appendix e eagle conservation plan guidance

120
Appendix E Eagle Conservation Plan Guidance

Upload: others

Post on 06-Nov-2021

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix E Eagle Conservation Plan Guidance

Appendix E Eagle Conservation Plan Guidance

Page 2: Appendix E Eagle Conservation Plan Guidance

This page intentionally left blank.

Page 3: Appendix E Eagle Conservation Plan Guidance

U.S. Fish and Wildlife Service

U.S. Fish and Wildlife Service Division of Migratory Bird Management

April 2013

Eagle Conservation Plan GuidanceModule 1 – Land-based Wind Energy

Version 2

Credit: Brian Millsap/USFWS

Page 4: Appendix E Eagle Conservation Plan Guidance

i

Disclaimer

ThisEagleConservationPlanGuidanceisnotintendedto,norshallitbeconstruedto,limitorprecludetheServicefromexercisingitsauthorityunderanylaw,statute,orregulation,orfromtakingenforcementactionagainstanyindividual,company,oragency.ThisGuidanceisnotmeanttorelieveanyindividual,company,oragencyofitsobligationstocomplywithanyapplicableFederal,state,tribal,orlocal

laws,statutes,orregulation.ThisGuidancebyitselfdoesnotpreventtheServicefromreferringcasesforprosecution,

whetheracompanyhasfolloweditornot.

Page 5: Appendix E Eagle Conservation Plan Guidance

ii

EXECUTIVE SUMMARY 1. Overview OfallAmerica’swildlife,eaglesholdperhapsthemostreveredplaceinournationalhistoryandculture.TheUnitedStateshaslongimposedspecialprotectionsforitsbaldandgoldeneaglepopulations.Now,asthenationseekstoincreaseitsproductionofdomesticenergy,windenergydevelopersandwildlifeagencieshaverecognizedaneedforspecificguidancetohelpmakewindenergyfacilitiescompatiblewitheagleconservationandthelawsandregulationsthatprotecteagles.Tomeetthisneed,theU.S.FishandWildlifeService(Service)hasdevelopedtheEagleConservationPlanGuidance(ECPG).Thisdocumentprovidesspecificin‐depthguidanceforconservingbaldandgoldeneaglesinthecourseofsiting,constructing,andoperatingwindenergyfacilities.TheECPGguidancesupplementstheService’sLand‐BasedWindEnergyGuidelines(WEG).WEGprovidesabroadoverviewofwildlifeconsiderationsforsitingandoperatingwindenergyfacilities,butdoesnotaddressthein‐depthguidanceneededforthespecificlegalprotectionsaffordedtobaldandgoldeneagles.TheECPGfillsthisgap.LiketheWEG,theECPGcallsforwindprojectdeveloperstotakeastagedapproachtositingnewprojects.Bothcallforpreliminarylandscape‐levelassessmentstoassesspotentialwildlifeinteractionsandproceedtosite‐specificsurveysandriskassessmentspriortoconstruction.TheyalsocallformonitoringprojectoperationsandreportingeaglefatalitiestotheServiceandstateandtribalwildlifeagencies.CompliancewiththeECPGisvoluntary,buttheServicebelievesthatfollowingtheguidancewillhelpprojectoperatorsincomplyingwithregulatoryrequirementsandavoidingtheunintentional“take”ofeaglesatwindenergyfacilities,andwillalsoassistthewindenergyindustryinprovidingthebiologicaldataneededtosupportpermitapplicationsforfacilitiesthatmayposearisktoeagles.2. The Bald and Golden Eagle Protection Act TheBaldandGoldenEagleProtectionAct(BGEPA)istheprimarylawprotectingeagles.BGEPAprohibits“take”ofeagleswithoutapermit(16USC668‐668c).BGEPAdefines“take”toinclude“pursue,shootat,poison,wound,kill,capture,trap,collect,molestordisturb,”andprohibitstakeofindividualsandtheirparts,nests,oreggs.TheServiceexpandedthisdefinitionbyregulationtoincludetheterm“destroy”toensurethat“take”includesdestructionofeaglenests.Theterm“disturb”isfurtherdefinedbyregulationas“toagitateorbotherabaldorgoldeneagletoadegreethatcauses,orislikelytocause,….injurytoaneagle,adecreaseinproductivity,ornestabandonment”(50CFR22.3).3. Risks to Eagles from Wind Energy FacilitiesWindenergydevelopmentcanaffecteaglesinavarietyofways.First,eaglescanbekilledbycollidingwithstructuressuchaswindturbines.Thisistheprimarythreattoeaglesfromwindfacilities,andtheECPGguidanceisprimarilyaimedatthisthreat.Second,disturbancefrompre‐construction,construction,oroperationandmaintenanceactivitiesmightdisturbeaglesatconcentrationsitesorandresultinlossofproductivityatnearbynests.Third,seriousdisturbanceormortalityeffectscouldresultinthepermanentorlongtermlossofanestingterritory.Additionally,disturbancesnearimportanteagleuseareasormigrationconcentrationsitesmightstresseaglessomuchthattheysufferreproductivefailureormortalityelsewhere,toadegreethat

Page 6: Appendix E Eagle Conservation Plan Guidance

iii

couldamounttoprohibitedtake.Alloftheseimpacts,unlessproperlypermitted,areviolationsofBGEPA.4. Eagle Take Permits TheServicerecognizesthatwindenergyfacilities,eventhosedevelopedandoperatedwiththeutmostefforttoconservewildlife,mayundersomecircumstancesresultinthe“take”ofeaglesunderBGEPA.However,in2009,theServicepromulgatednewpermitrulesforeaglesthataddressthisissue(50CFR22.26and22.27).UnderthesenewrulestheServicecanissuepermitsthatauthorizeindividualinstancesoftakeofbaldandgoldeneagleswhenthetakeisassociatedwith,butnotthepurposeof,anotherwiselawfulactivity,andcannotpracticablybeavoided.Theregulationsalsoauthorizepermitsfor“programmatic”take,whichmeansthatinstancesof“take”maynotbeisolated,butmayrecur.Theprogrammatictakepermitsarethemostgermanepermitsforwindenergyfacilities.However,undertheseregulations,anyongoingorprogrammatictakemustbeunavoidableevenaftertheimplementationofadvancedconservationpractices(ACPs).TheECPGiswrittentoguidewind‐facilityprojectsstartingfromtheearliestconceptualplanningphase.Forprojectsalreadyinthedevelopmentoroperationalphase,implementationofallstagesoftherecommendedapproachintheECPGmaynotbeapplicableorpossible.Projectdevelopersoroperatorswithoperatingorsoon‐to‐beoperatingfacilitiesandwhoareinterestedinobtainingaprogrammaticeagletakepermitshouldcontacttheService.TheServicewillworkwithprojectdevelopersoroperatorstodetermineiftheprojectmightbeabletomeetthepermitrequirementsin50CFR22.26.TheServicemayrecommendthatthedevelopermonitoreaglefatalitiesanddisturbance,adoptreasonablemeasurestoreduceeaglefatalitiesfromhistoriclevels,andimplementcompensatorymitigation.SectionsoftheECPGthataddressthesetopicsarerelevanttobothplannedandoperatingwindfacilities(AppendicesEandFinparticular).Operatorsofwindprojects(andotheractivities)thatwereinoperationpriorto2009thatposearisktogoldeneaglesmayqualifyforprogrammaticeagletakepermitsthatdonotautomaticallyrequirecompensatorymitigation.Thisisbecausetherequirementsforobtainingprogrammatictakeauthorizationaredesignedtoreducetakefromhistoric,baselinelevels,andthepreambletotheEaglePermitRulespecifiedthatunavoidabletakeremainingafterimplementationofavoidanceandminimizationmeasuresatsuchprojectswouldnotbesubtractedfromregionaleagletakethresholds.5. Voluntary Nature of the ECPG Windprojectoperatorsarenotlegallyrequiredtoseekorobtainaneagletakepermit.However,thetakeofaneaglewithoutapermitisaviolationofBGEPA,andcouldresultinprosecution.ThemethodsandapproachessuggestedintheECPGarenotmandatorytoobtainaneagletakepermit.TheServicewillacceptotherapproachesthatprovidetheinformationanddatarequiredbytheregulations.TheECPcanbeastand‐alonedocument,orpartofalargerbirdandbatstrategyasdescribedintheWEG,solongasitadequatelymeetstheregulatoryrequirementsat50CFR22.26tosupportapermitdecision.However,ServiceemployeeswhoprocesseagletakepermitapplicationsaretrainedinthemethodsandapproachescoveredintheECPG.Usingothermethodologiesmayresultinlongerapplicationprocessingtimes.6. Eagle Take Thresholds EagletakepermitsmaybeissuedonlyincompliancewiththeconservationstandardsofBGEPA.Thismeansthatthetakemustbecompatiblewiththepreservationofeachspecies,defined(inUSFWS2009a)as“consistentwiththegoalofstableorincreasingbreedingpopulations.”

Page 7: Appendix E Eagle Conservation Plan Guidance

iv

Toensurethatanyauthorized“take”ofeaglesdoesnotexceedthisstandard,theServicehassetregionaltakethresholdsforeachspecies,usingmethodologycontainedintheNationalEnvironmentalPolicyAct(NEPA)FinalEnvironmentalAssessment(FEA)developedfortheneweaglepermitrules(USFWS2009b).TheServicelookedatregionalpopulationsofeaglesandsettakethresholdsforeachspecies(upperlimitsonthenumberofeaglemortalitiesthatcanbeallowedunderpermiteachyearintheseregionalmanagementareas).Theanalysisidentifiedtakethresholdsgreaterthanzeroforbaldeaglesinmostregionalmanagementareas.However,theServicedeterminedthatgoldeneaglepopulationsmightnotbeabletosustainanyadditionalunmitigatedmortalityatthattime,andsetthethresholdsforthisspeciesatzeroforallregionalpopulations.Thismeansthatanynewauthorized“take”ofgoldeneaglesmustbeatleastequallyoffsetbycompensatorymitigation(specificconservationactionstoreplaceoroffsetproject‐inducedlosses).TheServicealsoputinplacemeasurestoensurethatlocaleaglepopulationsarenotdepletedbytakethatwouldbeotherwiseregionallyacceptable.TheServicespecifiedthattakeratesmustbecarefullyassessed,bothforindividualprojectsandforthecumulativeeffectsofotheractivitiescausingtake,atthescaleofthelocal‐areaeaglepopulation(apopulationwithinadistanceof43milesforbaldeaglesand140milesforgoldeneagles).Thisdistanceisbasedonthemediandistancetowhicheaglesdispersefromthenestwheretheyarehatchedtowheretheysettletobreed.TheServiceidentifiedtakeratesofbetween1and5percentofthetotalestimatedlocal‐areaeaglepopulationassignificant,with5percentbeingattheupperendofwhatmightbeappropriateundertheBGEPApreservationstandard,whetheroffsetbycompensatorymitigationornot.AppendixFprovidesafulldescriptionoftakethresholdsandbenchmarks,andprovidessuggestedtoolsforevaluatinghowtheseapplytoindividualprojects.7. An Approach for Developing and Evaluating Eagle ACPs Permitsforeagletakeatwind‐energyfacilitiesareprogrammaticinnatureastheywillauthorizerecurringtakeratherthanisolatedincidencesoftake.Forprogrammatictakepermits,theregulationsrequirethatanyauthorizedtakemustbeunavoidableaftertheimplementationofadvancedconservationpractices(ACPs).ACPsaredefinedas“scientificallysupportablemeasuresthatareapprovedbytheServiceandrepresentthebestavailabletechniquestoreduceeagledisturbanceandongoingmortalitiestoalevelwhereremainingtakeisunavoidable”(50CFR22.3).Becausethebestinformationcurrentlyavailableindicatestherearenoconservationmeasuresthathavebeenscientificallyshowntoreduceeagledisturbanceandblade‐strikemortalityatwindprojects,theServicehasnotcurrentlyapprovedanyACPsforwindenergyprojects.TheprocessofdevelopingACPsforwindenergyfacilitieshasbeenhamperedbythelackofstandardizedscientificstudyofpotentialACPs.TheServicehasdeterminedthatthebestwaytoobtaintheneededscientificinformationistoworkwithindustrytodevelopACPsforwindprojectsaspartofanadaptive‐managementregimeandcomprehensiveresearchprogramtiedtotheprogrammatic‐take‐permitprocess.Inthisscenario,ACPswillbeimplementedatoperatingwindfacilitieswithaneagletakepermitonan“experimental”basis(theACPsareconsideredexperimentalbecausetheywouldnotcurrentlymeetthedefinitionofanACPintheeaglepermitregulation).TheexperimentalACPswouldbescientificallyevaluatedfortheireffectiveness,asdescribedindetailinthisdocument,andbasedontheresultsofthesestudies,couldbemodifiedin

Page 8: Appendix E Eagle Conservation Plan Guidance

v

anadaptivemanagementregime.ThisapproachwillprovidetheneededscientificinformationforthefutureestablishmentofformalACPs,whileenablingwindenergyfacilitiestomoveforwardintheinterim.DespitethecurrentlackofformallyapprovedACPs,theremaybeotherconservationmeasuresbasedonthebestavailablescientificinformationthatshouldbeappliedasaconditiononprogrammaticeagletakepermitsforwind‐energyfacilities.Aprojectdeveloperoroperatorwillbeexpectedtoimplementanyreasonableavoidanceandminimizationmeasuresthatmayreducetakeofeaglesataproject.Inaddition,theServiceandtheprojectdeveloperoroperatorwillidentifyothersite‐specificandpossiblyturbine‐specificfactorsthatmayposeriskstoeagles,andagreeontheexperimentalACPstoavoidandminimizethoserisks.UnlesstheServicedeterminesthatthereisareasonablescientificbasistoimplementtheexperimentalACPsupfront(oritisotherwiseadvantageoustothedevelopertodoso),werecommendthatsuchmeasuresbedeferreduntilsuchtimeasthereiseagletakeatthefacilityortheServicedeterminesthatthecircumstancesandevidencesurroundingthetakeorriskoftakesuggesttheexperimentalACPsmightbewarranted.TheprogrammaticeagletakepermitwouldspecifytheexperimentalACPs,ifcircumstanceswarrant,andthepermitwouldbeconditionedontheprojectoperator’sagreementtoimplementandmonitortheexperimentalACPs.BecausetheACPswouldbeexperimental,theServicerecommendsthattheybesubjecttoacostcapthattheServiceandtheprojectdeveloperoroperatorwouldestablishaspartoftheinitialagreementbeforeissuanceofaneaglepermit.Thiswouldprovidefinancialcertaintyastowhatmaximumcostsofsuchmeasuresmightbe.Theamountofthecapshouldbeproportionaltooverallrisk.AstheresultsfrommonitoringexperimentalACPsacrossanumberoffacilitiesaccumulateandareanalyzed,scientificinformationinsupportofcertainexperimentalACPsmayaccrue,whereasotherACPsmayshowlittlevalueinreducingtake.IftheServicedeterminesthattheavailablesciencedemonstratesanexperimentalACPiseffectiveinreducingeagletake,theServicewillformallyapprovethatACPandrequireitsimplementationupfrontonnewprojectswhenandwherewarranted.AstheECPGevolves,theServicewillnotexpectprojectdevelopersoroperatorstoretroactivelyredoanalysesorsurveysusingthenewapproaches.TheadaptiveapproachtotheECPGshouldnotdeterprojectdevelopersoroperatorsfromusingtheECPGimmediately.8. Mitigation Actions to Reduce Effects on Eagle Populations Wherewindenergyfacilitiescannotavoidtakingeaglesandeaglepopulationsarenothealthyenoughtosustainadditionalmortality,applicantsmustreducetheunavoidablemortalitytoano‐net‐lossstandardforthedurationofthepermittedactivity.No‐net‐lossmeansthattheseactionseitherreduceanotherongoingformofmortalitytoalevelequaltoorgreaterthantheunavoidablemortality,orleadtoanincreaseincarryingcapacitythatallowstheeaglepopulationtogrowbyanequalorgreateramount.Actionstoreduceeaglemortalityorincreasecarryingcapacitytothisno‐net‐lossstandardareknownas“compensatorymitigation”intheECPG.Examplesofcompensatorymitigationactivitiesmightincluderetrofittingpowerlinestoreduceeagleelectrocutions,removingroad‐killedanimalsalongroadswherevehicleshitandkillscavengingeagles,orincreasingpreyavailability.TheServiceandtheprojectdeveloperoroperatorseekingaprogrammaticeagletakepermitshouldagreeonthenumberofeaglefatalitiestomitigateandwhatactionswillbetakenifactual

Page 9: Appendix E Eagle Conservation Plan Guidance

vi

eaglefatalitiesdifferfromthepredictednumber.Thecompensatorymitigationrequirementandtriggerforadjustmentshouldbespecifiedinthepermit.IftheproceduresrecommendedintheECPGarefollowed,thereshouldnotbeaneedforadditionalcompensatorymitigation.However,ifother,lessrisk‐aversemodelsareusedtoestimatefatalities,underestimatesmightbeexpectedandthepermitshouldspecifythethreshold(s)oftakethatwouldtriggeradditionalactionsandthespecificmitigationactivitiesthatmightbeimplemented.Additionaltypesofmitigationsuchaspreservinghabitat–actionsthatwouldnotbythemselvesleadtoincreasednumbersofeaglesbutwouldassisteagleconservation–mayalsobeadvisedtooffsetotherdetrimentaleffectsofpermitsoneagles.Compensatorymitigationisfurtherdiscussedbelow(Stage4–AvoidanceandMinimizationofRiskandCompensatoryMitigation).9. Relationship of Eagle Guidelines (ECPG) to the Wind Energy Guidelines (WEG) TheECPGisintendedtobeimplementedinconjunctionwithotheractionsrecommendedintheWEGthatassessimpactstowildlifespeciesandtheirhabitats.TheWEGrecommendsafive‐tierprocessforsuchassessments,andtheECPGfitswithinthatframework.TheECPGfocusesonjusteaglestofacilitatecollectionofinformationthatcouldsupportaneagletakepermitdecision.TheECPGusesafive‐stageapproachliketheWEG;therelationshipbetweentheECPGstagesandtheWEGtiersisshowninFig.1.Tiers1and2oftheWEG(Stage1oftheECPG)couldprovidesufficientevidencetodemonstratethataprojectposesverylowrisktoeagles.Providedthisassessmentisrobust,eaglesmaynotwarrantfurtherconsiderationinsubsequentWEGtiers,andStages2through5oftheECPGandpursuitofaneagletakepermitmightbeunnecessary.AsimilarconclusioncouldbereachedattheendofStage2,3,or4.Insuchcases,ifunpermittedeagletakesubsequentlyoccurs,thewindprojectproponentshouldconsultwiththeU.S.FishandWildlifeServicetodeterminehowtoproceed,possiblybyobtaininganeagletakepermit.Thefollowingsectionsdescribethegeneralapproachenvisionedforassessingwindprojectimpactstoeagles(alsoseetheStageOverviewTableattheendoftheExecutiveSummary).

Tiers 1 and 2 of the WEG, Stage 1 of the ECPG Tier1oftheWEGisthepreliminarysiteevaluation(landscape‐scalescreeningofpossibleprojectsites).Tier2issitecharacterization(broadcharacterizationofoneormorepotentialprojectsites).ThesecorrespondwithStage1oftheECPG,thesite‐assessmentstage.AspartoftheTiers1and2process,projectdevelopersshouldcarryoutStage1oftheECPGandevaluatebroadgeographicareastoassesstherelativeimportanceofvariousareastoresidentbreedingandnon‐breedingeagles,andtomigrantandwinteringeagles.DuringStage1,theprojectdeveloperoroperatorshouldgatherexistinginformationfrompubliclyavailableliterature,databases,andothersources,andusethosedatatojudgetheappropriatenessofvariouspotentialprojectsites,balancingsuitabilityfordevelopmentwithpotentialrisktoeagles.Toincreasetheprobabilityofmeetingtheregulatoryrequirementsforaprogrammatictakepermit,biologicaladvicefromtheServiceandotherjurisdictionalwildlifeagenciesshouldberequestedasearlyaspossibleinthedeveloper'splanningprocessandshouldbeasinclusiveaspossibletoensureallissuesarebeingaddressedatthesametimeandinacoordinatedmanner.Ideally,consultationwiththeService,andstateandtribalwildlife

Page 10: Appendix E Eagle Conservation Plan Guidance

vii

agenciesisdonebeforewinddevelopersmakeanysubstantialfinancialcommitmentorfinalizeleaseagreements.Tier 3 of the WEG, Stages 2, 3, and 4 of the ECPG DuringTier3oftheWEG,adeveloperconductsfieldstudiestodocumentwildlifeuseandhabitatattheprojectsiteandpredictprojectimpacts.Thesesite‐specificstudiesarecriticaltoevaluatingpotentialimpactstoallwildlifeincludingeagles.ThedeveloperandtheServicewouldusetheinformationcollectedtosupportaneagletakepermitapplication,shouldthedeveloperseekapermit.AspartofTier3,theECPGrecommendsprojectdevelopersoroperatorsimplementthreestagesofassessment:

Stage2‐site‐specificsurveysandassessments; Stage3‐predictingeaglefatalities;and Stage4‐avoidanceandminimizationofriskandcompensatorymitigation.

Stage 2 – Site Specific Surveys and Assessments DuringStage2theServicerecommendstheprojectdevelopercollectquantitativedatathroughscientificallyrigoroussurveysdesignedtoassessthepotentialriskoftheproposedprojecttoeagles.TheServicerecommendscollectinginformationthatwillallowestimationoftheeagleexposurerate(eagle‐minutesflyingwithintheprojectfootprintperhourperkilometer2),aswellassurveyssufficienttodetermineifimportanteagleuseareasormigrationconcentrationsitesarewithinorincloseproximitytotheprojectfootprint(seeAppendixC).Inthecaseofsmallwindprojects(oneutility‐scaleturbineorafewsmallturbines),theprojectdevelopershouldconsidertheproximityofeaglenestingandroostingsitestoaproposedprojectanddiscusstheresultsoftheStage1assessmentwiththeServicetodetermineifStage2surveysarenecessary.InmanycasesthehazardousareaassociatedwithsuchprojectswillbesmallenoughthatStage2surveyswillnotbenecessary.Stage 3 – Predicting Eagle Fatalities InStage3,theServiceandprojectdevelopersoroperatorsusedatafromStage2inmodelstopredicteagleriskexpressedastheaveragenumberoffatalitiesperyearextrapolatedtothetenureofthepermit.Thesemodelscancomparealternativesiting,construction,andoperationalscenarios,ausefulfeatureinconstructinghypothesesregardingpredictedeffectsofconservationmeasuresandexperimentalACPs.TheServiceencouragesprojectdevelopersoroperatorstousetherecommendedpre‐constructionsurveyprotocolinthisECPGinStage2tohelpinformourpredictivemodelsinStage3.IfService‐recommendedsurveyprotocolsareused,thisriskassessmentcanbegreatlyfacilitatedusingmodeltoolsavailablefromtheService.IfprojectdevelopersoroperatorsuseotherformsofinformationfortheStage2assessment,theywillneedtofullydescribethosemethodsandtheanalysisusedfortheeagleriskassessment.TheServicewillrequiremoretimetoevaluateandreviewthedatabecause,forexample,theServicewillneedtocomparetheresultsoftheprojectdeveloperoroperator’seagleriskassessmentwithpredictionsfromourmodels.Iftheresultsdiffer,wewillworkwiththeprojectdevelopersoroperatorstodeterminewhichmodelresultsaremostappropriatefortheService’seventualpermittingdecisions.

Page 11: Appendix E Eagle Conservation Plan Guidance

viii

TheServiceandprojectdevelopersoroperatorsalsoevaluateStage2datatodeterminewhetherdisturbancetakeislikely,andifso,atwhatlevel.Anylossofproductionthatmaystemfromdisturbanceshouldbeaddedtothefatalityratepredictionfortheproject.TheriskassessmentsatStage2andStage3areconsistentwithdevelopingtheinformationnecessarytoassesstheefficacyofconservationmeasures,andtodevelopthemonitoringrequiredbythepermitregulationsat50CFR22.26(c)(2).Stage 4 - Avoidance and Minimization of Risk and Compensatory Mitigation InStage4theinformationgatheredshouldbeusedbytheprojectdeveloperoroperatorandtheServicetodeterminepotentialconservationmeasuresandACPs(ifavailable)toavoidorminimizepredictedrisksatagivensite(seeAppendixE).TheServicewillcomparetheinitialpredictionsofeaglemortalityanddisturbancefortheprojectwithpredictionsthattakeintoaccountproposedandpotentialconservationmeasuresandACPs,oncedevelopedandapproved,todetermineiftheprojectdeveloperoroperatorhasavoidedandminimizedriskstothemaximumdegreeachievable,therebymeetingtherequirementsforprogrammaticpermitsthatremainingtakeisunavoidable.Additionally,theServicewillusetheinformationprovidedalongwithotherdatatoconductacumulativeeffectsanalysistodetermineiftheproject’simpacts,incombinationwithotherpermittedtakeandotherknownfactors,areatalevelthatexceedtheestablishedthresholdsorbenchmarksforeagletakeattheregionalandlocal‐areascales.ThisfinaleagleriskassessmentiscompletedattheendofStage4afterapplicationofconservationmeasuresandACPs(ifavailable)alongwithaplanforcompensatorymitigationifrequired.Theeaglepermitprocessrequirescompensatorymitigationifconservationmeasuresdonotremovethepotentialfortake,andtheprojectedtakeexceedscalculatedthresholdsfortheeaglemanagementunitinwhichtheprojectislocated.However,theremayalsobeothersituationsinwhichcompensatorymitigationisnecessary.Thefollowingguidanceappliestothosesituationsaswell.Compensatorymitigationcanaddresspre‐existingcausesofeaglemortality(suchaseagleelectrocutionsfrompowerpoles)oritcanaddressincreasingthecarryingcapacityoftheeaglepopulationintheaffectedeaglemanagementunit.However,thereneedstobeacredibleanalysisthatsupportstheconclusionthatimplementingthecompensatorymitigationactionwillachievethedesiredbeneficialoffsetinmortalityorcarryingcapacity.Fornewwinddevelopmentprojects,ifcompensatorymitigationisnecessary,thecompensatorymitigationaction(oraverifiable,legalcommitmenttosuchmitigation)willberequiredupfrontbeforeprojectoperationsbeginbecauseprojectsmustmeetthestatutoryeaglepreservationstandardbeforetheServicemayissueapermit.Foroperatingprojects,compensatorymitigationshouldbeappliedfromthestartofthepermitperiod,notretroactivelyfromthetimetheprojectbegan.Theinitialcompensatorymitigationeffortshouldbesufficienttooffsetthepredictednumberofeaglefatalitiesperyearforfiveyears.Nolaterthanattheendofthefiveyearperiod,theServiceandtheprojectoperatorwillcomparethepredictedannualtakeestimatetotherealizedtakebasedonpost‐constructionmonitoring.Ifthetriggersidentifiedinthepermitforadjustmentofcompensatory

Page 12: Appendix E Eagle Conservation Plan Guidance

ix

mitigationaremet,thoseadjustmentsshouldbeimplemented.Inthecasewheretheobservedtakewaslessthanestimated,thepermitteewillreceiveacreditfortheexcesscompensation(thedifferencebetweentheactualmeanandthenumbercompensatedfor)thatcanbeappliedtoothertake(eitherbythepermitteeorotherpermittedindividualsathis/herdiscretion)withinthesameeaglemanagementunit.TheService,inconsultationwiththepermittee,willdeterminecompensatorymitigationforfutureyearsfortheprojectatthispoint,takingintoaccounttheobservedlevelsofmortalityandanyreductioninthatmortalitythatisexpectedbasedonimplementationofadditionalexperimentalconservationmeasuresandACPs.Monitoringusingthebestscientificandpracticablemethodsavailableshouldbeincludedtodeterminetheeffectivenessoftheresultingcompensatorymitigationefforts.TheServicewillmodifythecompensatorymitigationprocesstoadapttoanyimprovementsinourknowledgebaseasnewdatabecomeavailable.AttheendofStage4,allthematerialsnecessarytosatisfytheregulatoryrequirementstosupportapermitapplicationshouldbeavailable.Whileaprojectoperatorcansubmitapermitapplicationatanytime,theServicecanonlybegintheformalprocesstodeterminewhetheraprogrammaticeagletakepermitcanbeissuedaftercompletionofStage4.Ideally,NationalEnvironmentalPolicyAct(NEPA)andNationalHistoricPreservationAct(NHPA)analysesandassessmentswillalreadybeunderway,butifnot,Stage4shouldincludenecessaryNEPAanalysis,NHPAcompliance,coordinationwithotherjurisdictionalagencies,andtribalconsultation.

Tier 4 and 5 of the WEG, Stage 5 of the ECPG IftheServiceissuesaneagletakepermitandtheprojectgoesforward,projectoperatorswillconductpost‐constructionsurveystocollectdatathatcanbecomparedwiththepre‐constructionrisk‐assessmentpredictionsforeaglefatalitiesanddisturbance.Themonitoringprotocolshouldincludevalidatedtechniquesforassessingbothmortalityanddisturbanceeffects,andtheymustmeetthepermit‐conditionrequirementsat50CFR22.26(c)(2).Inmostcases,intensivemonitoringwillbeconductedforatleastthefirsttwoyearsafterpermitissuance,followedbylessintensemonitoringforuptothreeyearsaftertheexpirationdateofthepermit.Projectdevelopersoroperatorsshouldusethepost‐constructionsurveyprotocolsincludedorreferencedinthisECPG,butwewillconsiderothermonitoringprotocolsprovidedbypermitapplicantsthoughtheprocesswilllikelytakelongerthaniffamiliarapproacheswereused.TheServicewillusetheinformationfrompost‐constructionmonitoringinameta‐analysisframeworktoweightandimprovepre‐constructionpredictivemodels.AdditionallyinStage5,theServiceandprojectdevelopersoroperatorsshouldusethepost‐constructionmonitoringdatato(1)assesswhethercompensatorymitigationisadequate,excessive,ordeficienttooffsetobservedmortality,andmakeadjustmentsaccordingly;and(2)exploreoperationalchangesthatmightbewarrantedataprojectafterpermittingtoreduceobservedmortalityandmeetpermitrequirements.

10. Site Categorization Based on Mortality Risk to Eagles BeginningattheendofStage1,andcontinuingattheendofStages2,3,and4,werecommendtheapproachoutlinedbelowbeusedtoassessthelikelihoodthatawindprojectwilltakeeagles,andif

Page 13: Appendix E Eagle Conservation Plan Guidance

x

so,thattheprojectwillmeetstandardsin50CFR22.26forissuanceofaprogrammaticeagletakepermit.

Category 1 – High risk to eagles, potential to avoid or mitigate impacts is low Aprojectisinthiscategoryifit:

(1)hasanimportanteagle‐useareaormigrationconcentrationsitewithintheprojectfootprint;or

(2)hasanannualeaglefatalityestimate(averagenumberofeaglespredictedtobetakenannually)>5%oftheestimatedlocal‐areapopulationsize;or

(3)causesthecumulativeannualtakeforthelocal‐areapopulationtoexceed5%oftheestimatedlocal‐areapopulationsize.

Inaddition,projectsthathaveeaglenestswithin½themeanproject‐areainter‐nestdistanceoftheprojectfootprintshouldbecarefullyevaluated.Ifitislikelyeaglesoccupyingtheseterritoriesuseorpassthroughtheprojectfootprint,category1designationmaybeappropriate.Projectsoralternativesincategory1shouldbesubstantiallyredesignedtoatleastmeetthecategory2criteria.TheServicerecommendsthatprojectdevelopersnotbuildprojectsatsitesincategory1becausetheprojectwouldlikelynotmeettheregulatoryrequirements.Therecommendedapproachforassessingthepercentageofthelocal‐areapopulationpredictedtobetakenisdescribedinAppendixF.Category 2 – High or moderate risk to eagles, opportunity to mitigate impacts Aprojectisinthiscategoryifit:

(1)hasanimportanteagle‐useareaormigrationconcentrationsitewithintheprojectareabutnotintheprojectfootprint;or

(2)hasanannualeaglefatalityestimatebetween0.03eaglesperyearand5%oftheestimatedlocal‐areapopulationsize;or

(3)causescumulativeannualtakeofthelocal‐areapopulationoflessthan5%oftheestimatedlocal‐areapopulationsize.

Projectsinthiscategorywillpotentiallytakeeaglesatarategreaterthanisconsistentwithmaintainingstableorincreasingpopulations,buttheriskmightbereducedtoanacceptablelevelthroughacombinationofconservationmeasuresandreasonablecompensatorymitigation.Theseprojectshaveariskofongoingtakeofeagles,butthisriskcanbeminimized.ForprojectsinthiscategorytheprojectdeveloperoroperatorshouldprepareanEagleConservationPlan(ECP)orsimilarplantodocumentmeetingtheregulatoryrequirementsforaprogrammaticpermit.TheECPorsimilardocumentcanbeastand‐alonedocument,orpartofalargerbirdandbatstrategyasdescribedintheWEG,solongasitadequatelymeetstheregulatoryrequirementsat50CFR22.26tosupportapermitdecision.Foreaglemanagementpopulationswheretakethresholdsaresetatzero,theconservationmeasuresintheECPshouldincludecompensatorymitigationandmustresultinno‐net‐losstothebreedingpopulationtobecompatiblewiththepermitregulations.Thisdoesnotapplytogoldeneagleseastofthe100thmeridian,forwhichnonon‐emergencytakecanpresentlybeauthorized(USFWS2009b).Category 3 – Minimal risk to eagles Aprojectisinthiscategoryifit:

Page 14: Appendix E Eagle Conservation Plan Guidance

xi

(1)hasnoimportanteagleuseareasormigrationconcentrationsiteswithintheprojectarea;and

(2)hasanannualeaglefatalityrateestimateoflessthan0.03;and(3)causescumulativeannualtakeofthelocal‐areapopulationoflessthan5%ofthe

estimatedlocal‐areapopulationsize.Projectsincategory3poselittlerisktoeaglesandmaynotrequireorwarranteagletakepermits,butthatdecisionshouldbemadeincoordinationwiththeService.Still,aprojectdeveloperoroperatormaywishtocreateanECPorsimilardocumentorstrategythatdocumentstheproject’slowrisktoeagles,andoutlinesmortalitymonitoringforeaglesandaplanofactionifeaglesaretakenduringprojectconstructionoroperation.ThiswouldenabletheServicetoprovideapermittoallowademinimisamountoftakeiftheprojectdeveloperoroperatorwishedtoobtainsuchapermit.

Theriskcategoryofaprojectcanpotentiallychangeasaresultofadditionalsite‐specificanalysesandapplicationofmeasurestoreducetherisk.Forexample,aprojectmayappeartobeincategory2asaresultofStage1analyses,butaftercollectionofsite‐specificinformationinStage2itmightbecomeclearitisacategory1project.Ifaprojectcannotpracticallybeplacedinoneofthesecategories,theprojectdeveloperoroperatorandtheServiceshouldworktogethertodetermineiftheprojectcanmeetprogrammaticeagletakepermittingrequirementsin50CFR22.26and22.27.Projectsshouldbeplacedinthehighestcategory(withcategory1beingthehighest)inwhichoneormoreofthecriteriaaremet.11. Addressing Uncertainty Thereissubstantialuncertaintysurroundingtheriskofwindprojectstoeagles,andofwaystominimizethatrisk.Forthisreason,theServicestressesthatitisveryimportantnottounderestimateeaglefatalityratesatwindfacilities.Overestimates,onceconfirmed,canbeadjusteddownwardbasedonpost‐constructionmonitoringinformationwithnoconsequencetoeaglepopulations.Projectdevelopersoroperatorscantradeorbecreditedforexcesscompensatorymitigation,anddebitstoregionalandlocal‐areaeagle‐takethresholdsandbenchmarkscanbeadjusteddownwardstoreflectactualfatalityrates.However,theoptionsforaddressingunderestimatedfatalityratesareextremelylimited,andposeeitherpotentialhardshipsforwinddevelopersorsignificantriskstoeaglepopulations.Ourlong‐termapproachformovingforwardinthefaceofthisuncertaintyistoimplementeagletakepermittinginaformaladaptivemanagementframework.TheServiceanticipatesfourspecificsetsofadaptivemanagementdecisions:(1)adaptivemanagementofwindprojectsitinganddesignrecommendations;(2)adaptivemanagementofwindprojectoperations;(3)adaptivemanagementofcompensatorymitigation;and(4)adaptivemanagementofpopulation‐leveltakethresholds.ThesearediscussedinmoredetailinAppendixA.Theadaptivemanagementprocesswilldependheavilyonpre‐andpost‐constructiondatafromindividualprojects,butanalyses,assessment,andmodelevaluationwillrelyondatapooledovermanyindividualwindprojects.Learningaccomplishedthroughadaptivemanagementwillberapidlyincorporatedintothepermittingprocesssothattheregulatoryprocessadjustsinproportiontoactualrisk. 12. Interaction with the Service TheServiceencouragesearly,frequentandthoroughcoordinationbetweenprojectdevelopersoroperatorsandServiceandotherjurisdictional‐agencyemployeesastheyimplementthetiersoftheWEG,andtherelatedStagesoftheECPG.Closecoordinationwillaidtherefinementofthe

Page 15: Appendix E Eagle Conservation Plan Guidance

xii

modelingprocessusedtopredictfatalities,aswellasthepost‐constructionmonitoringtoevaluatethosemodels.WeanticipatetheECPGandtherecommendedmethodsandmetricswillevolveastheServiceandprojectdevelopersoroperatorslearntogether.TheServicehascreatedacross‐program,cross‐regionalteamofbiologistswhowillworkjointlyoneagle‐programmatic‐takepermitapplicationstohelpensureconsistencyinadministrationandapplicationoftheEaglePermitRule.ThisclosecoordinationandinteractionisespeciallyimportantastheServiceprocessesthefirstfewprogrammaticeagletakepermitapplications.TheServicewillcontinuetorefinethisECPGwithinputfromallstakeholderswiththeobjectiveofmaintainingstableorincreasingbreedingpopulationsofbothbaldandgoldeneagleswhilesimultaneouslydevelopingscience‐basedeagle‐takeregulationsandproceduresthatareappropriatetotheriskassociatedwitheachwindenergyproject.Stage Overview Table - Overview of staged approach to developing an Eagle Conservation Plan as described in the ECPG. Stages are in chronological order. Stage 5 would only be applicable in cases where a permit was issued at the end of Stage 4.

Stage Objective Actions DataSources

1Atthelandscapelevel,identifypotentialwindfacilitylocationswithmanageablerisktoeagles.

Broad,landscape‐scaleevaluation.

Technicalliterature,agencyfiles,on‐linebiologicaldatabases,datafromnearbyprojects,industryreports,geodatabases,experts.

2

Obtainsite‐specificdatatopredicteaglefatalityratesanddisturbancetakeatwind‐facilitysitesthatpassStage1assessment.Investigateotheraspectsofeagleusetoconsiderassessingdistributionofoccupiednestsintheprojectarea,migration,areasofseasonalconcentration,andintensityofuseacrosstheprojectfootprint.

Site‐specificsurveysandintensiveobservationtodetermineeagleexposurerateanddistributionofuseintheprojectfootprint,pluslocationsofoccupiedeaglenests,migrationcorridorsandstopoversites,foragingconcentrationareas,andcommunalroostsintheprojectarea.

Projectfootprint:800‐mradiuspointcountsurveysandutilizationdistributionstudies.Projectarea:nestsurveys,migrationcountsatlikelytopographicfeatures,investigationofuseofpotentialroostsitesandofareasofhighpreyavailability.Ideallyconductedfornolessthan2yearspre‐construction.

3

Aspartofpre‐constructionmonitoringandassessment,estimatethefatalityrateofeaglesforthefacilityevaluatedinStage2,excludingpossibleadditionsofconservationmeasuresandadvancedconservationpractices(ACPs).Considerpossibledisturbanceeffects.

UsetheexposureratederivedfromStage2datainService‐providedmodelstopredicttheannualeaglefatalityratefortheproject.Determineifdisturbanceeffectsarelikelyandwhattheymightbe.

Pointcount,nest,andeagleconcentrationareadatafromStage2.

Page 16: Appendix E Eagle Conservation Plan Guidance

xiii

Stage Objective Actions DataSources

4

Aspartofthepre‐constructionassessment,identifyandevaluateconservationmeasuresandACPsthatmightavoidorminimizefatalitiesanddisturbanceeffectsidentifiedinStage3.Whennecessary,identifycompensatorymitigationtoreducepredictedtaketoano‐net‐lossstandard.

Re‐runfatalitypredictionmodelswithriskadjustedtoreflectapplicationofconservationmeasuresandACPstodeterminefatalityestimate(80%upperconfidencelimitorequivalent).Calculaterequiredcompensatorymitigationamountwherenecessary,consideringdisturbanceeffects,ifany.Identifyactionsneededtoaccomplishcompensatorymitigation.

FatalityestimatesbeforeandafterapplicationofconservationmeasuresandACPs,usingpointcountdatafromStage2.EstimatesofdisturbanceeffectsfromStage3.

PermitDecision

Determineifregulatoryrequirementsforissuanceofapermithavebeenmet.

TheServicewillissueordenythepermitrequestbasedonanevaluationoftheECPorotherformofapplication.

DatafromStages1,2,3and4;resultsofNEPAanalysis;andconsideringinformationobtainedduringtribalconsultationandthroughcoordinationwiththestatesandotherjurisdictionalagencies.

5

Duringpost‐constructionmonitoring,documentmeanannualeaglefatalityrateandeffectsofdisturbance.Determineifinitialconservationmeasuresareworkingandshouldbecontinued,andifadditionalconservationmeasuresmightreduceobservedfatalities.Monitoreffectivenessofcompensatorymitigation.Ideally,assessuseofareabyeaglesforcomparisontopre‐constructionlevels.

Conductfatalitymonitoringinprojectfootprint.Monitoractivityofeaglesthatmaybedisturbedatnestsites,communalroosts,and/ormajorforagingsites.Ideally,monitoreagleuseofprojectfootprintviapointcounts,migrationcounts,and/orintensiveobservationofusedistribution.

Post‐constructionsurveydatabaseforfatalitymonitoring,Comparablepre‐andpost‐constructiondataforselectedaspectofeagleuseoftheprojectfootprintandadjoiningareas.Allpost‐constructionsurveysshouldbeconductedforatleast2years,andtargetedthereaftertoassesseffectivenessofanyexperimentalconservationmeasuresorACPs.

Page 17: Appendix E Eagle Conservation Plan Guidance

1

Table of Contents Disclaimer .............................................................................................................................................................. i EXECUTIVE SUMMARY ........................................................................................................................................ ii

1. Overview ..................................................................................................................................................... ii 2. The Bald and Golden Eagle Protection Act ................................................................................................ ii 3. Risks to Eagles from Wind Energy Facilities .............................................................................................. ii 4. Eagle Take Permits .................................................................................................................................... iii 5. Voluntary Nature of the ECPG ................................................................................................................... iii 6. Eagle Take Thresholds ............................................................................................................................... iii 7. An Approach for Developing and Evaluating Eagle ACPs ......................................................................... iv 8. Mitigation Actions to Reduce Effects on Eagle Populations ..................................................................... v 9. Relationship of Eagle Guidelines (ECPG) to the Wind Energy Guidelines (WEG) .................................... vi

Tiers 1 and 2 of the WEG, Stage 1 of the ECPG ........................................................................................ vi Tier 3 of the WEG, Stages 2, 3, and 4 of the ECPG .................................................................................. vii Tier 4 and 5 of the WEG, Stage 5 of the ECPG .......................................................................................... ix

10. Site Categorization Based on Mortality Risk to Eagles .......................................................................... ix Category 1 – High risk to eagles, potential to avoid or mitigate impacts is low ...................................... x Category 2 – High or moderate risk to eagles, opportunity to mitigate impacts ...................................... x Category 3 – Minimal risk to eagles ........................................................................................................... x

11. Addressing Uncertainty ........................................................................................................................... xi 12. Interaction with the Service .................................................................................................................... xi

INTRODUCTION AND PURPOSE .......................................................................................................................... 4

1. Purpose ........................................................................................................................................................ 4 2. Legal Authorities and Relationship to Other Statutes and Guidelines ..................................................... 6 3. Background and Overview of Process ........................................................................................................ 8

a. Risks to Eagles ........................................................................................................................................ 9 b. General Approach to Address Risk ......................................................................................................... 9

ASSESSING RISK AND EFFECTS ....................................................................................................................... 12

1. Considerations When Assessing Eagle Use Risk .................................................................................... 12 a. General Background and Rationale for Assessing Project Effects on Eagles ..................................... 12 b. Additional Considerations for Assessing Project Effects: Migration Corridors and Stopover Sites ... 14

2. Eagle Risk Factors ..................................................................................................................................... 15 3. Overview of Process to Assess Risk ......................................................................................................... 16 4. Site Categorization Based on Mortality Risk to Eagles ........................................................................... 25

a. Category 1 – High risk to eagles, potential to avoid or mitigate impacts is low ................................ 25 b. Category 2 – High or moderate risk to eagles, opportunity to mitigate impacts ................................ 25 c. Category 3 – Minimal risk to eagles ..................................................................................................... 26

5. Cumulative Effects Considerations .......................................................................................................... 26 a. Early Planning ........................................................................................................................................ 26 b. Analysis Associated with Permits ........................................................................................................ 27

Page 18: Appendix E Eagle Conservation Plan Guidance

2

ADAPTIVE MANAGEMENT ................................................................................................................................ 28 EAGLE CONSERVATION PLAN DEVELOPMENT PROCESS ................................................................................ 29

1. Contents of the Eagle Conservation Plan ................................................................................................. 30 a. Stage 1 .................................................................................................................................................. 31 b. Stage 2 .................................................................................................................................................. 31 c. Stage 3 ................................................................................................................................................... 31 d. Stage 4 .................................................................................................................................................. 31 e. Stage 5 – Post-construction Monitoring .............................................................................................. 31

INTERACTION WITH THE SERVICE .................................................................................................................... 32 INFORMATION COLLECTION.............................................................................................................................. 33 GLOSSARY .......................................................................................................................................................... 34 LITERATURE CITED ............................................................................................................................................. 40 APPENDIX A: ADAPTIVE MANAGEMENT ......................................................................................................... 44

1. Adaptive Management as a Tool ............................................................................................................. 45 2. Applying Adaptive Management to Eagle Take Permitting .................................................................... 46

a. Adaptive Management of Wind Project Operations ............................................................................ 46 b. Adaptive Management of Wind Project Siting and Design Recommendations .................................. 47 c. Adaptive Management of Compensatory Mitigation ........................................................................... 47 d. Adaptive Management of Population-Level Take Thresholds ............................................................. 47

Literature Cited .............................................................................................................................................. 48 APPENDIX B: STAGE 1 – SITE ASSESSMENT ................................................................................................... 50

Literature Cited .............................................................................................................................................. 52 APPENDIX C: STAGE 2 – SITE-SPECIFIC SURVEYS AND ASSESSMENT ......................................................... 53

1. Surveys of Eagle Use ................................................................................................................................ 53 a. Point Count Surveys .............................................................................................................................. 53 b. Migration Counts and Concentration Surveys ...................................................................................... 60 c. Utilization Distribution (UD) Assessment ............................................................................................. 62 d. Summary ................................................................................................................................................ 63

2. Survey of the Project-area Nesting Population: Number and Locations of Occupied Nests of Eagles .. 64 Literature Cited .............................................................................................................................................. 66

APPENDIX D: STAGE 3 – PREDICTING EAGLE FATALITIES ............................................................................... 68

1. Exposure .................................................................................................................................................... 69 2. Collision Probability .................................................................................................................................. 71 3. Expansion .................................................................................................................................................. 72

Page 19: Appendix E Eagle Conservation Plan Guidance

3

4. Fatalities.................................................................................................................................................... 72 5. Putting it all together: an example ........................................................................................................... 72

a. Patuxent Power Company Example ...................................................................................................... 73 b. Exposure ................................................................................................................................................ 74 b. Collision Probability ............................................................................................................................... 75 c. Expansion ............................................................................................................................................... 75 d. Fatalities ................................................................................................................................................ 75

6. Additional Considerations ........................................................................................................................ 76 a. Small-scale projects .............................................................................................................................. 76

Literature Cited .............................................................................................................................................. 77 APPENDIX E: STAGE 4 – AVOIDANCE AND MINIMIZATION OF RISK USING ACPS AND OTHER CONSERVATION MEASURES, AND COMPENSATORY MITIGATION ............................................................... 78

Literature Cited .............................................................................................................................................. 79 APPENDIX F: ASSESSING PROJECT-LEVEL TAKE AND CUMULATIVE EFFECTS ANALYSES .......................... 80

Literature Cited .............................................................................................................................................. 85 APPENDIX G: EXAMPLES USING RESOURCE EQUIVALENCY ANALYSIS TO ESTIMATE THE COMPENSATORY MITIGATION FOR THE TAKE OF GOLDEN AND BALD EAGLES FROM WIND ENERGY DEVELOPMENT ................................................................................................................................................... 86

1. Introduction ............................................................................................................................................... 86 2. REA Inputs ................................................................................................................................................. 86 3. REA Example – WindCoA ......................................................................................................................... 88

a. REA Language and Methods ................................................................................................................. 89 b. REA Results for WindCoA ..................................................................................................................... 91 c. Summary of Bald Eagle REA Results .................................................................................................... 92 d. Discussion on Using REA ...................................................................................................................... 93 e. Additional Compensatory Mitigation Example ..................................................................................... 93 f. Take from Disturbance ........................................................................................................................... 93

Literature Cited .............................................................................................................................................. 94 APPENDIX H: STAGE 5 – CALIBRATING AND UPDATING OF THE FATALITY PREDICTION AND CONTINUED RISK-ASSESSMENT ........................................................................................................................................... 96

1. Fatality Monitoring ................................................................................................................................... 96 2. Disturbance Monitoring ............................................................................................................................ 98 3. Comparison of Post-Construction Eagle Use with Pre-Construction Use ................................................ 99 Literature Cited .............................................................................................................................................. 99

Page 20: Appendix E Eagle Conservation Plan Guidance

4

INTRODUCTION AND PURPOSE ThemissionoftheServiceisworkingwithotherstoconserve,protectandenhancefish,wildlife,plantsandtheirhabitatsforthecontinuingbenefitoftheAmericanpeople.Aspartofthis,wearechargedwithimplementingstatutesincludingtheBGEPA,MBTA(MigratoryBirdTreatyAct),andESA(EndangeredSpeciesAct).BGEPAprohibitsalltakeofeaglesunlessotherwiseauthorizedbytheService.AgoalofBGEPAistoensurethatanyauthorizedtakeofbaldandgoldeneaglesiscompatiblewiththeirpreservation,whichtheServicehasinterpretedtomeanallowingtakethatisconsistentwiththegoalofstableorincreasingbreedingpopulations.In2009,theServicepromulgatedregulationsauthorizingissuanceofpermitsfornon‐purposefultakeofeagles;theECPGisintendedtopromotecompliancewithBGEPAwithrespecttosuchpermitsbyprovidingrecommendedproceduresfor:

(1) conductingearlypre‐constructionassessmentstoidentifyimportanteagleuseareas;(2) analyzingpre‐constructioninformationtoestimatepotentialimpactsoneagles;(3) avoiding,minimizing,and/orcompensatingforpotentialadverseeffectstoeagles;and(4) monitoringforimpactstoeaglesduringconstructionandoperation.

TheECPGcallsforscientificallyrigoroussurveys,monitoring,riskassessment,andresearchdesignsproportionatetotherisktobothbaldandgoldeneagles.TheECPGdescribesaprocessbywhichwindenergydevelopers,operators,andtheirconsultantscancollectandanalyzeinformationthatcouldleadtoaprogrammaticpermittoauthorizeunintentionaltakeofeaglesatwindenergyfacilities.Theprocessesdescribedhereisnotrequired,butprojectdevelopersoroperatorsshouldcoordinatecloselywiththeServiceiftheyplantouseanalternativeapproachtomeettheregulatoryrequirementsforapermit.1. Purpose TheServicepublishedafinalrule(EaglePermitRule)onSeptember11,2009underBGEPA(50CFR22.26)authorizinglimitedissuanceofpermitstotakebaldeagles(Haliaeetusleucocephalus)andgoldeneagles(Aquilachrysaetos)‘‘fortheprotectionof...otherinterestsinanyparticularlocality’’wherethetakeiscompatiblewiththepreservationofthebaldeagleandthegoldeneagle,isassociatedwithandnotthepurposeofanotherwiselawfulactivity,andcannotpracticablybeavoided(USFWS2009a).TheECPGexplainstheService’sapproachtoissuingprogrammaticeagletakepermitsforwindenergyprojectsunderthisauthority,andprovidesguidancetopermitapplicants(projectdevelopersoroperators),Servicebiologists,andbiologistswithotherjurisdictionalagencies(stateandtribalfishandwildlifeagencies,inparticular)onthedevelopmentofEagleConservationPlans(ECPs)tosupportpermitissuance.SincefinalizationoftheEaglePermitRule,thedevelopmentandplanneddevelopmentofwindfacilities(developmentsforthegenerationofelectricityfromwindturbines)haveincreasedintherangeofthegoldeneagleinthewesternUnitedStates.Goldeneaglesarevulnerabletocollisionswithwindturbines(Hunt2002),andinsomeareassuchcollisionscouldbeamajorsourceofmortality(Huntetal.1999,2002;USFWSunpublisheddata).AlthoughsignificantnumbersofbaldeaglemortalitieshavenotyetbeenreportedatNorthAmericanwindfacilities,deathshaveoccurredatmorethanonelocation(USFWS,unpublisheddata),andthecloselyrelatedandbehaviorallysimilarwhite‐tailedeagle(Haliaeetusalbicilla)hasbeenkilledregularlyatwindfacilitiesinEurope(Krone2003,Cole2009,Nygårdetal.2010).Becauseofthisrisktoeagles,manyofthecurrentandplannedwindfacilitiesrequirepermitsundertheEaglePermitRuletobeincompliancewiththelawifandwhenaneagleistakenatthatfacility.Inadditiontobeinglegally

Page 21: Appendix E Eagle Conservation Plan Guidance

5

necessarytocomplywithBGEPAand50CFR22.26,theconservationpracticesnecessarytomeetstandardsrequiredforissuanceofthesepermitsshouldoffsettheshort‐andlong‐termnegativeeffectsofwindenergyfacilitiesoneaglepopulations.Becauseoftheurgentneedforguidanceonpermittingeagletakeatwindfacilities,thisinitialmodulefocusesonthisissue.Manyoftheconceptsandapproachesoutlinedinthismodulecanbereadilyexportedtoothersituations(e.g.,solarfacilities,electricpowerlines),andtheServiceexpectstoreleaseothermodulesinthefuturespecificallyaddressingothersourcesofeagletake.TheECPGisintendedtoprovideinterpretiveguidancetoServicebiologistsandothersinapplyingtheregulatorypermitstandardsasspecifiedintherule.Theydonotin‐and‐ofthemselvesimposeadditionalregulatoryorgenerally‐bindingrequirements.AnECPperseisnotrequired,eventoobtainaprogrammaticeagletakepermit.Aslongasthepermitapplicationiscompleteandincludestheinformationnecessarytoevaluateapermitapplicationunder50CFR22.26or22.27,theServicewillreviewtheapplicationandmakeadeterminationifapermitwillbeissued.However,ServicepersonnelwillbetrainedintheapplicationoftheproceduresandapproachesoutlinedintheECPG,anddeveloperswhochoosetouseotherapproachesshouldexpectthereviewtimeonthepartoftheServicetobelonger.TheServicerecommendsthatthebasicformatfortheECPbefollowedtoallowforexpeditiousconsiderationoftheapplicationmaterials.PreparationofanECPandconsultationwiththeServicearevoluntaryactionsonthepartofthedeveloper.Thereisnolegalrequirementthatwinddevelopersapplyfororobtainaneagletakepermit,solongastheprojectdoesnotresultintakeofeagles.However,takeofaneaglewithoutaneagletakepermitisaviolationofBGEPA,sothedeveloperoroperatormustweightherisksinhis/herdecision.TheServiceisavailabletoconsultwiththedeveloperoroperatorashe/shemakesthatdecision.TheECPGiswrittentoguidewind‐facilityprojectsstartingfromtheearliestconceptualplanningphase.Forprojectsalreadyinthedevelopmentoroperationalphase,implementationofallstagesoftherecommendedapproachintheECPGmaynotbeapplicableorpossible.Projectdevelopersoroperatorswithoperatingorsoon‐to‐beoperatingfacilitiesandwhoareinterestedinobtainingaprogrammaticeagletakepermitshouldcontacttheService.TheServicewillworkwithprojectdevelopersoroperatorstodetermineiftheprojectmightbeabletomeetthepermitrequirementsin50CFR22.26.TheServicemayrecommendthatthedevelopermonitoreaglefatalitiesanddisturbance,adoptreasonablemeasurestoreduceeaglefatalitiesfromhistoriclevels,andimplementcompensatorymitigation.SectionsoftheECPGthataddressthesetopicsarerelevanttobothplannedandoperatingwindfacilities(AppendicesEandFinparticular).Operatorsofwindprojects(andotheractivities)thatwereinoperationpriorto2009thatposearisktogoldeneaglesmayqualifyforprogrammaticeagletakepermitsthatdonotautomaticallyrequirecompensatorymitigation.Thisisbecausetherequirementsforobtainingprogrammatictakeauthorizationaredesignedtoreducetakefromhistoric,baselinelevels,andthepreambletotheEaglePermitRulespecifiedthatunavoidabletakeremainingafterimplementationofavoidanceandminimizationmeasuresatsuchprojectswouldnotbesubtractedfromregionaleagletakethresholds(U.S.FishandWildlifeService2009a).TheECPGisdesignedtobecompatiblewiththemoregeneralguidelinesprovidedintheU.S.FishandWildlifeServiceLand‐basedWindEnergyGuidelines(WEG)http://www.fws.gov/habitatconservation/windpower/wind_turbine_advisory_committee.html.However,becausetheECPGdescribesactionswhichhelptocomplywiththeregulatoryrequirementsinBGEPAforaneagletakepermitasdescribedin50CFR22.26and22.27,theyaremorespecific.TheServicewillmakeeveryefforttoensuretheworkandtimelinesforbothprocessesareascongruentaspossible.

Page 22: Appendix E Eagle Conservation Plan Guidance

6

2. Legal Authorities and Relationship to Other Statutes and GuidelinesThereareseverallawsthatmustbeconsideredforcomplianceduringeagletakepermitapplicationreviewunderthe50CFR22.26and22.27regulations:BGEPA,MBTA,ESA,theNationalEnvironmentalPolicyAct(NEPA)(42U.S.C.4321et.seq.),andtheNationalHistoricPreservationAct(NHPA)(16U.S.C.470etseq.).BGEPAistheprimarylawprotectingeagles.BGEPAdefines“take”toinclude“pursue,shoot,shootat,poison,wound,kill,capture,trap,collect,molestordisturb”andprohibitstakeofindividuals,andtheirparts,nests,oreggs(16USC668&668c).TheServiceexpandedthisdefinitionbyregulationtoincludetheterm“destroy”toensurethat“take”includesdestructionofeaglenests(50CFR22.3).Theterm“disturb”isdefinedbyregulationat50CFR22.3as“toagitateorbotherabaldorgoldeneagletoadegreethatcauses,orislikelytocause,…injurytoaneagle,adecreaseinproductivity,ornestabandonment…”(USFWS2007).AgoalofBGEPAistoensurethatanyauthorizedtakeiscompatiblewitheaglepreservation,whichtheServicehasinterpretedtomeanitcanauthorizetakethatisconsistentwiththegoalofstableorincreasingbreedingpopulationsofbaldandgoldeneagles(USFWS2009b).

In2009,twonewpermitruleswerecreatedforeagles.Under50CFR22.26,theServicecanissuepermitsthatauthorizeindividualinstancesoftakeofbaldandgoldeneagleswhenthetakeisassociatedwith,butnotthepurposeofanotherwiselawfulactivity,andcannotpracticablybeavoided.Theregulationalsoauthorizesongoingorprogrammatictake,butrequiresthatanyauthorizedprogrammatictakebeunavoidableafterimplementationofadvancedconservationpractices.Under50CFR22.27,theServicecanissuepermitsthatallowtheintentionaltakeofeaglenestswherenecessarytoalleviateasafetyemergencytopeopleoreagles,toensurepublichealthandsafety,whereanestpreventsuseofahuman‐engineeredstructure,andtoprotectaninterestinaparticularlocalitywheretheactivityormitigationfortheactivitywillprovideanetbenefittoeagles.Onlyinactivenestsareallowedtobetakenexceptincasesofsafetyemergencies.ThenewEaglePermitRuleprovidesamechanismwheretheServicemaylegallyauthorizethenon‐purposefultakeofeagles.However,BGEPAprovidestheSecretaryoftheInteriorwiththeauthoritytoissueeagletakepermitsonlywhenthetakeiscompatiblewiththepreservationofeachspecies,definedinUSFWS(2009a)as“…consistentwiththegoalofstableorincreasingbreedingpopulations.”TheServiceensuresthatanytakeitauthorizesunder50CFR22.26doesnotexceedthispreservationstandardbysettingregionaltakethresholdsforeachspeciesdeterminedusingthemethodologycontainedintheNEPAFinalEnvironmentalAssessment(FEA)developedforthenewpermitrules(USFWS2009b).ThedetailsandbackgroundoftheprocessusedtocalculatethesetakethresholdsarepresentedintheFEA(USFWS2009b).Itisimportanttonotethatthetakethresholdsforregionaleaglemanagementpopulations(eaglemanagementunits)andtheprocessbywhichtheyaredeterminedarederivedindependentfromthisoranyotherECPGmodule.Manystatesandtribeshaveregulationsthatprotecteagles,andmayrequirepermitsforpurposefulandnon‐purposefultake.Projectdevelopersoroperatorsshouldcontactallpertinentstateandtribalfishandwildlifeagenciesattheearliestpossiblestageofprojectdevelopmenttoensurepropercoordinationandpermitting.TheServicewillcoordinateourprogrammatictakepermitswithallsuchjurisdictionalagencies.Windprojectsthatareexpectedtocausetakeofendangeredorthreatenedwildlifespeciesshouldstillreceiveincidentaltakeauthorizationsundersections7or10ofESAinordertoensurecompliancewithFederallaw.AprojectdeveloperoroperatorseekinganIncidentalTakePermit

Page 23: Appendix E Eagle Conservation Plan Guidance

7

(ITP)throughtheESAsection10HabitatConservationPlan(HCP)processmaybeissuedanITPonlyifthepermittedactivityisotherwiselawful(section10(a)(1)(B)).IftheprojectandcoveredactivitiesintheHCParelikelytotakebaldorgoldeneagles,theprojectproponentshouldobtainaBGEPApermitorincludethebaldorgoldeneagleasacoveredspeciesintheHCPinorderfortheactivitytobelawfulintheeventthateaglesaretaken.WhenbaldorgoldeneaglesarecoveredinanHCPandITP,thetakeisauthorizedunderBGEPAeveniftheeaglespeciesisnotlistedundertheESA(see50CFR22.11(a)).IfbaldorgoldeneaglesareincludedascoveredspeciesinanHCP,theavoidance,minimization,andothermitigationmeasuresintheHCPmustmeettheBGEPApermitissuancecriteriaof50CFR22.26,andincludeflexibilityforadaptivemanagement.Iftakeofbaldorgoldeneaglesislikelybuttheprojectdeveloperoroperatordoesnotqualifyforeagletakeauthorization(orchoosesnottorequestsuchauthorization),anITPmaybeissuedinassociationwiththeproposedHCP.Theprojectproponentmustbeadvised,inwriting,thatbaldorgoldeneagleswouldnotbeincludedascoveredspeciesandtakeofbaldeaglesorgoldeneagleswouldnot,therefore,beauthorizedundertheincidentaltakepermit.Theprojectdeveloperoroperatormustalsobeadvisedthattheincidentaltakepermitwouldbesubjecttosuspensionorrevocationiftakeofbaldeaglesorgoldeneaglesshouldoccur.InadditiontoESA,windprojectdevelopersoroperatorsneedtoaddresstakeunderMBTA.MBTAprohibitsthetaking,hunting,killing,pursuit,capture,possession,sale,barter,purchase,transport,andexportofmigratorybirds,theireggs,parts,andnests,exceptwhenauthorizedbytheDepartmentoftheInterior.Foreagles,theBGEPAtakeauthorizationservesasauthorizationunderMBTAper50CFR22.11(b).ForotherMBTA‐protectedbirds,becauseneithertheMBTAnoritspermitregulationsat50CFRPart21currentlyprovideaspecificmechanismtopermit“unintentional”take,itisimportantforprojectdevelopersoroperatorstoworkproactivelywiththeServicetoavoidandminimizetakeofmigratorybirds.TheService,withassistancefromaFederalAdvisoryCommittee,developedtheWEGtoprovideastructuredsystemtoevaluateandaddresspotentialnegativeimpactsofwindenergyprojectsonspeciesofconcern.BecausetheServicehastheauthoritytoissueapermitfornon‐purposefultakeofeagles,ourlegalandproceduralobligationsaresignificantlygreater,andthereforetheECPGismorefocusedanddetailedthantheWEG.WehavemodeledasmuchoftheECPGaspossibleaftertheWEG,butthereareimportantandnecessarydifferences.NEPAappliestoissuanceofeagletakepermitsbecauseissuingapermitisafederalaction.WhileprovidingtechnicalassistancetoagenciesconductingNEPAanalyses,theServicewillparticipateintheotheragencies'NEPAtotheextentfeasibleinordertostreamlinesubsequentNEPAanalysesrelatedtoaproject.Foractionsthatmayresultinapplicationsfordevelopmentofprogrammaticpermits,theServicemayparticipateasacooperatingagencytostreamlinethepermittingprocess.Ifnofederalnexusexists,otherthananeaglepermit,oriftheexistingNEPAofanotheragencyisnotadequate,theServicemustcompleteaNEPAanalysisbeforeitcanissueapermit.TheServicewillworkwiththeprojectdeveloperoroperatortoconductacompleteNEPAanalysis,includingassistingwithdataneedsanddeterminingthescopeofanalysis.ProjectdevelopersoroperatorsmayprovideassistancethatcanexpeditetheNEPAprocessinaccordancewith40CFR§1506.5.Additionally,thereareopportunitiesto“batch”NEPAanalysesforproposedprojectsinthesamegeographicarea.Inthesecases,projectdevelopersoroperatorsandtheServicecouldpoolresourcesanddata,likelyincreasingthequalityoftheproductandtheefficiencyoftheprocess.DevelopersshouldcoordinatecloselywiththeServiceforprojectswithnofederalnexusotherthan

Page 24: Appendix E Eagle Conservation Plan Guidance

8

theeaglepermit.ClosecoordinationbetweenprojectdevelopersoroperatorsandtheServiceregardingthedataneedsandscopeoftheanalysisrequiredforapermitwillreducedelays.Through50CFR22.26andtheassociatedFEA,theServicedefined“mitigation”aspertheServiceMitigationPolicy(46FR7644,Jan.23,1981),andthePresident’sCouncilonEnvironmentalQuality(40CFR1508.20(a‐e)),tosequentiallyincludethefollowing:

(1)Avoidingtheimpactoneaglesaltogetherbynottakingacertainactionorpartsofanaction;(2)Minimizingimpactsbylimitingthedegreeormagnitudeoftheactionandits

implementation;(3)Rectifyingtheimpactbyrepairing,rehabilitating,orrestoringtheaffectedenvironment;(4)Reducingoreliminatingtheimpactovertimebyimplementingpreservationand

maintenanceoperationduringthelifetimeoftheaction;and(5)Compensatingfortheimpactbyreplacingorprovidingsubstituteresourcesor

environments.Throughoutthisdocumentwedifferentiatebetweenmitigation,whichcoversallofthecomponentslistedabove,andcompensatorymitigation,whichisasubsetof(5)aboveanddirectlytargetsoffsettingpermitteddisturbanceandmortalitytoaccomplishano‐net‐lossobjectiveatthescaleoftheeaglemanagementunit.TheServicerequirescompensatorymitigation(potentiallyinadditiontoothermitigation)whereithasnotbeendeterminedthateaglepopulationscansustainadditionalmortality.TheNEPAanalysisonourpermitsandthediscussionofmitigationinthisdocumentfollowthissystem,andinthisECPGwereferto(1)–(4)asconservationmeasurestoavoidandminimizetake,ofwhichACPsareasubset,andto(5)ascompensatorymitigation.EaglesaresignificantspeciesinNativeAmericancultureandreligion(Palmer1988)andmaybeconsideredcontributingelementstoa“traditionalculturalproperty”underSection106oftheNHPA.SomelocationswhereeagleswouldbetakenhavetraditionalreligiousandculturalimportancetoNativeAmericantribesandthushavethepotentialofbeingregardedastraditionalculturalpropertiesunderNHPA.Permittedtakeofoneormoreeaglesfromtheseareas,foranypurpose,couldbeconsideredanadverseeffecttothetraditionalculturalproperty.TheseconsiderationswillbeincorporatedintoanyNEPAanalysisassociatedwithaneagletakepermit.Federally‐recognizedIndiantribesenjoyauniquegovernment‐to‐governmentrelationshipwiththeUnitedStates.TheServicerecognizesIndiantribalgovernmentsastheauthoritativevoiceregardingthemanagementoftriballandsandresourceswithintheframeworkofapplicablelaws.Itisimportanttorecallthatmanytribaltraditionallandsandtribalrightsextendbeyondreservationlands.TheServiceconsultswithIndiantribalgovernmentsundertheauthoritiesofExecutiveOrder13175“ConsultationandCoordinationwithIndianTribalGovernments”andsupportingDOIandServicepolicies.Tothisend,whenitisdeterminedthatfederalactionsandactivitiesmayaffectatribe’sresources(includingculturalresources),lands,rights,orabilitytoprovideservicestoitsmembers,theServicemust,totheextentpracticable,seektoengagetheaffectedtribe(s)inconsultationandcoordination.

3. Background and Overview of Process Increasedenergydemandsandthenationwidegoaltoincreaseenergyproductionfromrenewablesourceshaveintensifiedthedevelopmentofenergyfacilities,includingwindenergy.TheServicesupportsrenewableenergydevelopmentthatiscompatiblewithfishandwildlifeconservation.TheServicecloselycoordinateswithstate,tribal,andotherfederalagenciesinthereviewand

Page 25: Appendix E Eagle Conservation Plan Guidance

9

permittingofwindenergyprojectstoaddresspotentialresourceeffects,includingeffectstobaldandgoldeneagles.However,ourknowledgeoftheseeffectsandhowtoaddressthematthistimeislimited.GiventhisandtheService’sregulatorymandatetoonlyauthorizeactionsthatare“compatiblewiththegoalofstableorincreasingbreedingpopulations”ofeagleshasledustoadoptanadaptivemanagementframeworkpredicated,inpart,ontheprecautionaryapproachforconsiderationandissuanceofprogrammaticeagletakepermits.Thisframeworkconsistsofcase‐specificconsiderationsappliedwithinanationalframework,andwiththeoutcomescarefullymonitoredsothatwemaximizelearningfromeachcase.Theknowledgegainedthroughmonitoringcanthenbeusedtoupdateandrefinetheprocessformakingfuturepermittingdecisionssuchthatourultimateconservationobjectivesareattained,aswellastoconsideroperationaladjustmentsatindividualprojectsatregularintervalswheredeemednecessaryandappropriate.TheECPGprovidesthebackgroundandinformationnecessaryforwindprojectdevelopersoroperatorstoprepareanECPthatassessestheriskofaprospectiveoroperatingprojecttoeagles,andhowsiting,design,andoperationalmodificationscanmitigatethatrisk.ImplementationofthefinalECPmustreducepredictedeagletake,andthepopulationleveleffectofthattake,toadegreecompatiblewithregulatorystandardstojustifyissuanceofaprogrammatictakepermitbytheService.

a. Risks to Eagles Energydevelopmentcanaffecteaglesinavarietyofways.First,structuressuchaswindturbinescancausedirectmortalitythroughcollision(Hunt2002,Nygårdetal.2010).Thisistheprimarythreattoeaglesfromwindfacilities,andthemonitoringandavoidanceandminimizationmeasuresadvocatedintheECPGprimarilyareaimedatthisthreat.Second,activitiesassociatedwithpre‐construction,construction,oroperationandmaintenanceofaprojectmightcausedisturbanceandresultinlossofproductivityatnearbynestsordisturbancetonearbyconcentrationsofeagles.Third,ifdisturbanceormortalityeffectsarepermanent,theycouldresultinthepermanentorlongtermlossofanestingterritory.Alloftheseimpacts,unlessproperlypermitted,areviolationsofBGEPA(USFWS2009a).Additionally,disturbancesnearimportanteagleuseareasormigrationconcentrationsitesmightstresseaglestoadegreethatleadstoreproductivefailureormortalityelsewhere;theseimpactsareofconcernaswell,andtheycouldamounttoprohibitedtake,thoughsucheffectsaredifficulttopredictandquantify.Thus,theECPGaddressesbothdirectmortalityanddisturbance.Manynewwindprojectsarelocatedinremoteareasthathavefew,ifany,transmissionlines.TheServiceconsidersnewtransmissionlinesandotherinfrastructureassociatedwithrenewableenergyprojectstobepartofaproject.Accordingly,assessmentsofprojectimpactsshouldincludetransmissionlinesandotherfacilities,notmerelywindturbines.b. General Approach to Address Risk Applicantsforpermitsunder50CFR22.26,non‐purposefuleagletake,arerequiredtoavoidandminimizethepotentialfortakeofeaglestotheextentpracticable.Permitsforwind‐energydevelopmentareprogrammaticastheywillauthorizerecurringtake,ratherthanisolatedincidencesoftake.Forprogrammatictakepermits,theregulationsat50CFR22.26requirethatanyauthorizedtakeisunavoidableafterimplementationofACPs.50CFR22.3defines“advancedconservationpractices”as“scientificallysupportablemeasuresthatareapprovedbytheServiceandrepresentthebestavailabletechniquestoreduceeagledisturbanceandongoingmortalitiestoalevelwhereremainingtakeisunavoidable.”

Page 26: Appendix E Eagle Conservation Plan Guidance

10

Becausethebestinformationindicatesthattherearecurrentlynoavailablescientificallysupportablemeasuresthatwillreduceeagledisturbanceandblade‐strikemortalityatwindprojects,theServicehasnotcurrentlyapprovedanyACPsforwind‐energyprojects.ThepreambletotheEaglePermitRuleenvisionedtheServiceandindustryworkingtogethertoidentifyandevaluatepossibleACPs(USFWS2009a).TheprocessofACPdevelopmentforwind‐energyfacilitieshasbeenhamperedbecausetherehasbeenlittlestandardizedscientificstudyofpotentialACPs,andsuchinformationcanbestbeobtainedthroughexperimentalapplicationofACPsatoperatingfacilitieswitheagletakepermits.Giventhis,andconsideringthepressingneedtodevelopACPsforwind‐energyfacilities,theServicebelievesthatthebestcourseofactionistoworkwithindustrytodevelopACPsforwindprojectsaspartoftheprogrammatictakepermitprocess.Underthisscenario,ACPswouldbeimplementedatoperatingwindfacilitieswithaneagletakepermitonan“experimental”basis(theACPsareconsideredexperimentalbecausetheywouldnotyetmeetthedefinitionofanACPintheeaglepermitregulation).TheexperimentalACPswouldbescientificallyevaluatedfortheireffectiveness,andbasedontheresultsofthesestudies,couldbemodifiedinanadaptivemanagementregime.DespitethecurrentlackofavailableACPs,thebestavailablescientificinformationmaydemonstratethataparticularavoidance,minimization,orothermitigationactionshouldbeappliedasaconditiononaneagleprogrammatictakepermitforwind‐energyfacilities(see50C.F.R.22.6(c)(1)).Aprojectdeveloperoroperatorwillstillbeexpectedtoimplementanyreasonableavoidanceandminimizationmeasuresthatmayreducetakeofeaglesataproject.However,theServiceandtheprojectdeveloperoroperatorwilldiscussandagreeonothersite‐specificandpossiblyturbine‐specificfactorsthatmayposeriskstoeaglesandexperimentalACPsthatmightreduceoreliminatethoserisksiftherisksaresubstantiatedbythebestavailablescience.UnlesstheServicedeterminesthatthereisareasonablescientificbasistoimplementexperimentalACPsupfront,werecommendthatsuchmeasuresbedeferreduntilsuchtimeasthereiseagletakeatthefacilityortheServicedeterminesthatthecircumstancesandevidencesurroundinginstancesoftakeorriskoftakesuggesttheexperimentalACPsmightbewarranted.Thisagreementwouldbespecifiedasaconditionoftheprogrammaticeagletakepermit.BecauseACPswouldbeconsideredexperimentalinthesesituations,werecommendthattheybesubjecttoacostcapthattheServiceandtheprojectdeveloperoroperatorestablishaspartoftheinitialagreementbeforeissuanceofapermit,therebyprovidingfinancialcertaintytotheprojectoperatorordeveloperastowhatmaximumcostsofsuchmeasuresmightbe.Theamountofthecapshouldberelevanttothetheorizedriskfactorsidentifiedfortheproject,andproportionaltooverallrisk.Ifeagletakeisconfirmedthroughpost‐constructionmonitoring,developersoroperatorswouldbeexpectedtoimplementtheexperimentalACP(s)andtomonitorfutureeagletakerelativetotheACP(s)aspartoftheadaptivemanagementprocessspecifiedinAppendixA,butallwithinthelimitsofthepre‐determinedfinancialcap.AstheresultsfrommonitoringexperimentalACPsacrossanumberoffacilitiesaccumulatesandisanalyzedaspartoftheadaptivemanagementprocess,scientificinformationinsupportofcertainACPsmayaccrue,whereasotherACPsmayshowlittlevalueinreducingtake.IftheServicedeterminesthattheavailablesciencedemonstratesanexperimentalACPiseffectiveinreducingeagletake,theServicewillapprovethatACPandrequireitsimplementationupfrontonnewprojectswhenandwherewarranted.

Page 27: Appendix E Eagle Conservation Plan Guidance

11

Wheretakeisunavoidableandwheneaglepopulationsatthescaleoftheeaglemanagementunit(asdefinedinUSFWS2009b)arenotestimatedtobehealthyenoughtosustainadditionalmortalityoverexistinglevels,applicantsmustreducetheeffectofpermittedunavoidablemortalitytoano‐net‐lossstandardthroughcompensatorymitigationforthedurationofthepermittedactivity.No‐net‐lossmeansthatunavoidablemortalitycausedbythepermittedactivitiesisoffsetbycompensatorymitigationthatreducesanother,ongoingformofmortalitybyanequalorgreateramount,orwhichleadstoanincreaseincarryingcapacitythatallowstheeaglepopulationtogrowbyanequalorgreateramount.Compensatorymitigationmayalsobenecessarytooffsetsubstantialeffectsinothersituations(USFWS2009a),andmitigationdesignedtooffsetotherdetrimentaleffectsofpermitsoneaglesmaybeadvisedinadditiontocompensatorymitigationinsomecases.TheServiceandtheprojectdeveloperoroperatorseekingaprogrammaticeagletakepermitshouldagreeonthenumberofeaglefatalitiestomitigateandwhatactionswillbetakenifactualeaglefatalitiesdifferfromthepredictednumber.Thecompensatorymitigationrequirementandtriggerforadjustmentshouldbespecifiedinthepermit.IftheproceduresrecommendedintheECPGarefollowed,thereshouldnotbeaneedforadditionalcompensatorymitigation.However,ifother,lessrisk‐aversemodelsareusedtoestimatefatalities,underestimatesmightbeexpectedandthepermitshouldspecifythethreshold(s)oftakethatwouldtriggeradditionalactionsandthespecificmitigationactivitiesthatwouldbeimplementediffatalitiesareunderestimated.TheapproachdescribedintheECPGisapplicableforallland‐basedwindenergyprojectswithintherangeofthebaldandgoldeneaglewhereinteractionswithwindprojectinfrastructurehavebeendocumentedorarereasonablyexpectedtooccur.TheECPGisintendedtoprovideanationalframeworkforassessingandmitigatingrisk.Aspartoftheapplicationprocessforaprogrammaticeagletakepermit,theServicerecommendsthatprojectdevelopersoroperatorsprepareanECPthatoutlinestheprojectdevelopmentprocessandincludesconservationandmonitoringplansasrecommendedinthisECPG.TheECPGprovidesexamplesofwaysthatapplicantscanmeettheregulatorystandardsintherule,andwhileotherapproachesmaybeacceptable,theServicewilldeterminetheiradequacyonacase‐by‐casebasis.Asnotedpreviously,anECPisnotrequired,butifoneisdevelopedfollowingtheapproachrecommendedhere,itwillexpediteServicereviewoftheproject.

Thereissubstantialuncertaintysurroundingtheriskofwindprojectstoeagles,andofwaystominimizethatrisk.Forthisreason,theServicestronglyrecommendsthatcarebetakentoprotectagainsttheconsequencesofunderestimatingeaglefatalityratesatwindfacilities.Overestimates,onceconfirmed,canbeadjusteddownwardbasedonpost‐constructionmonitoringinformationwithnoconsequencetoeaglepopulations,andprojectdevelopersoroperatorscantradeorbecreditedforexcesscompensatorymitigation.However,theoptionsforaddressingunderestimatedfatalityratesareextremelylimited,andposeeitherpotentialhardshipsforwinddevelopersorsignificantriskstoeaglepopulations.

Page 28: Appendix E Eagle Conservation Plan Guidance

12

ASSESSING RISK AND EFFECTS 1. Considerations When Assessing Eagle Use Risk Baldeaglesandgoldeneaglesassociatewithdistinctgeographicareasandlandscapefeaturesthroughouttheirrespectiveranges.TheServicedefinesthese“importanteagle‐useareas”as“aneaglenest,foragingarea,orcommunalroostsitethateaglesrelyonforbreeding,sheltering,orfeeding,andthelandscapefeaturessurroundingsuchnest,foragingarea,orroostsitethatareessentialforthecontinuedviabilityofthesiteforbreeding,feeding,orshelteringeagles”(USFWS2009a;50CFR22.3).Migrationcorridorsandmigrationstopoversitesalsoprovideimportantforagingareasforeaglesduringmigration(e.g.,Restanietal.2001,Mojica2008)andresultinseasonalconcentrationsofeagles.Asaresult,thepresenceofamigrationcorridororstopoversiteonornearaproposedwinddevelopmentprojectcouldincreasetheprobabilityofencountersbetweeneaglesandwindturbines.Althoughthesesitesarenotspecificallyincludedwithintheregulatorydefinitionofanimportanteagle‐useareaat50CFR22.3,thepresenceofsuchasiteonornearaproposedwindprojectcouldincreasethelikelihoodofcollisions.

Windenergyprojectsthatoverlap,orareproximateto,importanteagleuseareasormigrationconcentrationsitesmayposeriskstotheeaglesforreasonsdescribedearlier.Projectdevelopersoroperatorsshouldidentifythelocationandtypeofallimportanteagleuseareasormigrationconcentrationsitesthatmightbeaffectedbyaproposedwindproject(e.g.,withintheprojectarea).Ifrecent(withintheprevious5years)localdataareavailableonthespacingofeaglenestsfortheproject‐areanestingpopulation,thosedatacanbeusedtodetermineanappropriateboundaryforsuchsurveys(asdescribedinAppendixH).Otherwise,forbothspecieswesuggestinitialsurveysbeconductedonandwithin10milesofaproject’sfootprinttoestablishtheproject‐areameaninter‐nestdistance.Theprojectfootprintistheminimumconvexpolygon(e.g.,Mohr1947)thatencompassesthewindprojectareainclusiveofthehazardousareaaroundallturbinesandanyassociatedinfrastructure,includingutilitylines,out‐buildings,roads,etc.Wesuggestasite‐specificapproachbasedonthespacingbetweennearest,simultaneouslyoccupiednestsforthespeciespresentinthearea.Ifdataonnest‐spacingintheprojectareaarelacking,projectproponentsoroperatorsmaywishtosurveyupto10miles,asthisis½thelargestrecordedspacingobservedforgoldeneaglesintheMojave/SonorandesertsofwesternArizona(Millsap1981)..Forsubsequentmonitoring(e.g.,post‐constructionmonitoringofoccupancyandproductivityofpairspotentiallydisturbedbytheproject),theproject‐areameaninter‐nestdistancecanbeusedtodefineamorerelevantproject‐areaboundary.The10‐mileperimetermaybeunnecessaryforbaldeaglesinsomeareas,andtheServiceacknowledgesthereneedstobeflexibilityintheapplicationofthisapproachtoaccommodatespecificsituations.

Evaluatingthespatialareadescribedaboveforeachwindprojectisakeypartoftheprogrammatictakepermittingprocess.Asdescribedlater,surveysshouldbeconductedinitiallytoobtaindatatopredicteffectsofwindprojectsoneagles.Aftertheprojectbeginsoperating,studiesshouldagainbeconductedtodeterminetheactualeffects.Thefollowingsectionsincludedescriptionsandcriteriaforidentifyingimportanteagleuseareasormigrationconcentrationsitesintheseassessments.

a. General Background and Rationale for Assessing Project Effects on Eagles Asynthesisofpubliclyavailabledatabasesandtechnicalliteraturearefundamentaltothepre‐constructionassessmentcomponentofanECP.Insomeinstances,thisworkmayrevealinformationonuseofaproposedprojectareabyeaglesthatisstrongenoughtosupportadecisiononwhethertoproceedwiththeproject.Inmostcases,ifavailable

Page 29: Appendix E Eagle Conservation Plan Guidance

13

informationwarrantsfurtherconsiderationofapotentialwindprojectsite,on‐sitesurveysshouldbeimplementedtofurtherdocumentuseoftheprojectareabyeagles.Thegoalofsuchsurveysshouldbetoquantifyanddescribeuseoftheprojectareabybreeding(territorial)andnon‐breedingeaglesacrossseasonsandyears.Avarietyofsurveyapproachesmaybeneededtoaccomplishthisgoal.Althoughpotentialforpresenceofalltypesofimportanteagleuseareasormigrationconcentrationsitesshouldbeconsideredwhenbeginningtoassessapotentialprojectsite,specialattentionistypicallygiventonestsandnestingpairs.Aneagleterritoryisdefinedin50CFR22.3asanareathatcontains,orhistoricallycontained,oneormorenestswithinthehomerangeofamatedpairofeagles.Werecognizethatusageconflictswiththetruebiologicalmeaningofthetermterritory,butweuseithereininitsregulatorycontext.Newton(1979)consideredthenestingterritoryofaraptorasthedefendedareaaroundapair’snestsiteanddefinedthehomerangeas“...theareatraveledbytheindividualinitsnormalactivitiesoffoodgathering,mating,andcaringfortheyoung.”Forgoldeneaglesatleast,theextentofthehomerangeandterritoryduringnestingseasongenerallyaresimilar;theeagledefendsitsterritorybyundulatingflightdisplaysnearthehomerangeboundariesandadjoiningterritoriesbarelyoverlap(Harmata1982,CollopyandEdwards1989,Marzluffetal.1997).Avoidancezones,oftendistinguishedbyspecific“buffer”distances,havebeenprescribedtoprotectnestsandothertypesofeagleuseareasfromdisturbance.Recommendationsforthesizeofavoidancezonesfornestsofbaldeaglesandgoldeneagleshavesometimesbeenbasedondocumenteddistancesbetweennestsandterritoryboundaries.Forexample,McGradyetal.(2002)andWatsonandDavies(2009)indicatednestingterritoriesofgoldeneaglesextendtoatleast4milesfromtheirnests.Garrettetal.(1993)foundthatbaldeagleterritoriesextendatleast2milesfromnests,thoughstudiesinareasofdenselypackedbreedingterritoriesofbaldeaglessuggestmuchsmallerdistances(Sherrodetal.1976,HodgesandRobards1982,Anthony2001).Arecommendationforaspatialbuffertoavoiddisturbanceofeaglenestscanhardlybeappliedthroughouttheentirerangeofeitherspeciesduetomarkedvariationinthesizeandconfigurationofnestingterritories.Assuch,theseavoidanceprescriptionshavebeenconservativebecausetherearefewsite‐specificdataonspatialextentofterritoriesinthepublishedandunpublishedliterature.Forbaldeagles,minimum‐distancebuffersareprescribedbytheServicetoprotectnests,foragingareas,andcommunalroostsagainstdisturbancefromavarietyofactivities(USFWS2007b).TheapproachwerecommendintheECPGforevaluatingsitingoptionsandassessingpotentialmortalityanddisturbanceeffectsofwindfacilitiesoneaglesistoconductstandardizedsurveys(e.g.,pointcounts)toestimateeagleexposurewithintheprojectfootprint.Wefurthersuggestaugmentingthesewithsurveystodeterminelocationsofimportanteagleuseareasormigrationconcentrationsitesfortheproject‐areaeaglepopulation.Theproject‐areaeaglepopulationisthepopulationofbreeding,residentnon‐breeding,migrating,andwinteringeagleswithintheprojectarea.AsdescribedpreviouslyandinAppendixH,ifrecentdataonthespacingofeaglenestsintheprojectareaareavailable,itmaybeappropriatetousethemeanspecies‐specificinter‐nestdistance(assumingthereisnoreasontosuspecteagleterritoriesintheprojectareaareconfiguredsuchthatthemeaninter‐nestdistancewouldbemisleading)astheouterboundaryoftheprojectarea.Suchachoice,however,alsoincreasestheimportanceofhavingadequateeagleexposureinformationfromtheprojectfootprintforallseasons.Forexample,awintercommunalnightroostofeaglesfurtherthanonemeaninter‐nestdistancefromtheproject

Page 30: Appendix E Eagle Conservation Plan Guidance

14

boundarycouldproducealargeinfluxofeaglesintothefootprintinwinter.Inadequatewintereagleexposuresampling(orsamplinginonlyoneyear,ifthenightroostisnotusedannually)incombinationwithselectionofaprojectareabasedonnestspacingalone,couldresultinafailuretodetectthisincreasedrisktoeaglesinwinter.Unpredictedfatalitiesthatresultfromsuchanoversightwillhavetobeaddressedbytheprojectdevelopersoroperatorseventuallythroughincreasedcompensatorymitigation,operationaladjustments,orbothtocontinueoperatingundertheauthorityofavalideaglepermit.Thus,itisimportantthatthecombinationofexposureandproject‐areasurveysadequatelycaptureallriskstoeagles.One‐halfthemeaninter‐nestdistancehasbeenusedasacoarseapproximationfortheterritoryboundaryinanumberofraptorstudies(e.g.,Thorstrom2001,Wichmannetal.2003,Soutulloetal.2006).Eaglepairsatnestswithin½themeanproject‐areainter‐nestdistanceoftheprojectfootprintarepotentiallysusceptibletodisturbancetakeandblade‐strikemortality,asthesepairsandoffspringmayusetheprojectfootprint.Werecommendusingthisdistancetodelineateterritoriesandassociatedbreedingeaglesatriskofmortalityordisturbance.Exposuresurveysshouldadequatelysamplethepartsoftheprojectfootprintpotentiallyusedbytheseeaglepairssotheyarecapturedinthefatalityestimates,andthesenestsshouldbeincludedinpost‐constructionoccupancyandproductivitymonitoring(seeAppendixH).Thisinformationisusefulindecisionsonwhetherawindprojectmightmeetpermitrequirementsat50CFR22.26consideringbothpredictedtakethroughfatalitiesandlikelytakefromdisturbance;forevaluatingvarioussitingandproject‐configurationalternatives;andinmonitoringfordisturbanceeffectsduringthepost‐constructionperiod.Insomesituations,aswherenestsareconcentratedonlinearfeatures(suchascliffsforgoldeneaglesoralongriversforbaldeagles),½themeaninter‐nestdistancemaynotencompassallimportantpartsoftheterritory.Inthesesituationsinferencesbasedonnestspacingshouldbeusedcautiously.Theoveralleffectivenessofthisapproachwillbeevaluatedthroughpost‐constructionmonitoringandtheadaptivemanagementframeworkdescribedlaterinthisECPG.b. Additional Considerations for Assessing Project Effects: Migration Corridors and Stopover Sites Baldeaglesandgoldeneaglestendtomigratealongnorth‐southorientedclifflines,ridges,andescarpments,wheretheyarebuoyedbyupliftfromdeflectedwinds(Kerlinger1989,Mojicaetal.2008).Baldeaglestypicallymigrateduringmiddaybysoaringonthermalupliftoronwindsaloft,theonsetofdallymovementsmigrationbeinginfluencedbyrisingtemperaturesandfavorablewinds(Harmata2002).Bothspecieswillforageduringmigrationflights,thoughforbaldeaglesforagingoftenislimitedtolakes,rivers,streams,andotherwetlandsystems(Mojicaetal.2008).Bothspeciesuseliftfromheatedairfromopenlandscapestomoveefficientlyduringmigrationandseasonalmovements,glidingfromonethermaltothenextandsometimesmovingingroupswithotherraptorspecies.Passageratesandaltitudeofmigranteaglescanbeinfluencedbytemperature,barometricpressure,windsaloft,stormsystems,weatherpatternsatthesiteoforigin,andwindspeed(Yatesetal.2001).Bothspeciesavoidlargewaterbodiesduringmigrationandfunnelalongtheshoreline,oftenbecomingconcentratedatthetipsofpeninsulasorinothersituationswheremovementrequireswatercrossings(Newton1979).Eaglesannuallyusestopoversiteswithpredictablyamplefoodsupplies(e.g.,Restanietal.2000,Mojicaetal.2008),althoughsomestopoversmaybebriefandinfrequent,suchaswhenoptimal

Page 31: Appendix E Eagle Conservation Plan Guidance

15

migrationconditionssuddenlybecomeunfavorableandeaglesareforcedtolandandseekroosts.Presenceofamigrationcorridororstopoversiteintheprojectareaisbestdocumentedanddelineatedbyusingastandard“hawkwatch”migrationcountasrecommendedinthisECPGaspartofsite‐specificsurveysor,insomecases,bysimplyexpandingpointcountsurveystoaccountformigrationincidenceduringwhatnormallywouldbethepeakmigrationperiod(AppendixC).Mucheaglemortalitycouldoccurifcommunalnightroostsorcommunalforagingareasofeaglesareseparatedbystringsofwindturbinesfromotherareasusedbyeagles.Outsidethebreedingseason,bothbaldeaglesandgoldeneaglescanroostcommunally.Suchroostscanincludeindividualsofallagesandresidencystatus(Platt1976,CraigandCraig1984,Mojicaetal.2008).Duringthebreedingseason,non‐breedingbaldeaglesalsomayroostcommunally.Largeroostsofeaglestendtobeassociatedwithnearbyforagingareas.Conversely,eaglesalsomaycongregatetoforageatsitesofunusuallyhighpreyorcarcassavailability;suchconcentrationsofbaldeaglesmaynumberinthehundreds(Buehler2000).Methodsfordocumentingconcentrationsofeagles,andmovementstoandfromsuchareasinrelationtotheprojectfootprintareprovidedinAppendixC.

2. Eagle Risk Factors Factorsthatinfluencevulnerabilityofeaglestocollisionswithwindturbinesarepoorlyknown.Theoretically,twomajorelementsarelikelyinvolved:(1)eagleabundance,and(2)thepresenceoffeaturesorcircumstancesthatdecreaseaneagle’sabilitytoperceiveandavoidcollision.However,therelativeimportanceofthesefactors,andhowtheyinterrelate,remainspoorlyunderstoodforeaglesandbirdsingeneral(Stricklandetal.2011).Table1listssomeofthefactorsknownorpostulatedtobeassociatedwithturbineblade‐strikeriskinraptors,butevidencefororagainsttheseisequivocal,andmaywellvarybetweensites.Whilesomeofthesefactorsarenotknowntoaffecteagles,becauseofthesimilarityofflightbehaviorbetweeneaglesandsomeothersoaringraptors,weincludethemherebecausetheymayapplytoeagles.Evidenceacrossmultiplestudiessuggeststhatinadditiontoeagleabundance,twomainfactorscontributetoincreasedriskofcollisionbyeagles:(1)theinteractionoftopographicfeatures,season,andwindcurrentsthatcreateconditionsforhigh‐riskflightbehaviornearturbines;and(2)behaviorthatdistractseaglesandpresumablymakesthemlessvigilant(e.g.,activeforagingorinter‐andintra‐specificinteractions).Table 1. Factors potentially associated with wind turbine collision risk in raptors.Not all factors apply to eagles, and the influence of these factors may vary in association with other covariates on a case-by-case basis.

RiskFactor StatusofKnowledgefromLiterature Citations

BirdDensity

Mixedfindings;likelysomerelationshipbutotherfactorshaveoverridinginfluenceacrossarangeofspecies.

BarriosandRodriguez(2004),DeLucasetal.(2008),Hunt(2002),Smallwoodetal.(2009),Ferreretal.(2011)

BirdAge

Mixedfindings.Highernumberoffatalitiesamongsubadultandadultgoldeneaglesinonearea.Higherfatalitiesamongadultwhite‐tailedeaglesinanother.

Hunt(2002),Nygårdetal(2010)

Page 32: Appendix E Eagle Conservation Plan Guidance

16

RiskFactor StatusofKnowledgefromLiterature Citations

ProximitytoNests

White‐tailedeaglenestingareasclosetoturbineshavebeenobservedtohavelownestsuccessandbeabandonedovertime.

Nygårdetal(2010)

BirdResidencyStatus

Mixedfindings.HigherrisktoresidentadultsinEgyptianvultures(Neophronpercnopterus).Highnumberofmortalitiesamongsubadultsandfloatingadultsingoldeneaglesinoneotherstudy.

BarriosandRodriguez(2004),Hunt(2002)

Season

Mixedfindings.Insomecasesforsomespecies,riskappearshigherinseasonswithgreaterpropensitytouseslopesoaring(fewerthermals)orkitingflight(windyweather)whilehunting.

BarriosandRodriguez(2004),DeLucasetal.(2008),HooverandMorrision(2005),Smallwoodetal.(2009)

FlightStyleSpeciesmostatriskperformmorefrequentflightsthatcanbedescribedaskiting,hovering,anddivingforprey.

Smallwoodetal.(2009)

InteractionwithOtherBirds

Higherriskwheninteractivebehaviorisoccurring.

Smallwoodetal.(2009)

ActiveHunting/PreyAvailability

Highriskwhenhuntingclosetoturbines,acrossarangeofspecies.

BarriosandRodriguez(2004),DeLucasetal.(2008),HooverandMorrision(2005),Hunt(2002),Smallwoodetal.(2009)

TurbineHeight Mixed,contradictoryfindingsacrossarangeofspecies.

Barclayetal. (2007),DeLucasetal.(2008)

RotorSpeed

Higherriskassociatedwithhigherblade‐tipspeedforgoldeneaglesinonestudy,butthisfindingmaynotbegenerallyapplicable.

Chamberlainetal.(2006)

Rotor‐sweptArea

Meta‐analysisfoundnoeffect,butvariationamongstudiescloudsinterpretation.

Barclayetal.(2007)

Topography

Severalstudiesshowhigherriskofcollisionswithturbinesonridgelinesandonslopes.Alsoahigherriskinsaddlesthatpresentlow‐energyridgecrossingpoints.

BarriosandRodriguez(2004),DeLucasetal.(2008),HooverandMorrission(2005),SmallwoodandThelander(2004)

WindSpeedMixedfindings,probablylocalitydependent.

BarriosandRodriguez(2004),HooverandMorrision(2005),Smallwoodetal.(2009)

3. Overview of Process to Assess Risk ThisECPG,andinparticulartheeaglefatalitypredictionmodeldescribedinAppendixD,reliesontheassumptionthatthereispredictablerelationshipbetweenpre‐constructioneagleoccurrenceandabundanceintheprojectfootprintandsubsequentfatalities.AssessingtheveracityofthisoperatinghypothesisisakeyelementoftheadaptivemanagementcomponentoftheECPG.TheECPGoutlinesadecision‐makingprocessthatgathersinformationateachstageofprojectdevelopment,withanincreasinglevelofdetail.Thisapproachprovidesaframeworkformaking

Page 33: Appendix E Eagle Conservation Plan Guidance

17

decisionssequentiallyatthreecriticalphasesinprojectdevelopment:(1)siting,(2)construction,and(3)operations.Thegreatestpotentialtoavoidandminimizeimpactstoeaglesoccursifeagleriskfactorsaretakenintoaccountattheearliestphaseofprojectdevelopment.Ifsitingandconstructionhaveproceededwithoutconsiderationofriskstoeagles,significantopportunitiestoavoidandminimizeriskmayhavebeenlost.Thiscanpotentiallyresultingreatercompensatorymitigationrequirementsor,intheworstcase,anunacceptablelevelofmortalityforeagles.Therelated,butmoregeneral,WEGadvocatesusingafive‐tieredapproachforiterativedecisionmakingrelativetoassessingandaddressingwildlifeeffectsfromwindfacilities.Elementsofallofthosetiersapplyhere,buttheprocessforeaglesismorespecificallydefinedandfallsintofivebroadlyoverlapping,iterativestagesthatlargelydonotparalleltheWEG’sfivetiers(Figures1and2).Stage1foreagles(AppendixB)combinesTiers1and2fromtheWEG,andconsistsofaninitialsiteassessment.Inthisstageprojectdevelopersoroperatorsevaluatebroadgeographicareastoassesstherelativeimportanceofvariousareastoresidentbreedingandnon‐breedingeagles,andtomigrantandwinteringeagles.TheServiceisavailabletoassistprojectdevelopersoroperatorsinbeginningtoidentifyimportanteagleuseareasormigrationconcentrationsitesandpotentialeaglehabitatatthisstage.Toincreasetheprobabilityofmeetingtheregulatoryrequirementsforaprogrammatictakepermit,biologicaladvicefromtheServiceandotherjurisdictionalwildlifeagenciesshouldberequestedasearlyaspossibleinthedeveloper'splanningprocessandshouldbeasinclusiveaspossibletoensureallissuesarebeingaddressatthesametimeandinacoordinatedmanner.Ideally,consultationwiththeService,andstateandtribalwildlifeagenciesisdonepriortoanysubstantialfinancialcommitmentorfinalizationofleaseagreements.DuringStage1theprojectdeveloperoroperatorshouldgatherexistinginformationfrompubliclyavailableliterature,databases,andothersources,andusethosedatatojudgetheappropriatenessofvariouspotentialprojectsites,balancingsuitabilityfordevelopmentwithpotentialrisktoeagles.Onceasitehasbeenselected,thenextstage,Stage2,issite‐specificsurveysandassessments(thisisthefirstcomponentofTier3intheWEG;AppendixC).DuringStage2theprojectdeveloperoroperatorshouldcollectquantitativedatathroughscientificallyrigoroussurveysdesignedtoassessthepotentialriskoftheproposedprojecttoeagles.Inthecaseofsmallwindprojects(oneorafewsmallturbines),theprojectdeveloperoroperatorshouldapplythepredictivemodeldescribedinStage3(below)todetermineifstage2surveysarenecessary.Inmanycases,thehazardousareaassociatedwithsuchprojectswillbesmallenoughthatStage2surveyswillnotbenecessarytodemonstratethattheprojectwilllikelynottakeeagles.InStage3,thepredictingeaglefatalitiesstage,theServiceandprojectdevelopersoroperatorsusedatafromStage2instandardizedmodelslinkedtotheService’sadaptivemanagementprocesstogeneratepredictionsofeagleriskintheformofaveragenumberoffatalitiesperyearextrapolatedtothetenureofthepermit(seeAppendixD).Thesemodelscanbeusedtocomparativelyevaluatealternativesiting,construction,andoperationalscenarios,ausefulfeatureinconstructinghypothesesregardingpredictedeffectsofconservationmeasuresandACPs.Weencourageprojectdevelopersoroperatorstousetherecommendedpre‐constructionsurveyprotocolinthisECPGinStage2tohelpinformourpredictivemodelsinStage3.IfService‐recommendedsurveyprotocolsareused,thisriskassessmentcanbegreatlyfacilitatedusingmodeltoolsavailablefromtheService.IfprojectdevelopersoroperatorsuseotherformsofinformationfortheStage2assessment,theywillneedtofullydescribethosemethodsandtheanalysisusedfortheeagleriskassessment,andmoretimewillberequiredforServicebiologiststoevaluateand

Page 34: Appendix E Eagle Conservation Plan Guidance

18

reviewthedata.Forexample,theServicewillcomparetheresultsoftheprojectdeveloperoroperator’seagleriskassessmentwithpredictionsfromourmodels,andiftheresultsdiffer,wewill

Figure 1. Chart comparing Land-based Wind Energy Guideline tiers with Eagle Conservation Plan Guidance stages.

workwiththeprojectdevelopersoroperatorstodeterminewhichmodelresultsaremostappropriatefortheService’seventualpermittingdecisions.TheServiceandprojectdevelopersoroperatorsalsoevaluateStage2datatodeterminewhetherdisturbancetakeislikely,andifso,atwhatlevel.Anylossofproductionthatmaystemfromdisturbanceshouldbeaddedtothefatalityratepredictionfortheproject.TheriskassessmentsatStage2andStage3areconsistentwithdevelopingtheinformationnecessarytoassesstheefficacyofconservationmeasures,andtodevelopthemonitoringrequiredbythepermitregulationsat50CFR22.26(c)(2).Stage4istheavoidanceandminimizationofriskusingconservationmeasuresandACPsandcompensatorymitigation(ifrequired).

ConservationmeasuresandACPs.RegardlessofwhichapproachisemployedintheStage3assessment,inStage4theinformationgatheredshouldbeusedbytheprojectdeveloperoroperatorandtheServicetodeterminepotentialconservationmeasuresandACPs(ifavailable)thatcanbeemployedtoavoidand/orminimizethepredictedrisksatagivensite(seeAppendixE).TheServicewillcomparetheinitialpredictionsofeaglemortalityanddisturbancefortheprojectwithpredictionsthattakeintoaccountproposedandpotentialconservationmeasuresandACPstodetermineiftheprojectdeveloperoroperatorhasavoidedandminimizedriskstothemaximumdegreeachievable,therebymeetingtherequirementsforprogrammaticpermitsin50CFR22.26thatremainingtakeisunavoidable.Additionally,theServicewillusetheinformationprovidedalongwithother

Page 35: Appendix E Eagle Conservation Plan Guidance

19

datatoconductacumulativeeffectsanalysistodetermineiftheproject’simpacts,incombinationwithotherpermittedtakeandotherknownfactorsaffectingthelocal‐areaand

Page 36: Appendix E Eagle Conservation Plan Guidance

20

Figure 2. Figure 1 from WEG, adapted to show where and how eagles are considered in that process and which Stage and section of the ECPG are applicable at each Tier of the WEG. Note that existing, operational wind energy projects enter the process between Tiers 3 and 4.

Page 37: Appendix E Eagle Conservation Plan Guidance

21

eaglemanagementunitpopulation(s),areatalevelthatexceedestablishedthresholdsorbenchmarks(seeAppendixF).ThisfinaleagleriskassessmentiscompletedattheendofStage4afterapplicationofconservationmeasuresandACPsalongwithaplanforcompensatorymitigationifrequired.CompensatoryMitigation.CompensatorymitigationoccursintheeaglepermittingprocessifconservationmeasuresandACPsdonotremovethepotentialfortake,andtheprojectedtakeexceedscalculatedthresholdsforthespecies‐specificeaglemanagementunitinwhichtheprojectislocated.Compensatorymitigationmayalsobenecessaryinothersituationsasdescribedinthepreambleto50CFR22.26(USFWS2009a),andthefollowingguidanceappliestothosesituationsaswell.Compensatorymitigationcanaddressanypre‐existingmortalitysourceaffectingthespecies‐specificeaglemanagementunitimpactedbytheproject(e.g.environmentalleadabatement,addressingeagleelectrocutionsduetohighriskpowerpoles,etc.)thatwasineffectatthetimeoftheFEAin2009(USFWS2009b),oritcanaddressincreasingthecarryingcapacityoftheeaglepopulationintheaffectedeaglemanagementunit.However,thereneedstobeacredibleanalysisthatsupportstheconclusionthatimplementingthecompensatorymitigationactionwillachievethedesiredbeneficialoffsetinmortalityorcarryingcapacity.AllcompensatorymitigationprojectswillbesubjectedtorandominspectionsbytheServiceorappointedsubcontractorstoexamineefficacy,accuracy,andreportingrigor.Fornewwinddevelopmentprojects,ifcompensatorymitigationisnecessary,thecompensatorymitigationaction(oraverifiable,legalcommitmenttosuchmitigation)willberequiredupfrontbeforeprojectoperationscommencebecauseprojectsmustmeetthestatutoryandregulatoryeaglepreservationstandardbeforetheServicemayissueapermit.Foroperatingprojectsthatmaymeetpermittingrequirements,compensatorymitigationshouldbeappliedfromthestartofthepermitperiod,notretroactivelyfromtheinitiationofprojectoperations.Theinitialcompensatorymitigationcontributioneffortshouldbesufficienttooffsettakeattheupper80%confidencelimit(orequivalent)ofthepredictednumberofeaglefatalitiesperyearforafive‐yearperiodstartingwiththedatetheprojectbecomesoperational(or,foroperatingprojects,thedatethepermitissigned).Nolaterthanattheendofthefiveyearperiod,thepredictedannualtakeestimatewillbecomparedtotherealizedtakeasestimatedbypost‐constructionmonitoring.Ifthetriggersidentifiedinthepermitforadjustmentofcompensatorymitigationaremet,thoseadjustmentsshouldbeimplemented.Inthecasewheretherealizedtakeislessthanpredicted,thepermitteewillreceiveacreditfortheexcesscompensation(thedifferencebetweentheactualmeanandthenumbercompensatedfor)thatcanbeappliedtoothertake(eitherbythepermitteeorotherpermittedindividualsathis/herdiscretion)withinthesameeaglemanagementunit.Compensatorymitigationforfutureyearsfortheprojectwillbedeterminedatthispoint,takingintoaccounttheobservedlevelsofmortalityandanyreductioninthatmortalitythatisexpectedbasedonimplementationofadditionalexperimentalconservationmeasuresandACPsthatmightreducefatalities.Toillustrateanacceptableprocessforcalculatingcompensatorymitigation,theServicehaspreparedanexampleofastrategyusingResourceEquivalencyAnalysis(REA)toquantifythenumberofpowerpoleretrofitsneededtooffsetthetakeofgoldeneaglesatawindproject(seeAppendixG).TheServiceusedtheexampleofeliminatingelectrocutionsbecause:(1)high‐riskpowerpolescausequantifiableadverseimpactstoeagles;(2)the‘per

Page 38: Appendix E Eagle Conservation Plan Guidance

22

eagle’effectsofhigh‐riskpowerpoleretrofittingarequantifiableandverifiablethroughacceptedpractices;(3)successofandsubsequentmaintenanceofretrofittingcanbemonitored;and(4)electrocutionfromhigh‐riskpowerpolesisknowntocauseeaglemortalityandthiscanbecorrected.Thepotentialfortakeofeaglesisestimatedusinginformedmodeling,asdescribedinStage3oftheECPG(AppendixD).ThisfatalitypredictionisoneofseveralfundamentalvariablesthatareusedtopopulatetheREA(seeREAInputs,AppendixG).TheREAgeneratesaproject‐areaeagleimpactcalculation(debit),expressedinbird‐years,andanestimateofthequantityofcompensatorymitigation(credit)(e.g.,powerpoleretrofits)necessarytooffsetthisimpact.Compensatorymitigationwouldthenbeimplementedeitherdirectlybytheprojectdeveloperoroperatororthroughaformal,bindingagreementwithathirdpartytoimplementtherequiredactions.Effectivenessmonitoringoftheresultingcompensatorymitigationprojectsshouldbeincludedwithintheaboveoptionsusingthebestscientificandpracticablemethodavailable.TheServicewillmodifythecompensatorymitigationprocesstoadapttoanyimprovementsinourknowledgebaseasnewdatabecomeavailable.

AttheendofStage4,allthematerialsnecessarytosatisfytheregulatoryrequirementstosupportapermitapplicationshouldbeavailable.Whiletheapplicationcanbesubmittedatanytime,itisonlyaftercompletionofStage4thattheServicecanbegintheformalprocesstodeterminewhetheraprogrammaticeagletakepermitcanbeissuedornot.Ideally,NEPAandNHPAanalysesandassessmentswillalreadybeunderway,butifnot,Stage4shouldincludenecessaryNEPAanalysis,NHPAcompliance,coordinationwithotherjurisdictionalagencies,andtribalconsultation.Ifapermitisissuedandtheprojectgoesforward,Stage5oftheprocessiscalibrationandupdatingofthefatalitypredictionandcontinuedriskassessment,equivalenttoTier4and,inpart,Tier5intheWEG.Duringthisstage,post‐constructionsurveysareconductedtogenerateempiricaldataforcomparisonwiththepre‐constructionrisk‐assessmentfatalityanddisturbancepredictions.Themonitoringprotocolshouldincludebothvalidatedtechniquesforassessingmortality,andforestimatingeffectsofdisturbancetoeagles,andtheymustmeetthepermit‐conditionrequirementsat50CFR22.26(c)(2).Weanticipatethatinmostcases,intensivemonitoringtoestimatethetrueannualfatalityrateandtoassesspossibledisturbanceeffectswillbeconductedforatleastthefirsttwoyearsafterpermitissuance,followedbylessintensemonitoringforuptothreeyearsaftertheexpirationdateofthepermit,inaccordancewithmonitoringrequirementsat50CFR22.26(c)(2).Werecommendprojectdevelopersoroperatorsusethepost‐constructionsurveyprotocolsincludedorreferencedinthisECPG,butwewillconsiderothermonitoringprotocolsprovidedbypermitapplicants.Wewillusetheinformationfrompost‐constructionmonitoringinameta‐analysisframeworktoweightandimprovepre‐constructionpredictivemodels.AdditionallyinStage5theServiceandprojectdevelopersoroperatorsshouldusethepost‐constructionmonitoringdatato(1)assesswhethercompensatorymitigationisadequate,excessive,ordeficienttooffsetobservedmortality,andmakeadjustmentsaccordingly;and(2)exploreoperationalchangesthatmightbewarrantedataprojectafterpermittingtoreduceobservedmortalityandensurethatpermitconditionrequirementsat50CFR22.26(c)(7)aremet.Table2providesasummaryoftherolesoftheprojectdeveloperoroperatorandtheService,responsibilities,anddecisionpointsateachstage.

Page 39: Appendix E Eagle Conservation Plan Guidance

23

Table 2. Roles, responsibilities of the project developers and operators and the Service, and decision points at each stage of the ECP process.

Stage Projectdeveloper/operatorrole Servicerole

1

Conductadesktoplandscape‐levelassessmentforknownorlikelyoccurrenceofeagles,includingreconnaissancevisitstoprospectivesites.

ConsultwiththeServiceonpotentialforanyobviousnegativeimpactsoneaglesinatleastgenerallocaleofprospectivesites.

Decisionpoint:selectsite(s)forStage2study,ifappropriate.

Recommendandhelpprovideexistingdataandinputifrequested.

Providepreliminaryconsultationonappropriatenessofapplicationforeagletakepermitsforsitesconsideredandthelikelihoodpermitscouldbeissued.

ReviewavailableStage1dataandadvisewhatStage2dataarerecommended.

Decisionpoint:none.

2

Conductdetailed,site‐specificfieldstudiesintheprojectareatoinformeaglefatalitypredictionmodel,documentimportanteagleuseareasormigrationconcentrationsites,andidentifypossibleeagledisturbanceissues.

CoordinateinadvancewiththeServiceandotherjurisdictionalagenciestoensurestudieswillsatisfyregulatoryrequirementsforpermitting.

Decisionpoint:choosewhethertomovetoStage3.

Consultonfieldstudydesignandapproachincoordinationwithotherjurisdictionalagencies.

Decisionpoint:None.

3

Optionallygenerateanestimatedannualeaglefatalitypredictionforthesite(s)andanassessmentofeagledisturbanceriskusingdatafromStage2andmodel(s)ofchoice.

Reportonallothergermaneaspectsofeagleusesuchascommunalroostsandnestorterritorylocations.

Decisionpoint:choosewhethertomovetoStage4.

Generateaninitialeaglefatalityestimateforsite(s),usingtheServicemodelandsurveydatafromStage2.

Assesslikelihoodofdisturbancetoeagles;quantifyextentandimpactofdisturbance,ifanylikely.

Makepreliminaryrecommendationonriskcategory.

Consultwithdeveloper/operatortointerpretandresolvediscrepanciesinconclusionsandriskcategoryrecommendation.

Decisionpoint:None.

4

IdentifyconservationmeasuresandACPsthatcanbeusedtoavoidandminimizetakeidentifiedinStage3.

Optionallygeneraterevisedfatalityanddisturbanceestimates,takingintoaccountconservationmeasuresandACPs.

Identifyanddevelopnecessaryagreementsforcompensatorymitigationtooffsettake,ifrequired.

Re‐runServicefatalitymodeltopredictfatalitieswithconservationmeasuresandACPs.

Re‐assesspotentialfordisturbancetakewithconservationmeasuresandACPs.

Coordinatewithdeveloper/operatortoreachagreementonpredictedtakeandriskcategory.

Coordinatewithdeveloper/operatoroncompensatorymitigation,ifrequested.

Providerevisedpreliminaryassessmentoflikelihoodsite(s)willbepermittableifrequested.

Page 40: Appendix E Eagle Conservation Plan Guidance

24

Stage Projectdeveloper/operatorrole Servicerole Decisionpoint:choosewhetherto

submiteagletakepermitapplication. Decisionpoint:None.

PermitDecision

DraftECPorequivalent,includingaplanforpost‐constructionmonitoringofeaglefatalityanddisturbance.

Submitapermitapplicationthatmeetsrequirementsat50CFR22.26or22.27,includingECPorequivalentinformationaspartofapplicationpackage.

ChoosewhethertoassistServiceinconductingNEPA.

Decisionpoint:None.

CoordinateandconsultonwritingofECPorequivalent,includingproposedplanforpost‐construction.

ConveyadequacyofECPorequivalenttodeveloper/operator.

Evaluatepermitapplicationforregulatorysufficiency.

DraftpermitconditionsdrawingonrelevantcomponentsofECPorequivalent.

Conductcumulativeeffectsanalysis. ConductNEPAreview. ConductNHPAevaluation. Coordinatewithotherjurisdictionalagencies. ConsultwithTribes. Establishlimitsonfutureoperationaladjustments

proportionatetorisk,incoordinationwithapplicant.

Decisionpoint:whetherpermitcanbeissued.

5

Implementpost‐constructionmonitoringinaccordancewithpermitconditions,includingimmediatereportingofanyeagletake.

Participateinscheduledreviewsofpost‐constructionmonitoringresults.

Effectadditionalcompensatorymitigationifnecessary.

ImplementandmonitoradditionalconservationmeasuresandACPS,ifwarranted,withinscopeofpermitsideboards.

Decisionpoint:choosewhethertoapplyforpermitrenewalneartheendofpermitterm.

Monitorcompliancewithpermitconditions. Reviewpost‐constructionmonitoringdata,

includingcomparisonofpredictedandobservedannualfatalityrateanddisturbance.

Atnomorethan5‐yearintervals,determinewhetherrevisionoftheestimatedfatalityrate,adjustmentstomonitoring,implementationofadditionalexperimentalconservationmeasuresandACPs,andcompensatorymitigationarewarranted.

Effectanynecessaryadjustmentsbycreditingbackexcesscompensatorymitigation,orbyassessingadditionalcompensatorymitigationforfatalitiesinexcessofpredictions.

Combinemonitoringdatawiththatfromotherprojectsformeta‐analysiswithinadaptivemanagementframework.

Decisionpoint:determinewhatadjustmentsneedtobemadetocompensatorymitigationlevel,andwhetheradditionalconservationmeasuresandACPsarewarrantedornot.

Page 41: Appendix E Eagle Conservation Plan Guidance

25

4. Site Categorization Based on Mortality Risk to Eagles Werecommendtheapproachoutlinedbelowbeusedtocategorizethelikelihoodthatasiteoroperationalalternativewillmeetstandardsin50CFR22.26forissuanceofaprogrammaticeagletakepermit.

a. Category 1 – High risk to eagles, potential to avoid or mitigate impacts is low Aprojectisinthiscategoryifit:

(1)hasanimportanteagle‐useareaormigrationconcentrationsitewithintheprojectfootprint;or

(2)hasaspecies‐specificuncertainty‐adjustedannualfatalityestimate(averagenumberofeaglespredictedtobetakenannually)>5%oftheestimatedspecies‐specificlocal‐areapopulationsize;or

(3)causesthecumulativeannualtakeforthelocal‐areapopulationtoexceed5%oftheestimatedspecies‐specificlocal‐areapopulationsize.

Inaddition,projectsthathaveeaglenestswithin½themeanproject‐areainter‐nestdistanceoftheprojectfootprintshouldbecarefullyevaluated(seeAppendixH).Ifitislikelyeaglesoccupyingtheseterritoriesuseorpassthroughtheprojectfootprint,category1designationmaybeappropriate.Projectsoralternativesincategory1shouldbesubstantiallyredesignediftheyaretoatleastmeetthecategory2criteria.Constructionofprojectsatsitesincategory1isnotrecommendedbecausetheprojectwouldlikelynotmeettheregulatoryrequirementsforpermitissuanceandmayplacetheprojectdeveloperoroperatoratriskofviolatingtheBGEPA.Therecommendedapproachforassessingthepercentageofthelocal‐areapopulationpredictedtobetakenisdescribedinAppendixF.b. Category 2 – High or moderate risk to eagles, opportunity to mitigate impacts Aprojectisinthiscategoryifit:

(1)hasanimportanteagle‐useareaormigrationconcentrationsitewithintheprojectareabutnotintheprojectfootprint;or

(2)hasaspecies‐specificuncertainty‐adjustedfatalityestimatebetween0.03eaglesperyearand5%oftheestimatedspecies‐specificlocal‐areapopulationsize;or

(3)causescumulativeannualtakeofthespecies‐specificlocal‐areapopulationoflessthan5%oftheestimatedlocal‐areapopulationsize.

Projectsinthiscategorywillpotentiallytakeeaglesatarategreaterthanisconsistentwithmaintainingstableorincreasingpopulations,buttheriskmightbereducedtoanacceptablelevelthroughacombinationofconservationmeasuresandreasonablecompensatorymitigation.Theseprojectshaveariskofongoingtakeofeagles,butthisriskcanbeminimized.ForprojectsinthiscategorytheprojectdeveloperoroperatorshouldprepareanECPorsimilarplantodocumentmeetingtheregulatoryrequirementsforaprogrammaticpermit.Foreaglemanagementpopulationswheretakethresholdsaresetatzero,theconservationmeasuresintheECPshouldincludecompensatorymitigationandmustresultinno‐net‐losstothebreedingpopulationtobecompatiblewiththepermitregulations.Thisdoesnotapplytogoldeneagleseastofthe100thmeridian,forwhichnonon‐emergencytakecanpresentlybeauthorized(USFWS2009b).

Page 42: Appendix E Eagle Conservation Plan Guidance

26

c. Category 3 – Minimal risk to eagles Aprojectisinthiscategoryifit:

(1)hasnoimportanteagleuseareasormigrationconcentrationsiteswithintheprojectarea;and

(2)hasaspecies‐specificuncertainty‐adjustedannualfatalityrateestimateoflessthan0.03forbothspeciesofeagle;and

(3)causescumulativeannualtakeofthelocal‐areapopulationoflessthan5%oftheestimatedspecies‐specificlocal‐areapopulationsize.

Projectsincategory3poselittlerisktoeaglesandmaynotrequireorwarranteagletakepermits,butthatdecisionshouldbemadeincoordinationwiththeService.Still,aprojectdeveloperoroperatormaywishtocreateanECPthatdocumentstheproject’slowrisktoeagles,andoutlinesmortalitymonitoringforeaglesandaplanofactionifeaglesaretakenduringprojectconstructionoroperation.Iftakeshouldoccur,thedeveloperoroperatorshouldcontacttheServicetodiscusswaystoavoidtakeinthefuture.SuchanECPwouldenabletheServicetoprovideapermittoallowademinimisamountoftakeiftheprojectdeveloperoroperatorwishedtoobtainsuchapermit.

Theriskcategoryofaprojecthasthepotentialtochangefromoneofhigherrisktooneoflowerriskoroneoflowerrisktooneofhigherriskthroughadditionalsite‐specificanalysesandapplicationofmeasurestoreducetherisk.Forexample,aprojectmayappeartobeincategory2asaresultofStage1analyses,butaftercollectionofsite‐specificinformationinStage2itmightbecomeclearitisacategory1project.Ifaprojectcannotpracticallybeplacedinoneofthesecategories,theprojectdeveloperoroperatorandtheServiceshouldworktogethertodetermineiftheprojectcanmeetprogrammaticeagletakepermittingrequirementsin50CFR22.26and22.27.Projectsshouldbeplacedinthehighestcategory(withcategory1beingthehighest)inwhichoneormoreofthecriteriaaremet.5. Cumulative Effects Considerations

a. Early Planning Regulationsat50CFR22.26requiretheServicetoconsiderthecumulativeeffectsofprogrammaticeagletakepermits.Cumulativeeffectsaredefinedas:“theincrementalenvironmentalimpactoreffectoftheproposedaction,togetherwithimpactsofpast,present,andreasonablyforeseeablefutureactions”(50CFR22.3).ThoroughcumulativeeffectsanalysiswilldependoneffectiveanalysisduringtheNEPAprocessassociatedwithaneaglepermit.Scopingandothertypesofpreliminaryanalysescanhelpidentifyimportantcumulative‐effectsfactorsandidentifyapplicablepast,present,andfutureactions.Comprehensiveevaluationduringearlyplanningmayidentifymeasuresthatwouldavoidandminimizetheeffectstothedegreethattakeofeaglesisnotlikelytooccur.Inthatcase,theremaybenopermit,andthusnoneedforNEPAassociatedwithaneagletakepermit.Whenawindprojectdeveloperoroperatorseeksaneagletakepermit,acomprehensivecumulativeeffectsanalysisattheearlyplanningstagewillservetostreamlinesubsequentsteps,includingtheNEPAprocess.TheServicerecommendsthatcumulativeeffectsanalysesbeconsistentwiththeprinciplesofcumulativeeffectsoutlinedintheCouncilonEnvironmentalQuality(CEQ)handbook,"ConsideringCumulativeEffectsundertheNationalEnvironmentalPolicyAct(1997)(CEQhandbook).TheServicerecommendsconsiderationofthefollowingexamplesfromtheCEQ

Page 43: Appendix E Eagle Conservation Plan Guidance

27

handbookthatmayapplytocumulativeeffectstoeaglesandtheecosystemstheydependupon:

(1)Timecrowding‐frequentandrepetitiveeffectsonanenvironmentalsystem;(2)Timelags‐delayedeffects;(3)Spacecrowding‐Highspatialdensityofeffectsonanenvironmentalsystem;(4)Cross‐boundary‐Effectsoccurawayfromthesource;(5)Fragmentation‐changeinlandscapepattern;(6)Compoundingeffects‐Effectsarisingfrommultiplesourcesorpathways;(7)Indirecteffects‐secondaryeffects;and(8)Triggersandthresholds‐fundamentalchangesinsystembehaviororstructure.

b. Analysis Associated with Permits Thecumulativeeffectsanalysisforawindprojectandapermitauthorizationshouldincludewhethertheanticipatedtakeofeaglesiscompatiblewitheaglepreservationasrequiredat50CFR22.26,includingindirectimpactsassociatedwiththetakethatmayaffecteaglepopulations.Itshouldalsoincludeconsiderationofthecumulativeeffectsofotherpermittedtakeandadditionalfactorsaffectingeaglepopulations.WhetherornotapermitauthorizationiscompatiblewitheaglepreservationwasanalyzedintheFEAthatestablishedthethresholdsfortake(USFWS2009b).ThescaleofthatanalysiswasbaseduponeaglemanagementunitsasdefinedinUSFWS(2009b).However,thescaleforcumulativeeffectsanalysisofwindprojectsandassociatedpermitsshouldincludeconsiderationoftheeffectsatthelocal‐populationscaleaswell.Thecumulativeeffectsanalysesforprogrammaticpermitsshouldcoverthetimeperiodoverwhichthetakewilloccur,notjusttheperiodthepermitwillcover,includingtheeffectoftheproposedaction,otheractionsaffectingeagles,predictedclimatechangeimpacts,andpredictedchangesinnumberanddistributionofaffectedeaglepopulations.Effectsanalysesshouldnotewhethertheprojectislocatedinareaswhereeaglepopulationsareincreasingorpredictedtoincreasebasedonavailabledata,overthelifetimeoftheproject,eveniftakeisnotanticipatedintheimmediatefuture.Inaddition,conditionswherepopulationsaresaturatedshouldbeconsideredincumulativeeffectsanalyses.Numerousrelativelyminordisruptionstoeaglebehaviorfrommultipleactivities,evenifspatiallyortemporallydistributed,mayleadtodisturbancethatwouldnothaveresultedfromfewerormorecarefullysitedactivities(e.g.,Whitfieldetal.2007).AdditionaldetailedguidanceforcumulativeimpactsanalysescanbefoundontheCouncilonEnvironmentalQualitywebsiteathttp://ceq.hss.doe.gov/nepa/ccenepa/ccenepa.htm.SpecificrecommendationsforconductingcumulativeeffectsanalysisoftheauthorizedtakeundereagleprogrammatictakepermitsisprovidedinAppendixF.

Page 44: Appendix E Eagle Conservation Plan Guidance

28

ADAPTIVE MANAGEMENT Managementofwindfacilitiestominimizeeagletake,throughdecisionsaboutsiting,design,operation,andcompensatorymitigation,isasetofrecurrentdecisionsmadeinthefaceofuncertainty.TheDepartmentoftheInteriorhasalonghistoryofapproachingsuchdecisionsthroughaprocessofadaptivemanagement(Williamsetal.2007).Thepurposeofadaptivemanagementistoimprovelong‐termmanagementoutcomes,byrecognizingwherekeyuncertaintiesimpededecisionmaking,seekingtoreducethoseuncertaintiesovertime,andapplyingthatlearningtosubsequentdecisions(Walters1986).Inthecaseofmanagingeaglepopulationsinthefaceofenergydevelopmentthereisconsiderableuncertaintytobereduced.Forexample,evidenceshowsthatinsomeareasorspecificsituations,largesoaringbirds,specificallyraptors,arevulnerabletocollidingwithwindturbines(BarriosandRodriguez2004,Kuvleskyetal.2007).However,weareuncertainabouttherelativeimportanceoffactorsthatinfluencethatrisk.Wearealsouncertainaboutthebestwaytomitigatetheeffectsofwindturbinedevelopmentsonraptors;wesuspectsomestrategiesmightbeeffective,othersareworthtrying.Wealsosuspectthatafewspecies,includinggoldeneagles(USFWS2009b),maybesusceptibleenoughtocollisionswithwindturbinesthatpopulationsmaybenegativelyaffected.Thus,thereareuncertaintiesatseverallevelsthatchallengeourattemptstomanageeaglepopulations:(1)atthelevelofunderstandingfactorsthataffectcollisionrisk,(2)atthelevelthatinfluencespopulationtrends,and(3)abouttheefficacyofvariousmitigationoptions.TheService,ourconservationpartners,andindustrywillneverhavetheluxuryofperfectinformationbeforeneedingtoacttomanageeagles.Ourgoalistoreducethatuncertaintythroughuseofformaladaptivemanagement,therebyimprovingourpredictivecapabilityovertime.Applyingasystematic,cohesive,nationally‐consistentstrategyofmanagementandmonitoringisnecessarytoaccomplishthisgoal.InthecontextofwindenergydevelopmentandeaglemanagementundertheECPG,therearefourspecificsetsofdecisionsthatwillbeapproachedthroughadaptivemanagement:(1)adaptivemanagementofwindprojectoperations;(2)adaptivemanagementofwindprojectsitinganddesignrecommendations;(3)adaptivemanagementofcompensatorymitigation;and(4)adaptivemanagementofpopulation‐leveltakethresholds.ThesearediscussedinmoredetailinAppendixA.Theadaptivemanagementprocesswilldependheavilyonpre‐andpost‐constructiondatafromindividualprojects,butanalyses,assessment,andmodelevaluationwillrelyondatapooledovermanyindividualwindprojects.Therefore,individualprojectdevelopersoroperatorswillhavelimiteddirectresponsibilitiesforconductingadaptivemanagementanalyses,otherthantoprovidedatathroughpost‐constructionmonitoring.

Page 45: Appendix E Eagle Conservation Plan Guidance

29

EAGLE CONSERVATION PLAN DEVELOPMENT PROCESS ThefollowingsectionsoftheECPG,includingattachedappendices,provideadescriptiveinstructionaltemplatefordevelopinganECP.Throughoutthissection,weusethetermECPtoincludeanyotherdocumentorcollectionofdocumentsthatcouldbeconsideredequivalenttoanECP.TheECPisanintegralpartofthepermitprocess,andthefollowingchronologicalstep‐by‐stepoutlineshowshowthepiecesfittogether:TheECPGprovidesguidanceandservesasareferenceforprojectdevelopersoroperators,theService,andotherjurisdictionalagencybiologistswhendevelopingandevaluatingECPs.UsingtheECPGasanon‐bindingreference,theServicewillworkwithprojectdevelopersoroperatorstodevelopanECP.TheECPdocumentshowtheprojectdeveloperoroperatorintendstocomplywiththeregulatoryrequirementsforprogrammaticpermitsandtheassociatedNEPAprocessbyavoidingandminimizingtheriskoftakingeaglesup‐front,andformallyevaluatingpossiblealternativesin(ideally)siting,configuration,andoperationofwindprojects.TheService’sabilitytoinfluencesitingandconfigurationfactorsdependsonthestageofdevelopmentoftheprojectatthetimetheprojectdeveloperoroperatorcomestous.TheServicerecommendsthatprojectdevelopersoroperatorsdevelopanECPfollowingthefive‐stagedapproachdescribedearlier.DuringStages1through4,projectsoralternativesshouldbeplacedinoneofthethreeriskcategories,withincreasingcertaintybyStage4.TheECPshouldprovidedetailedinformationonsiting,configuration,andoperationalalternativesthatavoidandminimizeeagletaketothepointanyremainingtakeisunavoidableand,ifrequired,mitigatesthatremainingtaketomeetthestatutorypreservationstandard.TheServicewillusetheECPandotherapplicationmaterialstoeitherdevelopaneagletakepermitfortheproject,ortodeterminethattheprojectcannotbepermittedbecauserisktoeaglesistoohightomeettheregulatorypermitrequirements.Forpermittedprojects,theServicewillusethe80%upperconfidencelimitorsimilarrisk‐averseestimate(e.g.,theupperlimitofthe80%credibleintervalisusedintheService’spredictivemodeldescribedinAppendixD)ofthemeanannualpredictedunavoidableeagletaketodeterminelikelypopulation‐leveleffectsofthepermitandcompensatorymitigationlevels,ifrequired.Forpredictedrecurringeagletakethatisinexcessofcalculatedeaglemanagementunittakethresholds,theServicewilleither(a)approveacompensatorymitigationproposalfromtheprojectdeveloperoroperator;or(b)accept,ifsufficient,acommitmentoffundstoanappropriateindependentthirdpartythatisformallyobligated(viacontractorotheragreementwiththeprojectdeveloperoroperator)toperformtheapprovedmitigationwork.Undereither(a)or(b),thecompensatorymitigationcostandactionswillbecalibratedsoastooffsetthepredictedunavoidabletake,suchthatwebringtheindividualpermit’s(andcumulativelyoverallsuchpermits’)predictedmortalityeffecttoano‐net‐lossstandard.Compensatorymitigationwillinitiallybebasedontheupper80%confidencelimitofthepredictedmeanannualfatalityrate(orsimilarrisk‐averseestimate)overafiveyearperiod,anditwillbeadjustedforfutureyearsbasedontheobservedfatalityrateovertheinitialperiodofintensivepost‐constructionmonitoring(nolessthan2years).Compensatorymitigation,aswellasotherformsofmitigationaimedatreducingotherdetrimentaleffectsofpermitsoneagles,mayalsobenecessaryinothersituationswherepredictedeffectstoeaglepopulationsaresubstantialandnotconsistentwithstableorincreasingbreedingpopulationsofeagles.Post‐constructionmonitoringmayberequiredasaconditionofaneagleprogrammatictakepermitandwillberequiredforwind‐energyprojectsthatmaypotentiallytakeeagles.Thismonitoring

Page 46: Appendix E Eagle Conservation Plan Guidance

30

shouldbesystematicandstandardizedtobesuitableforuseinaformaladaptivemanagementframeworktoevaluateandimprovethepredictiveaccuracyofourmodels.Inaddition,theinformationwillbeusedbytheServiceandtheprojectdeveloperoroperatortodetermineif,afternomorethanfiveyearsofpost‐constructionmonitoring,the80%upperconfidencelimitonthepredictedmeannumberofannualfatalitiesadequatelycapturedtheobservedestimatedmeannumberoffatalitiesannually.Iftheobservedandpredictedestimatesofannualfatalitiesaredifferent,eitheradditionalcompensatorymitigationwillberequiredretroactivelytooffsethigher‐than‐predictedlevelsoftake(assumingtheactualnumberofeaglestakenwasgreaterthanthenumberactuallycompensatedfor),orthepermitteewillreceiveacreditfortheexcesscompensation(thedifferencebetweentheactualmeanandthenumbercompensatedfor)thatcanbeappliedtoothertake(eitherbythepermitteeorotherpermittedindividualsathis/herdiscretion)withinthesameeaglemanagementunitatanytimeinthefuture.Atnomorethanfive‐yearsfromthedateapermitisissued,thepermitteewillcompileandtheServiceandthepermitteewillreviewfatalityinformationfortheprojecttodetermineifexperimentalACPsshouldbeimplementedtopotentiallyreduceeaglemortalitiesbasedontheobserved,specificsituationateachsite.Asdiscussedpreviously,atthetimeofpermitissuancetheServiceandtheprojectdeveloperoroperatorwillagreetoanupperlimitonthecostofsuchfutureexperimentalACPs,whichwillonlybeimplementedifwarrantedbyeagledisturbanceormortalitydata.IftheseexperimentalACPsarelikelytoreducemortalitiesattheprojectinthefuture,theamountoffuturecompensatorymitigationwillbedecreasedaccordingly(e.g.ifACPsarepredictedtoreducethefatalityratefromthreetotwoeaglesannually,compensatorymitigationwouldonlyberequiredtooffsetthefuturepredictedtakeoftwoeaglesperyear).Insuchcases,additionalpost‐implementationmonitoringshouldbeconductedtodeterminetheeffectivenessoftheexperimentalACPs.Incaseswhereobservedfatalitiesexceedpredictedtothedegreecategory1fatality‐ratecriteriaareconfirmedtohavebeenmetorexceededbyapermittedproject,andforwhateverreasonexperimentalACPsoradditionalconservationmeasurescannotbeimplementedtoreducefatalitiestocategory2levelsorbelow,theServicemayhavetorescindthepermitforthatprojecttoremainincompliancewithregulatorycriteria.ProgrammaticeagletakepermitswillbeconditionedtorequireaccesstotheareaswheretakeispossibleandwherecompensatorymitigationisbeingimplementedbyServicepersonnel,orotherqualifiedpersonsdesignatedbytheService,withinreasonablehoursandwithreasonablenoticefromtheService,forpurposesofmonitoringthesite(s).Theregulationsprovide,andaconditionofanypermitissuedwillrequire,thattheServicemayconductsuchmonitoringwhilethepermitisvalid,andforuptothreeyearsafteritexpires(50CFR22.26(c)(4)).Ingeneral,verifyingcompliancewithpermitconditionsisasecondarypurposeofsitevisits;theprimarypurposeistomonitortheeffectsandeffectivenessofthepermittedactionandmitigationmeasures.ThismaybedoneifaprojectdeveloperoroperatorisunabletoobserveorreporttotheServicetheinformationrequiredbytheannualreport—oritmayserveasa“qualitycontrol”measuretheServicecanusetoverifytheaccuracyofreportedinformationand/oradjustmonitoringandreportingrequirementstoprovidebetterinformationforpurposesofadaptivemanagement.1. Contents of the Eagle Conservation Plan ThissectionprovidesarecommendedoutlineforanECP,withashortdescriptionofwhatshouldbecontainedineachsection.Seeprevioussectionsandreferencedappendicesfordetailsonthestagesandcategories.

Page 47: Appendix E Eagle Conservation Plan Guidance

31

a. Stage 1 DatafromStage1shouldbepresentedandsummarizedinthissectionoftheECP.TheprojectdeveloperoroperatorshouldworkwiththeServicetoplacepotentialwind–facilitysiteinacategorybasedontheStage1information.FordetailedrecommendationsontheStage1process,seeAppendixB. b. Stage 2 DatafromStage2shouldbepresentedandsummarizedinthissectionoftheECP.FordetailedrecommendationsontheStage2methodsandmetrics,seeAppendixC.Theriskcategorizationshouldbere‐assessedinthissection,takingintoaccountStage2results. c. Stage 3 InthissectionoftheECP,projectdevelopersoroperatorsshouldworkincoordinationwiththeServicetocalculateapredictionoftheannualeaglefatalityrateandconfidenceintervalfortheprojectusingdatageneratedfromtheStage2assessment.TheinitialestimateofthefatalityrateshouldnottakeintoaccountpossibleconservationmeasuresandACPs;thesewillbefactoredinaspartofStage4.FordetailedrecommendationsonStage3methodsandmetrics,seeAppendixD.Theriskcategorizationshouldbere‐assessedinthissection,takingintoaccountStage3results. d. Stage 4 ThissectionoftheECPshoulddescribehowproposedconservationmeasuresandACPsshouldreducethefatalityrategeneratedinstage3,andwhatcompensatorymitigationmeasureswillbeemployedtooffsetunavoidabletake,ifrequired.ThissectionfacilitatesdemonstratinghowconservationmeasuresandACPshavereducedtherawpredictedfatalityratetotheunavoidablestandard.FordetailedrecommendationsonconsiderationsforthedevelopmentofconservationmeasuresandACPsseeAppendixE.Theriskcategorizationshouldbere‐assessedinthissection,takingintoaccountStage4results.Thisshouldbethefinalpre‐constructionriskcategorizationfortheproposedproject.Thissectionshouldalsofullydescribetheproposedcompensatorymitigationapproach(ifrequired).Fordetailedrecommendationsregardingcompensatorymitigation,seeAppendixG. e. Stage 5 – Post-construction Monitoring InthissectionoftheECP,theprojectdeveloperoroperatorshoulddescribetheproposedpost‐constructionsurveymethodologyfortheproject.Detailedrecommendationsforpost‐constructionmonitoringareinAppendixH.TheStage5post‐constructionmonitoringplanisthefinalsectionoftheECP.

Page 48: Appendix E Eagle Conservation Plan Guidance

32

INTERACTION WITH THE SERVICE AsnotedthroughoutthisECPG,frequentandthoroughcoordinationbetweenprojectdevelopersoroperatorsandServiceandotherjurisdictional‐agencyemployeesiscrucialtothedevelopmentofaneffectiveandsuccessfulECP.Closecoordinationwillalsobenecessaryintherefinementofthemodelingprocessusedtopredictfatalities,aswellasinpost‐constructionmonitoringtoevaluatethosemodels.WeanticipatetheECPGandtherecommendedmethodsandmetricswillevolverapidlyastheServiceandprojectdevelopersoroperatorslearntogether.TheServicehascreatedacross‐program,cross‐regionalteamofbiologistswhowillworkjointlyoneagle‐programmatic‐takepermitapplicationstohelpensureconsistencyinadministrationandapplicationoftheEaglePermitRule.ThisclosecoordinationandinteractionisespeciallyimportantastheServiceprocessesthefirstfewprogrammaticeagletakepermitapplications.TheServicewillcontinuetorefinethisECPGwithinputfromallstakeholderswiththeobjectiveofmaintainingstableorincreasingbreedingpopulationsofbothbaldandgoldeneagleswhilesimultaneouslydevelopingscience‐basedeagle‐takeregulationsandproceduresthatareappropriatetotheriskassociatedwitheachwindenergyproject.AstheECPGevolves,theServicewillnotexpectprojectdevelopersoroperatorstoretroactivelyredoanalysesorsurveysusingthenewapproaches.TheadaptiveapproachtotheECPGshouldnotdeterprojectdevelopersoroperatorsfromusingitimmediately.

Page 49: Appendix E Eagle Conservation Plan Guidance

33

INFORMATION COLLECTION TheBaldandGoldenEagleProtectionActauthorizesustocollectinformationinordertoissuepermitsforeagletake.TheEagleConservationPlanGuidancedefinesandclarifiestheinformationrequiredforapermitapplication(FWSForm3‐200‐71)andtheassociatedannualreport(FWSForm3‐202‐15).Weusethecollectedinformationtoevaluatewhetherthetakeiscompatiblewiththepreservationoftheeagle;todetermineiftakeislikelyandhowitcanbeavoidedandminimized;todetermineiftheapplicantwilltakereasonablemeasurestominimizethetake;andtoassesshowtheactivityactuallyaffectseaglesinordertoadjustmitigationmeasuresforthatprojectandforfuturepermits.Wemaynotconductorsponsor,norareyourequiredtorespond,toacollectionofinformationunlessitdisplaysacurrentlyvalidOfficeofManagementandBudgetcontrolnumber.TheburdenfortheinformationcollectionassociatedwitheaglepermitsandreportsisapprovedunderOMBControlNo.1018‐0022(FederalFishandWildlifePermitApplicationsandReports‐‐MigratoryBirdsandEagles)andOMBControlNo.1018‐0148(Land‐BasedWindEnergyGuidelines).

Page 50: Appendix E Eagle Conservation Plan Guidance

34

GLOSSARY Activenest–seeoccupiednest.Adaptiveresourcemanagement–aniterativedecisionprocessthatpromotesflexibledecision‐

makingthatcanbeadjustedinthefaceofuncertaintiesasoutcomesfrommanagementactionsandothereventsbecomebetterunderstood.

Advancedconservationpractices(ACP)–meansscientificallysupportablemeasuresthatareapprovedbytheServiceandrepresentthebestavailabletechniquestoreduceeagledisturbanceandongoingmortalitiestoalevelwhereremainingtakeisunavoidable.ACPsareaspecialsubsetofconservationmeasuresthatmustbeimplementedwheretheyareapplicable.

Adult–aneaglefiveormoreyearsofage.Alternatenests–additionalsiteswithinanestingterritorythatareavailabletobeused.Avoidanceandminimizationmeasures–conservationactionstargetedtoremoveorreduce

specificriskfactors(e.g.,avoidingimportanteagleuseareasandmigrationconcentrationsites,placingturbinesawayfromridgelines).Asubsetofconservationmeasures.

Benchmark–aneagleharvestrateatthelocal‐areapopulationscalethatshouldtriggerheightenedscrutiny.

Breedingterritory–equivalenttoeagleterritory.Calculatedtakethresholds–annualallowableeagletakelimitsestablishedinUSFWS(2009b).Collisionprobability(risk)–theprobabilitythataneaglewillcollidewithaturbinegiven

exposure.Compensatorymitigation–replacementofproject‐inducedlossestofishandwildliferesources.

Substitutionoroffsettingoffishandwildliferesourcelosseswithresourcesconsideredtobeofequivalentbiologicalvalue.InthecaseofantheECPG,anactionintheeaglepermittingprocessthatoffsetsthepredictedtakeofeaglesifACPsandotherconservationmeasuresdonotcompletelyremovethepotentialfortake,andprojectedtakeexceedscalculatedtakethresholdsforthespeciesortheeaglemanagementunitaffected(orinsomecases,underothercircumstancesasdescribedinUSFWS2009a).

Conservationmeasures–actionsthatavoid(thisisbestachievedatthesitingstage),minimize,rectify,reduce,eliminate,ormitigateaneffectovertime.ACPsareconservationmeasuresthathavescientificsupportandwhichmustbeimplementedwheretheyareapplicable.

Discountrate–theinterestrateusedincalculatingthepresentvalueofexpectedyearlybenefitsandcosts.

Disturb‐meanstoagitateorbotherabaldorgoldeneagletoadegreethatcauses,orislikelytocause,basedonthebestscientificinformationavailable,(1)injurytoaneagle,(2)adecreaseinitsproductivity,bysubstantiallyinterferingwithnormalbreeding,feeding,orshelteringbehavior,or(3)nestabandonment,bysubstantiallyinterferingwithnormalbreeding,feeding,orshelteringbehavior.

EagleConservationPlans(ECP)–adocumentproducedbytheprojectdeveloperoroperatorincoordinationwiththeServicethatsupportsissuanceofaneagletakepermitunder50CFR22.26andpotentially22.27(ordemonstratesthatsuchapermitisunnecessary).

EagleManagementUnit–regionaleaglepopulationsdefinedintheFEA(USFWS2009b).Forgoldeneagles,eaglemanagementunitsfollowBirdConservationRegions(Figure2),whereasbaldeaglemanagementunitslargelyfollowServiceregionalboundaries(Figure3).

Eagleexposurerate–Eagle‐minutesflyingwithintheprojectfootprint(inproximitytoturbinehazards)perhour(hr)perkilometer2(km2).

Eaglenest(ornest)–anyreadilyidentifiablestructurebuilt,maintainedorusedbybaldeaglesorgoldeneaglesforthepurposesofreproduction(asdefinedin50CFR22.3).

Page 51: Appendix E Eagle Conservation Plan Guidance

35

Eagleterritory–anareathatcontains,orhistoricallycontained,oneormorenestswithinthehomerangeofamatedpairofeagles(fromtheregulatorydefinitionof“territory”at50CFR22.3).“Historical”isdefinedhereasatleasttheprevious5years.

ExperimentalACPs–prospectiveconservationmeasuresidentifiedatthestartofaprogrammaticeagletakepermitthatarenotimplementedimmediately,butaredeferredpendingtheresultsofpost‐constructionmonitoring.Ifsuchmonitoringindicatesthemeasuresmightreduceobservedeaglefatalities,theyshouldbeimplementedandmonitoredforasufficientperiodoftimetodeterminetheireffectiveness.

Fatalitymonitoring–searchingforeaglecarcassesbeneathturbinesandotherfacilitiestoestimatethenumberoffatalities.

Fatalityrate–(1)infatalitypredictionmodels,thefatalityrateisthenumberofeaglefatalitiesperhrperkm2;(2)elsewhereintheECPGitisthenumberofeaglestakenorpredictedtobetakenperyear.

Floater(floatingadult)–anadulteaglethathasnotsettledonabreedingterritory.Hazardousarea–Rotor‐sweptareaaroundaturbineorproposedturbine(km2).Homerange–theareatraveledbyandeagleinitsnormalactivitiesoffoodgathering,mating,and

caringforyoung.Breedinghomerangeisthehomerangeduringthebreedingseason,andthenon‐breedinghomerangeisthehomerangeoutsidethebreedingseason.

Importanteagle‐usearea–aneaglenest,foragingarea,orcommunalroostsitethateaglesrelyonforbreeding,sheltering,orfeeding,andthelandscapefeaturessurroundingsuchnest,foragingarea,orroostsitethatareessentialforthecontinuedviabilityofthesiteforbreeding,feeding,orshelteringeagles(asdefinedat50CFR22.26).

Inactivenest–abaldeagleorgoldeneaglenestthatisnotcurrentlybeingusedbyeaglesasdeterminedbythecontinuingabsenceofanyadult,egg,ordependentyoungatthenestforatleast10consecutivedaysimmediatelypriorto,andincluding,atpresent.AninactivenestmaybecomeactiveagainandremainsprotectedundertheEagleAct.

Inventory–systematicobservationsofthenumbers,locations,anddistributionofeaglesandeagleresourcessuchassuitablehabitatandpreyinanarea.

Jurisdictionalagency–agovernmentagencywithjurisdictionalauthoritytoregulateanactivity(e.g.,astateortribalfishandwildlifeagency,astateorfederalnaturalresourceagency,etc.).

Juvenile–aneaglelessthanoneyearold.Kiting–stationaryornear‐stationaryhoveringbyaraptor,usuallywhilesearchingforprey.Local‐areapopulation–isasdefinedinUSFWS(2009b),andreferstotheeaglepopulationwithin

adistancefromtheprojectfootprintequaltothespeciesmediannatal‐dispersaldistance(43milesforbaldeaglesand140milesforgoldeneagles).

Meaninter‐nestdistance–themeannearest‐neighbordistancebetweensimultaneouslyoccupiedeaglenests.

Meteorologicaltowers(mettowers)–towerserectedtomeasuremeteorologicaleventssuchaswindspeed,direction,airtemperature,etc.

Migrationconcentrationsites–placeswheregeographicfeatures(e.g.,north‐southorientedridgelines,peninsulas)funnelmigratingeagles,resultinginconcentrateduseduringmigrationperiods.

Migrationcorridors–theroutesorareaswhereeaglesmayconcentrateduringmigration(e.g.,funnelingareasalongridgetops,attipsofpeninsulas)asaresultoftheinterplaybetweenweathervariablesandtopography.

Migrationcounts–standardizedcountsthatcanbeusedtodeterminerelativenumbersofdiurnalraptorspassingoveranestablishedpointduringfallorspringmigration.

Mitigation–avoidance,minimization,rectification,reductionovertime,andcompensationfornegativeimpactstobaldeaglesandgoldeneaglesfromthepermittedactions.IntheECPG,we

Page 52: Appendix E Eagle Conservation Plan Guidance

36

usethetermcompensatorymitigationtodescribethesubsetofmitigationactionsdesignedtooffsettaketoachievetheno‐net‐lossstandard.

Monitoring–(1)aprocessofprojectoversightsuchascheckingtoseeifactivitieswereconductedasagreedorrequired;(2)makingmeasurementsofuncontrolledeventsatoneormorepointsinspaceortimewithspaceandtimebeingtheonlyexperimentalvariableortreatment;(3)makingmeasurementsandevaluationsthroughtimethataredoneforaspecificpurpose,suchastocheckstatusand/ortrendsortheprogresstowardsamanagementobjective.

No‐net‐loss–nonetchangeintheoveralleaglepopulationmortalityornatalityrateafterissuanceofapermitthatauthorizestake,becausecompensatorymitigationreducesanotherformofmortality,orincreasesnatality,byacomparableamount.

Occupiednest–anestusedforbreedinginthecurrentyearbyapairofeagles.Presenceofanadult,eggs,oryoung,freshlymoltedfeathersorpluckeddown,orcurrentyear’smutes(whitewash)suggestsiteoccupancy.Inyearswhenfoodresourcesarescarce,itisnotuncommonforapairofeaglestooccupyanestyetneverlayeggs;suchnestsareconsideredoccupied.

Occupiedterritory–anareathatencompassesanestornestsorpotentialnestsitesandisdefendedbyamatedpairofeagles.

Operationaladjustments–modificationsmadetoanexistingwindprojectthatchangeshowthatprojectoperates(e.g.,increasingturbinecutinspeeds,implementingcurtailmentofturbinesduringperiodsofhigheagleuse).

Posteriordistribution(Bayesian)–adistributionthatquantifiestheuncertaintyinthemodelparametersafterincorporatingtheobserveddata.Thedistributionsareusuallysummarizedbyintervalsaroundthemedian.

Presentvalue–withinthecontextofaResourceEquivalencyAnalysis(REA),referstothevalueofdebitsandcreditsbasedonanassumedannualdiscountrate(3%).Thistermiscommonlyusedineconomicsandimpliesthatresourceslostorgainedinthefutureareoflessvaluetoustoday.

Priordistribution(Bayesian)–adistributionthatquantifiestheuncertaintyinthemodelparametersfrompreviousdataorpastknowledge.Anon‐informativepriorcanbeusedtoimplythatlittleornothingisknownabouttheparameters.

Programmatictake–takethatisrecurring,isnotcausedsolelybyindirecteffects,andthatoccursoverthelongtermorinalocationorlocationsthatcannotbespecificallyidentified(asdefinedin50CFR22.3).

Projectarea–theareathatincludestheprojectfootprintaswellascontiguouslandthatsharesrelevantcharacteristics.Foreagle‐takeconsiderations,theServicerecommendstheprojectareabeeitherprojectfootprintandasurroundingperimeterequaltothemeanspecies‐specificinter‐nestdistanceforeagleslocally,ortheprojectfootprintanda10‐mileperimeter.

Project‐areainter‐nestdistance–themeannearest‐neighbordistancebetweensimultaneouslyoccupiedeaglenestsofaspecies(includingoccupiednestsinyearswherenoeggsarelaid).WerecommendcalculatingthismetricfromthenestingterritorysurveyinStage2,usingallnestingterritorieswithintheprojectarea,ideallyovermultipleyears.

Project‐areanestingpopulation–numberofpairsofeaglesnestingwithintheprojectarea.Project‐areaeaglepopulation–thepopulationofeagles,consideringbreeding,migrating,and

winteringeagles,withintheprojectarea.Projectfootprint–theminimum‐convexpolygonthatencompassesthewind‐projectarea

inclusiveofthehazardousareaaroundallturbinesandanyassociatedutilityinfrastructure,roads,etc.

Projectdeveloperoroperator–anydeveloperoroperatorthatproposestoconstructawindproject.

Page 53: Appendix E Eagle Conservation Plan Guidance

37

Productivity─thenumberofjuveniles ledgedfromanoccupiednest,oftenreportedasameanoverasampleofnests.

Renewableenergy–energyproducedbysolar,wind,geothermaloranyothermethodsthatdonotrequirefossilfuels.

ResourceEquivalencyAnalysis(REA)–inthecontextoftheECPG,amethodologyusedtocomparetheinjurytoorlossofeaglescausedbywindfacilities(debit)tothebenefitsfromprojectsdesignedtoimproveeaglesurvivalorincreaseproductivity(credits).Compensationisevaluatedintermsofeaglesandtheirassociatedservicesinsteadofbymonetaryvaluationmethods.

Retrofit–anyactivitythatresultsinthemodificationofanexistingpowerlinestructuretomakeitbirdsafe.

Risk‐averse–aconservativeestimateinthefaceofconsiderableuncertainty.Forexample,theServicetypicallywillusetheupper80%credibleintervalofthemedianestimatednumberofannualeaglefatalitiesforpermitdecisionsinanefforttoavoidunderestimatingfatalityratesatwindprojects.

Riskvalidation–aspartofStage5assessment,wherepost‐constructionsurveysareconductedtogenerateempiricaldataforcomparisonwiththepre‐constructionriskassessmentpredictionstovalidateiftheinitialassumptionswerecorrect.

Roosting–activitywhereeaglesseekcover,usuallyduringnightorperiodsofsevereweather(e.g.,cold,wind,snow).Roostsareusuallyfoundinprotectedareas,typicallytreerowsortreesalongarivercorridor.

Seasonalconcentrationareas–areasusedbyconcentrationsofeaglesseasonally,usuallyproximatetoarichpreysource.

Sitecategorization–astandardizedapproachtocategorizethelikelihoodthatasiteoroperationalalternativewillmeetstandardsin50CFR22.26forissuanceofaprogrammaticeagletakepermit.

Stopoversites–areastemporarilyusedbyeaglestorest,seekforage,orcoverontheirmigrationroutes.

Subadult–aneaglebetween1and4yearsold,typicallynotofreproductiveage.Survey–combinedinventoryandmonitoring.Takethreshold–anupperlimitontheannualeagleharvestrateforeachspecies‐specificeagle

managementunit.ThresholdsweresetintheFinalEnvironmentalAssessmentontheEaglePermitRule(USFWS2009b).

Territory–areathatcontains,orhistoricallycontained,oneormorenestswithinthehomerangeofamatedpairofeagles(from50CFR22.3).

Unoccupiednest–thosenestsnotselectedbyraptorsforuseinthecurrentnestingseason.Seealsoinactivenest.

U.S.FishandWildlifeServiceDraftLand‐basedWindEnergyGuidelines(WEG)–adocumentthatdescribesamulti‐tieredprocesstosite,construct,operateandmonitorwindfacilitiesinwaysthatavoid,minimize,andmitigateimpactstowildlife.

Windfacilities–developmentsforthegenerationofelectricityfromwindturbines.Windproject–developmentsforthegenerationofelectricityfromwindturbines.Windturbine–amachineforconvertingthekineticenergyinwindintomechanicalenergy,which

isthenconvertedtoelectricity.

Page 54: Appendix E Eagle Conservation Plan Guidance

38

Figure 2. Map of golden eagle management units, from USFWS (2009b).

Page 55: Appendix E Eagle Conservation Plan Guidance

39

Figure 3. Map of bald eagle management units, from USFWS (2009b).

Page 56: Appendix E Eagle Conservation Plan Guidance

40

LITERATURE CITED Anthony,R.G.2001.LowproductivityofbaldeaglesonPrinceofWalesIsland,SoutheastAlaska.

RaptorResearch35:1‐8.Arnett,E.B.2006.Apreliminaryevaluationontheuseofdogstorecoverbatfatalitiesatwind

energyfacilities.WildlifeSocietyBulletin34(5):1440–1445.Arnett,E.B.,D.B.Inkley,D.H.Johnson,R.P.Larkin,S.Manes,A.M.Manville,R.Mason,M.Morrison,

M.D.Strickland,andR.Thresher.2007.Impactsofwindenergyfacilitiesonwildlifeandwildlifehabitat.TechnicalReview07‐2,TheWildlifeSociety,Bethesda,Maryland,USA.

Barclay,R.M.R.,E.F.Baerwald,andJ.C.Gruver.2007.Variationinbatandbirdfatalitiesatwindenergyfacilities:assessingtheeffectsofrotorsizeandtowerheight.CanadianJournalofZoology85:381–387.

Barrios,L.andA.Rodriguez.2004.Behaviouralandenvironmentalcorrelatesofsoaring‐birdmortalityaton‐shorewindturbines.JournalofAppliedEcology41:72‐81.

Buckland,S.T.,D.R.Anderson,K.P.Burnham,J.L.Laake,D.L.Borchers,andL.Thomas.2001.Introductiontodistancesampling.OxfordUniversityPress,NewYork,NewYork,USA.

Buehler,D.A.2000.Baldeagle(Haliaeetusleucocephalus).TheBirdsofNorthAmericano.506(A.Poole,ed.).TheBirdsofNorthAmericaOnline,CornellLabofOrnithology,Ithaca,NewYork,USA.http://bna.birds.cornell.edu/bna/species/506.

Chamberlain,D.E.,M.R.Rehfisch,A.D.Fox,M.Desholm,andS.J.Anthony.2006.Theeffectofavoidanceratesonbirdmortalitypredictionsmadebywindturbinecollisionriskmodels.Ibis148:198‐202.

Cole,S.2009.Howmuchisenough?Determiningadequatelevelsofenvironmentalcompensationforwindpowerimpactsusingequivalencyanalysis.InEuropeanOffshoreWindConference2009,14‐16September2009,Stockholm,Sweden.

Collopy,M.W.,andT.C.Edwards,Jr.1989.Territorysize,activitybudget,androleofundulatingflightinnestinggoldeneagles.JournalofFieldOrnithology60:43‐51.

Craig,T.H.,andE.H.Craig.1984.AlargeconcentrationofroostinggoldeneaglesinsoutheasternIdaho.Auk101:610‐613.

Craig,T.H.,E.H.Craig,andL.R.Powers.1984.RecentchangesineagleandbuteodensitiesinsoutheasternIdaho.Murrelet65:91‐93.

DeLucas,M.,G.F.E.Janss,D.P.WhitfieldandM.Ferrer.2008.Collisionfatalityofraptorsinwindfarmsdoesnotdependonraptorabundance.JournalofAppliedEcology45:1695–1703.

Ferrer,M.deLucas,G.F.E.Janss,E.Casado,A.R.Munõz,M.J.Bechard,andC.P.Calabuig.2011.Weakrelationshipbetweenriskassessmentstudiesandrecordedmortalityinwindfarms.JournalofAppliedEcologydoi:10.1111/j.1365‐2664.2011.02054.x.

Fuller,M.R.,J.J.Millspaugh,K.Church,andR.Kenward.2005,Wildliferadiotelemetry.Pages377‐417inC.E.Braun(ed.),Techniquesforwildlifeinvestigationsandmanagement,6thedition.TheWildlifeSociety,Bethesda,Maryland,USA.

Garrett,M.G.,J.W.Watson,andR.G.Anthony.1993.BaldeaglehomerangeandhabitatuseintheColumbiaRiverestuary.JournalofWildlifeManagement57:19‐27.

Gregory,M.J.P,A.G.Gordon,andR.Moss.2002.Impactofnest‐trappingandradio‐taggingonbreedinggoldeneaglesAquilachrysaetosinArgyll,Scotland.Ibis145:113‐119.

Harmata,A.R.1982.Whatisthefunctionofundulatingflightdisplayingoldeneagles?RaptorResearch16:103‐109.

Harmata,A.R.2002.VernalmigrationofbaldeaglesfromasouthernColoradowinteringarea.JournalofRaptorResearch36:256‐264.

Page 57: Appendix E Eagle Conservation Plan Guidance

41

Hodges,J.I.andF.C.Robards.1982.Observationsof3,850baldeaglenestsinsoutheastAlaska.Pages37‐46inAsymposiumandworkshoponraptormanagementandbiologyinAlaskaandwesternCanada.(W.N.LaddandP.F.Schempf,eds.)U.S.FishandWildlifeService,Anchorage,Alaska,USA.

Hoechlin,D.R.1976.DevelopmentofgoldeneaglesinsouthernCalifornia.WesternBirds7:137‐152.

Hoover,S.L.,andM.L.Morrison.2005.Behaviorofred‐tailedhawksinawindturbinedevelopment.JournalofWildlifeManagement69:150‐159.

Hunt,W.G.1998.RaptorfloatersatMoffat’sequilibrium.Oikos82:191‐197.Hunt,W.G.,R.E.Jackman,T.L.Brown,andL.Culp.1999.Apopulationstudyofgoldeneaglesin

theAltamontPassWindResourceArea:populationtrendanalysis1994‐1997.ReporttoNationalRenewableEnergyLaboratory,SubcontractsXAT‐5‐15174‐01,XAT‐6‐16459‐01.PredatoryBirdResearchGroup,UniversityofCalifornia,SantaCruz,California,USA.

Hunt,G.2002.Goldeneaglesinaperilouslandscape:predictingtheeffectsofmitigationforwindturbinebladestrikemortality.CaliforniaEnergyCommissionReportP500‐02‐043F.Sacramento,California,USA.

Huso,M.M.P.2010.Anestimatorofwildlifefatalityfromobservedcarcasses.EnvironmetricsDOI:10.1002/env.1052.

Kenward,R.E.2001.Amanualforwildlifetagging.AcademicPress,London,UK.Kerlinger,P.1989.Flightstrategiesofmigratinghawks.UniversityofChicagoPress,Chicago,

Illinois,USA.Kochert,M.N.1972.Populationstatusandchemicalcontaminationingoldeneaglesin

southwesternIdaho.M.S.Thesis.UniversityofIdaho,Moscow,Idaho,USA.Kochert,M.N.,K.Steenhof,C.L.Mcintyre,andE.H.Craig.2002.Goldeneagle(Aquilachrysaetos).

TheBirdsofNorthAmericaNo.684(A.Poole,Ed.).TheBirdsofNorthAmericaOnline.CornellLabofOrnithology,Ithaca,NewYork,USA.http://bna.birds.cornell.edu/bna/species/684.

Krone,O.2003.Twowhite‐tailedseaeagles(Haliaeetusalbicilla)collidewithwindgeneratorsinnorthernGermany.JournalofRaptorResearch37:174‐176.

Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidancedocument.JournalofWildlifeManagement71:2449‐2486.

Kuvlesky,W.P.Jr.,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.Ballard,andF.C.Bryant.2007.Windenergydevelopmentandwildlifeconservation:challengesandopportunities.JournalofWildlifeManagement71:2487‐2498.

Marzluff,J.M.,M.S.Vekasy,M.N.Kochert,andK.Steenhof.1997.Productivityofgoldeneagleswearingbackpackradiotransmitters.JournalofRaptorResearch31:223‐227.

McGrady,M.J.,J.R.Grant,I.P.Bainbridge,andD.R.A.McLeod.2002.Amodelofgoldeneagle(Aquilachrysaetos)rangingbehavior.JournalofRaptorResearch36(1)supplement:62‐69.

McLeod,D.R.A,D.P.Whitfield,andM.J.McGrady.2002.Improvingpredictionofgoldeneagle(Aquilachrysaetos)ranginginwesternScotlandusingGISandterrainmodeling.JournalofRaptorResearch36(1)Supplement:70‐77.

Millsap,B.A.1981.DistributionalstatusandecologyofFalconiformesinwestcentralArizona,withnotesonecology,reproductivesuccess,andmanagement.U.S.BureauofLandManagementTechnicalNote355.

Mohr,C.O.1947.TableofequivalentpopulationsofNorthAmericansmallmammals.AmericanMidlandNaturalist37:223–249.

Mojica,E.K.,J.M.Meyers,B.A.Millsap,andK.T.Haley.2008.Migrationofsub‐adultFloridabaldeagles.WilsonJournalofOrnithology120:304‐310.

Page 58: Appendix E Eagle Conservation Plan Guidance

42

Moorcroft,P.R.,M.A.Lewis,andR.L.Crabtree.1999.Homerangeanalysisusingamechanistichomerangemodel.Ecology80:1656‐1665.

Newton,I.1979.Populationecologyofraptors.ButeoBooks,Vermillion,SouthDakota,USA.Nygård,T,K.,E.L.Bevanger,Ø.Dahl,A.Flagstad,P.L.Follestad,Hoel,R.May,andO.Reitan.2010.

Astudyofwhite‐tailedeagleHaliaeetusalbicillamovementsandmortalityatawindfarminNorway.inD.Senapathi(ed.),Climatechangeandbirds:adaptation,mitigationandimpactsonavianpopulations.BritishOrnithologists’UnionProceedings,Peterborough,UnitedKingdom.http://www.bou.org.uk/bouproc‐net/ccb/nygard‐etal.pdf(lastvisited9October2011).

Palmer,R.S.1988.GoldeneagleAquilachrysaetos.Pages180‐231inR.S.Palmer(ed.),HandbookofNorthAmericanbirds,volume5,diurnalraptors(part2).YaleUniversityPress,NewHaven,Connecticut,USA.

Platt,J.B.1976.BaldeagleswinteringinaUtahdesert.AmericanBirds30:783‐788.Phillips,R.L.andA.E.Beske.1984.Resolvingconflictsbetweenenergydevelopmentandnesting

goldeneagles.Pages214‐219inR.D.Comer,J.M.Merino,J.W.Monarch,C.Pustmueller,M.Stalmaster,R.Stoecker,J.Todd,andW.Wright(eds.).Proceedingsofasymposium:Issuesandtechnologyinthemanagementofimpactedwesternwildlife.SteamboatSprings,Colorado,November15‐17,1982.ThorneEcologicalInstitute,Boulder,Colorado,USA.

Restani,M.,A.R.Harmata,andE.M.Madden.2000.Numericalandfunctionalresponsesofmigrantbaldeaglesexploitingaseasonallyconcentratedfoodsource.Condor102:561‐568.

Seaman,D.E.,andR.A.Powell.1996.Anevaluationoftheaccuracyofkerneldensityestimatorsforhomerangeanalysis.Ecology77:2075–2085.

Sherrod,S.K.,C.M.White,andF.S.L.Williamson.1976.BiologyofthebaldeagleonAmchitkaIsland,Alaska.LivingBird15:145‐182.

Smallwood,K.S.andC.G.Thelander.2004.DevelopingmethodstoreducebirdfatalitiesintheAltamontWindResourceArea.FinalreportpreparedbyBioResourceConsultantstotheCaliforniaEnergyCommission,PublicInterestEnergyResearch‐EnvironmentalArea,ContractNo.500‐01‐019.

Smallwood,K.S.,L.Rugge,M.L.Morrison.2009.Influenceofbehavioronbirdmortalityinwindenergydevelopments.JournalofWildlifeManagement73:1082–1098.

Soutullo,A.,V.Urios,M.Ferrer,andS.G.Penarrubia.2006.Post‐fledgingbehaviouringoldeneaglesAquilachrysaetos:onsetofjuveniledispersalandprogressivedistancingfromthenest.Ibis148:307‐312.

Strickland,M.D.,E.B.Arnett,W.P.Erickson,D.H.Johnson,G.D.Johnson,M.L.,Morrison,J.A.Shaffer,andW.Warren‐Hicks.2011.ComprehensiveGuidetoStudyingWindEnergy/WildlifeInteractions.PreparedfortheNationalWindCoordinatingCollaborative,Washington,D.C.,USA.

Thorstrom,R.2001.Nest‐sitecharacteristicsandbreedingdensityoftwosympatricforest‐falconsinGuatemala.OrnitologiaNeotropical12:337‐343.

USFWS.1983.Northernstatesbaldeaglerecoveryplan.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,WashingtonD.C.,USA.

USFWS.2007.Protectionofeagles;definitionof“Disturb.”FederalRegister72(107):31132‐31140.USFWS.2009a.Eaglepermits;takenecessarytoprotectinterestsinparticularlocalities.Federal

Register74(175):46836‐46879.USFWS.2009b.Finalenvironmentalassessment.ProposaltopermittakeprovidedundertheBald

andGoldenEagleProtectionAct.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,WashingtonD.C.,USA.

Walker,D.,M.McGrady,A.McCluskie,M.Madders,andD.R.A.McLeod.2005.ResidentgoldeneaglerangingbehaviourbeforeandafterconstructionofawindfarminArgyll.ScottishBirds25:24‐40.

Watson,J.W.,andR.W.Davies.2009.RangeuseandcontaminantsofgoldeneaglesinWashington.ProgressReport.WashingtonDepartmentofFishandWildlife,Olympia,Washington.

Page 59: Appendix E Eagle Conservation Plan Guidance

43

Whitfield,D.P.,A.H.Fielding,M.J.P.Gregory,A.G.Gordon,D.R.A.McLeod,andP.F.Haworth.2007.ComplexeffectsofhabitatlossongoldeneaglesAquilachrysaetos.Ibis149:26–36.

Wichmann,M.C.,F.Jeltsch,W.R.J.Dean,K.A.MoloneyandC.Wissel.2003.Implicationofclimatechangeforthepersistenceofraptorsinaridsavanna.Oikos102:186–202.

Williams,B.K.,R.C.Szaro,andC.D.Shapiro.2007.AdaptiveManagement:TheU.S.DepartmentoftheInteriorTechnicalGuide.AdaptiveManagementWorkingGroup,U.S.DepartmentoftheInterior,Washington,DC,USA.

Worton,B.J.1989.Kernelmethodsforestimatingtheutilizationdistributioninhome‐rangestudies.Ecology70:164–168.

Yates,R.E.,B.R.McClelland,P.T.McClelland,C.H.Key,andR.E.Bennetts.2001.TheinfluenceofweatherongoldeneaglemigrationinnorthwesternMontana.JournalofRaptorResearch35:81‐90.

Page 60: Appendix E Eagle Conservation Plan Guidance

44

APPENDIX A: ADAPTIVE MANAGEMENT Managementofwindfacilitiestominimizeeagletakethroughdecisionsaboutsiting,design,operation,andcompensatorymitigation,isasetofrecurrentdecisionsmadeinthefaceofuncertainty.TheDepartmentoftheInteriorhasalonghistoryofapproachingsuchdecisionsthroughaprocessofadaptivemanagement(Williamsetal.2007).Thepurposeofadaptivemanagementistoimprovelong‐termmanagementoutcomes,byrecognizingwherekeyuncertaintiesimpededecisionmaking,seekingtoreducethoseuncertaintiesovertime,andapplyingthatlearningtosubsequentdecisions(Walters1986).Adaptivemanagementisaspecialcaseofdecisionanalysisappliedtorecurrentdecisions(Lyonsetal.2008).Likeallformaldecisionanalysis,itbeginswiththeidentificationoffundamentalobjectives—thelong‐termendssoughtthroughthedecision(step2,Fig.A‐1).Theseobjectivesaretheprimaryconcern,andalltheotherelementsaredesignedaroundthem.Withtheseobjectivesinmind,alternativeactionsareconsidered,andtheconsequencesofthesealternativesareevaluatedwithregardtohowwelltheymightachievetheobjectives.Butinmanydecisions,thereiscriticaluncertaintythatimpedesthedecision(step6,Fig.A‐1),thatis,thedecision‐makerismissingknowledgethataffectswhichalternativemightbebest.Inrecurrentdecisions,thereexiststheopportunitytoreducethatuncertainty,bymonitoringtheoutcomesofearlyactions,andapplythatlearningtolateractions.Itisvaluabletonotethatlearningisnotpursuedforitsownsake,butonlyinsofarasithelpsimprovelong‐termmanagementbyreducingtheseuncertainties.Therearetwohallmarksofaformalinterpretationofadaptivemanagement,likethatdescribedabove.Thefirsthallmarkistheaprioriidentificationofthecriticaluncertainty.Inthisway,adaptivemanagementisnotablindsearchforsomeunspecifiednewinsights,butafocusedefforttoreducetheuncertaintythatstandsinthewayofbetterdecision‐making.Thesecondhallmarkisthatthemeansofadaptationisclear,thatis,thewayinwhichnewinformationwillbeappliedtosubsequentdecisionsisarticulated.Thereis,however,recognitionthatunanticipatedlearningdoesoccurinanyrealsystem,andthislearningcansometimesleadtovaluableinsights.Inso‐called“double‐looplearning”(ArgyrisandShon1978),thelearningmightevenleadtoare‐framingofthedecision,are‐examinationoftheobjectives,orconsiderationofnewalternatives(thiscouldberepresentedbyaloopfromstep7tostep1inFig.A‐1).Inthecontextofeaglemanagementatwindfacilities,theService’sfocusisontheinner‐looplearning(representedbythefeedbackfromstep7to8to4inFig.A‐1),butunanticipatedlearningwillnotbeignored.Inthecaseofmanagingeaglepopulationsinthefaceofenergydevelopment,thereisconsiderableuncertaintytobereduced.Forexample,webelievethatinsomeareasorspecificsituations,largesoaringbirds,specificallyraptors,mightbeespeciallyvulnerabletocollidingwithwindturbines(BarriosandRodriguez2004,Kuvleskyetal.2007),butweareuncertainabouttherelativeimportanceoffactorsthatinfluencethatrisk.Wearealsouncertainaboutthebestwaytomitigatetheeffectsofwindturbinedevelopmentsonraptors;wesuspectsomestrategiesmightbeeffective,othersareworthtrying.Wealsosuspectthatafewspecies,includinggoldeneagles(USFWS2009),maybesusceptibleenoughtocollisionswithwindturbinesthatpopulationsmaybenegativelyaffected.Thus,thereareuncertaintiesatseverallevelsthatchallengeourattemptstomanageeaglepopulations:(1)atthelevelofunderstandingfactorsthataffectcollisionrisk,(2)atthelevelthatinfluencespopulationtrends,and(3)abouttheefficacyofvariousmitigationoptions.TheService,ourconservationpartners,andindustrywillneverhavetheluxuryofperfectinformationbeforeneedingtoacttomanageeagles.Wearethereforelefttomakemanagementdecisionsbasedonthe

Page 61: Appendix E Eagle Conservation Plan Guidance

45

bestavailableinformationwithsomeinherentdegreeofuncertaintyabouttheoutcomesofthosedecisions.Ourgoalistoreducethatuncertaintythroughuseofformaladaptivemanagement,therebyimprovingourpredictivecapabilityovertime.Applyingasystematic,cohesive,nationally‐consistentstrategyofmanagementandmonitoringisnecessarytoaccomplishthisgoal.

1. Adaptive Management as a Tool UsingadaptivemanagementasatooltomanagewildlifepopulationsisnotnewtotheService.Weandotheragenciesareincreasinglyusingtheprinciplesofadaptivemanagementacrossarangeofprograms,includingwaterfowlharvestmanagement(Johnsonetal.1997),endangeredspecies(Runge2011),andhabitatmanagementatlocalandlandscapescales(Lyonsetal.2008).ApplyingadaptivemanagementtocomplexresourcemanagementissuesispromotedthroughouttheDepartmentoftheInterior(Williamsetal.2007).

Problem Framing

Elicit Objectives

Develop Alternatives

Evaluate Consequences

Identify Preferred Alternative

1 2 3

4 5,9

Monitor

Update Predictive

Models (Learn)

Implement Action

Evaluate Critical

Uncertainty

6

7

8

Figure A-1: A framework for adaptive resource management (ARM). At the core of adaptive management is critical uncertainty that impedes the identification of a preferred alternative. When decisions are recurrent, implementation coupled with monitoring can resolve uncertainty, and allow future decisions to reflect that learning. (Figure from Runge 2011).

Page 62: Appendix E Eagle Conservation Plan Guidance

46

Waterfowlharvestmanagementistheclassicexampleofadaptiveresourcemanagement.HuntingregulationsarereseteachyearintheUnitedStatesandCanadathroughtheapplicationofadaptivemanagementprinciples(Johnsonetal.1997).Akeyuncertaintyinwaterfowlmanagementistheextenttowhichharvestmortalityiscompensatedbyreductionsinnon‐harvestmortalityorbyincreasesinproductivity(Williamsetal.1996).Variouspopulationmodelshavebeenbuiltbasedoncompetinghypothesestoanswerthisquestion;thesecompetingmodelsmakedifferentpredictionsabouthowthepopulationwillrespondtohunting.EveryyeartheServiceandtheCanadianWildlifeServicemonitorwaterfowlandenvironmentalconditionstoestimatepopulationsize,survivalrates,productivity,andhuntingrates.Thesedatafeedintothevariouscompetingmodels,andthemodelsareevaluatedannuallybasedonhowwelltheypredictchangesinwaterfowlpopulations.Modelsthatperformbestyear‐after‐yearaccrueincreasingweight(i.e.,evidenceinsupportoftheunderlyinghypothesis).Weightedmodeloutputsdirectlyleadtorecommendedsetsofhuntingregulations(e.g.,baglimitsandseasonlengths)forthesubsequentyear.Overtime,bymonitoringthepopulationeffectsofvariousharvestratesonsurvivorship,andenvironmentalconditionsonproductivity,ouruncertaintyaboutthedegreetowhichharvestiscompensatedbyotherfactorshasbeenreduced,allowingforthesettingofharvestrateswithgreaterconfidenceeveryyear.TheapplicationofadaptivemanagementprinciplestowaterfowlharvestregulationhashelpedtheServiceanditspartnersachieveorexceedpopulationgoalsformostspeciesofwaterfowl(NAWMP2004).AdaptivemanagementisacentralcomponentoftheService’sapproachtocollaborativemanagementatthelandscapescale,throughstrategichabitatconservation(NEAT2006).Theprinciplesofadaptivemanagementarealsoembeddedinendangeredspeciesmanagement(Ruhl2004,Runge2011),includinginrecoveryplanning(Smith2011)andhabitatconservationplanning(Wilhere2002).Indeed,theServicerecognizesthatadaptivemanagementisanormativeconceptinmodernecologicaldecision‐making(Callicottetal.1999),andembracesitasafundamentaltool.2. Applying Adaptive Management to Eagle Take Permitting InthecontextofwindenergydevelopmentandeaglemanagementundertheECPG,therearefourspecificsetsofdecisionsthataresuitableforanadaptivemanagementapproach.

a. Adaptive Management of Wind Project Operations Themostimmediateanddirectopportunityforadaptivemanagementisatthesite‐levelforwindfacilitiesafterconstruction.Therelevantuncertaintyisinthepredictionsofeagletakeattheproject,andtheoperationalfactorsthatinfluencetheleveloftake.TheroleofadaptivemanagementatthisscalewillbeanalyzedandevaluatedintheNEPAassociatedwitheachpermit.UndertheECPG,awindprojectwouldinitiallyworkwiththeServicetogeneratepredictionsoftake,giventhesiting,design,andoperationalparametersoftheproject.Thesepredictionsaremadeunderuncertainty,andtherisktoeaglesassociatedwiththisuncertaintyisfactoredintothecompensatorymitigationtermsofthepermitunderBGEPA.Afterasitebecomesoperational,ongoingsurveysofrealizedtakecanbecomparedtothepredictionsoftake.Atthereviewpointsofthepermit(typically,everyfiveyears),theServiceandtheoperatorwillreviewtheobservedtake.Iftheobservedtakeexceedsthepredictedandpermittedtake,theServicewillworkwiththeoperatortoidentifymeasuresthatcouldbetakentoreducethetakebelowthepermittedthreshold(withinthelimitsjointlyagreedtoattheoutsetofthepermitperiod).Themonitoringdatamayprovidecluesabouthowthiscouldbedone,forexample,byidentifyingwhereandwhenmostofthetakeisoccurring.Ontheotherhand,iftheobservedtakeissignificantly

Page 63: Appendix E Eagle Conservation Plan Guidance

47

lessthanthepredictedtake,theServicecanworkwiththeoperatortoupdatethepredictionsoftakeforthenextreviewperiod,adjusttheconditionsforcompensatorymitigation,andreturncreditstotheoperatorforanyexcesscompensatorymitigation.Inarelatedmanner,forbothnewandexistingfacilities,ongoingmonitoringcanprovideinformationtoreduceuncertaintyabouttheeffectivenessofconservationmeasuresandACPs.Inparticular,experimentalconservationmeasuresandACPsareactionstakenbytheoperatorthatarethoughttoreducemortalityrisk,butthereisuncertaintyabouthoweffectivesomeofthesemeasurescanbe.Intheend,thepurposeofadaptivemanagementofoperationsistoreducemortalityofeagleswhilealsoreducingtheimpactofconservationmeasuresandACPsonpowergenerationatwindfacilities.b. Adaptive Management of Wind Project Siting and Design Recommendations ThroughtheECPGandthepermitreviewprocess,theServicemakesrecommendationstooperatorsabouthowtositeanddesignwindfacilitiestoreduceeagledisturbanceandmortality.Theserecommendationsarebasedonthebestavailablescience,butacknowledgethatourunderstandingoftheinteractionbetweeneaglesandwindfacilitiesisincomplete.Adaptivemanagementprovidestheopportunitytorespondtoincreasingunderstandingaboutthisinteraction.Theparticularfocusofthislayerofadaptivemanagementisthepredictionsoftakethataremadebyconsideringpre‐constructionsurveysandriskfactors(seeAPPENDIXD).Theproposedmodelsareinitiallyquitecoarseintheirabilitytomakepredictions,buttheService,inpartnershipwiththeU.S.GeologicalSurvey(USGS),planstorefinethesemodels.Thekeyuncertaintiesconcerntheriskfactorsthatareimportantinpredictingeagletake.Forexample,howimportantistheproximitytonestingsites,preyconcentrations,orridgelinesindeterminingtheriskposedbyanywindturbine?Multiplemodelswillbedevelopedtoexpressuncertaintyintheseriskfactors,andthepredictionsfromthesemultiplemodelswillbecomparedtothepatternsofobservedtakeatexistingfacilities.Usingmultiplemodelstoexpressuncertaintyallowsinclusionandevaluationofalternativemodelsfromdifferentsources.Thelearningthatemergeswillbeusedtoimprovethepredictionsfromthemodels,whichinturn,willallowfuturerecommendationsaboutsitinganddesigntobeenhanced.Inthiscase,thebenefitofthemonitoringatindividualsitesaccruestothewindindustryasawhole.c. Adaptive Management of Compensatory Mitigation Thedeterminationofappropriatelevelsofcompensatorymitigation,suchasthrougharesourceequivalencyanalysis(REA,seeAPPENDIXF),isbasedontwopredictions:theleveloftakeexpectedataproject;andtheamountofmitigationrequiredtooffsetthattake.Asnotedabove,site‐levellearning,throughobservationofrealizedtake,canbeusedtoupdatepredictionsoftake,andcompensatorymitigationcanbeadjustedaccordingly.Inaddition,theaccruedexperienceacrosssites,throughmonitoringoftheeffectivenessofcompensatorymitigationprojectsandeaglepopulationresponses,canbeusedtoupdatethemethodsandparametersintheREAmethodsusedtodeterminetheappropriatelevelofcompensatorymitigation.d. Adaptive Management of Population-Level Take Thresholds Healthy,robustpopulationsofanimalscansustainsomedegreeofincidentaltake,withoutlong‐termadverseimpactstothepopulationortheecosystem.Theamountoftakethatis

Page 64: Appendix E Eagle Conservation Plan Guidance

48

sustainableandthatcanbeauthorizedisafunctionofbothscientificfactors(e.g.,theintrinsicgrowthrateandcarryingcapacityofthepopulation)andpolicyinterpretation(e.g.,theamountofpotentialgrowththatcanbeallocatedtotake,andtherisktoleranceforexcessivetake)(Rungeetal.2009).Thecapacitytosustainincidentaltakearisesfromtheresilienceinpopulationsduetotheabilitytocompensateforthattakebyincreasingsurvivalorreproductiverates.Atthescaleofregionalpopulations(e.g.,birdconservationregionsforgoldeneagles),thecentralquestionforeaglesisnotaltogetherdifferentthanitisforwaterfowl:towhatextentismortalityfromenergydevelopment,oranyotheranthropogenicsource,compensatedbyreductionsinmortalityfromothersources,orbyincreasesinproductivity?Thesequestionsarebestansweredbybuildingpopulationmodelsfoundedoncompetinghypothesesthatincorporateestimatesofmortality,productivity,andthevariationaroundthosevitalrates.Whatisneededisasystematicefforttocollectinformationonmortality,breeding,andpopulationstatustofeedthosemodels.Similartowaterfowlmanagement,reducinguncertaintyinpopulation‐levelmodelsforeaglemanagementwillrequirerollinguptheresultsoflocalmonitoringandresearchacrossthedistributionofeagles.TheresultswillallowtheServicetomakemoreinformedmanagementrecommendationstoreachtheService’spopulationgoalofstableorincreasingbreedingpopulationsforbotheaglespecies.Atpresent,theService’sregulationscallfornoincreaseinnettakeofgoldeneagles,underaprotectiveconcernthatthecurrentleveloftakeexceedsasustainablethreshold.Asourunderstandingofgoldeneaglepopulationsizeandstatusincreases,andourknowledgeofvitalratesandpotentialresilienceimproves,theServiceandUSGSwillreanalyzethepotentialforinstitutingtakethresholdsforgoldeneagles.Takethresholdsforbaldeagleswillalsobere‐assednolessfrequentlythaneveryfiveyears(USFWS2009).Ifthresholdsforeitherspeciesareincreasedandadditionaltakeisauthorized,continuedpopulationmonitoringwillbecriticalinprovidingfeedbackonpopulationresponse(i.e.,step4to8inFig.A‐1).

Literature Cited Argyris,C.,andD.Shon.1978.OrganizationalLearning:aTheoryofActionLearning.Addison‐

Wesley,Reading,Massachusetts.Barrios,L.,andA.Rodriguez.2004.Behaviouralandenvironmentalcorrelatesofsoaring‐bird

mortalityaton‐shorewindturbines.JournalofAppliedEcology41:72‐81.Callicott,J.B.,L.B.Crowder,andK.Mumford.1999.Currentnormativeconceptsinconservation.

ConservationBiology13:22‐35.Johnson,F.A.,C.T.Moore,W.L.Kendall,J.A.Dubovsky,D.F.Caithamer,J.R.Kelley,Jr.,andB.K.

Williams.1997.Uncertaintyandthemanagementofmallardharvests.JournalofWildlifeManagement61:202‐216.

Kuvlesky,W.P.,Jr,L.A.Brennan,M.L.Morrison,K.K.Boydston,B.M.Ballard,andF.C.Bryant.2007.Windenergydevelopmentandwildlifeconservation:challengesandopportunities.TheJournalofwildlifemanagement71:2487‐2498.

Lyons,J.E.,M.C.Runge,H.P.Laskowski,andW.L.Kendall.2008.Monitoringinthecontextofstructureddecision‐makingandadaptivemanagement.JournalofWildlifeManagement72:1683‐1692.

Page 65: Appendix E Eagle Conservation Plan Guidance

49

NationalEnvironmentalAssessmentTeam[NEAT].2006.StrategicHabitatConservation.U.S.FishandWildlifeService,Arlington,Virginia,USA.

NorthAmericanWaterfowlManagementPlan,PlanCommittee[NAWMP].2004.NorthAmericanWaterfowlManagementPlan2004.StrategicGuidance:StrengtheningtheBiologicalFoundation.CanadianWildlifeService,U.S.FishandWildlifeService,SecretariadeMedioAmbienteyRecursosNaturales.

Ruhl,J.2004.Takingadaptivemanagementseriously:AcasestudyoftheEndangeredSpeciesAct.UniversityofKansasLawReview52:1249‐1284.

Runge,M.C.2011.Adaptivemanagementforthreatenedandendangeredspecies.JournalofFishandWildlifeManagement2.

Runge,M.C.,J.R.Sauer,M.L.Avery,B.F.Blackwell,andM.D.Koneff.2009.Assessingallowabletakeofmigratorybirds.JournalofWildlifeManagement73:556‐565.

Smith,C.B.2011.AdaptivemanagementonthecentralPlatteRiver‐Science,engineering,anddecisionanalysistoassistintherecoveryoffourspecies.JournalofEnvironmentalManagement92:1414‐1419.

USFWS.2009.Finalenvironmentalassessment.ProposaltopermittakeprovidedundertheBaldandGoldenEagleProtectionAct.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,WashingtonD.C.,USA.

Walters,C.J.1986.Adaptivemanagementofrenewableresources.Macmillan,NewYork,NewYork,USA.

Wilhere,G.F.2002.Adaptivemanagementinhabitatconservationplans.ConservationBiology16:20‐29.

Williams,B.K.,F.A.Johnson,andK.Wilkins.1996.Uncertaintyandtheadaptivemanagementofwaterfowlharvests.TheJournalofwildlifemanagement60:223‐232.

Williams,B.K.,R.C.Szaro,andC.D.Shapiro.2007.AdaptiveManagement:TheU.S.DepartmentoftheInteriorTechnicalGuide.AdaptiveManagementWorkingGroup,U.S.DepartmentoftheInterior,Washington,DC,USA.

Page 66: Appendix E Eagle Conservation Plan Guidance

50

APPENDIX B: STAGE 1 – SITE ASSESSMENT Occurrenceofeaglesandtheiruseoflandscapesvaryacrossbroadspatialscales.Thefirststepinprojectdevelopmentistoconductalandscape‐scaleassessment,basedmainlyonpubliclyavailableinformation,toidentifysiteswithinalargegeographicareathathavebothhighpotentialforwindenergyandlowpotentialfornegativeimpactsoneaglesifaprojectisdeveloped.Stage1correspondstoTiers1and2oftheWEGand,alongwithStage2hereinandTier3intheWEG,comprisethepre‐constructionevaluationofwindenergyprojects.DependingontheoutcomeofStage1,developersdecidewhethertoproceedtothenextstage,“...requiringagreaterinvestmentindatacollectiontoanswercertainquestions”(referringtoTier3,intheWEG;seealsoTableB‐1).TheWEGshouldbeexaminedforgeneralconsiderationsrelevanttoStage1;thisappendixandthefollowingAPPENDIXCfocusonconsiderationsspecifictoeagles.TheStage1assessmentshouldevaluatewindenergypotentialwithintheecologicalcontextofeagles,includingconsiderationsfortheeagle’sannuallife‐cycle,i.e.,breeding,dispersal,migration,andwintering.Thegoalatthisstageistodeterminewhetherprospectivewindprojectsitesarewithinareasknownorlikelytobeusedbyeaglesand,ifso,begintodeterminetherelativespatiotemporalextentandtypeofeagleuseofthesites.Areasusedheavilybyeaglesarelikelytofallintocategory1;developmentintheseareasshouldbeavoidedbecausetheServiceprobablycouldnotissueprojectdevelopersoroperatorsaprogrammaticpermitfortakethatcomplieswithallregulatoryrequirements.Stage1assessmentisarelativelystraightforward“desktop”processthatprobablyshouldconductbeforesignificantfinancialresourceshavebeencommittedtodevelopingaparticularproject.Multipledatasourcescanbeconsultedwhenevaluatingaprospectivesite’svaluetoeagles.WildlifebiologistsandothernaturalresourceprofessionalsfromfederalagenciesincludingtheService,andtribal,state,andcountyagenciesshouldbeconsultedearlyintheStage1processtohelpensureallrelevantinformationisbeingconsidered.Informationmainlyencompassesphysiographicandbiologicalfactorsthatcouldaffecteagleriskassociatedwithwindenergydevelopment.Questionsgenerallyfocuson:(1)recentorhistoricalnestingandseasonaloccurrencedataforeaglesattheprospectivearea;(2)migrationorotherregularmovementbyeaglesthroughtheareaorsurroundinglandscape;(3)seasonalconcentrationareassuchasacommunalroostsiteinamatureriparianwoodlandoraprairiedog(Cynomysspp.)townservingasamajorforagebase;and(4)physicalfeaturesofthelandscape,especiallytopography,thatmayattractorconcentrateeagles.“Historical”isdefinedhereas5ormoreyears;asearchforhistoricaldatashouldencompassatleasttheprevious5years.Datafromfarlongertimeperiodsmaybeavailablebutshouldbecautiouslyscrutinizedforconfoundingfactorssuchaslandusechangethatdiminishthedata’srelevance.Preliminarysiteevaluationcouldbeginwithareviewofpublicallyavailableinformation,includingresourcedatabasessuchasNatureServe(http://www.natureserve.org/)andtheAmericanWindWildlifeInstitute’sLandscapeAssessmentTool(LAT;http://www.awwi.org/initiatives/landscape.aspx);informationfromrelevanttribal,state,andfederalagencies,includingtheService;statenaturalheritagedatabases;stateWildlifeActionPlans;raptormigrationdatabasessuchasthoseavailablethroughHawkMigrationAssociationofNorthAmerica(http://www.hmana.org)orHawkWatchInternational(http://www.hawkwatch.org);peer‐reviewedliteratureandpublishedtechnicalreports;andgeodatabasesoflandcover,landuse,andtopography(e.g.,theLATintegratesseveralkeygeodatabases).Additionalinformationonasite’sknownorpotentialvaluetoeaglescanbegarneredbydirectlycontactingpersonswitheagleexpertisefromuniversities,conservationorganizations,andprofessionalorstateornithologicalornaturalhistorysocieties.

Page 67: Appendix E Eagle Conservation Plan Guidance

51

Someofthiswideassortmentofdesktopinformationandcertainknowledgegapsidentifiedprobablywillnecessitatevalidationthroughsite‐levelreconnaissance,assuggestedintheWEG.Usingtheseandotherdatasources,aseriesofquestionsshouldbeconsideredtohelpplacetheprospectiveprojectsiteoralternatesitesintoanappropriateriskcategory.Relevantquestionsinclude(modifiedfromtheWEG):

1. Doesexistingorhistoricalinformationindicatethateaglesoreaglehabitat(includingbreeding,migration,dispersal,andwinteringhabitats)maybepresentwithinthegeographicregionunderdevelopmentconsideration?

2. Withinaprospectiveprojectsite,arethereareasofhabitatknowntobeorpotentiallyvaluabletoeaglesthatwouldbedestroyedordegradedduetotheproject?

3. Arethereimportanteagleuseareasormigrationconcentrationsitesdocumentedorthoughttooccurintheprojectarea?

4. Doesexistingorhistoricalinformationindicatethathabitatsupportingabundantpreyforeaglesmaybepresentwithinthegeographicregionunderdevelopmentconsideration(acknowledging,whereverappropriate,thatpopulationlevelsofsomepreyspeciessuchasblack‐tailedjackrabbits(Lepuscalifornicus)cycledramatically[Grossetal.1974]suchthattheyareabundantandattracteaglesonlyincertainyears[e.g.,Craigetal.1984])?

5. Foragivenprospectivesite,istherepotentialforsignificantadverseimpactstoeaglesbasedonanswerstoabovequestionsandconsideringthedesignoftheproposedproject?

Werecommenddevelopmentofamapthat,basedonanswerstotheabovequestions,indicatesareasthatfallundersitecategory1,i.e.,areaswherewindenergydevelopmentwouldposeobvious,substantiallyhighriskstoeaglepopulations.Remainingareascouldbetentativelycategorizedaseithermoderatetohighbutmitigableriskorminimalrisktoeaglepopulations(category2orcategory3).Prospectivesitesthatfallintocategory1atthispointareunlikelycandidatesforaprogrammaticpermitfortakeofeagles,althoughclassificationofasiteatStage1mightberegardedastentative(see“AssessingRiskandEffects;4.SiteCategorizationBasedonMortalityRisktoEagles”intheECPG.Ifasiteappearstobeacategory1sitebasedontheoutcomeofStage1,thedevelopercandecidewhetherinformationatthatstageadequatelysupportsacategorydecisionorwhethertoinvestinStage2assessmenttoclarifypreliminaryindicationsofStage1(TableB‐1).Sitesthattentativelyfallintocategories2or3atStage1canmoveontoStage2assessment,butcouldultimatelybeexcludedaspermitcandidatesaftermoresite‐specificdataarecollectedinStage2.Again,thegoalofStage1siteassessmentinthisECPGistodeterminewhetherprospectivewindprojectsitesarewithinareasknownorlikelytobeusedbyeaglesand,ifso,begintoassessthespatiotemporalextentandtypeofeagleusethesitesreceiveorarelikelytoreceive.Thus,theultimategoalofStage1istodeterminewhethersitesexhibitanyobvioussubstantialriskforeagles.Forthosethatdonot,theStage1siteassessmentwillprovidefundamentalsupportforthedesignofdetailedsurveysinStage2,decisionswhichinfluenceoptimalallocationofthefinancialinvestmentinsurveysandqualityofdatacollected.Insomesituations,theStage1siteassessmentmayprovideenoughinformationtoadequatelyestimateimpactsandsupportdecisionsonsitecategorization(and,whererelevant,potentialconservationmeasuresandappropriatelevelsofcompensatorymitigation),renderingStage2assessmentunnecessary(TableB‐1).

Page 68: Appendix E Eagle Conservation Plan Guidance

52

Literature Cited Craig,T.H.,E.H.Craig,andL.R.Powers.1984.Recentchangesineagleandbuteoabundancein

southeasternIdaho.Murrelet65:91‐93.Gross,J.E.,L.C.Stoddart,andF.H.Wagner.1974.DemographicanalysisofanorthernUtah

jackrabbitpopulation.WildlifeMonograph40. Table B-1. Framework for decisions on investment at Stage 2 level to address chief information needs. A bidirectional arrow represents a continuum of conditions. StrengthofStage1InformationBaseforAssessingRiskto

Eagles

AreaofInformationNeed

Robust:wellinvestigatedandsupported,atleastsemi‐quantitativedocumentationfrommostrecent2‐5years,encompassingpotentialsite(s)oradjoiningareasfromwhichreliableinferencescanbemade

Weak:characterizedbylittlesupportiveinformationandmarginalcertaintyoverall,atbestonlygeneraldescriptions,conjecture,orlimitedinferencesfromotherareasorregions

Seasonalabundance

Nestingrecords

Migrationcorridors

Communalroosts

Preyavailabilityorforaginghotspots

OutcomeandimplicationsforadditionalassessmentneedsatStage2level:

Relevantareasofinformationneedarewell‐addressedandrisklevelisclearlylow–Stage2maynotbewarrantedorelsemodestorlimited‐focussurveyeffortatStage2levelrecommendedRelevantareasofinformationneedarewell‐addressedandrisklevelismoderateorhigh–strongeffortatStage2leveladvised

↔Uncertainrisklevel–strongsurveyeffortatStage2leveladvised

Page 69: Appendix E Eagle Conservation Plan Guidance

53

APPENDIX C: STAGE 2 – SITE-SPECIFIC SURVEYS AND ASSESSMENT 1. Surveys of Eagle Use InformationcollectedinStage2isusedmainlytogeneratepredictionsofthemeanannualnumberofeaglefatalitiesforaprospectivewindenergyprojectandtoidentifyimportanteagleuseareasormigrationconcentrationsitesthatcouldbeaffectedbytheproject.InformationfromStage2isalsousedtoassessthelikelihoodofdisturbancetakeofeagles.Anarrayofsurveytypescouldbeusedtoquantifyusebyeaglesofaproposedprojectarea.Thissectionfocusesonfourtypesofsurveysrecommendedforassessingrisktoeaglesatproposedwindprojects.Thefirstthreearesurveysofeagleusewithintheproposedprojectfootprint.Theseinclude:(1)pointcountsurveys,whichmainlygenerateoccurrencedatathatformunderpinningsoftheriskassessmentmodelrecommendedherein;(2)migration(“hawkwatch”)counts,documentinghourlypassageratesofeagles;and(3)utilizationdistribution(UD)assessment,anaccountingoftheintensityofuseofvariouspartsofthehomerangewithintheprojectfootprint;and(4)surveysofnestingterritoryoccupancyintheprojectarea.Whereuncertaintiesexistregardingsurveymethods,ourrecommendationstendtobeconservativesuchthatbiasesinsurveydata,ifany,aremorelikelytofavorgreaterratherthanlowerestimatesofuseandultimatelymoreratherthanlessprotectionforeagles.ThisapproachisconsistentwiththeService’spolicyoftakingarisk‐aversestanceinthefaceofexistinguncertaintywithrespecttoeagleprogrammatictakepermits.Inadditiontofatalityestimationandinformingasitecategorizationdecision,Stage2studiesofeaglesshouldhelpanswerthefollowingquestions(modifiedfromtheWEG):

1. Whatisthedistribution,relativeabundance,behavior,andsiteuseofeaglesandtowhatextentdothesefactorsexposeeaglestoriskfromtheproposedwindenergyproject?

2. Whatarethepotentialrisksofadverseimpactsoftheproposedwindenergyprojecttoindividualandlocalpopulationsofeaglesandtheirhabitats?

3. Howcandevelopersavoid,minimize,andmitigateidentifiedadverseimpacts?4. Aretherestudiesthatshouldbeinitiatedatthisstagethatwouldbecontinuedinpost‐

construction?

a. Point Count Surveys Pointcounts(i.e.,circular‐plotsurveys)oftenareusedtoassessrelativeabundance,populationtrends,andhabitatpreferencesofbirds(Johnson1995).TheServiceadvocatesuseofpointcountsurveysasthemeansofprovidingprimaryinputformodelspredictingfatalityrateofeaglesassociatedwithwindturbines.However,weacknowledgethetermpointcountsurveydoesnotaccuratelydescribetheapproachweadvocateforcollectingdatatosupportfatalityrateestimationatwindenergyprojects.TheService’sapproachinthisregardispoint‐basedrecordingofactivityduration(minutesofflight)withinathree‐dimensionalplot.Incontrast,pointcountsurveys,astypicallyconducted,yieldindicesofrelativeabundanceorfrequencyofoccurrence(inadditiontotrend,densityestimation,andhabitatassociation,dependingonhowdataarecollected;Ralphetal.1993).Withthatsaid,mostrecordsofeagleflightdurationarelikelytobeclassifiedas1minute,pertheapproachrecommendedinthissection,andassuchresemblerecordsofoccurrencefordatafrompointcountsurveys.Althoughabitofamisnomerinthisregard,“pointcountsurvey”isappliedbroadlyhereintoincludebothpoint‐basedrecordsofflighttimeandtraditionalpointcountsurveysbecausesamplingframeworksforeachsocloselyoverlapandbothdatatypescanbegatheredsimultaneously,alongwithotherinformationdescribedinthisappendix.Theremaybeothermeansofgeneratingcountdatatosupportthefatalitymodel

Page 70: Appendix E Eagle Conservation Plan Guidance

54

describedinthisdocument.Considerationofalternativeapproachesforpredictingfatalityatsuchprojectsmayrequiregreatertimeandadditionalreviews.Thegeneralapproachforconductingafixed‐radiuspointcountsurveyistotraveltoapre‐determinedpointonthelandscapeandrecordindividualbirdsdetected–whetherobserved,onlyheard,orbothobservedandheard–withinacircularplot,theboundaryofwhichisatafixeddistancefromthepointandismarkedinthefieldinseveralplaces(Huttoetal.1986,Ralphetal.1993).Inadditiontoplotradius,thesurveyisstandardizedbycountduration.Sometimesavariable‐radiusplotmethod(Reynoldsetal.1980)isused,yieldingspecies‐by‐speciesdetectabilitycoefficientstoappropriatelyboundtheplotradius(i.e.,samplingarea)foreachspecies.Avarietyofpointcountsurveymethodshavebeenusedspecificallyforraptors(reviewedinAnderson[2007];theNorthAmericanBreedingBirdSurvey[Saueretal.2009]isarandom‐systematic,continent‐widepointcountsurveyofbirdpopulationtrends,includingthoseofmanyraptorspecies).However,afixed‐radiusapproachwithcircularplotsof800‐mradiustypicallyisusedforsurveyingeaglesandotherlarge(greaterthancrow[Corvusspp.]‐size)diurnalspeciesofraptorsatproposedwindenergyprojectsintheUnitedStates(Stricklandetal.2011).Theoptimaldurationofpointcountsurveyforeaglesisafocusofcurrentresearch.Fornow,forpointcountsurveysofeaglesatproposedwindenergyprojects,theServicerecommendscountsof1,2,ormorehoursdurationinsteadof20‐to40‐minutecountstypicallyused(Stricklandetal.2011).Longercountsalsofacilitateintegrationofothersurveytypes(e.g.,developmentofutilizationdistributionprofiles).Manyraptorbiologistshavesuggestedthatthelikelihoodofdetectinganeagleduringa20‐to40‐minutepointcountsurveyisextremelylowinallbutlocalesofgreatesteagleactivityanddatasetsgeneratedbypre‐constructionpointcountsurveysofthisdurationtypicallyarerepletewithcountsofzeroeagles,resultinginunwieldyconfidenceintervalsandmuchuncertainty.Moreover,timespenttravelingtoandaccessingpointsfor20‐minutesurveysmayexceedtimespentconductingtheobservations.Forexample,2501‐hoursurveysconductedannuallyataprojectofaveragesize(e.g.,15samplingpoints,1to3kmapart)andtravelconditionsrequireroughlythesametotalfieldtimeasneededfor50020‐minutesurveys,yetyield50%moreobservationhours(250versus167),withcorrespondinglygreaterprobabilityofdetectingeagles.Anotheradvantageoflongercountsisthattheyreducebiasescreatedifsomeeaglesavoidconspicuousobserversastheyapproachtheirpointsandbeginsurveys,althoughsomeobserversmaybecomefatiguedandoverlookeaglesduringlongercounts.Apotentialtradeoffoffewervisits,ofcourse,isdiminishedaccountingoftemporalvariation(e.g.,variableweatherconditionsoranabruptmigrationevent).Whilecountingatfewerpointsforlongerperiodsmightalsoreducetheabilitytosamplemorearea,weadvocatemaintaintheminimumspatialcoverageofatleast30%oftheprojectfootprint.Untilthereismoreevidencethatshortercountintervalsareadequatetoestimateeagleexposure,webelievethatasamplingstrategyincludingcountsoflongerduration,albeitfewertotalcounts,mayintheendimprovesamplingefficiencyanddataquality.Akeyassumptionoffatalitypredictionmodelsbasedondatafrompointcountsurveysisthatoccurrenceofeaglesataproposedprojectfootprintbeforeconstructionbearsapositiverelationshipwithturbine‐collisionmortalityaftertheprojectbecomesoperational(Stricklandetal.2011).Supportforthisassumptionfrompublishedliteratureislimitedforeaglesandotherdiurnalraptorsatthistime,however.Inarecentstudyofraptorsat20projectsinEurope,nooverallrelationshipwasevidentbetweeneitheroftwopre‐

Page 71: Appendix E Eagle Conservation Plan Guidance

55

constructionriskindicesandpost‐constructionmortality(Ferreretal.2011).However,theauthorsbasedriskindicesonlyinpartondatafrompre‐constructionpointcounts;factorsincorporatedintoriskindicesincludedasomewhatsubjectivedecisiononspecies‐specificsensitivitytocollisionandconservationstatus.Despitethis,aweakrelationshipbetweenpre‐constructionflightactivityandpost‐constructionmortalitywassuggestedforthemostcommonspecies,griffonvulture(Gypsfulvus)andkestrels(Falcospp.).NeitherAquilanorHaliaeetuseaglesoccurredinthestudy.OncoastalNorway,however,ahighdensity,localpopulationofthewhite‐tailedeagle,aspeciescloselyrelatedandecologicallysimilartothebaldeagle,experiencedsubstantialturbine‐collisionfatalityandlossofnestingterritoriesafterdevelopmentofawindenergyproject(Nygårdetal.2010).Therelationshipbetweenpre‐constructionoccurrenceandpost‐constructionmortalitymightbelessclearifeaglesandotherraptorspeciesavoidedareasafterwindenergyprojectswereconstructed(e.g.,Garvinetal.2011),butingeneralsuchdisplacementseemsnegligible(MaddersandWhitfield2006).Precision,consistency,andutilityofdataderivedfrompointcountsurveysdependgreatlyonthesamplingframeworkandfieldapproachforconductingthecounts,whichinturndependsomewhatonstudyobjectivesandthearrayofspeciesunderconsideration.Precisionandreliabilityofdatafrompointcountsurveysforeaglescanbemuchimprovedupon–andneedforarisk‐averseapproachlessened–byincorporatingsomebasic,common‐sensesideboardsintothesurveydesign.Oneofthese,longercountduration,isdiscussedabove.Belowareexamplesofidealdesignfeaturesforpointcountsurveysofeagleuseofproposedwindenergyprojects,particularlywhenfatalityratepredictionisaprimaryobjective.SomeoftheseextendfromStricklandetal.(2011)andreferencestherein,althoughthefirstisnotinaccordwithcorrespondingguidanceinthatdocument.

Surveysofeaglesandotherlargebirdsareexclusiveofthoseforsmallbirds,toavoidoverlookinglargebirdswhilesearchingatamuchsmallerscaleforamuchdifferentsuiteofbirds.Therelativelybrief(e.g.,10‐minute)pointcountsforsmallbirdscouldbeconductedduringthesamevisit,butbeforeorafterthecountoflargebirds.

Inopenareaswhereobserversmaybeconspicuous,countsareconductedfromaportableblindorfromablindincorporatedintoavehicletoreducethepossibilitythatsomeindividualeaglesavoidobservers,,thusreducinglikelihoodofdetection.Blindsaredesignedtomaskconspicuousobservermovementwhilenotimpedingviewsofsurroundings.

Pointlocationsmaybeshiftedslightlytocapitalizeonwhatevervantagepointsmaybeavailabletoenhancetheobserver’sviewofsurroundings.

Elevatedplatforms(e.g.,blindsonscaffoldingorhighintrees,truck‐mountedlifts)areusedtofacilitateobservationinvistasobstructedbytallvegetation,topographicfeatures,oranthropogenicstructures.

Theobserver’svisualfieldatapointcountplot,iflessthan800m(e.g.,duetoobstructionbyforestcover),ismapped.Thepercentageoftheplotareathatisvisibleisfactoredintothecalculationofareasurveyed.

Observersusethemostefficient,logicalroutetomoveamongpoints,changingthestartingpointwiththebeginningofeachsurveycyclesuchthateachpointissurveyedduringarangeofdaylighthours.

Systematicscansofthepointcountplotusingbinocularsalternatingwithscansviatheunaidedeyetodetectcloseanddistanteagles,andwithoverheadchecksfor

Page 72: Appendix E Eagle Conservation Plan Guidance

56

eaglesthatmayhavebeenoverlookedduringperipheralscanning(Bildsteinetal.2007).

Observersaretrainedandtheirskillsaretested,includingaccurateidentificationanddistanceestimation(bothhorizontalandvertical;e.g.,eaglesgreaterthan600mhorizontaldistancemaynotbedetectedbysomeobserversandcorrectionfordifferencesamongindividualobserversmaybewarranted).

Theboundaryofeachpointcountplotisidentifiedviadistinctnaturaloranthropogenicfeaturesormarkedconspicuously(e.g.,flaggingonpoles)atseveralpointsfordistancereference.Distanceintervalswithintheplotalsoaremarkedifobservationsaretobecategorizedaccordingly;rangefinderinstrumentsareusefulinthisregard.

Surveysaredistributedacrossdaylighthours(e.g.,morning–sunriseto1100hours;midday–1101‐1600;evening1601tosunset).Inareasorduringseasonswhereeagleflightismorelikelyduringmiddaythaninearlymorningorevening(e.g.,migration[Heintzelman1986]),samplingefficiencycouldbeincreasedbytemporallystratifyingsurveystomoreintensivelycoverthemiddayperiod.

Amap(e.g.,1:24,000scaletopographicquadrangle)oraerialphotographsindicatingtopographicandotherreferencefeaturespluslocationsofpointcountplotsisusedastheprimaryrecordinginstrumentinthefield.AGPSwithGISinterfacemayserveinthisregard.

Timeandpositionofeachindividualeagleisrecordedonthemap,e.g.,atthebeginningofeachminuteofobservation,ifnotmorefrequently.

Thefollowingexamplesofsuggestedsideboardspertainespeciallytopointcountsurveyssupplyingdataforthefatalitypredictionmethodrecommendedinthisdocument:

Followingapointcountsurvey,thedurationofobservationofeacheagleflyingwithintheplotissummarizedinnumberofminutes,roundedtothenexthighestinteger(e.g.,aneagleobservedflyingwithintheplotforabout15secondsis1eagle‐minute,anotherobservedwithinforabout1minute10secondsis2eagle‐minutes,andsoon;mostobservationslikelywillequal1eagle‐minute).

Eaglesaremappedwhenperchedorwhenotherwisenotflying,butthesummaryofeagle‐minutesforacountexcludestheseobservationsandincludesonlyeaglesinflight.

Horizontaldistanceofeacheagle‐minuteisestimatedandrecordedas≤800mor>800m.Verticaldistanceofeacheagle‐minuteisestimatedandrecordedas≤200m(atorbelowconservativeapproximationofmaximumheightofbladetipoftallestturbine)or>200m.Thus,thepointcount“plot”isa200‐mhighcylinderwitharadiusof800m.

Surveysaredoneunderallweatherconditionsexceptthatsurveysarenotconductedwhenvisibilityislessthan800mhorizontallyand200mvertically.

Datafrompointcountsurveysarearchivedintheirrawestformtobeavailablewhenfatalityisestimatedasdetailedinthisdocument(APPENDIXD).

Otherinformationrecordedduringpointcountsmayproveusefulinprojectassessmentandplanning,orinadditionaldataanalyses(somerequiringdatapooledfrommanyprojects),e.g.:

Page 73: Appendix E Eagle Conservation Plan Guidance

57

Flightpathsofeagles,includingthoseoutsidetheplot,arerecordedonreferencemaps,usingtopographicfeaturesormarkersplacedinthefieldaslocationreferences.Eagleflightpathsarerecordedalsobeforeandafterpointcountsurveysandincidentaltootherfieldwork.Flightpathsaresummarizedonafinalmap,withthoserecordedduringpointcountsurveysdistinguishedfromotherstoroughlyaccountforspatialcoveragebias.Documentationofflightpathscanaidplanningtoavoidareasofhighuse(Stricklandetal.2011).

Behaviorandactivityprevalentduringeach1‐minuteintervalisrecordedas(e.g.)soaringflight(circlingbroadlywithwingsoutstretched);unidirectionalflapping‐gliding;kiting‐hovering;stoopingordivingatprey;stoopingordivinginanagonisticcontextwithothereaglesorotherbirdspecies;undulating/territorialflight;perched;orother(specified).

Ageclassofindividualeaglesisrecorded,e.g.,juvenile(firstyear),immatureorsubadult(secondtofourthyear),adult(fifthyearorgreater),orunknown.

Weatherdataarerecorded,includingwinddirectionandspeed,extentofcloudcover,precipitation(ifany),andtemperature(Stricklandetal.2011).

Distancemeasuresareusedtoestimatedetectabilityforimprovingestimatesfromcounts(Bucklandetal.2001)andcouldbeusedtoassesswhethereaglesavoidobservers.Horizontaldistanceofeacheagle‐minuteisestimatedandcategorized,e.g.,in100‐mintervalsto>800m.

Thekeyconsiderationforplanningpointcountsurveysatproposedwindenergyprojectsissamplingeffort.WeadvisethatprojectdevelopersoroperatorscoordinatecloselywiththeServiceregardingtheappropriateseasonalsamplingeffort,assamplingconsiderationsarecomplexanddependinpartoncase‐specificobjectives.Wealsoreiteratethatthese(andmostother)surveysshouldbeconductedforatleast2yearsbeforeprojectconstructionand,inmostcases,acrossallseasons.Ingeneral,samplingeffortshouldbecommensuratewiththerelativelevelofriskataproposedprojectfootprintifthiscanbesurmisedreliablyfromtheStage1assessment.IfStage1informationcannotsupportreasonablycertainriskcategorization,Stage2surveysshouldbeconductedasdescribedheretoclearlyascertainwhethereaglesareknownorlikelytousethearea.Ifaprojectisdeterminedtobecategory2,productsofpointcountsurveysshouldincludedataforthefatalitymodeldetailedinthisdocument(APPENDIXD).IfthereiscompellingStage1evidenceindicatingnouseinagivenseason,zerousecouldbeassumedandpointcountsurveysinthatseasonmightbeunnecessary.Ingeneral,goalsfortheStage2surveysareeitherto:(1)confirmcategory‐3statusforaproject,or(2)togenerateafatalityrateestimate.Regardlessofwhichofthesesurveygoalsapplytoaparticularproject,werecommendfirstidentifyingpotentialsitesforwindturbines,includingalternatesites,thencalculatingthetotalarea(km2)encompassinga1‐kmbufferaroundallthesites.Wesuggest1kmbecausethisapproximatesoptimalspacingofageneric2.5‐MWturbine(Denholmetal.2009),andtheareaoutsidethismaynotberepresentativeoftopographicfeaturesandvegetationtypesthatcharacterizeturbinestringswithintheprojectfootprint.Thisapproachassurescloseassociationbetweensamplingsitesandlikelyturbinelocations,asrecommendedbyStricklandetal.(2011).Next,werecommendthatatleast30%oftheareawithin1kmofturbinesbeconsideredasthetotalkm2areatobecoveredby800‐mradiuspointcountplots(withasampleareaforeachplotof2km2).Ourrecommended30%minimumisbasedontheactualminimumcoverageateightwindfacilitiesunderreviewbytheServiceatthetimeversion2oftheECPGwasbeingdeveloped.

Page 74: Appendix E Eagle Conservation Plan Guidance

58

Thefirstcase(i.e.,(1)above)istheuseofpointcountdatatovalidatewhetheraproposedprojectmeetscategory3criteriawhenStage1informationisinadequate.Basedonexperiencewithcurrentparametersofthe“priorterm”inourpredictivemodel(seeAPPENDIXD),wecalculateanaverageof20hoursperturbineasanoptimallevelofannualsamplingviapointcountsurvey(e.g.,equivalentoften4‐hourpointcountsurveysateachof20samplepointsfora40‐turbineproject;our20‐hourrecommendationconsidersthehazardousareacreatedbyageneric2.5‐MWturbinewitharotordiameterofabout100m;sampleeffortforturbineswithsmallerrotordiameterswouldbeless).Assamplingeffortfallsfromthislevel,uncertaintyregardingfatalityriskrisessharply,callingforanincreasinglyriskaversebasisforriskcategorization.Although20samplehoursperturbinemaybenecessaryinitiallyforvalidatingcategory3determinationwherelittleStage1informationexists,weexpectthiswilldecreaseasmoreprojectsareincorporatedintotheadaptivemanagementmeta‐analysesthatwillrefinethepriorterm.Thesecondcase(i.e.,(2)above)iswhereStage1evidenceisstrongenoughtosupportthedecisionthataprojectiscategory2(orcategory3withpotentialforre‐evaluationascategory2).Fatalityrateestimationbecomesthemainobjectiveofpointcountsurveysanddemandsforsamplingeffortcanbereduced.Werecommendaminimumof1hourofobservationperpointcountplotpermonthbutatleast2hoursofobservationperpointcountiswarrantedforaseasonforwhichStage1evidenceisambiguousorsuggestshighuse.TheseideasonminimumobservationhoursstemfromtheService’sinitialexperienceinfatalityestimation(seeAPPENDIXD:Stage3–PredictingEagleFatalities).However,asnotedabove,withmorefieldapplicationsofourfatalitypredictionmodelweshouldbeabletorefineourabilitytocharacterizeuncertaintybasedinpartonsite‐specificcharacteristics,somethingtheService’scurrentmodeldoesnotdo.Again,todevelopareasonable,informedsamplingapproach,weurgeprojectdeveloperstoengageearlywiththeServiceindiscussionsaboutsamplingdesignandstrategies.Theexamplebelowincludesdeterminationofthenumberofpointcountplotsforaproject.

Example Thesitefora100‐MW,40‐turbineprojectproposedinopenfoothillsofcentralNewMexicoencompasses40km2(16mi2).DuringtheStage1assessment,datafromahawkwatchorganizationindicatestheareais25mileseastofanorth‐southmountainridgethatsustainsamoderatelevelofmigrationbygoldeneagleseachfallbutreceiveslittleuseinspring.Accordingtothestateornithologicalsociety,theregionalsoisthoughttoattractgoldeneaglesduringwinter,butthisisbasedonsparseanecdotalaccounts.AerialnestingsurveysbytheService5yearsagoyieldednoevidenceofeaglenestswithin10milesoftheproposedproject,althoughuseoftheareabynon‐breedingresidenteaglesduringspringandsummercannotberuledout.Reconnaissancevisitsandreviewoflandcoverandotherhabitatlayersingeodatabasessupportthegeneralindicationthattheareaisimportanttogoldeneaglesduringatleastpartoftheyear.Stage1Summary:Ofprimaryconcernattheprospectiveprojectsiteispotentialforrisktogoldeneaglesduringfallmigration.EvidenceofthisattheStage1levelissomewhatequivocal,however,becausetheknownmigrationpathwayisoutsidethe

Page 75: Appendix E Eagle Conservation Plan Guidance

59

projectarea.Furtherexaminationofuseinspring,summer,andespeciallywinteralsoseemswarranted.Questionsincludetemporal(seasonal)andspatial(distributionwithinproject)use.Theoverarchinggoalistoquantifyrisktoeaglesposedbytheproposedproject,mainlybyestimatingfatalityrate.Iffatalityisanticipated,asecondarygoalistodeterminewhetherthepredictedlevelisacceptableand,ifnot,whetherfatalitycanbeavoidedandminimizedthroughspecifiedprojectdesignandoperationfeatures.Theprimarytoolforpredictingfatalityisthepointcountsurvey.However,ifthepre‐constructionassessmentisrobustandoptimallydesigned,pointcountsurveyswillprovideinsightondistributionofusewithintheprojectfootprintespeciallynearproposedturbinesites,andonmigrationtimingandmovementpathways.

Sampling Effort A.Numberofpoints,i.e.,pointcountplots,andspatialallocation:

1. 40turbinesareproposedforproject2. potentialsitesforturbineshavebeenselected3. areawithin1kmofturbinescoverstotalof100km24. 30%oftotalarea=30km25. numberof800‐mradius(areaofeach,2‐km2)pointcountplots

recommended=30/2=15plots6. surveypointsaredistributedamongturbinestringsviarandom‐systematic

allocation,witheachpointnomorethan1kmfromaprospectiveturbinesite

B.Numberofcountsperpointperseasonanddurationofeachpointcountsurvey:

1. BasedonsomeStage1evidenceoflowuseinthisexample,1hourofobservationperpointcountplotpermonthseemsappropriateduringeachofwinter(e.g.,mid‐Decemberthroughmid‐March),spring(mid‐Marchthroughmid‐June),andsummer(mid‐Junethroughmid‐September)seasons.Acountdurationof1hourisselectedtomaximizeefficiencyinthefield

2. Surveyeffortisdoubledduringthemid‐Septemberthroughmid‐Decemberfallmigrationseasonforgoldeneagles,basedonStage1evidenceoffallmigrationnearbyandneedformoredefinitivedataoneagleoccurrence,timing,anddistributionwithinthefootprint.Thiscouldbedonebyusingeithertwo1‐hourcountsora2‐hourcountperpointpermonth;thelatterischosentomaximizefieldefficiencyandbetteremulatemigrationcountmethods.The1‐hourcountsmaylendbetterinsightontemporalvariation,butinthisexampleeachmonthlysessionof152‐hourcountsrequiresanobserver3‐4daystocomplete,affordingsomeaccountingofday‐to‐dayvariation.

3. Thetotalyearlyeffortinthisexampleisnine1‐hourcountsandthree2‐hourcountsateachof15points,yielding225totalobservationhours.

Therawdata,innumberofeagle‐minutes,appearasfollows(e.g.,forthefirstfallseasonsampled,withone2‐hourcountperpointpermonth):

Page 76: Appendix E Eagle Conservation Plan Guidance

60

Pointno.Pointcountvisitnumber–FallSeason,Year1

1(earlyfall) 2(mid‐fall) 3(latefall)

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 1 1 0

8 0 0 0

9 0 0 0

10 0 2 1

11 0 0 0

12 0 2 0

13 0 0 0

14 0 1 0

15 0 0 0

Thefirstyear’sfallpointcountsurveytotals90observationhours,theequivalentofnine10‐hourmigrationcounts.Thus,thefallpointcountsurveyscouldyieldmuchinsightoneaglemigration–perhapsevensubstitutingforfocusedmigrationcounts–especiallyifthesampleisstratifiedsopointcountsurveysmainlycoverthemiddayperiodwheneaglesaremostlikelytobemoving.(seeb.MigrationCountsandConcentrationSurveys,below).Observationsmadeduringpointcountsurveysinallseasonsalsocouldsupportamapofflightpathstoroughlyindicatethedistributionofuseoftheareabyeaglesrelativetoturbinesites(seec.UtilizationDistribution(UD)Assessment,below).

Fatalityestimationshouldbeadequatelysupportedbythedata,althoughmultiplesurveyyearsarelikelyneededtoaccountforannualvariation.DataforfatalityestimationshouldbemadeavailabletotheServiceintherawestform,asintheaboveexample.

b. Migration Counts and Concentration Surveys Whereverpotentialforeaglemigrationexists,migrationcountsshouldbeconductedunlesstheStage1assessmentpresentscompellingevidencethattheprojectareadoesnotincludeorisnotpartofamigrationcorridororamigrationstopoversite.Migrationcountsconveyrelativenumbersofdiurnalraptorspassingoveranestablishedpointperunittime(Bildsteinetal.2007,Dunnetal.2008),usuallyamigrationconcentrationsite.Examplesofsitesincludenorth‐southorientedridges,clifflines,ordeeplyincisedrivervalleys;terminalpointsorcoastlinesoflargewaterbodies;orpeninsulasextendingintolargewaterbodies(Kerlinger1989,Bildstein2006,Mojicaetal.2008).Migrationcountscouldbeconsideredaspecializedtypeofpointcount,oneforwhichtheplotradiusisunlimited(Reynoldsetal.1980)andthecountperiodisquitelong,from6hourstoafullday.

Page 77: Appendix E Eagle Conservation Plan Guidance

61

Incontrasttotheallocationofsamplepointsforpointcountsurveysatproposedwindenergyprojects,migrationcountstypicallyareconductedfromonetoafewpointswithinoradjacenttoaproposedprojectfootprint.Pointsarewidelyspaced,locatedprimarilyatplacesthatcollectivelyprovidegreatestvisualcoverageespeciallyoftopographicfeatureslikelytoattractorfunnelmigratingraptors.Atmanyproposedprojects,however,surveypointsformigrationcountscouldbethesameasorasubsetofthoseusedforpointcountsurveys,e.g.,pertheaboveexample(under1a.PointCountSurveys),suchthatmigrationcountsatagivenpointsimultaneouslycontributepointcountdata.Considerationshouldbegiventorestructuringpointcountsurveystothisend,includingtemporalstratificationtomoreeffectivelyaccountforpotentialeaglemigrationandimproveprecisionofexposureestimates.Asanotherexample,duringananticipated6‐weekpeakofeaglemigrationinfall,pointcountdurationcouldbeextendedto6hours.Ifthesurveysweretocovereitherthefirst6hoursorthelast6hoursoftheday,thetwosurveyperiodswouldoverlapbyseveralhoursinmidday,bettercoveringthetimeofdaywheneaglesaremostlikelymoving(Heintzelman1986).Thedatamayhavetobeadjustedslightlywhenusedforfatalityestimation,however.Stricklandetal.(2011)summarizesomeimportantdetailsforconductingraptormigrationcountsatproposedwindenergysites.Countsshouldbeconductedusingstandardtechniques(Bildsteinetal.2007,Dunnetal.2008)duringatleastpeakperiodsofpassage(seetheHawkMigrationAssociationofNorthAmerica’s[HMANA]websiteforinformationonseasonalpassageperiodsforeaglesatvariousmigrationsurveysites:http://www.hmana.org).Migrationcountsmayinvolvestaffingsurveypointsupto75%ofdaysduringpeakpassage(Dunnetal.2008).Ifatleastamodesteaglemigrationisevidenced(i.e.,multipleindividualsobservedpassingunidirectionallyduringeachofmultipledays),surveysshouldbecontinuedforatleast2yearsandintotheoperationalphasetovalidateinitialobservationsandhelpassessevidenceofcollisionandinfluenceofturbinesonmigrationbehavior.MigrationcountdatashouldbeprovidedtotheServiceasanappendixtotheECP,usingareportingformatsimilartothatusedbyHMANA.Aswithpointcountsurveys,trainingofmigrationsurveystaffshouldincludeassessmentofraptoridentificationskillsandofabilityofindividualstodetecteaglesinflightunderabroadrangeofdistancesandweatherconditions.Potentialfornon‐breeding(eitherwinterorsummer)seasonconcentrationsofeaglesinorneartheprojectfootprintshouldbegintobeevaluatedinStage1,includingclosescrutinyofpotentialhabitatviageospatialimageryandfollowupreconnaissancevisits(seeAPPENDIXB).Non‐breedingbaldeaglesoftenusecommunalroostsandforagecommunally(Platt1976,Mojicaetal.2008).Goldeneaglesmaydosoonoccasion,withothergoldeneaglesand/orwithbaldeagles(CraigandCraig1984).Bothspeciescanbecomeconcentratedonspringandfallmigrationunderparticularcombinationsofweatherandtopographicconditions,ormayannuallyusetraditionalstopoversitesduringmigration.TheStage1assessmentmaysuggeststhatseasonalconcentrationsofeaglesregularlyoccurwithintheprojectarea,eitherbecauseoffavorableconditions(e.g.,clustersoflargetreesalongriversofferingpotentialroostsites,stopoverconcentrationsofmigratingwaterfowl)orbecauseofindicationsfromprioranecdotalorsystematicallycollectedrecords.TheStage2assessmentshouldincludesurveysdesignedtofurtherexploreevidenceofanysuchoccurrences.If,basedontheoutcomeofStage1,thereisnocompellingreasontobelieveconcentrationareasarelacking,anefficientwaytobegintoprobeforconcentrationareasissimplytoextendthedurationofpointcountsurveysandperhapsconductthemmorefrequently.Expandedpointcountsurveys,distributedevenlyacrossthedayduringthefirst

Page 78: Appendix E Eagle Conservation Plan Guidance

62

yearofStage2,shouldprovideatleastapreliminaryindicationofregularmovementstoandfromwhatmayberoostsorpreyhotspotswithinoroutsidetheprojectfootprint.Moreover,expandedpointcountsurveysconductednearpotentialturbinesites(seedesignrecommendationsina.PointCountSurveys,above)canbetterinformturbinesitingdecisionsinrelationtoeagleuseofconcentrationareas,ifsuchareasexist.Theincreasedsurveyeffortalsocouldcontributetowardsamorepreciseindicationofeagleexposureinafatalityestimatefortheproposedproject(APPENDIXD).EarlyinStage2,evidencefromStage1ofconcentrationareasintheprojectareamaybecorroboratedornewevidenceofconcentrationsmaysurface.Ineithercase,focusedsurveys(e.g.,viadirectobservationorbyaircraft)canbeimplementedtodocumenttheirlocationsanddailytimingandspatialpatternsoftheirusebyeaglesinrelationtotheproposedprojectfootprintthroughouttheseason(s).Forexample,surveysforwinteringconcentrationsofbaldeaglescouldbeconducted,followingUSFWS(1983)guidance.Direct,systematicobservationfromvantagepointsinearlymorningandeveningisthemostpracticalmeansofdocumentingroostlocationsandmovementsofeaglestoandfromroostsonalocalscale(Steenhofetal.1980,CrenshawandMcClelland1989).Aerialsurveysmaybeneededforrepeatedsurveysofeaglesatextensiveroosts(Chandleretal.1995).Directobservationcanbeusedtocompareoccurrenceandactivityofeaglesbeforeandafterconstructionandoperationofaproject(Becker2002)andmaybeavalidmeanstoidentifydisturbanceeffectsonroostingconcentrations.c. Utilization Distribution (UD) Assessment UDcanbethoughtofasanimal’sspatialdistributionorintensityofuseofvariouspartsofagivenarea,suchasitshomerange.Abasicthoughperhapslabor‐intensiveapproachfordocumentingspatialdistributionofuseacrossallorpartofaproposedprojectfootprintbyeaglesistosystematicallyobserveandrecordeaglemovementsandactivities(e.g.,territorialdisplay,preydeliveryflight)onmapsinthefieldthenconvertthedataintoGISformatsforstandardanalyses(e.g.,Walkeretal.2005).Forexample,agridofsquarecells,each0.5x0.5km,canbeframedbytheUniversalTransverseMercator(UTM)systemacrossamapoftheareaofinteresttorecordeagleobservationsineach0.25km2cell.Theareaofinterestisdividedintonon‐overlappingobservationsectors,eachwithavantagepointthataffordsunobstructedviewingofgridcellstomorethan1kminalldirections.Observationperiodslastatleast4hoursandincludealldaylighthoursandaccountforroostsites.Ifnecessary,two(ormore)observersworkingfromseparatevantagepointscanpinpointlocationsofeaglesthroughtriangulation.Thedatacanbeanalyzedbysimplycountingthenumberofflightsintersectingeachcell.Aneagle’sdistributionofusecanthenbeestimatedbyusingstandardkernelanalyses(Worton1989,1995,SeamanandPowell1996,Kenward2001)orotherprobabilisticapproaches,comparabletoMoorcroftetal.(1999),McGradyetal.(2002),andMcLeodetal.(2002).Havingconcernoverpotentialautocorrelation,Walkeretal.(2005)randomlyselectedindependentlocationsofgoldeneaglesalongflightpathstoestablishapointdatabaseforstandardUDanalyses.Theydeterminedthatlocationswouldbeindependentifseparatedbyatleast45minutes.McGradyetal.(2002)conservativelyuseda1‐hourminimumtoseparatepoints,eventhoughtheirdataindicateda20‐minuteintervalwouldsuffice.ConcernswithautocorrelationinUDanalyseshaverecentlydiminished,however(Feibergetal.2010).MoststudyofeagleUDhasfocusedonresidentbirdsespeciallybreedingadultsontheirnestingterritories.Sizeandshapeofuseareascanvaryseasonally(Newton

Page 79: Appendix E Eagle Conservation Plan Guidance

63

1979),sodocumentationofspatialusebyresidenteaglesshouldencompassallseasonsinadditiontoaccountingforannualvariation.Asubstantialadvantageofadirectobservationapproachcomparedtotelemetrytechniques,whichtypicallytargetonlyoneortworesidenteaglesataproposedproject,isthatitdisregardsageandbreedingandresidencystatus.Includedareoverwinteringindividuals;dispersingjuveniles;post‐fledgingyoungfromnearbyterritoriesandjuvenilesdispersingfromotherareasorregions;andadultsfromadjoiningterritoriesplusnon‐breedingadults(i.e.,“floaters,”Hunt1998)andsubadultsthatmayoccuralongboundariesofbreedingterritories.Inmanyinstances,identificationofindividualeaglesmaynotbeimportantandfinalresultsofageneralizedUDanalysismaybebasedondatapooledfrommultiplebirds,someofwhichwereindistinguishablefromeachotherinthefield.AdisadvantageofthisapproachisthatpositionaccuracybasedondirectobservationacrossexpansivelandscapesiscoarsecomparedtousingtelemetrywithGPScapability,andgenerallydeclineswithdistance,increasingtopographicandforestcover,andduringearlymorningandlateeveninghours.Thiscanberesolvedtosomeextentbylimitingthesizeandincreasingthenumberofobservationsectors(inadditiontousingmultipleobservers),butformostpre‐constructioninformationneeds,ahighdegreeofaccuracyisunessentialforUDdata.Last,itisunlikelythatUDneedstobeassessedacrossentireprojectfootprints.Instead,itismorelikelyusedtotargetspecificareasofconcern,suchasareaswhereeaglesnestorfrequentlyforage,andtorefineknowledgeofuseofparticularareastobetterinformturbinesitingdecisions.Themethodobviouslyhaslittleutilityinareasofloweagleoccurrence.Althoughweacknowledgetelemetryofferssomedistinctbenefitsforassessingrisksandimpactsofwindprojects,useofthemethodforeagleshasotherdrawbacks.Specificindividualeaglesmustbetargetedforcaptureandnotalleaglesusingagivenprojectfootprintareequallylikelytobecapturedorprovideusefuldata(e.g.,migrantsmaybereadilycapturedbutleavetheareabeforeprovidingmuchdata).Moreimportantly,capturingandradio‐markingeaglescanhavenegativeeffectsonbehavior,productivity,andre‐useofnestsites(e.g.,Marzluffetal.1997,Gregoryetal.2002),andrecentinformationsuggestsanegativeeffectinsomecasesonsurvival,especiallyofgoldeneaglescapturedasadultsandreleasedwithlarge(70‐to100‐g),solar‐chargedtransmitters(USFWS,unpublishedinformation).Theseeffectsmustbebetterunderstoodbeforeroutineuseoftelemetrytechniquescanberecommendedascomponentsofwind‐facilityassessments.Untilthen,theServicediscouragestheuseoftelemetryinassessmentsofeagleuseassociatedwithwindenergyprojects;surveyapproachessuggestedhereindonotrequiretelemetry.d. Summary TheServiceencouragesdevelopmentofcost‐effectivesamplingdesignsthatsimultaneouslyaddressmultipleaspectsofuseofproposedwindenergyprojectsbyeagles,thoughemphasizesthathigh‐qualitypointcountdatatosupportfatalityrateestimationshouldbeconsideredthehighestpriority.Inmanycases,thesamplingframeworkforpointcountsurveyslikelycanbeextendedtoreasonablyassessmigrationincidence,UD,andotherobjectives.Althoughfield‐baseddatathatdirectlysupportfatalityestimationaremostimportant,developmentofmethodsforaddressingotherobjectivesisencouraged,suchastheuseofdigitaltrailcamerastodocumenteagleoccurrenceatcarcassstations.Regardless,werecommendthatpre‐constructionsurveysatproposedwindenergysites

Page 80: Appendix E Eagle Conservation Plan Guidance

64

encompassaminimumof2years,includingatleast1yearcharacterizedbyrobustsamplingthatintegratesmultiplesurveytypes.

2. Survey of the Project-area Nesting Population: Number and Locations of Occupied Nests of Eagles Toevaluateprojectsitingoptionsandhelpassesspotentialeffectsofwindenergyprojectsonbreedingeagles,werecommenddetermininglocationsofoccupiednestsofeagleswithintheprojectareafornolessthantwobreedingseasonspriortoconstruction.Theprimaryobjectiveofasurveyoftheproject‐areanestingpopulationistodeterminethenumberandlocationsofoccupiednestsandtheapproximatecentersofoccupiednestingterritoriesofeagleswithintheprojectarea.Ifrecent(i.e.,withinthepast5years)dataareavailableonspacingofoccupiedeaglenestsfortheproject‐areanestingpopulation,thedatacanbeusedtodelineateanappropriateboundaryfortheprojectareaasdescribedinAPPENDIXH.Otherwise,wesuggestthatprojectareabedefinedastheprojectfootprintandallareawithin10miles.InthisECPGdocumentweuseraptorbreedingterminologyoriginallyproposedbyPostupalsky(1974)andlargelyfollowedtoday(SteenhofandNewton2007).Anoccupiednestisaneststructureatwhichanyofthefollowingisobserved:(1)anadulteagleinanincubatingposition,(2)eggs,(3)nestlingsorfledglings,(4)occurrenceofapairofadulteagles(or,sometimessubadults,e.g.,Steenhofetal.[1983])atornearanestthroughatleastthetimeincubationnormallyoccurs,(5)anewlyconstructedorrefurbishedsticknestintheareawhereterritorialbehaviorofaraptorhadbeenobservedearlyinthebreedingseason,or(6)“Arecentlyrepairednestwithfreshsticks(cleanbreaks)orfreshboughsontop,and/ordroppingsand/ormoltedfeathersonitsrimorunderneath”(Postupalsky1974).Anestthatisnotoccupiedistermedunoccupied.Anoccupiednestingterritoryincludesoneoccupiednestandmayincludealternatenests,i.e.,anyofseveralotherneststructureswithinthenestingterritory.Sometimes“activenest”isusedtoencompassoccupiednestsinwhicheggswerelaidplusthoseatwhichnoeggswerelaid.Here,aselsewhereintheECPGandinPostupalsky(1974),anactivenestisconsideredoneinwhichaneggoreggshavebeenlaid.Anestthatisactiveisalso,bydefault,occupied.Anestthatisnotactiveisinactive,andthereisaregulatorydefinitionfortheterminactivenest(50CFR22.3.Notallpairsofbaldeaglesandgoldeneaglesattempttonestornestsuccessfullyeveryyear(Buehler2000,Kochertetal.2002),andnestingterritorieswherepairsarepresentbutdonotattempttonestcouldinsomecasesbemisclassifiedasunoccupied.Accuratecomprehensionofterritorydistributionanddeterminationofoccupancystatusisthecruxofdeterminingtheproject‐areanestingpopulation.Theproject‐areanestingpopulationsurveyshouldincludeallpotentialeaglenestinghabitatwithintheprojectarea.Atleasttwochecksviaaircraftortwoground‐basedobservationsarerecommendedtodesignateanestorterritoryasunoccupied,aslongasallpotentialnestsitesandalternatenestsarevisibleandmonitored(i.e.,alternatenestsmaybewidelyseparatedsuchthatafull‐length,ground‐basedobservationshouldbedevotedtoeach).Ground‐basedobservationsshouldbeconductedforatleast4hourseach(occupancymaybeverifiedinlesstime),aidedbyspottingscopes,fromatleast0.8kmfromthenest(s),duringweatherconducivetoeagleactivityandgoodvisibility.Surveysofoccupancyshouldbeconductedatleast30daysapart,ideallyduringthenormalcourtshipandmid‐incubationperiods,respectively.Surveyslaterinthebreedingseasonarelikelytooverlooksometerritorialpairsthatthatdidnotlayeggsorfailedearlyinthenestingseason.Timingofsurveysshouldbebasedonlocalnestingchronologies;Servicestaffcanproviderecommendations.Ifanoccupiednestorapairofeaglesislocated,theterritoryshould

Page 81: Appendix E Eagle Conservation Plan Guidance

65

continuetobesearchedforalternatenestsites.Thisinformationcanhelpdeterminetherelativevalueofindividualneststoaterritoryifeverthereareapplicationsforpermitstotakeinactivenests,andwhendeterminingwhetherabandonmentofaparticularnestmayresultinlossofaterritory.Useofaerialsurveysfollowedbyground‐basedsurveysattargetedsitescanbeanidealapproachtodeterminenestandterritoryoccupancy.Helicoptersareanacceptedandefficientmeansforinventoryofextensiveareasofpotentialnestinghabitatforeagles,althoughfixed‐wingaircraftcanbeusedwherepotentialnestsitesarewidelyscatteredandconspicuous.Aerialsurveysforeaglenestsinwoodlandhabitatmayrequiretwotothreetimesasmuchtimeasaerialsurveysfornestsoncliffs.Whensurveyingruggedterrainbyhelicopter,cliffsshouldbeapproachedfromthefront,ratherthanflyingoverfrombehindorsuddenlyappearingfromaroundcornersorbuttresses.Inventoriesbyhelicoptershouldbeflownatslowspeeds,about30to40knots.Allpotentiallysuitablenestsitesshouldbescrutinized;multiplepassesatseveralelevationbandsmaybenecessarytoprovidecompletecoverageofnestsitehabitatonlargecliffcomplexes.Hoveringforupto15secondsnocloserthan50mfromanestmaybenecessarytoverifythenestingspecies,photographthenestsite,and,iflateinthenestingseason,allowtheobservertocountandestimateageofyounginthenest.Aerialsurveysmaynotbeappropriateinsomeareassuchasbighornsheeplambingareas;toavoidsuchsensitiveareas,stateresourceagenciesshouldbeconsultedwhenplanningsurveys.AdditionalguidelinesforaerialsurveysforeaglesandotherraptorsarereviewedinAnderson(2007).Surveysshouldbeconductedonlybybiologistswithextensiveexperienceinsurveysofraptorsandappropriatetraininginaerialsurveys(seereviewinAnderson2007).Whetherinventoriesareconductedonthegroundoraerially,metricsofprimaryinteresttotheServicefortheproject‐areanestingpopulationinclude:

1. numberandlocationsofneststructuresthatareverifiedorlikelytobeeaglenests2. numberandlocationsofeaglenestscurrentlyorrecentlyoccupiedbasedoncriteria

outlinedherein3. estimatednumberandapproximateboundariesandcentersofeaglebreedingterritories,

basedonrecordsofnestsiteoccupancyandclusteringofnests.Additionally,productivity(i.e.,reproductivesuccess,definedhereasthemeannumberofnestlingssurvivingto>56and≥67daysofageperoccupiednestforgoldeneaglesandbaldeagles,respectively)maybeofinterestforassessingdisturbanceeffects,althoughutilityofproductivitydataatagivenprojectlikelywillbelimitedduetosmallsamplesizeandfactorsconfoundingtheinterpretationofresults.Ameta‐analysisapproachbasedonproductivitydatafrommanyprojectsiscontemplatedaspartoftheadaptivemanagementprocessaccompanyingtheECPG,andmaycontributetounderstandingofdisturbanceeffectsonthisaspectofeaglebreedingbiology.Moreover,abandonmentofterritories–thegravestmanifestationandclearestevidenceofdisturbanceeffects–couldbedocumentedthroughtheoccupancysurveysrecommendedherein,ifthesesurveysarerepeatedafterprojectconstruction.Wereiteratethataccuratecomprehensionofterritorydistributionanddeterminationofoccupancystatusshouldbetheprimarygoalofnestingsurveys.

Page 82: Appendix E Eagle Conservation Plan Guidance

66

Literature Cited Anderson,D.E.2007.Surveytechniques.Pages89‐100inD.M.BirdandK.L.Bildstein(eds.),

Raptorresearchandmanagementtechniques.HancockHouse,Blaine,Washington.Becker,J.M.2002.Responseofwinteringbaldeaglestoindustrialconstructioninsoutheastern

Washington.WildlifeSocietyBulletin30:875‐878.Bildstein,K.L.2006.Migratingraptorsoftheworld,theirecologyandconservation.Cornell

UniversityPress,Ithaca,NewYork.Bildstein,K.L.,J.P.Smith,andR.Yosef.2007.Migrationcountsandmonitoring.Pages102‐115inD.

M.BirdandK.L.Bildstein(eds.),Raptorresearchandmanagementtechniques.HancockHouse,Blaine,Washington.

Buckland,S.T.,D.R.Anderson,K.P.Burnham,J.L.Laake,D.L.Borchers,andL.J.Thomas.2001.Anintroductiontodistancesampling:estimatingabundanceofbiologicalpopulations.OxfordUniversityPress,Oxford,UnitedKingdom.

Buehler,D.A.2000.BaldEagleHaliaeetusleucocephalus.No.506inA.PooleandF.Gill(eds.),TheBirdsofNorthAmerica.TheBirdsofNorthAmerica,Inc.,Philadelphia,Pennsylvania.

Chandler,S.K.,J.D.Fraser,D.A.Buehler,andJ.K.D.Seegar.1995.PerchtreesandshorelinedevelopmentaspredictorsofbaldeagledistributiononChesapeakeBay.JournalofWildlifeManagement59:325‐332.

Craig,T.H.,andE.H.Craig.1984.AlargeconcentrationofroostinggoldeneaglesinsoutheasternIdaho.Auk101:610‐613.

Crenshaw,J.G.,andB.R.McClelland.1989.Baldeagleuseofacommunalroost.WilsonBulletin101:626‐633.

Denholm,P.,M.Hand,M.Jackson,andS.Ong.2009.Land‐userequirementsofmodernwindpowerplantsintheUnitedStates.NationalRenewableEnergyLaboratoryTechnicalReportNREL/TP‐6A2‐45834.www.nrel.gov/docs/fy09osti/45834.pdf(lastvisitedOctober22,2011)

Dunn,E.H.,D.J.T.Hussell,andE.R.Inzunza.2008.Recommendedmethodsforpopulationmonitoringatraptor‐migrationwatchsites.Pages447‐459inK.L.Bildstein,J.P.Smith,E.R.InzunzaandR.R.Veit(eds.).StateofNorthAmerica’sbirdsofprey.SeriesinOrnithologyNo.3.NuttallOrnithologicalClub.Cambridge,MassachusettsandAmericanOrnithologists'Union,Washington,D.C.

Fieberg,J.,J.Matthiopoulos,M.Hebblewhite,M.S.Boyce,andJ.L.Frair.2010.Correlationandstudiesofhabitatselection:problem,redherring,oropportunity?PhilosophicalTransactionsoftheRoyalSocietyBiologicalSciences365:2233‐2244.doi:10.1098/rstb.2010.0079.

Garvin,J.C.,C.S.Jennelle,D.Drake,andS.M.Grodsky.2011.Responseofraptorstoawindfarm.JournalofAppliedEcology48:199‐209.

Heintzelman,D.S.1986.Themigrationsofhawks.IndianaUniversityPress,BloomingtonandIndianapolis,Indiana.

Hutto,R.L.,S.M.Pletschet,andP.Henricks.1986.Afixed‐radiuspointcountfornonbreedingandbreedingseasonuse.Auk103:593‐602.

Johnson,D.H.1995.Pointcountsofbirds:whatareweestimating?Pages117‐123inC.J.RalphandJ.R.Sauer(eds.),Monitoringbirdpopulationsbypointcounts.GeneralTechnicalReportPSW‐GTR‐149,U.S.ForestService,PacificSouthwestResearchStation,Albany,California.

Kerlinger,P.1989.Flightstrategiesofmigratinghawks.UniversityofChicagoPress,Chicago,Illinois.

Kochert,M.N.,K.Steenhof,C.L.McIntyre,andE.H.Craig.2002.GoldenEagleAquilachrysaetos.No.684inA.PooleandF.Gill(eds.),TheBirdsofNorthAmerica.TheBirdsofNorthAmerica,Inc.,Philadelphia,Pennsylvania.

Madders,M.,andD.P.Whitfield.2006.Uplandraptorsandtheassessmentofwindfarmimpacts.Ibis148:43‐56.

Page 83: Appendix E Eagle Conservation Plan Guidance

67

McGrady,M.J.,J.R.Grant,I.P.Bainbridge,andD.R.A.McLeod.2002.Amodelofgoldeneagle(Aquilachrysaetos)rangingbehavior.JournalofRaptorResearch36(1)supplement:62‐69.

Mojica,E.K.,J.M.Meyers,B.A.Millsap,andK.T.Haley.2008.Migrationofsub‐adultFloridabaldeagles.WilsonJournalofOrnithology120:304‐310.

Nygård,T,K.,E.L.Bevanger,Ø.Dahl,A.Flagstad,P.L.Follestad,Hoel,R.May,andO.Reitan.2010.Astudyofwhite‐tailedeagleHaliaeetusalbicillamovementsandmortalityatawindfarminNorway.inD.Senapathi(ed.),Climatechangeandbirds:adaptation,mitigationandimpactsonavianpopulations.BritishOrnithologists’UnionProceedings,Peterborough,UnitedKingdom.http://www.bou.org.uk/bouproc‐net/ccb/nygard‐etal.pdf(lastvisitedOctober9,2011).

Platt,J.B.1976.BaldeagleswinteringinaUtahdesert.AmericanBirds30:783‐788.Potupalsky,S.1974.Raptorreproductivesuccess:someproblemswithmethods,criteria,and

terminology.RaptorResearchReport2:21‐31.Ralph,C.J.,G.R.Geupel,P.Pyle,T.E.Martin,andD.F.DeSante.1993.Handbookoffieldmethodsfor

monitoringlandbirds.GeneralTechnicalReportPSW‐GTR‐144,U.S.ForestService,PacificSouthwestResearchStation,Albany,California.

Reynolds,R.T.,J.M.Scott,andR.A.Nussbaum.1980.Avariablecircular‐plotmethodforestimatingbirdnumbers.Condor82:309‐313.

Sauer,J.R.,J.E.Hines,J.E.Fallon,K.L.Pardieck,D.J.Ziolkowski,Jr.,andW.A.Link.2011.TheNorthAmericanBreedingBirdSurvey,resultsandanalysis1966‐2009.Version3.23.2011.U.S.GeologicalSurvey,PatuxentWildlifeResearchCenter,Laurel,Maryland,USA.

Steenhof,K.,S.S.Berlinger,andL.H.Fredrickson.1980.HabitatusebywinteringbaldeaglesinSouthDakota.JournalofWildlifeManagement44:798‐805.

Steenhof,K.,M.N.Kochert,andJ.H.Doremus.1983.NestingofsubadultgoldeneaglesinsouthwesternIdaho.Auk100:743‐747.

Steenhof,K.,andI.Newton.2007.Assessingnestingsuccessandproductivity.Pages181‐191inD.M.BirdandK.Bildstein(eds.),RaptorResearchandManagementTechniques.HancockHouse,Blaine,Washington,USA.

Strickland,M.D.,E.B.Arnett,W.P.Erickson,D.H.Johnson,G.D.Johnson,M.L.Morrison,J.A.Shaffer,andW.Warren‐Hicks.2011.Comprehensiveguidetostudyingwindenergy/wildlifeinteractions.PreparedfortheNationalWindCoordinatingCollaborative,Washington,D.C.

USFWS.1983.Northernstatesbaldeaglerecoveryplan.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,WashingtonD.C.http://www.fws.gov/midwest/eagle/recovery/be_n_recplan.pdf(lastvisitedOctober9,2011).

Walker,D.,M.McGrady,A.McCluskie,M.Madders,andD.R.A.McLeod.2005.ResidentgoldeneaglerangingbehaviourbeforeandafterconstructionofawindfarminArgyllScottishBirds25:24‐40.

Page 84: Appendix E Eagle Conservation Plan Guidance

68

APPENDIX D: STAGE 3 – PREDICTING EAGLE FATALITIES TheServiceusesaBayesianmethod(seeGelmanetal.2003)topredicttheannualfatalityrateforawind‐energyfacility,usingexplicitmodelstodefinetherelationshipbetweeneagleexposure(resultingfromtheStage2assessment,APPENDIXC),collisionprobability,andfatalities(verifiedduringpost‐constructionmonitoringinStage5,APPENDIXH),andtoaccountforuncertainty.Therelationshipsbetweeneagleabundance,fatalities,andtheirinteractionswithfactorsinfluencingcollisionprobabilityarestillpoorlyunderstoodandappeartovarywidelydependingonmultiplesite‐specificfactors(seeAssessingRiskandEffects;2.EagleRiskFactorsintheECPG).Thebaselinemodelpresentedbelowisafoundationformodelingfatalitypredictionsfromeagleexposuretowindturbinehazards.InadditiontogeneratingthefatalityestimatethatwillbeacomponentoftheService'sanalysisofthepermitapplication,themodelalsoservesasabasisforlearningandtheexplorationofothercandidatemodelsthatattempttobetterincorporatespecificfactorsandcomplexity.TheServiceencouragesprojectdevelopersoroperatorstodevelopadditionalcandidatemodels(bothaprioriandposthoc)fordirectcomparisonwith,andevaluationof,thebaselinemodelandmodelingapproach.Ourabilitytolearnovertimeandreduceuncertaintybyincorporatingnewinformationintoourmodelingapproachthroughanadaptivemanagementframework(seeAPPENDIXA)enablesustoimprovesite‐specificestimationofeaglefatalities,reduceuncertaintyinpredictions,and,ultimately,improvemanagementdecisionsrelatingtoeaglesandwindenergyinaresponsibleandinformedway.Rigorouspost‐constructionmonitoringisacriticalcomponentofevaluatingmodelperformanceovertime(seeAPPENDIXH).VariablesusedintheformulasbelowaresummarizedinTableD‐1foreaseofreference.Thetotalannualeaglefatalities(F)astheresultofcollisionswithwindturbinescanberepresentedastheproductoftherateofeagleexposure(λ)toturbinehazards,theprobabilitythateagleexposurewillresultinacollisionwithaturbine(C),andanexpansionfactor(ε)thatscalestheresultingfatalityratetotheparameterofinterest,theannualpredictedfatalitiesfortheproject:

.UsingtheBayesianestimationframework,wedefinepriordistributionsforexposurerateandcollisionprobability;theexpansionfactorisaconstantandthereforedoesnotrequireapriordistribution.Next,wecalculatetheexposureposteriordistributionfromitspriordistributionandobserveddata.Theexpandedproductoftheposteriorexposuredistributionandcollisionprobabilityprioryieldsthepredictedannualfatalities.

Page 85: Appendix E Eagle Conservation Plan Guidance

69

Table D-1. Abbreviations and descriptions of variables used in the Service method for predicting annual eagle fatalities.

Abbreviation Variable Description

F Annualfatalities Annualeaglefatalitiesfromturbinecollisions

λ Exposurerate Eagle‐minutesflyingbelow200minheightwithintheprojectfootprint(inproximitytoturbinehazards)perhrperkm2

CCollisionprobability Theprobabilityofaneaglecollidingwithaturbinegivenexposure

ε Expansionfactor Productofdaylighthoursandtotalhazardousarea(hr∙km2)

k Eagle‐minutes Numberofminutesthateagleswereobservedflyingbelow200mduringsurveycounts

δTurbinehazardousarea

Rotor‐sweptareaaroundaturbineorproposedturbinefrom0to200m(km2)

n TrialsNumberoftrialsforwhicheventscouldhavebeenobserved(thenumberofhr∙km2observed)

τ Daylighthours Totaldaylighthours(e.g.4383hrperyear)

ntNumberofturbines Numberofturbines(orproposedturbines)fortheproject

1. ExposureTheexposurerateλistheexpectednumberofexposureevents(eagle‐minutes)perdaylighthourpersquarekilometer(hr∙km2).WedefinedthepriordistributionforexposureratebasedoninformationfromarangeofprojectsunderServicereviewandothersdescribedwithsufficientdetailinWhitfield(2009).Theexposurepriorpredictsanexposureratefromamixturedistributionofproject‐specificGammadistributions(FigureD‐1).WeusedtheGammadistributionbecauseallvaluesarepositiveandreal(seeGelmanetal.,1995,p.474–475).ThemixturedistributionissummarizedbyanewGammadistribution(ourpriordistributionforexposure)withamean(0.352)andstandarddeviation(0.357)derivedfromtheconditionaldistributions(Gelmanetal,1995,equation1.7p.20).Theresultingpriordistributionforexposurerateis:

~ ∝, ,withshapeandrateparametersofα=0.97andβ=2.76.

Simulationtrialsproducedconsistentresults.Thepriordistributionismeanttoincludetherangeofpossibleexposureratesforanyprojectconsidered.

Page 86: Appendix E Eagle Conservation Plan Guidance

70

Figure D-1. The prior probability distribution Gamma (0.97, 2.76), for exposure rate, λ, with a mean of 0.352 (indicated by the reference line) and standard deviation of 0.357. The distribution is positively skewed such that exposure is generally at or near 0 with fewer higher values shown by the black curve. The project-specific distributions (gray curves) were used to determine the mixture distribution (dashed curve) which determined the prior distribution parameters. Eagleexposuredatacollectedduringthepre‐constructionphasesurveys(seeAPPENDIXC)canbeusedtoupdatethisprioranddeterminetheposteriordistributionthatwillbeusedtoestimatethepredictedfatalities.TheServicemayalsobeabletoworkwithaprojectdeveloperoroperatoronacase‐by‐casebasistousethepriorλdistributiontogeneratearisk‐aversefatalitypredictionforprojectswherenopre‐constructionsurveydataareavailable.AssumingtheobservedexposureminutesfollowaPoissondistributionwithrateλ,theresultingposteriorλdistributionis:

~ ∝ ∑ , .Thenewposteriorλparametersarethesumofαfromthepriorandtheeventsobserved(eagleminutes,ki),andthesumofβfromthepriorandthenumberoftrials,n,forwhicheventscouldhavebeenobserved(thenumberof“trials”isthenumberofhr∙km2thatwereobserved).Notethatbyincludingrealistictimeandareadatafromthepre‐constructionsurveys,therelativeinfluenceofthepriorλdistributionontheresultingposteriorλdistributionforexposureratebecomesnegligible.Inotherwords,withadequatesampling,thedatawilldeterminetheposteriordistribution,nottheprior.Theposteriorλdistributioncanthenbeusedtoestimatetheannualfatalitydistribution.

Page 87: Appendix E Eagle Conservation Plan Guidance

71

Inaddition,thisposteriorλdistributioncannowserveasapriordistributionforthenextiterationofthepredictivemodelinanadaptiveframework(seeAPPENDIXA),atleastfortheprojectunderconsiderationandpotentiallyinamoregeneralwayastheposteriorsfrommultiplesitesareconsidered;inthisway,webuildongoinginformationdirectlyintothepredictiveprocess.2. Collision Probability CollisionprobabilityCistheprobability,givenexposure(1minuteofflightinthehazardousarea,),ofaneaglecollidingwithaturbine;forthepurposesofthemodel,allcollisionsareconsideredfatal.WebasedthepriordistributiononaWhitfield(2009)studyofavoidanceratesfromfourindependentsites.Averagingavoidancefromthosesitesyieldedameanandstandarddeviationforcollisionprobabilityof0.0058,0.0038,respectively(notethisisconsistentwitheagleavoidanceratesinotherriskassessmentapproaches,e.g.99%).ThisinturndefinedthepriorCdistributionas:

~ , ´ ,withparametersνandν´of2.31and396.69(FigureD‐2).TheBetadistributionisusedtodescribevaluesbetween0and1(Gelmanetal.,1995,p.476–477).ThepriorCdistributionattemptstoincludetherangeofpossiblecollisionprobabilitiesacrossthesetofpotentialsitestobeconsidered.

Figure D-2. The probability distribution for the collision probability prior, a Beta(2.31, 396.69) distribution with a mean of 0.0058 (indicated by the reference line) and a standard deviation of 0.0038. The distribution is positively skewed such that most collision probabilities will be small. Atthetimeofpre‐constructionpermitting,thepriorCdistributionwillbeusedtoestimatetheannualpredictedfatalities.Afterconstruction,post‐constructionmonitoringcanbeusedtodeterminetheposteriorCdistributionbyupdatingthepriorCdistribution.

0.000 0.005 0.010 0.015 0.020

020

406

08

010

012

0

Collision Probability Prior

Pr(Collision|Exposure Minute)

Den

sity

Page 88: Appendix E Eagle Conservation Plan Guidance

72

AssumingtheobservationsoffatalitiesfollowabinomialdistributionwithrateC,theposteriordistributionoftherateCwillbeabetadistribution(thebetadistributionandthebinomialdistributionareaconjugatepair):

~ , ´ ,wherefisthenumberoffatalitiesestimatedfromtheStage5post‐constructionmonitoring,andgistheestimatednumberofexposureeventsthatdidnotresultinafatality.TheposteriordistributionforCcannotbecalculateduntilaprojecthasbeenbuilt,hasstartedoperations,andatleastoneseasonofpost‐constructionmonitoringhasbeencompleted.Oncedetermined,theposteriorCdistributioncanthenbeusedtogenerateapredictionforannualfatalitiesandcanserveasapriorCforthenextiterationofthepredictivemodel(seeAPPENDIXA).3. Expansion Theexpansionfactor(ε)scalestheresultingperunitfatalityrate(fatalitiesperhrperkm2)tothedaylighthours,τ,in1year(orothertimeperiodifcalculatingandcombiningfatalitiesforseasonsorstratifiedareas)andtotalhazardousarea(km2)withintheprojectfootprint:

∑ ,wherentisthenumberofturbines,andδisthecircularareacenteredatthebaseofaturbinewitharadiusequaltotherotor‐sweptradiusoftheturbine;wedefinethisasthehazardousareasurroundingaturbine.Inthismodel,tosimplifydatarequirementsandassumptions,weconsiderbotheagleuseandhazardousareaas2‐dimensionalareas,sincetheheightofthesampledandhazardousareasarethesame(200m)andwillcanceloutinthecalculations.Alternativemodelsthatconsider3‐dimensionalspacecouldalsobeconsidered,thoughtheexpansionfactorshouldbeadjustedaccordingly.Theunitsforεarehr∙km2peryear(ortimeperiodofinterest).4. Fatalities Nowwecangeneratethedistributionofpredictedannualfatalitiesastheexpandedproductoftheposteriorexposurerateandthepriorcollisionprobability(oncepost‐constructiondataisavailable,theposteriorcollisionprobabilitywouldbeusedtoupdateourfatalitydistribution):

∙ ∙ .Wecanthendeterminethemean,median,standarddeviation,and80%quantile(thiswillbetheuppercrediblelimit)directlyfromthedistributionofpredictedfatalities.5. Putting it all together: an example ThePatuxentPowerCompanyexamplebelowillustratesthecalculationofpredictedfatalitiesfromexposuredatafromahypotheticalprojectsite.ThisdatawillnormallycomefromthefieldsurveysinStage2,butforthepurposesofthisexample,wehavegeneratedfabricatedobservationdata.Theadvantageofsimulatingdatainsuchanexerciseisthatwecanmanipulatemodelinputstocriticallyevaluatetheperformanceofthemodel.Additionalexamplesareprovidedattheendofthisdocumenttoillustratethegeneralapproachandclarifyspecificconsiderationsthatmayapplytocertainprojects.

Page 89: Appendix E Eagle Conservation Plan Guidance

73

a. Patuxent Power Company ExamplePatuxentPowerCompanyconductedsurveysforeaglesataproposedlocationforasmall‐tomedium‐sizedwindfacility(18turbines,eachwitha50meterrotordiameter)followingtherecommendedmethodsintheECPG(seeTableD‐2).Theyconducted168countsat7pointsand60eagle‐minofexposurewereobserved.Eachcountwas2‐hrinduration,andcoveredacircularareaofradius0.8km.Thus,675.6km2∙hrwereobservedintotal.

Table D-2. Exposure data for Patuxent Power Company example. In this hypothetical example, 168 counts were performed. Each count was 2-hr in duration and covered a 0.8 km radius circle. Thus, the total time and area sampled was 675.6 km2·hr. In that time, 60 exposure events (eagle-min) were observed.

Visit P1 P2 P3 P4 P5 P6 P7 Total1 0 0 2 0 2 0 1 52 0 0 1 0 0 0 1 23 0 1 2 0 0 0 1 44 0 1 0 0 0 1 1 35 0 1 0 1 0 1 1 46 0 0 1 1 0 0 1 37 0 1 0 0 0 1 1 38 0 0 0 0 0 1 0 19 0 0 0 0 0 0 0 010 0 0 0 0 0 0 0 011 1 0 1 1 0 0 0 312 0 1 0 0 1 0 0 213 0 0 1 0 0 0 1 214 2 0 0 0 0 0 2 415 0 0 0 2 2 0 1 516 0 0 0 1 0 0 0 117 0 0 0 2 0 0 0 218 1 0 1 1 0 0 0 319 0 0 0 1 0 2 0 320 0 0 2 0 1 0 0 321 0 0 0 0 1 0 0 122 1 0 0 0 0 0 1 223 1 0 0 3 0 0 0 424 0 0 0 0 0 0 0 0Total 6 5 11 13 7 6 12 60

Page 90: Appendix E Eagle Conservation Plan Guidance

74

b. ExposureTheposteriordistributionfortheexposurerateis:

~ ∝, ,remember, ~ 0.97, 2.76 ,FigureD1;where,

0.97 60 60.97

2.76 168 2 0.8 678.31 ∙

Thus,

~ 60.97, 678.31 ;theunitsforλareperhrperkm2.TheposteriordistributionisshowninFigureD‐3.Themeanandstandarddeviationofexposurerateare0.09and0.01,respectively.Notethatthereislittleinfluenceoftheprioronthisposterior,becausethesamplingeffortwassubstantial.

Figure D-3. The posterior distribution for exposure rate for the example project, “Patuxent Power Company.” This gamma distribution has a mean (indicated by the reference line) of 0.09 and a standard deviation of 0.01.

Page 91: Appendix E Eagle Conservation Plan Guidance

75

b. Collision Probability Wedonothaveanyadditionalinformationaboutcollisionprobability,C,sowewillusethepriordistribution,whichhasameanof0.0058andastandarddeviationof0.0038:

~ 2.31,396.69 ;seeFigureD‐2.c. Expansion Theexpansionrate,ε,isthenumberofdaylighthoursinayear(τ)multipliedbythehazardousarea(δ)aroundthe18turbinesproposedfortheproject:

4,383 ∙ 0.025 ∙ 18 154.9 ∙ .d. Fatalities Todeterminethedistributionforthepredictedannualfatalities,theexposureandcollisionriskdistributionsneedtobemultipliedbyeachotherandexpanded.Theresultingdistributioncannotbecalculatedinclosedform;itiseasiesttogenerateitthroughsimulations.Inthisexample,afterrunning100,000simulations,thepredicteddistributionforannualfatalities(FigureD‐4)hasameanof0.082andastandarddeviationof0.055.The80%quantileis0.12eaglefatalitiesperyear.

Figure D-4. The probability distribution for predicted annual fatalities. The histogram shows the simulation results. The mean (0.082) and 80% quantile (0.12) are represented by the reference lines (black and gray, respectively). The standard deviation is 0.055.

Predicted Annual Fatalities

Fatality Rate

Den

sity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

02

46

81

0

Page 92: Appendix E Eagle Conservation Plan Guidance

76

TheService’sbaselinemodelfortheproposedPatuxentwindfacilitypredictsthat80%ofthetimethatannualfatalitieswouldbe0.12eaglesorfewer,suggestingthataneaglecollisionfatalitywouldbepredictedtooccurattheprojectsiteevery8‐9yearsonaverage.Thefacilityhadamediumamountofeagleactivityatthesite,butthesmallsizeoftheprojectkeptthepredictedfatalitynumberslowerthantheywouldhavebeenforalargerprojectinthesamelocation.Ideally,wewouldconsiderothercandidatemodelsalongsidethebaselinemodelpresentedhereandcomparetheirrelativeperformanceusingdatacollectedinStage5.

6. Additional Considerations ThisinitialestimateoffatalityrateshouldnottakeintoaccountpossibleconservationmeasuresandACPs(e.g.changesinturbinesitingorseasonalcurtailments);thesewillbefactoredinaspartofStage4(APPENDIXE).Additionally,anylossofproductionthatmaystemfromdisturbanceisnotconsideredinthesecalculations,butshouldbeaddedtotheseestimatesandlateradjustedbasedonpost‐constructionmonitoringasdescribedinStage5.ThisstageandStage5oftheECPwillrequireclosecoordinationbetweentheprojectdeveloperoroperatorandtheService.

a. Small-scale Projects Small‐scaleprojects(generallythesewillberesidentialorsmall‐businessprojects)mayposealowenoughriskthatStage2surveysareunnecessarytodemonstratethattheprojectisnotlikelynottakeeagles.ThispresumesthatStage1surveysareconductedandshownoimportanteagleuseareasormigrationconcentrationsitesintheprojectarea.Insuchcases,thefatalitiespredictedbythecollisionfatalitymodelaretheexpandedproductoftheexposurepriorandthecollisionprobabilityprior;theexposurepriorisnotupdatedtocreateaposteriorasitwouldbeforprojectswithsurveydata(FigureD‐5).Withthepriordistributionscurrentlyusedforexposurerateandcollisionprobability(notethattheparametersforthepriorsdistributionsarepartoftheadaptivemanagementframeworkandwillchangeasnewinformationbecomesavailable),the80percentquantileofthepredictedfatalitydistributionforprojectswithlessthanapproximately2.4x10‐3km2ofhazardousareapredictsfatalitiesataratelessthan1eaglein30years(notlikelytotakeeagles).Thisisequivalenttoasingleturbinewitharotordiameterofapproximately55m,ormorethan45turbineswith8mrotordiameter(eachofwhichhasthecapacitytoexceedtypicalhomeenergyneeds).ThecalculationofhazardousareaispresentedinthisAppendixunder‘Expansion’.Ifthecollisionmodelpredictionbasedontheexposurepriorpredictsthattakeofeagleswilloccur(e.g.,ifthehazardousareaisgreaterthan2.4x10‐3km2),Stage2preconstructionsamplingforeagleuseoftheprojectareaisrecommended(seeAPPENDIXC).ThedatafromStage2surveyswillbeusedtoupdatetheexposurepriordistributionandproduceaproject‐specificfatalityprediction.ProjectsareencouragedtoconsultwiththeServiceearlyintheplanningprocessascomponentsofthefatalitypredictionmodelwillcontinuetoevolveandmaychangeovertime.

Page 93: Appendix E Eagle Conservation Plan Guidance

77

Figure D-5. Predicted fatalities for projects with small hazardous areas based on the prior-only collision fatality model; projects with less than 2.4x10-3 km2 hazardous area are predicted to take less than 1 eagle in 30 years. TheServiceisworkingonthedevelopmentofadditionaltoolstoassistprojectdevelopersoroperatorswithestimatingpredictedfatalitiesgivendifferentinputsandallowingfortheflexibilitytoincorporateotherfactorsintoadditionalcandidatemodels.WeencourageprojectdevelopersoroperatorstobegincoordinatingwiththeServiceearlyintheprocess(Stage1orStage2)sothatwecancollaborativelydevelopasuiteofcandidatemodelstoconsider.Literature Cited Gelman,A.,Carlin,J.B.,Stern,H.S.,andD.B.Rubin.2003.BayesianDataAnalysis,2nded.London,

Chapman&Hall.Whitfield,D.P.2009.Collisionavoidanceofgoldeneaglesatwindfarmsunderthe‘Band’collision

riskmodel.ReportfromNaturalResearchtoScottishNaturalHeritage,Banchory,UK.

Page 94: Appendix E Eagle Conservation Plan Guidance

78

APPENDIX E: STAGE 4 – AVOIDANCE AND MINIMIZATION OF RISK USING ACPS AND OTHER CONSERVATION MEASURES, AND COMPENSATORY MITIGATION

Themostimportantfactorwhenconsideringpotentialeffectstoeaglesisthesitingofawindproject.BasedoninformationgatheredinStage2andanalyzedinStage3,theprojectdeveloperoroperatorshouldrevisitthesitecategorizationfromtheStage1assessmenttodetermineifthesite(s)stillfallsintoanacceptablecategoryofrisk(atthisstage,acceptablecategoriesare2and3,andveryrarely1).Wheninformationsuggeststhataproposedwindprojecthasahigheagleexposurerateandpresentsmultipleriskfactors(e.g.,isproximatetoanimportanteagle‐useareaormigrationconcentrationsiteandStage2datasuggesteaglesfrequentlyusetheproposedwind‐projectfootprint),itshouldbeconsideredacategory1site;werecommendrelocatingtheprojecttoanotherareabecausealocationatthatsitewouldbeunlikelytomeettheregulatoryrequirementsforaprogrammaticpermit.Ifthesitefallsintocategories2or3,orrarelysomecategory1siteswherethereispotentialtoadequatelyabaterisk,theECPshouldnextaddressconservationmeasuresandACPsthatmightbeemployedtominimizeor,ideally,avoideaglemortalityanddisturbance.Tomeetregulatoryrequirements,ACPs,ifavailable,mustbeemployedsuchthatanyremainingeagletakeisunavoidable.InthissectionoftheECP,werecommendprojectdevelopersoroperatorsre‐runmodelspredictingeaglefatalityratesafterimplementingconservationmeasuresandavailableACPsforalltheplausiblealternatives.Thisre‐analysisservestwopurposes:(1)itdemonstratesthedegreetowhichminimizationandavoidancemeasuresmightreduceeffectstoeaglepopulationscomparedtothebaselineprojectconfiguration,and(2)itprovidesapredictionofunavoidableeaglemortality.ConservationmeasuresandACPsshouldbetailoredtospecificallyaddresstheriskfactorsidentifiedinStage3oftheECP.ThissectionoftheECPshoulddescribeindetailthemeasuresproposedtobeimplementedandtheirexpectedresults.TheServicedoesnotadvocatetheuseofanyparticularconservationmeasuresandmerelyprovidesthebelowlistasexamples.Moreover,atthistimenoneofthesemeasureshavebeenapprovedasACPsforwindprojects.Ultimately,projectdevelopersoroperatorswillproposeandimplementsitespecificconservationmeasuresandACPs(astheybecomeavailable)incooperationwithlocalServicerepresentativesinordertomeettheregulatorystandardofreducinganyremainingtaketoalevelthatisunavoidable.Examplesofconservationmeasuresthatcouldbeconsideredbeforeandduringprojectconstruction,dependingonthespecificriskfactorsinvolved,include:

1. Minimizetheareaandintensityofdisturbancesduringpre‐constructionandconstructionperiods.

2. Prioritizelocatingdevelopmentonlandsthatprovideminimaleagleusepotentialincludinghighlydevelopedanddegradedsites.

3. Utilizeexistingtransmissioncorridorsandroads.4. Setturbinesbackfromridgeedges.5. Sitestructuresawayfromhigheagleuseareasandtheflightzonesbetweenthem.6. Dismantlenonoperationalmeteorologicaltowers.7. Burypowerlinestoreduceaviancollisionandelectrocution.8. FollowtheAvianPowerLineInteractionCommittee(APLIC)guidanceonpowerline

constructionanddesign(APLIC2006).9. Minimizetheextentoftheroadnetwork.

Page 95: Appendix E Eagle Conservation Plan Guidance

79

10. Avoidtheuseofstructures,orremoveexistingstructures,thatareattractivetoeaglesforperching.

11. Avoidconstructiondesigns(includingstructuressuchasmeteorologicaltowers)thatincreasetheriskofcollision,suchasguywires.Ifguywiresareused,markthemwithbirdflightdiverters(accordingtothemanufacturer’srecommendation).

12. Avoidsitingturbinesinareaswhereeaglepreyareabundant.13. Avoidareaswithhighconcentrationsofponds,streams,orwetlands.

Examplesofavoidanceandminimizationmeasuresthatcouldbeconsideredduringprojectoperation,dependingonthespecificriskfactorsinvolved,include:

1. Maintainfacilitiesandgroundsinamannerthatminimizesanypotentialimpactstoeagles(e.g.minimizestorageofequipmentnearturbinesthatmayattractprey,avoidseedingforbsbelowturbinesthatmayattractprey,etc.).

2. Avoidpracticesthatattract/enhancepreypopulationsandopportunitiesforscavengingwithintheprojectarea.

3. Takeactionstoreducevehiclecollisionrisktowildlifeandremovecarcassesfromtheprojectarea(e.g.deer,elk,livestock,etc.).

4. Instructprojectpersonnelandvisitorstodriveatlowspeeds(<25mph)andbealertforwildlife,especiallyinlowvisibilityconditions.

Whenpost‐constructionfatalityinformationbecomesavailable,theprojectdeveloperoroperatorandtheServiceshouldconsiderimplementingallorasubsetoftheadditionalconservationmeasuresandexperimentalACPsthatwereconsideredatthetimethepermitwasissued(seeASSESSINGRISKANDEFFECTS,3b.GeneralApproachtoAddressRisksintheECPG).ExamplesofexperimentalACPsthatcouldbeidentifiedinitiallyorafterevaluationofpost‐constructionfatalitymonitoringdata,dependingonthespecificriskfactorsinvolved,include:

1. Seasonal,daily,ormid‐dayshut‐downs(particularlyrelevantinsituationswhereeaglestrikesareseasonalinnatureandlimitedtoafewturbines,oroccurataparticulartimeofday).

2. Turbineremovalorrelocation.3. Adjustingturbinecut‐inspeeds.4. Useofautomateddetectiondevices(e.g.radar,etc.)tocontroltheoperationofturbines.

Literature Cited AvianPowerLineInteractionCommittee(APLIC).2006.Suggestedpracticesforavianprotection

onpowerlines:thestateoftheartin2006.EdisonElectricInstitute,APLIC,andtheCaliforniaEnergyCommission.WashingtonD.C.andSacramento,CA,USA.http://www.aplic.org/SuggestedPractices2006(LR‐2watermark).pdf.

Page 96: Appendix E Eagle Conservation Plan Guidance

80

APPENDIX F: ASSESSING PROJECT-LEVEL TAKE AND CUMULATIVE EFFECTS ANALYSES TheServiceisrequiredtoevaluateandconsidertheeffectsofprogrammatictakepermitsoneaglesattheeaglemanagementunit,local‐area,andproject‐areapopulationscales,includingcumulativeeffects,aspartofitspermitapplicationreviewprocess(50CFR22.26(f)(1)andUSFWS2009).TheServicewillrelyoninformationadeveloperprovidesfromtheStage1andStage2assessments,aswellasallotheravailableinformationonmortalityandotherpopulation‐limitingeffectsatthevariouspopulationscales,whenpreparingitscumulativeimpactassessment.TheService’sNEPAontheEaglePermitRuleevaluatedandsetsustainabletakelevelsattheeaglemanagementunitscale(USFWS2009).However,thatNEPAanalysisdidnotassessimpactsatotherpopulationscales.Asignificantpartofthecumulativeeffectsevaluationisassessingtheeffectoftheproposedtakeincombinationwithtakecausedbypreviouslyauthorizedactionsandreasonablyforeseeablefutureactionsonthelocal‐areaeaglepopulation(s),anditisthisanalysisthatisthefocusofthisappendix.Thepurposeofthispartofthecumulativeeffectsevaluationistoidentifysituationswheretake,eitherattheindividualprojectlevelorincombinationwithotherauthorizedorforeseeablefutureactionsandotherlimitingfactorsatthelocal‐areapopulationscale,maybeapproachinglevelsthatarebiologicallyproblematicorwhichcannotreasonablybeoffsetthroughcompensatorymitigation.Inpreviousassessmentsoftheeffectoffalconrytakeonraptorpopulations(MillsapandAllen2006),theServiceidentifiedannualtakelevelsof5%ofannualproductiontobesustainableforarangeofhealthyraptorpopulations,andannualtakelevelsof1%ofannualproductionasarelativelybenignharvestrateoveratleastshortintervalswhenpopulationstatuswasuncertain.Thisapproachwasusedtoestablishtakethresholdsattheeaglemanagementunitscale(USFWS2009).TheServiceconsideredseveralalternativesforbenchmarkharvestratesatthelocal‐areapopulationscale,andaftercomparativeevaluationidentifiedtakeratesofbetween1%and5%oftheestimatedtotaleaglepopulationsizeatthisscaleassignificant,with5%beingattheupperendofwhatmightbeappropriateundertheBGEPApreservationstandard,whetheroffsetbycompensatorymitigationornot.Theselocal‐areaharvestratebenchmarksareoverlainbythemoreconservativetakethresholdsfortheeaglemanagementunits,sotheoverallharvestrateattheeaglemanagementunitscaleshouldnotexceedlevelsestablishedintheFinalEnvironmentalAssessment(USFWS2009).TheServicerecommendsatop‐downapproachforthisassessment:(1)identifynumbersofeaglesthatmaybetakensafelyatthenationallevel(i.e.,anational‐levelbenchmarks);(2)allocatetakeopportunitiesamongregionaleaglemanagementunits(USFWS2009)asafunctionoftheproportionofeaglesineachunit(i.e.,regional‐levelbenchmarks);(3)furtherallocatetakeopportunitiestothelocal‐areapopulationscaleasafunctionofinferredeaglepopulationsizeatthatscale(assuming,intheabsenceofbetterdataoneagledistributionatthescaleoftheeaglemanagementunit,auniformdistributionofthatpopulation);and(4)incorporatingbenchmarksthatcanbeusedtoassessthelikelysustainabilityofpredictedlevelsoftakeatthelocal‐areascale.Throughaspatialaccountingsystem,permittedtakeismanagedtoensurethatthebenchmarksalsoconsidercumulativeeffectsatthelocal‐areaeaglepopulationscaleasaguardagainstauthorizingexcessivetakeatthisscale.InTableF‐1,weworkthroughthisapproachusingthehypotheticalexampleofeightindividualyetidenticalprojects,oneineachbaldeaglemanagementunit.Eachoftheseprojectshasa314mi2footprint,andaffectsalocal‐areabaldeaglepopulationover8824squaremile(mi2)area.Forthisexample,weuseatakerateof5%ofthelocal‐areabaldeaglepopulationperyearasthemaximumacceptabletakerate.Inthisexample,the5%benchmarktakerateovertheeightprojectsis150

Page 97: Appendix E Eagle Conservation Plan Guidance

81

individualbaldeaglesperyear,andtherangeofallowabletakeratesatthisscalevariesacrossmanagementunitsfrom<1baldeagleperyearinthesouthwestto67peryearinAlaska.TableF‐2providespopulationandeaglemanagementunitareastatisticsforgoldeneaglestoaidinperformingthesecalculationsforthatspecies.Asnotedabove,incaseswherethelocal‐areaeaglepopulationsofproximateprojectsoverlap,theoverlapshouldbetakenintoaccountinacumulativeeffectsanalysissothatthecumulativetakeonthelocal‐areapopulationscalecanbeconsideredagainstpopulationbenchmarks.FigureF‐1illustratesonemethodtodothis,andTableF‐3providesthecalculationsforthisexample.Theseexamplesusebaldeagles,butthesameconceptandapproachcanbeusedforgoldeneagles,withBirdConservationRegions(BCRs)definingtheeaglemanagementunits.TheexampleinFigureF‐1involvesbaldeaglesinRegion3.Project1(ingreen)hasafootprintof41miles2(mi2),andaffectsalocal‐areabaldeaglepopulationover6854mi2(lightgreenbufferaroundtheprojectfootprint).FollowingtheapproachinTableF‐1,project1wasissuedaprogrammatictakepermitwithamaximumannualproject‐leveltakeof21baldeaglesperyear(seeTableF‐3).Project2(inred,thesamesizeasproject1)appliedforaprogrammaticeagletakepermit5yearslater.Thecalculatedproject‐levelbaldeagletakeforproject2is20baldeaglesperyear,butunderthe5%benchmark,maximumtakefor1563mi2ofproject2’slocal‐areabaldeaglepopulation(totaling5baldeaglesperyear)wasalreadyallocatedtoproject1(thehatched‐markedareaofoverlapbetweenthelocalareasofproject1andproject2).Therefore,thecalculatedlocal‐areabaldeagletakeforproject2exceedsthe5%benchmark.Thus,thedecision‐makerforthepermitforproject2shouldcarefullyconsiderwhetherthisprojectcanbepermittedasdesignedundertherequirementsofourregulationsat50CFR22.26.Theexamplesassumeacceptablecompensatorymitigationopportunities,whentheyarerequired,arelimitless.Theyarenot,andwherecompensatorymitigationisnecessarytooffsetthepermittedtake,theavailabilityofcompensatorymitigationcanbecometheproximatefactorlimitingtakeopportunities.Acriticalassumptionofthisapproachisthateagledensityisuniformacrosseagleregions.Thepotentialconsequenceofthisassumptionistooverprotecteaglesinareasofhighdensityandunderprotecttheminareasoflowdensity.AstheServiceandothersdevelopmorereliablemodelsforpredictingthedistributionofeagleswithinregionalmanagementpopulationsatfinerscales,theseapproachesshouldbeusedinplaceofanassumptionofuniformdistributionintheanalysessuggestedhere.

Page 98: Appendix E Eagle Conservation Plan Guidance

82

Table F-1. Example of the proposed method to calculate local-area annual eagle take benchmarks. The example uses bald eagles (BAEA), and is based on a hypothetical scenario where a single project with a circular footprint of 10-mile radius is proposed in each BAEA region. See Figure F-1 for an example of how to assess the cumulative effects of such permitted take over the local-area population.

BAEAManagement

Unit

EstimatedPopulation

Sizea

RegionSize(mi2)

MaximumTakeRate(%local‐area

populationperyear)b

ManagementUnitEagleDensity

(BAEA/mi2)c

LocalArea(mi2)d

Local‐area5%

Benchmark(eaglesperyear)e

R1 7105 245336 5.0 0.029 8824 13

R2 797 565600 5.0 0.001 8824 >1

R3 27617 447929 5.0 0.062 8824 27

R4 13111 464981 5.0 0.028 8824 12

R5 14021 237687 5.0 0.059 8824 26

R6 5385 732395 5.0 0.007 8824 3

R7 86550 570374 5.0 0.152 8824 67

R8 889 265779 5.0 0.003 8824 1

Sum 155474 150

aTakendirectlyfromUSFWS(2009).bAtakerateof5%istheService’supperbenchmarkfortakeatthelocal‐areapopulationscale.cManagementuniteagledensity=populationsize/managementunitsize.dThelocal‐areaforthisexampleistheprojectfootprint(inthiscase,acirclewithradiusof10miles)plusabufferof43additionalmiles(43milesistheaveragenataldispersaldistancefortheBAEA)=3.142*532.eThelocal‐area5%benchmark=(Local‐area*RegionalEagleDensity)*0.05.

Page 99: Appendix E Eagle Conservation Plan Guidance

83

Table F-2. Background information necessary to estimate the local-area take benchmarks for golden eagles (GOEA). Columns are as in Table F-1. The local-area for golden eagles, which is not used in this table, is calculated using the median natal dispersal distance of 140 miles (USFWS 2009).

GOEAManagementUnitBCR

Number

EstimatedPopulation

Sizea

BCRSize(mi2)b

ManagementUnitEagleDensity(GOEApermi2)

Alaska 2400 557007 0.0043NorthernPacificRainforest 5 108 68777 0.0016PrairiePotholes 11 1680 160794 0.0104SierraNevada 15 84 20414 0.0041ShortgrassPrairie 18 1080 148540 0.0073CoastalCalifornia 32 960 63919 0.0150SonoranandMojaveDesert 33 600 95593 0.0063SierraMadreOccidental 34 360 47905 0.0075ChihuahuanDesert 35 720 72455 0.0099GreatBasin 9 6859 269281 0.0255NorthernRockies 10 6172 199666 0.0309SouthernRockiesandColoradoPlateau 16 3770 199522 0.0189

BadlandsandPrairies 17 7800 141960 0.0549

Sum 32593

aTakendirectlyfromUSFWS2009.bBCRareavaluesarefromtheNorthAmericanBirdConservationRegionwebsiteat:http://www.bsc‐eoc.org/international/bcrmain.html(lastvisited8December2011).

Page 100: Appendix E Eagle Conservation Plan Guidance

84

Figure F-1. Example of the proposed method for ensuring local-area take benchmarks are not exceeded through the cumulative take authorized over multiple projects. Project 1 is in green, project 2 is in red, and the overlap in their local-area eagle bald eagle populations is the hatched-marked area (see text). This same approach could be used to assess the cumulative effects of other forms of take and anthropomorphic impacts for which data on population effects are available.

60 0 60 120 Miles

Project 1

Project 2

Page 101: Appendix E Eagle Conservation Plan Guidance

85

Table F-3. Calculations used to determine local-area bald eagle take for the example in Fig. F-1, where project 1 is first-in-time, and the local-area bald eagle (BAEA) populations for the two projects overlap. Calculations are as described in the footnotes to table F-1.

Project

Region3BAEA

PopulationSize

RegionSize(mi2)

MaximumTakeRate(%local‐area

populationperyear)b

RegionalEagleDensity(BAEApermi2)

Local‐area(mi2)

Local‐area5%

Benchmark(eaglesperyear)e

Project1(first‐in‐time)

27617 447929 5.0 0.062 6854 21

Project2,unadjusted

27617 447929 5.0 0.062 6550 20

OverlapArea 27617 447929 5.0 0.062 1562 5Project2,adjusted

27617 447929 5.0 0.062 13404 15

Literature Cited USFWS.2007.Finalenvironmentalassessment,takeofraptorsfromthewildunderthefalconry

regulationsandtheraptorpropagationregulations.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,Washington,D.C.

USFWS.2008.Finalenvironmentalassessmentandmanagementplan,takeofmigrantperegrinefalconsfromthewildforuseinfalconry,andreallocationofnestling/fledglingtake.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,Washington,D.C.

USFWS.2009.Finalenvironmentalassessment,proposaltopermittakeasprovidedundertheBaldandGoldenEagleProtectionAct.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,Washington,D.C.

USFWS.2011.Drafteagleconservationplanguidance.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,Washington,D.C.

Page 102: Appendix E Eagle Conservation Plan Guidance

86

APPENDIX G: EXAMPLES USING RESOURCE EQUIVALENCY ANALYSIS TO ESTIMATE THE COMPENSATORY MITIGATION FOR THE TAKE OF GOLDEN AND BALD EAGLES FROM WIND

ENERGY DEVELOPMENT 1. IntroductionThisappendixprovidesResourceEquivalencyAnalysis(REA)examplesdevelopedbytheServicetoillustratethecalculationofcompensatorymitigationfortheannuallossofgolden(GOEA)eaglesandbald(BAEA)eaglescausedbywindpowerifconservationmeasuresandACPsdonotremovethepotentialfortake,andtheprojectedtakeexceedscalculatedthresholdsforthespeciesormanagementpopulationaffected.Theseexamplesresultinestimatesofthenumberofhigh‐riskelectricpowerpolesthatwouldneedtoberetrofittedpereagletakenbasedontheinputsprovidedbelow.Detailedexplanatorydocumentation,literature,andsupportingREAspreadsheetsarenowlocatedat:www.fws.gov/windenergy/index.htmlAsaframeworkforcompensatorymitigation,itneedstobeclearthattheresultsprovidedbelowareanillustrationofhowREAworksgiventhecurrentunderstandingofGOEAandBAEAlifehistoryinputs,effectivenessofretrofittinghigh‐riskelectricpowerpoles,theexpectedannualtake,andthetimingofboththeeagletakepermitandimplementationofcompensatorymitigation.Aswouldbeexpected,theestimatednumberofeaglefatalitiesandthepermitrenewalperiodaffectthenumberofpolestoberetrofitted.Delaysinretrofittingwouldleadtomoreretrofittedpolesowed.Newinformationonchangesintheleveloftake,understandingoftheeaglelifehistory,oreffectivenessofretrofittingcouldbeusedtochangethenumberofretrofittedpolesneededforcompensation.Finally,whileonlyelectricpoleretrofittingispresentedhereindetail,theREAmetricofbird‐yearslendsitselftoconsiderationofothercompensatorymitigationoptionstoachievetheno‐net‐lossstandardinthefuture.Withenoughreliableinformation,anycompensatorymitigationthatdirectlyleadstoanincreasednumberofGOEAandBAEA(e.g.,habitatrestoration)ortheavoidedlossoftheseeagles(e.g.,reducingvehicle/eaglecollisions,makinglivestockwatertanks‘eagle‐safe’,leadammunitionabatement,etc.)couldbeconsideredforcompensationwithinthecontextoftheREA.2. REA InputsThebestavailablepeer‐reviewed,publisheddataareprovidedinTablesG‐1andG‐2.ItshouldbenotedthatadditionalmodelingworkwithintheREAmaybeneeded,particularlyonissuesrelatedtomigration,adultfemalesurvivorship,nataldispersal,ageatfirstbreeding,andpopulationsexratio.

Page 103: Appendix E Eagle Conservation Plan Guidance

87

Table G-1. EXAMPLE INPUTS. REA Inputs to Develop a Framework of Compensatory Mitigation for Potential Take of GOEA from Wind Energy Development

Parameter REAInput Reference

Startyearofpermit 2012 Example.Lengthofpermitrenewal

period5years Example.

Estimatedtake 1eagle/year Example.

Averagemaximumlifespan

30years28years,3months,USGSBirdBanding

Lab.ConsistentwithCole(2010)approach.

Agedistributionofbirdskilledatwindfacilities

(basedonagedistributionofGOEA

population)

(0‐1)(1‐4)(4‐30)

20%35%45%

20%juveniles(ageclass(0‐1)) 35%sub‐adults(11.67%foreachageclassfromageclass(1‐2)throughage

class(3‐4)) 45%adults(1.73%foreachageclassfromageclass(4‐5)throughageclass

(29‐30))Assumeageclassisdistributedevenlyovertime.Agedistributionderived

frommodelspresentedinUSFWS2009.

AgestartreproducingAge5

[ageclass(5‐6)]Steenhofetal.1984;Kochertetal.2002

Expectedyearsofreproduction

25years =(MaximumLifespan)–(AgeStartReproducing)(Harmata2002)

%ofadultfemalesthatreproduceannually

80% Steenhofetal.1997

Productivity(meannumberofindividuals

fledgedperoccupiednestannually)

0.61 USFWS2009

year0‐1survival 61%

USFWS2009year1‐2survival 79%year2‐3survival 79%year3‐4survival 79%year4+survival 90.9%

Relativeproductivityofmitigationoption

0.0036eagleelectrocutions/pole/year

Example. Compensatorymitigationinvolvesretrofittinghigh‐riskelectricpowerpoles,thusavoidingthelossofGOEAfromelectrocution(Lehmanetal.

2010).

Discountrate 3%

A3%discountrateiscommonlyusedforvaluinglostnaturalresource

services(Freeman1993,Lind1982,NOAA1999;andcourtdecisionson

damageassessmentcases)

Page 104: Appendix E Eagle Conservation Plan Guidance

88

Table G-2. EXAMPLE INPUTS. REA Inputs to Develop a Framework of Compensatory Mitigation for Potential Take of BAEA from Wind Energy Development

Parameter REAInput Reference

Startyearofpermit 2011 Example.Lengthofpermitrenewalperiod

5years Example.

Estimatedtake 1eagle/year Example.

Averagemaximumlifespan

30years32years10months;LongevityrecordfromUSGSBirdBandingLab.ConsistentwithCole(2010)approach.

Agedistributionofbirdskilledatwindfacilities(basedonagedistributionofBAEApopulation)

(0‐1)(1‐4)(4‐30)

15.4%30%54.6%

15.4%juveniles(ageclass(0‐1)) 30%sub‐adults(10%foreachageclassfromageclass(1‐2)throughageclass(3‐4))

54.6%adults(2.1%foreachageclassfromageclass(4‐5)throughageclass(29‐30))

Assumeageclassisdistributedevenlyovertime.AgedistributionderivedfrommodelspresentedinUSFWS2009.

AgestartreproducingAge5

[ageclass(5‐6)] Buehler2000

Expectedyearsofreproduction 25years

=(MaximumLifespan)–(AgeStartReproducing)

%ofadultfemalesthatreproduceannually

42% Hunt1998,per.comm.Millsap

Productivity 1.3 Millsapetal. 2004year0‐1survival 77%

Millsapetal.2004year1‐2survival 88%year2‐3survival 88%year3‐4survival 88%year4+survival 83%

Relativeproductivityofmitigationoption

0.0036eagleelectrocutions/pole/year

Example. Mitigationinvolvesretrofittinghigh‐riskelectricpowerpoles,thusavoidingthelossofBAEAfromelectrocution(Lehmanet.al2010).

Discountrate 3%

A3%discountrateiscommonlyusedforvaluinglostnaturalresourceservices(Freeman1993;Lind1982;NOAA1999;andcourtdecisionsondamageassessmentcases).

Page 105: Appendix E Eagle Conservation Plan Guidance

89

3. REA Example – WindCoA TheServicedevelopedthefollowinghypotheticalscenarioforpermittingandcompensatorymitigationtobeappliedtothetakeofGOEA1fromwindpoweroperations:WindCoAconductedthreeyearsofpre‐constructionsurveystodeterminerelativeabundanceofGOEAattheirproposedwindprojectinTexas.Thesurveydatawasthenusedtopopulateariskassessmentmodeltogenerateaneaglefatalityestimate.TheinitialfatalityestimateoftwoeaglesperyearwasfurtherreducedafterWindCoAimplementedafewmutuallyagreeduponACPs.Thefinalfatalityestimategeneratedfromtheriskassessmentmodel,afterconsiderationoftheadvancedconservationpractices,wasanannualtakeofoneGOEAperyearoverthelifeofthepermitstartingin2012.WindCoAdecidedtoconductanREAtodeterminethenumberofhigh‐riskpowerpolesthatwouldneedtoberetrofittedtogettono‐net‐loss.ThecompanyusedtheService’sGOEAREAinputsandassumedthepowerpoleretrofitwouldoccurincalendaryear2012,thusoffsettingthepotentiallossofeaglesatthenewlyoperatingwindprojectwithavoidanceofelectrocutionofanequalnumberofGOEA.Throughproperoperationandmaintenance(O&M),theretrofittedpolesareassumedtobeeffectiveinavoidingthelossofeaglesfor10years.Theresultsofthemodelareexpressedinthetotalnumberofelectricpowerpolestoberetrofittedtoequatetono‐net‐lossof5eaglesforthe5‐yearpermitrenewalperiod(1eagleannuallyoverfiveyears).Theseresultsareextrapolatedovertheexpectedoperatinglifeofthewindproject,whichisassumedtobe30years,foratotaltakeof30eagles.TheresultsoftheREAindicatedthatWindCoAneededtoretrofitapproximately149powerpolesforthefirst5‐yearpermitperiod(seeTableG‐3).Usinganestimatedcostof$7500/pole,theServiceestimatedthatWindCoAcouldcontribute$1,117,500toathird‐partymitigationaccountorcontracttheretrofitsdirectly.Afterdeterminingthattheycouldfundtheretrofitsdirectlyatalowercost,WindCoAdecidedtopartnerwithUtilityCoBtogettherequirednumberofpolesretrofitted.UtilityCoBhadpreviouslyconductedariskassessmentoftheirequipmentandhadidentifiedhigh‐riskpolesthatwerelikelytotakegoldeneagles.Throughawrittenagreement,WindCoAprovidedfundingtoUtilityCoBtoretrofittherequirednumberofpowerpolesandmaintaintheretrofitsfor10years.Inaddition,WindCoAcontractedwithConsultCoCtoperformeffectivenessmonitoringoftheretrofittedpowerpolesfor2years.ThecontractrequiredthatConsultCoCvisiteachretrofittedpowerpoleevery4months(quarterly)toperformfatalitysearchesandcheckforproperoperationandmaintenanceoftheequipment.TheServicereviewedthecompensatorymitigationprojectproposedbyWindCoAandfoundittobeconsistentwithrequirementsat50CFR22.26.AfterreviewingthesignedcontractbetweenWindCoA,UtilityCoB,andConsultCoC,theServiceissuedaprogrammaticeagletakepermittoWindCoA.

a. REA Language and Methods Asdiscussedingreaterdetailindocumentsonthesupportingwebsite,thisREAincludes:

ThedirectlossofGOEA/BAEAeaglesfromthetake(debitinbird‐years); Therelativeproductivityofretrofittinghigh‐riskpowerpoles,whichisthe

effectivenessinavoidingthelossofGOEA/BAEAbyelectrocutionasamitigationoffset(measuredintotalbird‐yearsperpole);and

1 Using the inputs provided in Table G-2, this scenario may also be applied to BAEA.

Page 106: Appendix E Eagle Conservation Plan Guidance

90

Themitigationowed,whichisthetotaldebitdividedbytherelativeproductivity(scaling)toidentifythenumberofhigh‐riskpowerpolesthatneedretrofittingtocompletelyoffsetthetakeofGOEA/BAEAeagles(credit).

Thereareupto16stepswhenconductingaREA.Dependingonwhetherforegonefuturereproduction(partofthedebit)isincluded,thereareupto13totalstepsinvolvedincalculatingtheinjuryside(debit)ofaREA,andthreeadditionalstepsinvolvedinestimatingcompensatorymitigationowed(credit).Pleaserefertothetechnicalnote“ScalingDirectlyProportionalAvoidedLossMitigation/RestorationProjects”onthesupportingwebsite(www.fws.gov/windenergy)forfurtherinformationonthedevelopmentofREAinputsandtheinclusionoflostreproduction.Notably,inthecaseofanavoidedlossprojectwheretheestimatedpreventedlossofbird‐years(e.g.,throughmitigation)isdirectlyproportionaltothelossofbird‐years(e.g.,from“take”),thelifehistoryinputs(e.g.,longevity,agedistribution,survivalrates,reproduction)donotaffectthefinalresultsofthecreditowed.Thatis,theretrofittingofhigh‐riskpowerpolesisadirectlyproportionalavoidedloss,soonlytheleveloftake(numberofeaglesannually),theavoidedlossofeaglespermitigatedelectricpole,thenumberofyearsthemitigatedpoleiseffectiveinavoidingthelossofeagles,andthetimingofthemitigationrelativetothetakeaffectthefinalcreditowed.Itshouldalsobenotedthattheannualtakeofoneeagleisusedintheexamplebecausethelostbird‐yearsassociatedwithoneeaglecanbeeasilymultipliedbytheactualtaketoestimatethetotaldebitinbird‐years.ThefollowingisabriefdiscussionofREAvariablesusedintheService’sWindCoAexamplethataffecttheoutcomeofthecompensatorymitigationcalculation:

RelativeProductivityofMitigation(0.0036electrocutions/pole/year)–ThisrateistakendirectlyfrompublishedliteratureoneagleelectrocutionratesinnortheasternUtahandnorthwesternColoradoandisspecifictoeagles(Lehmanetal.2010).Althoughthereferencedstudyalsolistsahigherrate(0.0066)thatincludesallknowneaglemortalities,thisrateincludedeaglesthatmayhavediedfromcausesunrelatedtoelectrocution.

YearsofAvoidedLossPerRetrofittedPole(10Years)–TheServiceusesaperiodof10yearsforcreditingtheprojectdeveloperoroperatorfortheavoidedlossofeaglesfrompowerpoleretrofits.Thisisareasonableamountoftimetoassumethatpowerpoleretrofitswillremaineffective.However,projectdevelopersoroperatorsshouldconsiderenteringintoagreementswithutilitycompaniesorcontractorsforthelong‐termmaintenanceofretrofits.Evidenceofthistypeofagreementcouldincreasetheamountofcreditreceivedbytheprojectdeveloperoroperatorand,asaresult,decreasetheamountofcompensatorymitigationrequired.

PermitRenewalPeriod(5Years)–ThiswillbethereviewperiodthatisusedbytheServiceforadaptivemanagementpurposesandre‐calculationofcompensatorymitigation.TheServicebelievesthatthislengthoftimewillenabletheprojectdeveloperoroperatortocontinuetomeetthestatutoryandregulatoryeaglepreservationstandard.Thispermitreviewtenurewillremainthesameregardlessoftheoveralltenureofthepermit.

RetrofitCost/Payment($7,500/pole)–TheServicereceivedinputdirectlyfromtheindustryregardingtheactualcoststoretrofitpowerpoles.Estimatesrangedfromalowofapproximately$400toover$11,000giventhatcostsvaryaccordingtomanyfactors.TheServicebelievesthat$7,500representsareasonableestimateforthecurrentcosttoretrofitpowerpolesintheUnitedStates.Projectdevelopersor

Page 107: Appendix E Eagle Conservation Plan Guidance

91

operatorsareencouragedtocontractdirectlyforretrofitsasthiswilllikelynotbeascostlyascontributing$7,500/poletoaneaglecompensatorymitigationaccount.

b. REA Results for WindCoA UsingtheWindCoAexampledescribedabove,alongwiththeREAinputsprovidedinTableG‐1,TableG‐3providesasummaryoftheresults:

Table G-3. WindCoA Example: Compensatory Mitigation Owed for a 5-Year Permitted Take of 5 GOEA Extrapolated to the 30-Year Expected Operating Life of the Wind Project (30 GOEA in Total).

TotalDebitforTakeof1GOEA 28.485 PV*bird‐yearsfor5yearsofGOEAtake

÷RelativeProductivityofHigh‐RiskElectricPoleRetrofitting ÷0.191

AvoidedlossofPVbird‐yearsperretrofittedpole(assumes10yearsofavoidedlossperpolebasedonthecommitmentfromUtilityCoB)

=MitigationOwedfor5‐YearPermittedTake

=149.136Polestoberetrofittedtoachieveno‐net‐loss

x#Cyclesof5‐YearPermitReviews=TotalMitigationOwed

x6=894.818Polestoberetrofittedtoachieveno‐net‐lossforthe30‐yearexpectedoperatinglifeofthewindproject

*PV=PresentValueIfalloftheREAinputsremainthesameaftertheinitialfiveyears,thentheestimated149.14polesmaybemultipliedbytheexpectednumberofpermitreviewstoprovideanestimateofthetotalnumberofpolesthatwouldeventuallyberetrofitted.Forexample,forthe30‐yearlifecycleoftheWindCoAwindproject,149.14poleswouldbemultipliedby6permitrenewalstoequalapproximately895high‐riskpowerpolesintotaltoberetrofittedascompensatorymitigationforthetakeof30GOEAover30years(1eagleannually).Whilethisexampleshowstheeffectivenessofthemitigationmethodaslastingfor10years,itmaybethecasethatthemethodselectedismoreorlesseffectiveatavoidingthelossofeagles(e.g.,5years,morethan10years).TheREAcanbeadjustedfortheexpectedeffectivenessofmitigation,andmoreorfewerhigh‐riskpowerpoleswouldneedtobemitigated.AllestimatesofcompensatorymitigationarecontingentonproperoperationandmaintenancebeingconductedbyUtilityCoBoracontractortoensurethattheexpectedeffectivenessisachieved.Forpurposesofillustration,shouldWindCoAchoosetousetheGOEAinputsprovidedinTableG‐1andtheirfatalityestimateisthat5GOEAwillbetakenannually,theresultsmaybeeasilyadjustedasshowninTableG‐4:

Page 108: Appendix E Eagle Conservation Plan Guidance

92

Table G-4. WindCoA Example: Compensatory Mitigation Owed for a 5-Year Permitted Take of 25 GOEA Extrapolated to the 30-Year Expected Operating Life of the Wind Project (150 GOEA in Total).

TotalDebitforTakeof1GOEA 28.485PVbird‐yearsfor5yearsofGOEAtakefromTableF‐3

xActualAnnualTakeofGOEA x5=142.425 PVbird‐yearsfor5yearsofGOEAtake

÷RelativeProductivityofHigh‐RiskElectricPoleRetrofitting

÷0.191

AvoidedlossofPVbird‐yearsperretrofittedpole(assumes10yearsofavoidedlossperpolebasedonthecommitmentfromUtilityCoB)

=MitigationOwedfor5‐YearPermittedTake

=745.681Polestoberetrofittedtoachieveno‐net‐loss

x#Cyclesof5‐YearPermitReviews=TotalMitigationOwed

x6=4474.086Polestoberetrofittedtoachieveno‐net‐lossforthe30‐yearexpectedoperatinglifeofthewindproject

PV=PresentValue

c. Summary of Bald Eagle REA Results FollowingthesameprocessdescribedaboveforGOEA(i.e.,usingtheWindCoAexampleandtheBAEAREAinputsprovidedinTableG‐2),TableG‐5providesasummaryoftheresultsforbaldeagles:

Table G-5. Example of Compensatory Mitigation Owed for a 5-Year Permitted Take of 5 BAEA Extrapolated to the 30-Year Expected Operating Life of the Wind Project (30 BAEA in Total).

TotalDebitforTakeof1BAEA 20.229 PVbird‐yearsfor5yearsofBAEAtake÷RelativeProductivityofHigh‐RiskElectricPoleRetrofitting

÷0.136 AvoidedlossofPVbird‐yearsperretrofittedpole

=MitigationOwedfor5‐YearPermittedTake =149.136

Polestoberetrofittedtoachieveno‐net‐loss

x#Cyclesof5‐YearPermitReviews=TotalMitigationOwed

x6=894.818Polestoberetrofittedtoachieveno‐net‐lossforthe30‐yearexpectedoperatinglifeofthewindproject

PV=PresentValue

AlthoughtherearedifferencesbetweenGOEAandBAEAlifehistoryinputs(e.g.,longevity,agedistribution,survivalrates,reproduction),theestimatedavoidedlossofbird‐yearsthroughmitigationisdirectlyproportionaltothelossofbird‐yearsfromthetake,sothelifehistoryinputsdonotaffectthefinalresultsofthecreditowed.Becausetherewasnochangeintheleveloftake(numberofeaglesannually),theavoidedlossofeaglesper

Page 109: Appendix E Eagle Conservation Plan Guidance

93

mitigatedelectricpole,thenumberofyearsthemitigatedpoleiseffectiveinavoidingthelossofeagles,orthetimingofthemitigationrelativetothetake,thereisnochangeinthecreditowed.Tohelpillustrate,whencomparingtheresultsofBAEAtoGOEA,boththedebit(20.23÷28.49)andtherelativeproductivityofelectricpoleretrofitting(0.14÷0.19)forBAEAareapproximately70%ofGOEA,sotheamountofretrofittingowedisthesame.Thatis,boththenumeratorofthescalingequation(totaldebit)andthedenominator(relativeproductivityofmitigation)werechangedproportionally(approximately70%),sothereisnochangeinthemitigationowed.d. Discussion on Using REA TheECPGdoesnotmandatetheuseofREA.Rather,theServicerecognizedtheneedforareliable,transparent,reproducible,andcost‐effectivetooltoexpeditewindpowerpermits,whileensuringsufficientcompensatorymitigationforthetakeofgoldeneaglesandbaldeaglesfromoperationstomeetregulatorypermittingrequirements.Althoughthereisalearningcurve,REAmeetsthesebasicneeds.Thisappendixandmaterialsonthesupportingwebsiteexplainthemethods,sharethetoolstorunREAs,anddiscusshowchangesinthedifferentinputscanaffecttheresults.Shouldprojectdevelopersoroperators/applicantschoosetousetheprovidedinputs,methods,andtools,theServicewillbeabletoappropriatelyfocusontheexpectedtakeofeagles.Projectdevelopersoroperators/applicantshavethediscretiontoofferalternativeREAinputsorusedifferentcompensatorymitigationmodelingmethods.However,theywillneedtoprovidesufficientevidenceandtools(ifnecessary)toensurethattheServicecanprovideappropriatereviewoftheresults,andshouldexpectthatsuchaneffortwilllikelytakeadditionaltime.e. Additional Compensatory Mitigation Example IntheUnitedStates,anotherknowncauseofmortalitytoeagles,bothbaldandgolden,isvehiclecollisions.Eaglesaresusceptibletobeingstruckbyvehiclesastheyfeedoncarcassesalongroadsides,particularlyinareasoftheUnitedStateswherelargenumbersofungulatesconcentrateseasonally(e.g.winter,breedingseason,etc.).Asacompensatorymitigationstrategy,aprojectdeveloperoroperatormaydecidetocollectdata(oruseexistingdataifitisavailable)ontheannualnumberofeaglemortalitiesthatresultfromvehiclecollisionsinaspecifiedgeographicareaoralongaspecificstretchofroadway.Thisdatacouldthenbeusedtogenerateanestimateofthenumberofeaglemortalitiesthatcouldbepreventedinthesameareabyremovingcarcassesfromroadsides.Iftherewassufficientevidencethatthiswasavalidproject(e.g.quantifiableandverifiable),theprojectdeveloperoroperatorcouldcontracttohavetheseroadsides‘cleaned’ofcarcassesduringthetimeofyearthatungulatesconcentrateandeaglesareknowntobestruck.Thecredibleestimateofeaglemortalitiesthatwouldbeavoidedthroughcarcassremovalwouldbethevalueofthecompensatorymitigationachieved.f. Take from Disturbance ProjectdevelopersoroperatorsshouldworkwiththeServicetodetermineiftakefromdisturbanceislikelytooccur.ThisshouldbepredictedinadvancebasedonStage3data,andverifiedthroughpost‐constructionmonitoringinStage5.ThefollowingarerecommendedtakecalculationsbasedoninformationcontainedwithintheFEA(USFWS2009):Forthestandardbaldeaglepopulation:

Page 110: Appendix E Eagle Conservation Plan Guidance

94

Takeresultingfromdisturbanceatonenestononlyoneoccasion=takeof1.3individuals

Onenesttakeresultinginthepermanentabandonmentofaterritory=takeof1.3individualsforthefirstyear,thentakeof8individualsannuallyuntildatashowthenumberofbreedingpairshasreturnedtoorexceededtheoriginalestimatednumberfortheeaglemanagementunit.

Forthestandardgoldeneaglepopulation:

Takeresultingfromdisturbanceatonenestononlyoneoccasion=takeof0.8individuals

Onenesttakeresultinginthepermanentabandonmentofaterritory=takeof0.8individualsforthefirstyear,thentakeof4individualsannuallyuntildatashowthenumberofbreedingpairshasreturnedtoorexceededtheoriginalestimatednumberfortheeaglemanagementunit.

UsingthedatapresentedintheaboveWindCoAexample,thecompensatorymitigationrequiredfordisturbanceresultinginthelossofproductivityfromoneGOEAnestforoneyearwouldresultinthefollowing:

1. DisturbancetakeofoneGOEAnestononeoccasion=0.8GOEA,2. FromtheREA,thetakeofoneGOEAforoneyear=6PVbird‐years,3. SixPVbird‐years/GOEA*0.8GOEA=4.8PVbird‐years,and4. FromtheREA,4.8PVbird‐years÷0.191PVbird‐years/poleretrofitted(for10year

maintenanceofpoles)=25.1polesretrofitted.WindCoAwouldberequiredtoretrofitatotalof174.24poles(149.14polesforthelethaltakeof5GOEA(seeTableG‐3)+24.5polesforthedisturbancetakeofoneGOEAnest)tocovertheinitialfiveyearpermittedtake.

Literature Cited Buehler,D.A.2000.BaldEagle(Haliaeetusleucocephalus),TheBirdsofNorthAmericaOnline(A.

Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdsofNorthAmericaOnline:http://bna.birds.cornell.edu/bna/species/506.

Cole,S.2010.Howmuchisenough?Determiningadequatelevelsofenvironmentalcompensationforwindpowerimpactsusingresourceequivalencyanalysis:AnillustrativeandhypotheticalcasestudyofseaeagleimpactsattheSmolaWindFarm,Norway.EpsilonOpenArchivePublishing,SwedishAgriculturalUniversity.

Freeman,A.M.III.1993.TheMeasurementofEnvironmentalandResourceValues:TheoryandMethods.(ResourcesfortheFuture,Washington,DC).

Harmata,A.R.2002.EncountersofGoldenEaglesbandedintheRockyMountainWest.J.FieldOrnithol.73:23‐32.

Hunt,W.G.1998.RaptorfloatersatMoffat’sequilibrium.Oikos81:1‐7.Kochert,M.N.,K.Steenhof,C.L.McintyreandE.H.Craig.2002.GoldenEagle(Aquilachrysaetos),

TheBirdsofNorthAmericaOnline(A.Poole,Ed.).Ithaca:CornellLabofOrnithology;RetrievedfromtheBirdofNorthAmericaOnline:http://bna.birds.cornell.edu/bna/species/684.

Lehman,R.N.,Savidge,J.A.,Kennedy,P.L.andHarness,R.E.(2010),RaptorElectrocutionRatesforaUtilityintheIntermountainWesternUnitedStates.JournalofWildlifeManagement,74:459‐470.

Page 111: Appendix E Eagle Conservation Plan Guidance

95

Lind,R.1982.APrimerontheMajorIssuesRelatingtotheDiscountRateforEvaluatingNationalEnergyOptionsinDiscountingforTimeandRiskinEnergyPolicy,editedbyR.Lind.Washington:ResourcesfortheFuture.

Millsap,B.A.,T.Breen,E.McConnell,T.Steffer,L.Phillips,N.Douglass,S.Taylor.2004.ComparativefecundityandsurvivalofbaldeaglesfledgedfromsuburbanandruralnatalareasinFlorida.JournalofWildlifeManagement68:1018‐1031.

NOAA.1999.DiscountingandtheTreatmentofUncertaintyinNaturalResourceDamageAssessment.TechnicalPaper99‐1(SilverSpring,MD:NOAA).

Steenhof,K.,M.N.Kochert,andM.Q.Moritsch.1984.DispersalandmigrationofsouthwesternIdahoraptors.J.FieldOrnithol.55:357‐368.

Steenhof,K.,M.N.Kochert,andT.L.McDonald.1997.InteractiveeffectsofpreyandweatheronGoldenEaglereproduction.J.Anim.Ecol.66:350‐362.

USFWS.2009.Finalenvironmentalassessment.ProposaltopermittakeprovidedundertheBaldandGoldenEagleProtectionAct.U.S.FishandWildlifeService,DivisionofMigratoryBirdManagement,WashingtonD.C.,USA.

Page 112: Appendix E Eagle Conservation Plan Guidance

96

APPENDIX H: STAGE 5 – CALIBRATING AND UPDATING OF THE FATALITY PREDICTION AND CONTINUED RISK-ASSESSMENT

Giventhedegreeofuncertaintythatcurrentlyexistssurroundingtheriskofwindfacilitiestoeaglesandthefactorsthatcontributetothatrisk,post‐constructionmonitoringisoneofthemostsignificantactivitiesthatwillbeundertakenbyeagleprogrammatictakepermitholders.Post‐constructionmonitoringhastwobasiccomponentswhenappliedtoeagletake:(1)estimatingthemeanannualfatalityrate,and(2)assessingpossibledisturbanceeffectsonneighboringnestsandcommunalroosts.ProvidedthatassessmentsconductedduringStages1‐4areconsistent,robust,andreliablyperformedassuggestedinthisECPG,thepre‐constructiondatashouldprovideasolidplatformfordevelopmentoftheStage5monitoringandassessmentstudies.1. Fatality Monitoring Allwindfacilitiesthatarepermittedtotakeeagleswillneedtoconductfatalitymonitoringtoensurecompliancewithregulatoryrequirements.Fatalitymonitoringmustbeconductedatallwindfacilitiesthatarepermittedtotakeeagles.Weanticipatethatinmostcases,intensivemonitoringtoestimatethetrueannualfatalityrateandtoassesspossibledisturbanceeffectswillbeconductedforatleastthefirsttwoyearsafterpermitissuance,followedbylessintensemonitoringforuptothreeyearsaftertheexpirationdateofthepermit,inaccordancewithmonitoringrequirementsat50CFR22.26(c)(2).However,additionalintensive,targetedmonitoringmaybenecessarytodeterminetheeffectivenessofadditionalconservationmeasuresandACPsimplementedtoreduceobservedfatalities.Suchmonitoringshouldberigorousandsufficienttoyieldareasonableestimateofthemeanannualeaglefatalityratefortheproject.GeneralconsiderationsfordesigningfatalitymonitoringprogramscanbefoundinStricklandetal.(2011)andtheWEG,andthesesourcesshouldbeconsultedinthedevelopmentofapost‐constructionstudydesign.Becausethepost‐constructionmonitoringprotocolwillbeincludedasaconditionoftheprogrammatictakepermit,thedesignofsuchmonitoringwillbedeterminedjointlybythepermitteeandtheService.Additionally,theServiceandUSGSareinvestingsignificantresourcesintoresearchtotestandassesspost‐constructionmonitoringapproachesforeagles,thusweexpecttobeabletoofferusefulinputinthedesignofsuchmonitoringprograms.Fatalitymonitoringforeaglescanbecombinedwithmonitoringmortalityofotherwildlifesolongassamplingintensitytakesintoaccounttherelativeinfrequencyofeaglemortalityevents.Fatality‐monitoringeffortsinvolvesearchingforeaglecarcassesbeneathturbinesandotherfacilitiestoestimatethenumberoffatalities.Theprimaryobjectivesoftheseeffortsareto:(1)estimateeaglefatalityratesforcomparisonwiththemodel‐basedpredictionspriortoconstruction,and(2)todeterminewhetherindividualturbinesorstringsofturbinesareresponsibleforthemajorityofeaglefatalities,andifso,thefactorsassociatedwiththoseturbinesthatmightaccountforthefatalitiesandwhichmightbeaddressedviaconservationmeasuresandACPs.Fatalitymonitoringresultsshouldbeofsufficientstatisticalvaliditytoprovideareasonablypreciseestimateoftheeaglemortalityrateataprojecttoallowmeaningfulcomparisonswithpre‐constructionpredictions,andtoprovideasoundbasisfordeterminingif,andifsowhich,conservationmeasuresandACPsmightbeappropriate.Thebasicmethodofmeasuringfatalityratesisthecarcasssearch.Allfatalitymonitoringshouldincludeestimatesofcarcassremovalandcarcassdetectionbias(scavengerremovalandsearcherefficiency)likelytoinfluencethoserates,usingthecurrentlyacceptedmethods.Fatalityandbiascorrectioneffortsshouldoccuracrossallseasonstoassesspotentialtemporalvariation.Whereseasonaleagleconcentrationswere

Page 113: Appendix E Eagle Conservation Plan Guidance

97

identifiedintheStage2assessment,samplingprotocolsshouldtaketheseperiodicpulsesinabundanceintoaccountinthesampledesign.Carcasssearchesunderestimateactualmortalitiesatwindturbines,butwithappropriatesampling,carcasscountscanbeadjustedtoaccountforbiasesindetection(Kunzetal.2007,Arnettetal.2007,NRC2007,Huso2010).Importantsourcesofbiasanderrorinclude:(1)loworhighlyvariablefatalityrates;(2)carcassremovalbyscavengers;(3)differencesinsearcherefficiency;(4)failuretoaccountfortheinfluenceofsite(e.g.,vegetative)conditionsinrelationtocarcassremovalandsearcherefficiency;and(5)fatalitiesorinjuredbirdsthatmaylandormoveoutsidesearchplots.Stricklandetal(2011)provideaconciseoverviewoffatalitypredictionmodelsandconsiderationsintheselectionofamodel.Inthecaseofeagles,aprimaryconsiderationintheselectionofamodelandinthesamplingdesignistherelativerarityofcollisions,evenatsiteswherefatalityratesarecomparativelyhigh.Regardlessoftheapproachselected,werecommendthefollowingdatabecollectedforeachsearch:

1. Date.2. Starttime.3. Endtime.4. Intervalsincelastsearch.5. Observer.6. Whichturbineareawassearched(includingdecimal‐degreelatitudelongitudeorUTM

coordinatesanddatum).7. Weatherdataforeachsearch,includingtheweatherfortheintervalsincethelastsearch.8. GPStrackofthesearchpath.

Whenadeadeagleisfound,thefollowinginformationshouldberecordedonafatalitydatasheet:

1. Date.2. Species.3. Ageandsex(followingcriteriainPyle2008)whenpossible.4. Bandnumberandnotationifwearingaradio‐transmitterorauxiliarymarker.5. Observername.6. Turbineorpolenumberorotheridentifyingcharacter.7. Distanceofthecarcassfromtheturbineorpole.8. Azimuthofthecarcassfromtheturbineorpole.9. Decimal‐degreelatitudelongitudeorUTMcoordinatesoftheturbineorpoleandcarcass.10. Habitatsurroundingthecarcass.11. Conditionofthecarcass(entire,partial,scavenged).12. Descriptionofthecarcass(e.g.,intact,wingsheared,inmultiplepieces).13. Aroughestimateofthetimesincedeath(e.g.,<1day,>aweek),andhowestimated.14. Adigitalphotographofthecarcass.15. Informationoncarcassdisposition.

Insomecases,eagletakepermitsmayspecifyotherbiologicalmaterialsordatathatshouldbecollectedfromeaglecarcasses(e.g.,feathers,tissuesamples).Rubberglovesshouldbeusedtohandleallcarcassestoeliminatepossiblediseasetransmission.Alleaglefatalities(notjustthosefoundonpost‐constructionsurveys)andassociatedinformationshouldbeimmediatelyreportedtotheService’sOfficeofLawEnforcementandtotheService’smigratorybirdpermitissuingofficeifthefacilityisoperatingunderaneagletakepermit.Eaglecarcassesshouldnotbemoveduntilsuchnotificationoccurs,afterwhichcarcassdispositionshouldbeinaccordancewithpermitconditionsorServicedirection.

Page 114: Appendix E Eagle Conservation Plan Guidance

98

2. Disturbance Monitoring ProjectdevelopersoroperatorsmayalsoberequiredtomonitormanyoftheeaglenestingterritoriesandcommunalroostsitesidentifiedintheStage2assessmentsasstatedinthepermitregulationsat50CFR22.26(c)(2)foratleasttwoyearsafterprojectconstructionandforuptothreeyearsafterthecessationoftheactivity.Theobjectiveofsuchmonitoringwillbetodeterminepost‐construction(1)territoryorroostoccupancyrates,(2)nestsuccessrates,and(3)productivity.Onaproject‐by‐projectbasis,changesinanyofthesereproductivemeasuresmaynotbeindicativeofdisturbance.However,patternsmaybecomeapparentwhentheServiceandUSGSpooldataappropriatelyandanalyzefindingsfrommanyprojectsinthecontextofameta‐analysiswithintheadaptivemanagementframework.Eaglenestingterritoriesmostlikelytobeaffectedbydisturbancefromawindprojectarethosethathaveuseareaswithinoradjacenttotheprojectfootprint.TheServicewillacceptanassumptionthatalleaglepairsatorwithinthemeanproject‐areainter‐nestdistance(asdeterminedfromtheStage2assessment)oftheprojectboundaryareterritoriesthatmaybeatriskofdisturbance(e.g.,ifthemeannearest‐neighbordistancebetweensimultaneouslyoccupiedeagleterritoriesintheStage2assessmentis2miles,wewouldexpectdisturbancetomostlikelyaffecteagleswithin2milesoftheprojectboundary;FiguresH‐1thoughH‐4).Eaglepairsnestingwithin½theproject‐areameanintern‐nestdistancearethehighestcandidatesfordisturbanceeffects,andshouldreceivespecialattentionandconsideration.Wherenestinghabitatispatchyoreaglenestingdensityislowsuchthatnearest‐neighborsareoutsidea10‐milewideperimeteroftheprojectfootprint,werecommendeither:(1)extendingtheproject‐areasurveyoutwardtoincludethenearest‐neighborsforthepurposesofestimatingthemeaninter‐nestdistancevalue,or(2)undertakingdetailedobservationalstudiesoftheeaglesoccupyingterritorieswithinthetypicalproject‐areatoassessusepatternsandrangingbehaviorrelativetotheprojectfootprint.Werecognizethatselectingoption(1)forgoldeneagleswouldextendtheprojectareabeyondthemaximumof10milesadvocatedintheECPG,butinsomeareasitispossiblegoldeneaglesusingnestsfurtherthan10milesfromtheprojectfootprintmayoccurthere.Regardlessofwhichapproachisused,territoriesthatmeetthisdistancecriterionshouldbere‐sampledannuallyfornolessthantwoyearsaftertheprojectisoperationalfollowingidenticalsurveyandreportingproceduresaswereusedintheStage2assessment.Ifsuchmonitoringshowsstrongevidenceofdirectdisturbancefromaproject,projectdevelopersoroperatorsandtheServicewillconsideradditionalconservationmeasuresandACPsthatmightbeeffectiveinreducingtheeffect.Suchmeasureswouldbewithinthesideboardsestablishedatthetimeofpermitissuance.Alternatively,theprojectdeveloperoroperatormayberequiredtoprovidecompensatorymitigationtooffsettheestimateddecreasesinproductivitytotheextentnecessarytomeetthestatutoryrequirementtopreserveeagles.TheServiceandtheprojectdeveloperoroperatorshouldagreeonasite‐specific,post‐constructionsurveyprotocolforeagleconcentrationareasidentifiedinStage2andmakeanaprioridecisiononhowtointerpretandactonpotentialoutcomes.Mortalitiesofeaglesusingproximatecommunalroostswillbeaccountedforthroughtheprotocolformonitoringpost‐constructionfatalities.However,ifcommunalroostsarenolongerusedbyeaglesbecauseofdisturbance,thateffectshouldbedetermined,evaluated,andwherepopulation‐leveleffectsareindicated,mitigated.

Page 115: Appendix E Eagle Conservation Plan Guidance

99

3. Comparison of Post-Construction Eagle Use with Pre-Construction Use Asnotedelsewhere,Servicefatalitymodelsassumeeagleuseoftheprojectfootprintdoesnotchangeasaresultofprojectdevelopment.However,thereislittleinformationtosupportthisassumption,andtheabilitytoaccuratelypredictfatalityratescouldbegreatlyimprovedbycomparativeinformationonpost‐constructioneagleuse.TheServiceencouragesprojectdevelopersoroperatorstoconsiderconductingexposuresurveyssimilarindesignandintensitytopre‐constructionsurveyworktotestthisassumptionwhereandwhenfeasible.Literature Cited Arnett,E.B.2006.Apreliminaryevaluationontheuseofdogstorecoverbatfatalitiesatwind

energyfacilities.WildlifeSocietyBulletin34(5):1440–1445.Huso,M.M.P.2010.Anestimatorofwildlifefatalityfromobservedcarcasses.EnvironmetricsDOI:

10.1002/env.1052.Kochert,M.N.,K.Steenhof,C.L.Mcintyre,andE.H.Craig.2002.Goldeneagle(Aquilachrysaetos).

TheBirdsofNorthAmericaNo.684(A.Poole,Ed.).TheBirdsofNorthAmericaOnline.CornellLabofOrnithology,Ithaca,NewYork,USA.http://bna.birds.cornell.edu/bna/species/684.

Kunz,T.H.,E.B.Arnett,B.M.Cooper,W.P.Erickson,R.P.Larkin,T.Mabee,M.L.Morrison,M.D.Strickland,andJ.M.Szewczak.2007.Assessingimpactsofwind‐energydevelopmentonnocturnallyactivebirdsandbats:aguidancedocument.JournalofWildlifeManagement71:2449‐2486.

NationalResearchCouncil(NRC).2007.Environmentalimpactsofwind‐energyprojects.NationalAcademiesPress.Washington,D.C.,USA.www.nap.edu.

Strickland,M.D.,E.B.Arnett,W.P.Erickson,D.H.Johnson,G.D.Johnson,M.L.,Morrison,J.A.Shaffer,andW.Warren‐Hicks.2011.ComprehensiveGuidetoStudyingWindEnergy/WildlifeInteractions.PreparedfortheNationalWindCoordinatingCollaborative,Washington,D.C.,USA.

Figures H-1 to H-4 (following pages). Suggested approach for determining project-area and identifying eagle nesting territories to monitor for disturbance effects during Stage 5.

Page 116: Appendix E Eagle Conservation Plan Guidance

100

Page 117: Appendix E Eagle Conservation Plan Guidance

101

Page 118: Appendix E Eagle Conservation Plan Guidance

102

Page 119: Appendix E Eagle Conservation Plan Guidance

103

Page 120: Appendix E Eagle Conservation Plan Guidance

U.S. Fish and Wildlife Service Division of Migratory Bird Management

April 2013