jack(p)︸ ︷︷ ︸“adaptivity”

factor

× mini=1,2,...,n

‖p − pi‖

︸ ︷︷ ︸input space-filling

]

21 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Sequential sampling strategy:p1, p2, . . . , pn → pn+1 =???

Implicit formulas

pn+1 = arg minp∈P

[ε(n+1)max

], pn+1 = arg min

p∈P

[ε(n+1)RMS

], . . .

Towards realizable explicit approximations

pn+1 = arg maxp∈P

[ε(n)(p)

]still computationally intractable. . .

Variance-driven sampling: Kriging (trace) varianceσ2

T(p) ∼ interpolation errorε(p)

Use the “jackknife-variance”σ2T,Jack(p)

more. . .

Naive sampling:

pn+1 = arg maxp∈P

[σ2

T,Jack(p)]

Two-factor product (heuristic):

pn+1 = arg maxp∈P

[σ2

T,Jack(p)︸ ︷︷ ︸“adaptivity”

factor

× mini=1,2,...,n

‖p − pi‖

︸ ︷︷ ︸input space-filling

]

21 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

A simple illustration:R 7→ R polynomial function (not functional kriging)

Auxiliary function: Q(p) = σ2T,Jack(p)× min

i=1,2,...,n‖p− pi‖

22 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Numerical ENDE examples

Initial samples: a classical input space-filling (Fractional-Factorial)

Stopping criterion:n = nmax

Comparisons:

Adaptive sampling +functional kriging

1 2 3 4 5 6 7 8 9 105

20

40

55

75

90

L (mm)

D(%

)

Full-factorial sampling +multilinear interpolator

1 2 3 4 5 6 7 8 9 105

20

40

55

75

90

L (mm)

D(%

)Full-factorial sampling +

functional kriging

1 2 3 4 5 6 7 8 9 105

20

40

55

75

90

2

4

6

8

10

L (mm)D

(%)

ε(p) is evaluated at a finite number of test points

εmax andεRMS are approximately computed

23 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

The 2-parameter example

9 16 25 360

5

10

15

20

25

30

Samples

εm

ax (

)

Kriging full−fact.

Kriging adaptive

Multilinear

9 16 25 360

1

2

3

4

5

6

7

8

9

Samples

εR

MS (

)

Kriging full−fact.

Kriging adaptive

Multilinear

The 4-parameter example

81 144 2565

10

15

20

25

30

35

Samples

εm

ax (

)

Kriging full−fact.

Kriging adaptive I

Kriging adaptive II

Multilinear

81 144 2562

3

4

5

6

7

8

9

10

Samples

εR

MS (

)

Kriging full−fact.

Kriging adaptive I

Kriging adaptive II

Multilinear

24 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Conclusions

Pros

Two stages→ “off-line” simulator

Fully adaptive

F is a black-box→ generalization

Cons

Does the interpolation always make sense?

Heuristic generation rule

Reliable, error-based stopping rule?

Rapidly growing computational cost(jackknifing)

Perspectives

Constant mean function→ more complicated mean functions series expansion of the data + kriging on the residual

Improvement when gradient available?

Applications: inversion, uncertainty propagation, . . .. . . and non-ENDE setups, e.g., forest characterizationmore. . .

Related articleS. Bilicz, E. Vazquez, Sz. Gyimóthy, J. Pávó, and M. Lambert“Kriging for eddy-current testing problems,”IEEE Transactions on Magnetics, 46(8), pp. 3165-3168, 2010.

25 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme

2. A generic surrogate model to reduce the interpolation error

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

26 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Research goal and applied methodology

Efficiency improvement of ENDE forward and inverse problem solutions byinvolving design-of-experiment and surrogate modeling schemes:

1. An optimization-based inversion scheme

2. A generic surrogate model to reduce the interpolation error

3. A generic surrogate model with optimally distributed output dataq1(t), q2(t), . . . , qn(t) ( · · · → the inverse problem )

Measure of sampling uniformity in the output domain Adaptive sampling Kriging → numerically tractable algorithm Characterization of inverse problems

26 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Spaces, sampling, space-filling

RN ⊃ P︸︷︷︸inputspace

∋ p 7→ Fp = q(t) ∈ Q︸︷︷︸outputspace

⊂ L2(T)

SamplingDn =

(p1, q1(t)) , (p2, q2(t)) , . . . , (pn, qn(t))

, qi(t) = Fpi

a discrete representation ofF

Repartition of samples inP andQ → properties of representation

Input space-filling: classical DoE (Full-factorial, Latin hypercube, . .. )

Output space-filling: adaptive DoE Criteria forq1(t), q2(t), . . . , qn(t)

Inherently more difficult (F : P 7→ Q )

Iterative / incremental realization

Our proposal: a combined use of two distance-based criteria

27 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Spaces, sampling, space-filling

RN ⊃ P︸︷︷︸inputspace

∋ p 7→ Fp = q(t) ∈ Q︸︷︷︸outputspace

⊂ L2(T)

SamplingDn =

(p1, q1(t)) , (p2, q2(t)) , . . . , (pn, qn(t))

, qi(t) = Fpi

a discrete representation ofF

Repartition of samples inP andQ → properties of representation

Input space-filling: classical DoE (Full-factorial, Latin hypercube, . .. )

Output space-filling: adaptive DoE Criteria forq1(t), q2(t), . . . , qn(t)

Inherently more difficult (F : P 7→ Q )

Iterative / incremental realization

Our proposal: a combined use of two distance-based criteria

27 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Output space-filling. . . How and why?

Our criteria forq1(t), q2(t), . . . , qn(t)

1. Fill the wholeQ: maxq(t)∈Q

[min

i‖q(t)− qi(t)‖

]< ∆

2. With evenly spaced samples:max

i

[minj 6=i

‖qi(t)− qj(t)‖]

mini

[minj 6=i

‖qi(t)− qj(t)‖] = 1

Expected benefits of such output space-filling databases

Addressing the inverse problem:

Higher precision due to the better describedQ

“Meta-information” from the structure of such database

→ Characterization of the inverse problem

28 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Output space-filling. . . How and why?

Our criteria forq1(t), q2(t), . . . , qn(t)

1. Fill the wholeQ: maxq(t)∈Q

[min

i‖q(t)− qi(t)‖

]< ∆

2. With evenly spaced samples:max

i

[minj 6=i

‖qi(t)− qj(t)‖]

mini

[minj 6=i

‖qi(t)− qj(t)‖] = 1

Expected benefits of such output space-filling databases

Addressing the inverse problem:

Higher precision due to the better describedQ

“Meta-information” from the structure of such database

→ Characterization of the inverse problem

28 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

How does the difference ofP- andQ-filling look like?

F : a simpleR2 → R2 analytical function

q1 = coshπp1

2cos

πp2

2,

q2 = sinhπp1

2sin

πp2

2.

Input space-filling(Full-factorial design inP)

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 30

0.5

1

1.5

2

2.5

p1

p 2

q1

q 2

Output space-filling(Adaptive sampling)

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 30

0.5

1

1.5

2

2.5

p1

p 2

q1

q 2

29 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Generation of output space-filling databases I.

Governing tool: the distance functions

Qi(p) = ‖Fp − qi(t)‖, i = 1, 2, . . . , n

Adaptive sampling (in theory)

0. Initialization: choosep1 ∈ P

D1 =(p1, q1(t))

n := 1

1. Sample insertion:pn+1 = arg maxp∈P

[min

iQi(p)

]

Dn+1 = Dn ∪ (pn+1, qn+1(t)) n := n+ 1

2. Until a stopping rule is met, GOTO step1.

30 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

A simple illustration:R27→ R2 analytical function (as before)

Input spaceP Output spaceQ

31 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Generation of output space-filling databases II.

Sample insertion: numerically intractable algorithm

pn+1 = arg maxp∈P

[min

iQi(p)

]Kriging model

of Qi(p)−−−−−−−−−−−−→ pn+1 = arg maxp∈P

[min

iQi(p)

]

Adaptive sampling (realizable)

0. Initialization: choosep1, p2, . . . , pm ∈ P

Dk =(p1, q1(t)) , . . . , (pm, qm(t))

n := m

1. Sample insertion:pn+1 = arg maxp∈P

[min

iQi(p)

]

Dn+1 = Dn ∪ (pn+1, qn+1(t)) n := n+ 1

2. Sample removal (if needed):k = arg mini

[minj 6=i

‖qi(t)− qj(t)‖]

Dn−1 = Dn \ (pk, qk(t)) n := n− 1

3. Until a stopping rule is met, GOTO step1.

32 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Generation of output space-filling databases II.

Sample insertion: numerically intractable algorithm

pn+1 = arg maxp∈P

[min

iQi(p)

]Kriging model

of Qi(p)−−−−−−−−−−−−→ pn+1 = arg maxp∈P

[min

iQi(p)

]

Adaptive sampling (realizable)

0. Initialization: choosep1, p2, . . . , pm ∈ P

Dk =(p1, q1(t)) , . . . , (pm, qm(t))

n := m

1. Sample insertion:pn+1 = arg maxp∈P

[min

iQi(p)

]

Dn+1 = Dn ∪ (pn+1, qn+1(t)) n := n+ 1

2. Sample removal (if needed):k = arg mini

[minj 6=i

‖qi(t)− qj(t)‖]

Dn−1 = Dn \ (pk, qk(t)) n := n− 1

3. Until a stopping rule is met, GOTO step1.

32 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

The sampling algorithm

Kriging prediction

Initial observationsStart

N

New observation

Remove?Stop?End

N

Remove sample

Initial observations: classical input space-filling

Sample removal: in every second cycle (other rules can also be applied)

Stopping rule:n = nmax

33 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Illustration via ENDE examples I. :Visualization of the output data inL2(T)

Multidimensional scaling (MDS):q1(t), . . . , qn(t) → π1, . . . , πn ∈ R2,

such that‖qi(t)− qj(t)‖ ≃ ‖πi − πj‖, ∀i, j

Input samples

L (mm)

D (

%)

1 2 3 4 5 6 7 8 9 105

20

40

55

75

90

L (mm)

D (

%)

1 2 3 4 5 6 7 8 9 105

20

40

55

75

90

Output samples by MDS

−20 0 20 40 60 80−15

−10

−5

0

5

10

15

π1 (mΩ)

π2 (

)

−40 −20 0 20 40 60−15

−10

−5

0

5

10

π1 (mΩ)

π2 (

)

34 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

What can an output space-filling database be used for?Inverse mapping of a noise levelδ

inverse problem:q(t) → p “noise level” :‖q(t)−Fp‖ ≤ δ −→ “noise patch” inP

quantitative characterization of the ill-posedness

P

Q

δδ

δ

δ

δ

p1

p2

F

inverse mapping: computationally expensive

at theith sample:‖qi(t)−Fp‖ = Qi(p) distance function

Qi(p) ≤ δkriging−−−−−→ Qi(p) ≤ δ numerically tractable approximation

35 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Illustration via ENDE examples II. : Noise level mappingThe 2-parameter example, output space-filling databases

9 samples,δ = 1 mΩ

L (mm)

D (

%)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 105

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

9 samples,δ = 3 mΩ

L (mm)

D (

%)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 105

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

36 samples,δ = 1 mΩ

L (mm)

D (

%)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 105

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

36 samples,δ = 3 mΩ

L (mm)

D (

%)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 105

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

36 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Conclusions

Database generation

New adaptive DoE scheme: output space-filling

Samplingdistance functions−−−−−−−−−−−−−→ optimization task

Numerical burdenkriging−−−−−→ tractable algorithm

Inverse mapping

Tools involved in the database generation

Ill-posedness quantitatively accessible

Limitation: “Curse of Dimensionality”Perspectives

Other norms inQ

“Density estimation”→ inhomogeneous distance measure inP

Related articleS. Bilicz, M. Lambert and Sz. Gyimóthy“Kriging-based generation of optimal databases as forward and inverse surro-gate models,”Inverse Problems, 26(7), p. 074012, 2010.

37 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Perspectives

Uncertainty propagation, sensitivity analysis

Uncertain configuration parameters?−→ performance of inversion

Defect parameters: which are the “most important”?

Interpolation-based inversion:

Fp1, Fp2, . . . , Fpn −→ F−1q(t)

p =

n∑

i=1

λi(q(t)) pi

Extension to other nondestructive tests and remote sensing

Ultrasonic NDT

Pulsed eddy current NDT

Forest characterization by means of radar observations

38 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Choice of the covariance back

Parametric covariance model

Matérn:k(h |σ20, ν) = σ

20(2√ν h)ν Kν(2

√ν h)

2ν−1Γ(ν), h2 =

N∑k=1

(p(k)

i − p(k)j

ρi

)2

Estimation ofσ20, ν, ρ1, ρ2, . . . , ρN :

(Restricted) Maximum Likelihood, Cross-Validation, . . .

Illustration: a polynomial test function (black) and the kriginginterpolators (red) based on 5 samples:

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

p

Q(p)

σ20 = 100, ν = 4, ρ = 0.1

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

p

Q(p)

σ20 = 82.3, ν = 2.74, ρ = 0.28

(maximum likelihood estimates)39 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Jackknife variance estimator back

Well-known statistical tool Similar to Cross-Validation (a “goodness of fit”) Directly depends on the observations

(contrarily to the classical kriging variance)

0

0.5

1

1.5

2

f(p)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

p

σ(p) Jackknife

Unknown function

Classical

Kriging interpolation

Controversy: not zero at the sampled points Drawback: computational cost

40 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Forest characterization by radar measurementsback

Inverse problems: e.g., biomass retrieval, mean height and age retrieval(allometric equations: biological properties→ EM parameters)

EM scattering models→ time-consuming simulations→ need of surrogate modeling

An illustrative problem statement: Input: age (a), ground moisture (m) Output: polarimetric backscattering coefficients (σHH , σVV, σHV) Configuration parameters: frequency (f ), incident angle (θ)

σuv = Ff ,Θa,m

2-level adaptive sampling ofF

1. Ff ,Θa,m =n∑

i=1λi(a,m)FS

f ,Θai ,mi upper: functional kriging

2. FSf ,Θa,m =

k∑j=1

λj(f ,Θ)Ffj ,Θja,m lower: scalar kriging

[MSc. Thesis ofAndrásVASKÓ, L2S-SONDRA-BUTE, 2011.]

41 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Forest characterization by radar measurementsback

Inverse problems: e.g., biomass retrieval, mean height and age retrieval(allometric equations: biological properties→ EM parameters)

EM scattering models→ time-consuming simulations→ need of surrogate modeling

An illustrative problem statement: Input: age (a), ground moisture (m) Output: polarimetric backscattering coefficients (σHH , σVV, σHV) Configuration parameters: frequency (f ), incident angle (θ)

σuv = Ff ,Θa,m

2-level adaptive sampling ofF

1. Ff ,Θa,m =n∑

i=1λi(a,m)FS

f ,Θai ,mi upper: functional kriging

2. FSf ,Θa,m =

k∑j=1

λj(f ,Θ)Ffj ,Θja,m lower: scalar kriging

[MSc. Thesis ofAndrásVASKÓ, L2S-SONDRA-BUTE, 2011.]

41 / 38

Motivation,framework andobjectives

Eddy-Current Testing

Surrogate Modeling &Design-of-Experiments

Research goals

Optimization-basedinversion

Expected Improvement

Simple illustration

ENDE examples

Conclusions

Surrogate modelingby functional kriging

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Output space-filling

Adaptive sampling

Simple illustration

ENDE examples

Conclusions

Perspectives

Age

Mois

ture

10 20 30 40 500.1

0.2

0.3

0.4

0.5

0.6

0.7

VV (σ = −28.2 dB)

Age

Mois

ture

10 20 30 40 500.1

0.2

0.3

0.4

0.5

0.6

0.7

VH (σ = −57.0 dB)

Age

Mois

ture

10 20 30 40 500.1

0.2

0.3

0.4

0.5

0.6

0.7

HH (σ = −20.6 dB)

Age

Mois

ture

10 20 30 40 500.1

0.2

0.3

0.4

0.5

0.6

0.7

Combined polarizations

Error maps for(a = 40, mv = 0.25), frequency bandwidth=[1000, 2000] MHz and incidenceangle range=[59, 61]. Black area: error less than 1 dB, dark grey: error between 1 dB and 2 dB,

light grey: between 2 dB and 3 dB. back 42 / 38