appendix a spherical harmonic functions and wigner 3-j symbols978-3-642-23029-5/1.pdf · appendix a...

37
Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols Spherical Harmonic Functions According to the Rodrigues formula, the Legendre polynomial of order l is given by P l .z/ D 1 2 l d l d z l .z 2 1/ l for jzj <1: (A.1) By using Legendre polynomials, the associate Legendre function of order .l;m/ is defined by P m l .z/ D 1 z 2 m 2 d m d z m P l .z/ for l = m = 0: (A.2) Here we define function lm ./ D 8 ˆ ˆ ˆ ˆ ˆ < ˆ ˆ ˆ ˆ ˆ : .1/ m i l s 2l C 1 2 .l m/Š .l C m/Š P m l .cos / for m = 0; i l s 2l C 1 2 .l jmj.l CjmjP jmj l .cos / for m<0; (A.3) where the phase factor i l is introduced (after Landau and Lifshitz 2003, p. 91). This phase factor is the most natural choice from the viewpoint of the theory of the addition of angular momenta. By using lm ./ and ˚ m .'/ D 1 p 2 e im' ; (A.4) we define the normalized spherical harmonic function as Y lm .;'/ D lm ./˚ m .'/; (A.5) H. Sato et al., Seismic Wave Propagation and Scattering in the Heterogeneous Earth: Second Edition, DOI 10.1007/978-3-642-23029-5, © Springer-Verlag Berlin Heidelberg 2012 457

Upload: others

Post on 06-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

Appendix ASpherical Harmonic Functions and Wigner 3-jSymbols

Spherical Harmonic Functions

According to the Rodrigues formula, the Legendre polynomial of order l is given by

Pl.z/ D 1

2l lŠ

d l

d zl.z2 � 1/l for jzj < 1: (A.1)

By using Legendre polynomials, the associate Legendre function of order .l;m/ isdefined by

Pml .z/ D �

1 � z2�m2dm

d zmPl .z/ for l = m = 0: (A.2)

Here we define function

�lm .�/ D

8ˆˆ<

ˆˆ:

.�1/m i ls2l C 1

2

.l �m/Š

.l Cm/ŠPml .cos �/ for m = 0;

i l

s2l C 1

2

.l � jmj/Š

.l C jmj/Š Pjmjl .cos �/ for m < 0;

(A.3)

where the phase factor i l is introduced (after Landau and Lifshitz 2003, p. 91).This phase factor is the most natural choice from the viewpoint of the theory of theaddition of angular momenta. By using�lm.�/ and

˚m .'/ D 1p2�eim'; (A.4)

we define the normalized spherical harmonic function as

Ylm .�; '/ D �lm .�/˚m .'/ ; (A.5)

H. Sato et al., Seismic Wave Propagation and Scattering in the Heterogeneous Earth:Second Edition, DOI 10.1007/978-3-642-23029-5,© Springer-Verlag Berlin Heidelberg 2012

457

Page 2: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

458 A Spherical Harmonic Functions and Wigner 3-j Symbols

where we note that

Y �l;m .�; '/ D .�1/l�m Yl;�m .�; '/ : (A.6)

Normalized spherical harmonic functions satisfy the orthonormal relation:

I

Y �l1m1

.�; '/ Yl2m2 .�; '/ d˝ .�; '/ D ıl1l2ım1m2; (A.7)

where d˝ .�; '/ D sin �d�d' is an infinitesimal solid angle element. The sphericalharmonic closure relation (Arfken and Weber 1995) gives the delta function for thesolid angle as

ı˝�xI x0� D ı˝

��; 'I � 0; ' 0� D

1X

lD0

lX

mD�lYlm .�; '/ Y

�lm

�� 0; ' 0�

D1X

lD0

lX

mD�lY �lm .�; '/ Ylm

�� 0; ' 0� ;

(A.8)

where x D .r; �; '/ and x0 D .r 0; � 0; ' 0/ in spherical coordinates. We note that

I

ı˝��; 'I � 0; ' 0� d˝

�� 0; ' 0� D 1;

I

f�� 0; ' 0�ı˝

��; 'I � 0; ' 0� d˝

�� 0; ' 0� D f .�; '/ ;

(A.9)

for any function f .�; '/.

Addition Theorem and Expansion Formulas

The addition theorem holds for Legendre polynomials:

Pl .cos / D 4�

2l C 1

lX

mD�lYlm .�; '/ Y

�lm

�� 0; ' 0�

D 4�

2l C 1

lX

mD�lY �lm .�; '/ Ylm

�� 0; ' 0� ; (A.10)

where D cos � cos � 0 C sin � sin � 0 cos .' � ' 0/.There is an expansion formula by using spherical harmonic functions (see

Gradshteyn and Ryzhik 2007, p. 941):

Page 3: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

A Spherical Harmonic Functions and Wigner 3-j Symbols 459

eikr cos D1X

lD0i l .2l C 1/jl .kr/Pl .cos /

D 4�

1X

lD0i ljl .kr/

lX

mD�lYlm .�; '/ Y

�lm

�� 0; ' 0� ; (A.11)

where jl .z/ D p�=.2z/ JlC1=2 .z/ is the spherical Bessel function. We note that

jl .�z/ D .�1/l jl .z/.Suppose that r1, r2 and r3 are the sides of a triangle that the angle between the

sides r1 and r2 is equal to , where > 0 and r3 Dpr21 C r22 � 2r1r2 cos . There

is another expansion formula (see Gradshteyn and Ryzhik 2007, p. 940):

eikr3

r3D �i

2pr1r2

1X

lD0.2l C 1/ JlC 1

2.kr1/H

.1/

lC 12

.kr2/Pl .cos /

D i

1X

lD0.2l C 1/ jl .kr1/ h

.1/

l .kr2/Pl .cos / for r1 > r2; (A.12)

where h.1/l .z/ D p�=.2z/H.1/

lC1=2 .z/ is the spherical Hankel function of the firstkind. It’s imaginary part is

sin kr3r3

D1X

lD0.2l C 1/ jl .kr1/ jl .kr2/ Pl .cos / (A.13)

since h.1/l .z/ D jl .z/C i nl .z/.

Wigner 3-j Symbols

The integral of three spherical harmonic functions is written by using the Wigner3-j symbols (Landau and Lifshitz 2003, p. 444):

.Ylm/l 0m0

l 00m00 �I

Y �l 0m0 .�; '/ Ylm .�; '/ Yl 00m00 .�; '/ d˝ .�; '/

D .�1/m0

i l�l 0Cl 00l 0 l l 00

�m0 m m00�

l 0 l l 000 0 0

�p

14�

�2l 0 C 1

�.2l C 1/

�2l 00 C 1

�:

(A.14)

Page 4: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

460 A Spherical Harmonic Functions and Wigner 3-j Symbols

The above integral vanishes except whenm0 D mCm00 and jl � l 00j � l 0 � jl C l 00j(the triangular condition) according to the selection rules corresponding to theaddition of angular momenta. Then, lCl 0 Cl 00 is even. Wigner 3-j symbols are purereal. There are published programs for the numerical computation of the Wigner 3-jsymbols (Shriner and Thompson 1993; Wolfram 1991).

Page 5: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References

Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulas, graphs, andmathematical tables. Dover, New York

Abubakirov IR, Gusev AA (1990) Estimation of scattering properties of lithosphere of Kamchatkabased on Monte-Carlo simulation of record envelope of a near earthquake. Phys Earth PlanetInter 64:52–67, DOI 10.1016/0031-9201(90)90005-I

Adams DA, Abercrombie RE (1998) Seismic attenuation above 10 Hz in southern California fromcoda waves recorded in the Cajon Pass borehole. J Geophys Res 103:24,257–24,270, DOI10.1029/98JB01757

Akamatsu J (1991) Coda attenuation in the Lutzow-Holm Bay region, East Antarctica. Phys EarthPlanet Inter 67:65–75, DOI 10.1016/0031-9201(91)90060-U

Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference tomicrotremors. Bull Earthq Res Inst Univ Tokyo 35:415–456

Aki K (1967) Scaling law of the seismic spectrum. J Geophys Res 72:1217–1231, DOI 10.1029/JZ072i004p01217

Aki K (1969) Analysis of seismic coda of local earthquakes as scattered waves. J Geophys Res74:615–631, DOI 10.1029/JB074i002p00615

Aki K (1973) Scattering of P waves under the Montana LASA. J Geophys Res 78:1334–1346,DOI 10.1029/JB078i008p01334

Aki K (1980a) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz.Phys Earth Planet Inter 21:50–60, DOI 10.1016/0031-9201(80)90019-9

Aki K (1980b) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res85:6496–6504, DOI 10.1029/JB085iB11p06496

Aki K (1981) Attenuation and scattering of short-period seismic waves in the lithosphere, inIdentification of Seismic Sources - Earthquake or Underground Explosion (eds. E. S. Husebyeand S. Mykkeltveit), D. Reidel, Dordrecht, Holland, pp 515–541

Aki K (1982) Scattering and attenuation. Bull Seism Soc Am 72:S319–S330Aki K (1992) Scattering conversions P to S versus S to P. Bull Seism Soc Am 82:1969–1972Aki K (1995) Interrelation between fault zone structures and earthquake processes. Pure Appl

Geophys 145:647–676, DOI 10.1007/BF00879594Aki K (2009) Seismology of earthquake and volcano prediction (English and Chinese translation).

Science Press, ChinaAki K, Chouet B (1975) Origin of coda waves: Source, attenuation and scattering effects.

J Geophys Res 80:3322–3342, DOI 10.1029/JB080i023p03322Aki K, Lee WHK (1976) Determination of three-dimensional velocity anomalies under a seismic

array using first P arrival times from local earthquakes, Part I. A homogeneous initial model.J Geophys Res 81:4381–4399, DOI 10.1029/JB081i023p04381

H. Sato et al., Seismic Wave Propagation and Scattering in the Heterogeneous Earth:Second Edition, DOI 10.1007/978-3-642-23029-5,© Springer-Verlag Berlin Heidelberg 2012

461

Page 6: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

462 References

Aki K, Richards P (1980) Quantitative seismology - theory and methods, vols. 1 and 2. W. H.Freeman, San Francisco

Aki K, Tsujiura M (1959) Correlation study of near earthquake waves. Bull Earthq Res Inst UnivTokyo 37:207–232

Aki K, Christoffersson A, Husebye ES (1976) Three-dimensional seismic structure of thelithosphere under Montana LASA. Bull Seism Soc Am 66:501–524

Aki K, Christoffersson A, Husebye ES (1977) Determination of the three-dimensional seismicstructure of the lithosphere. J Geophys Res 82:277–296, DOI 10.1029/JB082i002p00277

Akinci A, Eyidogan H (2000) Scattering and anelastic attenuation of seismic energy in the vicinityof north Anatolian fault zone, eastern Turkey. Phys Earth Planet Inter 122:229–239, DOI 10.1016/S0031-9201(00)00196-5

Akinci A, Pezzo ED, Ibanez JM (1995) Separation of scattering and intrinsic attenuation insouthern Spain and western Anatolia (Turkey). Geophys J Int 121:337–353, DOI 10.1111/j.1365-246X.1995.tb05715.x

Alford RM, Kelly K, Boore D (1974) Accuracy of finite-difference modeling of the acoustic waveequation. Geophysics 39:834–842, DOI 10.1190/1.1440470

Aminzadeh F, Burkhard N, Rocca F, Wyatt K (1994) SEG/EAEG 3-D modeling project: 2ndupdate. Leading Edge 13:949–952, DOI 10.1190/1.1437054

Anderson DL, Hart RS (1978) Q of the Earth. J Geophys Res 83:5869–5882, DOI 10.1029/JB083iB12p05869

Anderson DL, Ben-Menahem A, Archambeau CB (1965) Attenuation of seismic energy in theupper mantle. J Geophys Res 70:1441–1448, DOI 10.1029/JZ070i006p01441

Antolik M, Nadeau R, Aster RC, McEvilly TV (1996) Differential analysis of coda Q using similarmicroearthquakes in seismic gaps. Part 2: Application to seismograms recorded by the Parkfieldhigh resolution seismic network. Bull Seism Soc Am 86:890–910

Apresyan LA, Kravtsov YA (1996) Radiation Transfer: Statistical and Wave Aspects. Gordon andBreach Science Publishers, Amsterdam

Arfken GB, Weber HJ (1995) Mathematical methods for physicists, Fourth Edition. AcademicPress, San Diego

Asano Y, Hasegawa A (2004) Imaging the fault zones of the 2000 western Tottori earthquake bya new inversion method to estimate three-dimensional distribution of the scattering coefficient.J Geophys Res 109:B06306, DOI 10.1029/2003JB002761

Aster CR, Slad G, Henton J, Antolik M (1996) Differential analysis of coda Q using similarmicroearthquakes in seismic gaps. Part 1: Techniques and application to seismograms recordedin the Anza Seismic Gap. Bull Seism Soc Am 86:868–889

Atkinson G, Boore D (1995) Ground-motion relations for eastern North America. Bull Seism SocAm 85(1):17–30

van Avendonk H, Snieder R (1994) A new mechanism for shape induced seismic anisotropy. WaveMotion 20(1):89–98, DOI 10.1016/0165-2125(94)90034-5

Azimi S, Kalinin A, Kalinin V, Pivovarov B (1968) Impulse and transient characteristics of mediawith linear and quadratic absorption laws. Izv Phys Solid Earth 2:88–93

Badi G, Pezzo ED, Ibanez JM, Bianco F, Sabbione N, Araujo M (2009) Depth dependent seismicscattering attenuation in the Nuevo Cuyo region (southern central Andes). Geophys Res Lett36:L24307, DOI 10.1029/2009GL041081

Baig AM, Dahlen FA, Hung SH (2003) Traveltimes of waves in three-dimensional random media.Geophys J Int 153:467–482, DOI 10.1046/j.1365-246X.2003.01905.x

Baisch S, Bokelmann G (2001) Seismic waveform attributes before and after the Loma Prietaearthquake: Scattering change near the earthquake and temporal recovery. J Geophys Res106(B8):16,323, DOI 10.1029/2001JB000151

Bakun WH, Lindh AG (1977) Local magnitudes, seismic moments and coda durations forearthquakes near Oroville, California. Bull Seism Soc Am 67:615–629

Bakun WH, Bufe CG, Stewart RM (1976) Body-wave spectra of Central California earthquakes.Bull Seism Soc Am 66:363–384

Page 7: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 463

Barabanenkov YN, Kravtsov YA, Rytov SM, Tamarskii VI (1971) Status of the theory ofpropagation of waves in randomly inhomogeneous medium. Soviet Phys Usp (Eng Trans)13:551–680

Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor & FrancisGroup

Battaglia J, Aki K (2003) Location of seismic events and eruptive fissures on the Piton de laFournaise volcano using seismic amplitudes. J Geophys Res 108(B8):2364, DOI 10.1029/2002JB002193

Beaudet PR (1970) Elastic wave propagation in heterogeneous media. Bull Seism Soc Am 60:769–784

Ben-Menahem A, Singh AJ (1981) Seismic waves and sources. Springer, New YorkBenites R, Aki K, Yomogida K (1992) Multiple scattering of SH waves in 2-D media with many

cavities. Pure Appl Geophys 138:353–390, DOI 10.1007/BF00876878Benz HM, Frankel A, Boore DM (1997) Regional Lg attenuation for the continental United States.

Bull Seism Soc Am 87:606–619Beroza GC, Cole AT, Ellsworth WL (1995) Stability of coda wave attenuation during the

Loma Prieta, California earthquake sequence. J Geophys Res 100:3977–3987, DOI 10.1029/94JB02574

Berteussen AK, Christoffersson A, Husebye ES, Dahle A (1975) Wave scattering theory in analysisof P-wave anomalies observed at NORSAR and LASA. Geophys J R Astron Soc 42:403–417,DOI 10.1111/j.1365-246X.1975.tb05869.x

Bianco F, Pezzo ED, Castellano M, Ibanez J, Luccio FD (2002) Separation of intrinsic and scat-tering seismic attenuation in the Southern Apennine zone, Italy. Geophys J Int 150(1):10–22,DOI 10.1046/j.1365-246X.2002.01696.x

Bianco F, Pezzo ED, Malagnini L, Luccio FD, Akinci A (2005) Separation of depth-dependentintrinsic and scattering seismic attenuation in the northeastern sector of the Italian Peninsula.Geophys J Int 161(1):130–142, DOI 10.1111/j.1365-246X.2005.02555.x

Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range. J Acoust Soc Am 28:168–178, DOI 10.1121/1.1908239

Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II.Higher frequency range. J Acoust Soc Am 28:179–191, DOI 10.1121/1.1908241

Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars, Part 1. J Geophys Res65:1083–1102, DOI 10.1029/JZ065i004p01083

Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, Part 2. J Geophys Res66:2199–2224, DOI 10.1029/JZ066i007p02199

Biswas NN, Aki K (1984) Characteristics of coda waves: Central and south central Alaska. BullSeism Soc Am 74:493–507

Block LV, Cheng CH, Fehler MC, Phillips WS (1994) Seismic imaging using microearthquakesinduced by hydraulic fracturing. Geophysics 59:102–112

Boettcher AL (1977) The role of amphiboles and water in circum-Pacific volcanism, in highpressure research (eds., M. H. Manghnani and S. Akimoto), Academic Press, New York, pp107–125

Braile L, Keller GR, Mueller S, Prodehl C (1995) Seismic techniques, in continental rifts:evolution, structure, tectonics (ed. K. Olsen), Elsevier, New York, pp 61–92

Brenguier F, Campillo M, Hadziioannou C, Shapiro N, Nadeau R, Larose E (2008) Postseismicrelaxation along the San Andreas Fault at Parkfield from continuous seismological observations.Science 321(5895):1478, DOI 10.1126/science.1160943

Brockman SR, Bollinger GA (1992) Q estimates along the Wasatch front in Utah derived from Sgand Lg wave amplitudes. Bull Seism Soc Am 82:135–147

Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. JGeophys Res 75:4997–5009, DOI 10.1029/JB075i026p04997

Butler R, McCreery CS, Frazer LN, Walker DA (1987) High-frequency seismic attenuation ofoceanic P and S waves in the western Pacific. J Geophys Res 92:1383–1396, DOI 10.1029/JB092iB02p01383

Page 8: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

464 References

Campillo M, Paul A (1992) Influence of the lower crustal structure on the early coda of regionalseismograms. J Geophys Res 97:3405–3416, DOI 10.1029/91JB02714

Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science299(5606):547–549, DOI 10.1126/science.1078551

Campillo M, Plantet JL (1991) Frequency dependence and spatial distribution of seismic atten-uation in France: Experimental results and possible interpretations. Phys Earth Planet Inter67:48–64, DOI 10.1016/0031-9201(91)90059-Q

Capon J (1974) Characterization of crust and upper mantle structure under LASA as a randommedium. Bull Seism Soc Am 64:235–266

Carcole E, Sato H (2010) Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time WindowAnalysis of Hi-net data. Geophys J Int 180:268–290, DOI 10.1111/j.1365-246X.2009.04394.x

Carcole E, Ugalde A (2008) Formulation of the multiple anisotropic scattering process in twodimensions for anisotropic source radiation. Geophys J Int 174(3):1037–1051, DOI 10.1111/j.1365-246X.2008.03896.x

Carpenter PJ, Sanford AR (1985) Apparent Q for upper crustal rocks of the Central Rio GrandeRift. J Geophys Res 90:8661–8674, DOI 10.1029/JB090iB10p08661

Castro R, Monachesi G, Mucciarelli M, Trojani L, Pacor F (1999) P-and S-wave attenuation inthe region of Marche, Italy. Tectonophysics 302(1-2):123–132, DOI 10.1016/S0040-1951(98)00277-7

Cerveny V (1987) Ray tracing algorithms in three-dimensional laterally varying layered structures,in Seismic Tomography (ed. G. Nolet), D. Reidel, Boston, pp 99–133

Cerveny V, Ravindra R (1971) Theory of seismic head waves. University Toronto Press, TrontoChandrasekhar S (1960) Radiative transfer. Dover, New YorkChapman CH (1987) The Radon transform and seismic tomography, in Seismic Tomography

(ed. G. Nolet), D. Reidel, Boston, pp 25–48Chen J, Schuster G (1999) Resolution limits of migrated images. Geophysics 64:1046–1053, DOI

10.1190/1.1444612Chen X, Aki K (1991) General coherence functions for amplitude and phase fluctuations in a

randomly heterogeneous medium. Geophys J Int 105:155–162, DOI 10.1111/j.1365-246X.1991.tb03451.x

Chernov LA (1960) Wave Propagation in a Random Medium (Engl. trans. by R. A. Silverman).McGraw-Hill, New York

Chin BH, Aki K (1991) Simultaneous study of the source path and site effects on strong groundmotion during the 1989 Loma Prieta earthquake: A preliminary result on pervasive nonlinearsite effects. Bull Seism Soc Am 81:1859–1884

Christensen N (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156, DOI10.1029/95JB03446

Christensen N, Mooney W (1995) Seismic velocity structure and composition of the continentalcrust: A global view. J Geophys Res 100:9761–9788, DOI 10.1029/95JB00259

Christensen NI (1968) Chemical changes associated with upper mantle structure. Tectonophysics6:331–342, DOI 10.1016/0040-1951(68)90048-6

Chung T, Sato H (2001) Attenuation of high-frequency P and S waves in the crust of southeasternSouth Korea. Bull Seism Soc Am 91(6):1867–1874, DOI 10.1785/0120000268

Claerbout JF (1985) Imaging the Earth’s interior. Blackwell Science, BostonCleary JR, Haddon RAW (1972) Seismic Wave Scattering near the Core-Mantle Boundary: a New

Interpretation of Precursors to PKP. Nature 240:549–551, DOI 10.1038/240549a0Conrad V (1925) Laufzeitkurven des Tauernbebens vom 28. November, 1923. Mitt Erdb Komm

Wien Akad Wiss 59:1–23Cormier V (1995) Time-domain modelling of PKIKP precursors for constraints on the heterogene-

ity in the lowermost mantle. Geophys J Int 121(3):725–736, DOI 10.1111/j.1365-246X.1995.tb06434.x

Page 9: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 465

Crosson R (1976) Crustal structure modeling of earthquake data 1. Simultaneous least squaresestimation of hypocenter and velocity parameters. J Geophys Res 81:3036–3046, DOI 10.1029/JB081i017p03036

Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K (2006) Seismic interferometry-turning noiseinto signal. Leading Edge 25(9):1082–1092, DOI 10.1190/1.2349814

Dainty AM, Toksoz M, Anderson K, Pines P, Nakamura Y, Latham G (1974) Seismic scatteringand shallow structure of the Moon in Oceanus Procellarum. Earth Moon Planets 9(1):11–29,DOI 10.1007/BF00565388

Dainty AM (1984) High-frequency acoustic backscattering and seismic attenuation. J Geophys Res89:3172–3176, DOI 10.1029/JB089iB05p03172

Dainty AM, Toksoz MN (1981) Seismic codas on the Earth and the Moon: a comparison. PhysEarth Planet Inter 26:250–260, DOI 10.1016/0031-9201(81)90029-7

Deans S (1983) The radon transform and some of its applications. Wiley, New YorkDel Pezzo E (2008) Seismic wave scattering in volcanoes. In: Sato H, Fehler MC (eds) Earth

heterogeneity and scattering effects on seismic waves, advances in geophysics (Series Ed. R.Dmowska), vol 50, Academic Press, New York, Chap. 13, pp 353–373

Der AZ, Marshall ME, O’Donnell A, McElfresh TW (1984) Spatial coherence structure andattenuation of the Lg phase, site effects, and interpretation of the Lg coda. Bull Seism SocAm 74:1125–1147

Derode A, Larose E, Campillo M, Fink M (2003) How to estimate the Green’s function of aheterogeneous medium between two passive sensors? Application to acoustic waves. Appl PhysLett 83:3054

Devaney AJ (1982) A filtered backpropagation algorithm for diffraction tomography. UltrasonicImaging 4:336–350, DOI 10.1016/0161-7346(82)90017-7

Dewberry SR, Crosson RS (1995) Source scaling and moment estimation for the Pacific Northwestseismograph network using S-coda amplitudes. Bull Seism Soc Am 85:1309–1326

Dubendorff B, Menke W (1986) Time-domain apparent-attenuation operators for compressionaland shear waves: Experiment versus single scattering theory. J Geophys Res 91:14,023–14,032,DOI 10.1029/JB091iB14p14023

Dutta U, Biswas N, Adams D, Papageorgiou A (2004) Analysis of S-wave attenuation in South-Central Alaska. Bull Seism Soc Am 94(1):16–28, DOI 10.1785/0120030072

Duvall T, Scherrer P, Bogart R, Bush R, De forest C, Hoeksema J, Schou J, Saba J, Tarbell T,Title A, et al (1997) Time-distance helioseismology with the MDI instrument: initial results.Solar Phys 170(1):63–73, DOI 10.1023/A:1004907220393

Dziewonski A, Anderson D (1981) Preliminary reference Earth model. Phys Earth Planet Inter25(4):297–356, DOI 10.1016/0031-9201(81)90046-7

Dziewonski AM (1979) Elastic and anelastic structure of the earth. Rev Geophys Space Phys17:303–312, DOI 10.1029/RG017i002p00303

Einspruch NG, Witterholt EJ, Truell R (1960) Scattering of a plane transverse wave by a sphericalobstacle in an elastic medium. J Appl Phys 31:806–819, DOI 10.1063/1.1735701

Ellsworth WL (1991) Review for ”Temporal change in scattering and attenuation associated withthe earthquake occurrence - A review of recent studies on coda waves (H. Sato)”, in Evaluationof Proposed Earthquake Precursors (ed. M. Wyss), AGU, Washington, D. C., pp 54–55

Emoto K, Sato H, Nishimura T (2010) Synthesis of Vector-Wave Envelopes on the Free Surfaceof a Random Medium for the vertical incidence of a Plane Wavelet Based on the MarkovApproximation. J Geophys Res 115:B08306, DOI 10.1029/2009JB006955

Etgen J, Gray S, Yu Z (2009) An overview of depth imaging in exploration geophysics. Geophysics74(6):0016–8033, DOI 10.1190/1.3223188

Fang Y, Muller G (1996) Attenuation operators and complex wave velocities for scattering inrandom media. Pure Appl Geophys 148:269–285, DOI 10.1007/BF00882063

Fedotov SA, Boldyrev SA (1969) Frequency dependence of the body-wave absorption in the crustand the upper mantle of the Kuril Island chain. Izv Acad Sci USSR (Engl trans Phys SolidEarth) 9:17–33

Page 10: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

466 References

Fehler M (2008) SEAM Advanced Modeling Project [SEAM]: Phase I update. Leading Edge27:258–259

Fehler M (2010) SEG Advanced Modeling Project: completion of Phase I acoustic simulations.Leading Edge 29:640–642

Fehler M, Phillips WS (1991) Simultaneous inversion for Q and source parameters ofmicroearthquakes accompanying hydrofracturing in granitic rock. Bull Seism Soc Am 81:553–575

Fehler M, Roberts P, Fairbanks T (1988) A temporal change in coda wave attenuation observedduring an eruption of Mount St. Helens. J Geophys Res 93:4367–4373, DOI 10.1029/JB093iB05p04367

Fehler M, Hoshiba M, Sato H, Obara K (1992) Separation of scattering and intrinsic attenuationfor the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentraldistance. Geophys J Int 108:787–800, DOI 10.1111/j.1365-246X.1992.tb03470.x

Fehler M, Sato H, L-J H (2000) Envelope broadening of outgoing waves in 2D random media:A comparison between the Markov approximation and numerical simulations. Bull Seism SocAm 90:914–928, DOI 10.1785/0119990143

Fei T, Fehler M, Hildebrand S (1995) Finite-difference solutions of the 3-D Eikonal equation. 65thAnnual Mtg, Soc Expl Geophys, Expanded Abstracts 95:1129–1132

Flatte SM, Wu RS (1988) Small-scale structure in the lithosphere and asthenosphere deduced fromarrival time and amplitude fluctuations at NORSAR. J Geophys Res 93:6601–6614, DOI 10.1029/JB093iB06p06601

Flatte SM, Dashen R, Munk WH, Watson KM, Zachariasen F (1979) Sound transmission througha fluctuating ocean. Cambridge University Press, New York

Foldy LL (1945) The multiple scattering of waves- I. General theory of isotropic scattering byrandomly distributed scatterers. Phys Rev 67:107–119, DOI 10.1103/PhysRev.67.107

Fountain DM, Christensen N (1989) Composition of the continental crust and upper mantle:A review, in Geophysical Framework of the Continental United States (eds., Pakiser, L.C. andW. Mooney), Geol. Soc. Am. Memoir 172, Geological Society of America, Boulder, Colo.,pp 711–742

Frankel A (1982) The effects of attenuation and site response on the spectra of microearthquakesin the northeastern Caribbean. Bull Seism Soc Am 72:1379–1402

Frankel A (1991) Review for “Observational and physical basis for coda precursor (Jin, A. andK. Aki)” in Evaluation of Proposed Earthquake Precursors (ed. M. Wyss), AGU, Washington,D. C., pp 51–53

Frankel A, Clayton RW (1986) Finite difference simulations of seismic scattering: Implications forthe propagation of short-period seismic waves in the crust and models of crustal heterogeneity.J Geophys Res 91:6465–6489, DOI 10.1029/JB091iB06p06465

Frankel A, Wennerberg L (1987) Energy-flux model of seismic coda: Separation of scattering andintrinsic attenuation. Bull Seism Soc Am 77:1223–1251

Frankel A, McGarr A, Bicknell J, Mori J, Seeber L, Cranswickz E (1990) Attenuation of high-frequency shear waves in the crust: Measurements from New York State, South Africa andSouthern California. J Geophys Res 95:17,441–17,457, DOI 10.1029/JB095iB11p17441

Frisch U (1968) Wave Propagation in random media, in Probabilistic Method in AppliedMathematics (Vol. I, ed. A. T. Bharucha-Reid), Academic Press, New York, pp 76–198

Fukushima Y, Nishizawa H, Sato H, Ohtake M (2003) Laboratory study on scattering characteris-tics of shear waves in rock samples. Bull Seism Soc Am 93:253–263, DOI 10.1785/0120020074

Furumura T, Kennett BL (2008) A scattering waveguide in the heterogeneous subducting plate.In: Sato H, Fehler MC (eds) Earth Heterogeneity and Scattering Effects on Seismic Waves,Advances in Geophysics (Series Ed. R. Dmowska), vol 50, Academic Press, New York, Chap. 7,pp 195– 217

Furumura T, Kennett BLN (2005) Subduction zone guided waves and the heterogeneity structureof the subducted plate: Intensity anomalies in northern Japan. J Geophys Res 110:B10302, DOI10.1029/2004JB003486

Page 11: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 467

Gagnepain-Beyneix J (1987) Evidence of spatial variations of attenuation in the western Pyreneanrange. Geophys J R Astron Soc 89:681–704, DOI 10.1111/j.1365-246X.1987.tb05187.x

Gerstoft P, Sabra K, Roux P, Kuperman W, Fehler M (2006) Green’s functions extraction andsurface-wave tomography from microseisms in southern California. Geophysics 71:SI23, DOI10.1190/1.2210607

Giampiccolo E, Gresta S, Rascona F (2004) Intrinsic and scattering attenuation from observedseismic codas in Southeastern Sicily (Italy). Phys Earth Planet Inter 145:55–66, DOI 10.1016/j.pepi.2004.02.004

Giampiccolo E, Tuve T, Gresta S, Patane D (2006) S-waves attenuation and separation ofscattering and intrinsic absorption of seismic energy in southeastern Sicily (Italy). GeophysJ Int 165:211–222, DOI 10.1111/j.1365-246X.2006.02881.x

Goff J, Holliger K (2003) Heterogeneity in the crust and upper mantle: nature, scaling, and seismicproperties. Kluwer Academic/Plenum, New York

Got JL, Poupinet G, Frechet J (1990) Changes in source and site effects compared to codaQ�1 temporal variations using microearthquakes doublets in California. Pure Appl Geophys134:195–228, DOI 10.1007/BF00876998

Gouedard P, Stehly L, Brenguier F, Campillo M, Colin de Verdiere Y, Larose E, Margerin L,Roux P, Sanchez-Sesma FJ, Shapiro NM, Weaver RL (2008a) Cross-correlation of randomfields: mathematical approach and applications. Geophys Prospecting 56(3):375–394, DOI10.1111/j.1365-2478.2007.00684.x

Gouedard P, Roux P, Campillo M, Verdel A (2008b) Convergence of the two-point correlation func-tion toward the Green’s function in the context of a seismic-prospecting data set. Geophysics73(6):V47

Goutbeek FH, Dost B, van Eck T (2004) Intrinsic absorption and scattering attenuation in thesouthern part of the Netherlands. J Seis 8:11–23, DOI 10.1023/B:JOSE.0000009511.27033.79

Gradshteyn IS, Ryzhik IM (1994) Table of integrals, series and products (5th Ed. in Engl., ed.A. Jeffrey). Academic Press, San Diego

Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series and products (7th Ed. in Engl., ed.A. Jeffrey and D. Zwillinger). Academic Press, San Diego

Gritto R, Korneev VA, Johnson LR (1995) Low-frequency elastic-wave scattering by an inclusion:Limits of applications. Geophys J Int 120:677–692, DOI 10.1111/j.1365-246X.1995.tb01845.

Gupta SC, Teotia SS, Rai SS, Gautam N (1998) Coda Q estimates in the Koyna region, India. PureAppl Geophys 153:713–731, DOI 10.1007/s000240050216

Gupta SC, Kumar A, Shukla AK, Suresh G, Baidya PR (2006) Coda Q in the Kachchh basin,western India using aftershocks of the Bhuj earthquake of January 26, 2001. Pure Appl Geophys136:1583–1595, DOI 10.1007/s00024-006-0086-2

Gusev AA (1995a) Baylike and continuous variations of the relative level of the late codaduring 24 years of observation on Kamchatka. J Geophys Res 100:20,311–20,319, DOI10.1029/95JB01571

Gusev AA (1995b) Vertical profile of turbidity and coda Q. Geophys J Int 123:665–672, DOI10.1111/j.1365-246X.1995.tb06882.x

Gusev AA, Abubakirov IR (1987) Monte-Carlo simulation of record envelope of a near earthquake.Phys Earth Planet Inter 49:30–36, DOI 10.1016/0031-9201(87)90130-0

Gusev AA, Lemzikov VK (1985) Properties of scattered elastic waves in the lithosphere ofKamchatka: Parameters and temporal variations. Tectonophysics 112:137–153, DOI 10.1016/0040-1951(85)90177-5

Gusev AA, Pavlov VM (1991) Deconvolution of squared velocity waveform as applied to studyof non-coherent short-period radiator in earthquake source. Pure Appl Geophys 136:236–244,DOI 10.1007/BF00876375

Gutenberg B (1956) The energy of earthquakes. Quart J Geol Soc London 112:1–14Haddon RAW, Husebye ES (1978) Joint interpretation of P-wave time and amplitude anomalies

in terms of lithospheric heterogeneities. Geophys J R Astron Soc 55:19–43, DOI 10.1111/j.1365-246X.1978.tb04746.x

Page 12: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

468 References

Hadley K (1976) Comparison of calculated and observed crack densities and seismic velocities inWesterly granite. J Geophys Res 81:3484–3494, DOI 10.1029/JB081i020p03484

Halliday D, Curtis A (2009) Seismic interferometry of scattered surface waves in attenuativemedia. Geophys J Int 178(1):419–446, DOI 10.1111/j.1365-246X.2009.04153.x

Haney MM, van Wijk K (2007) Modified Kubelka-Munk equations for localized waves inside alayered medium. Phys Rev E 75(3):36,601, DOI 10.1103/PhysRevE.75.036601

Hardy J, Pomeau Y, de Pazzis O (1973) Time evolution of two-dimensional model system,I: Invariant states and time correlation functions. J Math Phys 14:1746–1759, DOI 10.1063/1.1666248

Hartse H, Phillips WS, Fehler MC, House LS (1995) Single-station spectral discrimination usingcoda waves. Bull Seism Soc Am 85:1464–1474

Hartse HE, Sanford AR, Knapp JS (1992) Incorporating Socorro magma body reflections into theearthquake location process. Bull Seism Soc Am 82:2511–2532

Hassani S (1999) Mathematical physics: a modern introduction to its foundations. Springer,New York

Hatzidimitriou PM (1993) Attenuation of coda waves in northern Greece. Pure Appl Geophys140:63–78, DOI 10.1007/BF00876871

Hatzidimitriou PM (1994) Scattering and anelastic attenuation of seismic energy in northernGreece. Pure Appl Geophys 143:587–601, DOI 10.1007/BF00879499

Hedlin M, Shearer P (2000) An analysis of large-scale variations in small-scale mantle hetero-geneity using Global Seismographic Network recordings of precursors to PKP. J Geophys Res105(B6):13,655, DOI 10.1029/2000JB900019

Hedlin M, Shearer P, Earle P (1997) Seismic evidence for small-scale heterogeneity throughout theEarth’s mantle. Nature 387(6629):145–150, DOI 10.1038/387145a0

Helbig K, Thomsen L (2005) 75-plus years of anisotropy in exploration geophysics and reservoirseismics: A historical review of concepts and method, Japan. Geophysics 70:9ND–23ND, DOI10.1190/1.2122407

Hemmer PC (1961) Generalization of Smoluchowskis diffusion equation. Physica 27:79–82Hennino R, Tregoures N, Shapiro NM, Margerin L, Campillo M, Van Tiggelen BA, Weaver RL

(2001) Observation of equipartition of seismic waves. Phys Rev Lett 86(15):3447–3450, DOI10.1103/PhysRevLett.86.3447

Hestholm SO, Husebye ES, Ruud BO (1994) Seismic wave propagation in complex crust-uppermantle media using 2-D finite-difference synthetics. Geophys J Int 118:643–670, DOI 10.1046/j.1365-246x.1999.00994.x

Hiramatsu Y, Hayashi N, Furumoto M, Katao H (2000) Temporal changes in coda Q- 1 andb value due to the static stress change associated with the 1995 Hyogo-ken Nanbu earthquake.J Geophys Res 105(B3):6141–6151, DOI 10.1029/1999JB900432

Hoang-Trong P (1983) Some medium properties of the Hohenzollerngraben (Swabian Jura, W.Germany) inferred from Qp/Qs analysis. Phys Earth Planet Inter 31:119–131, DOI 10.1016/0031-9201(83)90104-8

Hock S, Korn M, the TOR Working group (2000) Random heterogeneity of the lithosphere acrossthe Trans-European Structure Zone. Geophys J Int 141:57–70, DOI 10.1046/j.1365-246X.2000.00078.x

Holliger K (1996) Upper-crustal seismic velocity heterogeneity as derived from a variety of P-wavesonic logs. Geophys J Int 125(3):813–829, DOI 10.1111/j.1365-246X.1996.tb06025.x

Holliger K, Levander A (1992) A stochastic view of lower crustal fabric based on evidence fromthe Ivrea zone. Geophys Res Lett 19:1153–1156, DOI 10.1029/92GL00919

Holliger K, Levander A, Goff J (1993) Stochastic modeling of the reflective lower crust:Petrophysical and geological evidence from the Ivrea zone (Northern Italy). J Geophys Res98:11,967–11,980, DOI 10.1029/93JB00351

Holme R, Rothman D (1992) Lattice-gas and lattice-Boltzman models of miscible fluids. J StatPhys 68:409–429, DOI 10.1007/BF01341756

de Hoop A (1988) Time-domain reciprocity theorems for acoustic wave fields in fluids withrelaxation. Acoust Soc Am J 84:1877–1882

Page 13: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 469

Hoshiba M (1991) Simulation of multiple-scattered coda wave excitation based on the energyconservation law. Phys Earth Planet Inter 67:123–136, DOI 10.1016/0031-9201(91)90066-Q

Hoshiba M (1993) Separation of scattering attenuation and intrinsic absorption in Japan usingthe multiple lapse time window analysis of full seismogram envelope. J Geophys Res98:15,809–15,824, DOI 10.1029/93JB00347

Hoshiba M (1994) Simulation of coda wave envelope in depth dependent scattering and absorptionstructure. Geophys Res Lett 21:2853–2856, DOI 10.1029/94GL02718

Hoshiba M, Sato H, Fehler M (1991) Numerical basis of the separation of scattering and intrinsicabsorption from full seismogram envelope - A Monte-Carlo simulation of multiple isotropicscattering. Pa Meteorol Geophys, Meteorol Res Inst 42:65–91

Hough SE, Anderson JG, Brune J, Vernon III F, Berger J, Fletcher J, Haar L, Hanks T, Baker L(1988) Attenuation near Anza, California. Bull Seism Soc Am 78:672–691

Howe MS (1971a) Wave propagation in random media. J Fluid Mech 45:769–783, DOI 10.1017/S0022112071000326

Howe MS (1971b) On wave scattering by random inhomogeneities, with application to the theoryof weak bores. J Fluid Mech 45:785–805, DOI 10.1017/S0022112071000338

Howe MS (1973) Conservation of energy in random media, with application to the theory of soundabsorption by an inhomogeneous flexible plate. Proc R Soc Lond A 331:479–496

Howe MS (1974) A kinetic equation for wave propagation in random media. Q J Mech Appl MathXXVII:237–253

Huang L (2007) A lattice Boltzmann approach to acoustic-wave propagation. In: Wu R, Maupin V(eds) Advances in Wave Propagation in Heterogeneous Earth, Advances in Geophysics (SeriesEd.: R. Dmowska), vol 48, Academic Press, New York, Chap. 9, pp 517–561

Huang LJ, Mora P (1994) The phononic lattice solid by interpolation for modeling P waves inheterogeneous media. Geophys J Int 119:766–778, DOI 10.1111/j.1365-246X.1994.tb04015.x

Huang LJ, Mora P (1996) Numerical simulation of wave propagation in strongly heterogeneousmedia using a lattice solid approach. Proc Soc Photo-Optical Inst Eng 2822:170–179, DOI10.1117/12.255205

Husebye ES (ed) (1981) Contribution of scattering to the complexity of seismograms. Phys EarthPlanet Inter 26:233–291

Husebye ES, Christoffersson A, Aki K, Powell C (1976) Preliminary results on the 3-dimensionalseismic structure under the USGS central California seismic array. Geophys J R Astron Soc46:319–340, DOI 10.1111/j.1365-246X.1976.tb04161.x

Ibanez J, Del Pezzo E, De Miguel F, Herraiz M, Alguacil G, Morales J (1990) Depth-dependentseismic attenuation in the Granada zone (Southern Spain). Bull Seism Soc Am 80:1232–1244

Ishimaru A (1978) Wave Propagation and Scattering in Random Media, Vols. 1 and 2. AcademicPress, New York

Ishimaru A (1997) Wave Propagation and Scattering in Random Media. IEEE Press and OxfordUniversity Press

Izutani Y (2000) QS -value in southern Kyushu evaluated from double spectral ratio of strongmotion records. Proc JSCE 640:225–230

Jackson DD, Anderson DL (1970) Physical mechanisms of seismic-wave attenuation. RevGeophys Space Phys 8:1–63, DOI 10.1029/RG008i001p00001

Jacobson RS (1987) An investigation into the fundamental relationships between attenuation,phase dispersion, and frequency using seismic refraction profiles over sedimentary structures.Geophysics 52:72–87, DOI 10.1190/1.1442242

Jannaud LR, P MA, Jacquin CG (1991) Spectral analysis and inversion of codas. J Geophys Res96:18,215–18,231, DOI 10.1029/91JB01427

Jin A, Aki K (1986) Temporal change in coda Q before the Tangshan earthquake of 1976 and theHaicheng earthquake of 1975. J Geophys Res 91:665–673, DOI 10.1029/JB091iB01p00665

Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. BullSeism Soc Am 78:741–769

Jin A, Aki K (1989) Spatial and temporal correlation between coda Q�1 and seismicity and itsphysical mechanism. J Geophys Res 94:14,041–14,059, DOI 10.1029/JB094iB10p14041

Page 14: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

470 References

Jin A, Aki K (1991) Observational and physical basis for coda precursor, in Evaluation of ProposedEarthquake Precursors (ed. M. Wyss), AGU, Washington, D. C., pp 33–46

Jin A, Aki K (1993) Temporal correlation between coda Q�1 and seismicity: Evidence fora structural unit in the brittle-ductile transition zone. J Geodyn 17:95–119, DOI 10.1016/0264-3707(93)90001-M

Jin A, Aki K (2005) High-resolution maps of Coda Q in Japan and their interpretation by thebrittle-ductile interaction hypothesis. Earth Planets Space 57(5):403–409

Jin A, Mayeda K, Adams D, Aki K (1994) Separation of intrinsic and scattering attenuation insouthern California using TERRAscope data. J Geophys Res 99:17,835–17,848, DOI 10.1029/94JB01468

Jin A, Aki K, Liu Z, Keilis-Borok V (2004) Seismological evidence for the brittle-ductileinteraction hypothesis on earthquake loading. Earth Planets Space 56(8):823–830

Kakehi Y, Irikura K (1996) Estimation of high-frequency wave radiation areas on the fault planeby the envelope inversion of acceleration seismograms. Geophys J Int 125:892–900, DOI 10.1111/j.1365-246X.1996.tb06032.x

Kanamori H, Mizutani H (1965) Ultrasonic measurements of elastic constants of rocks under highpressures. Bull Earthq Res Inst Univ Tokyo 43:173–194

Kanao M, Ito K (1990) Attenuation property of coda waves in the middle and northern parts ofKinki district (in Japanese with English abstract). Zisin (in Japanese) 43:311–320

Karal FC, Keller JB (1964) Elastic, electromagnetic and other waves in a random medium. J MathPhys 5:537–547, DOI 10.1063/1.1704145

Karato S (2008) Deformation of earth materials: an introduction to the rheology of solid earth.Cambridge Univsity Press, Cambridge

Karato S, Spetzler H (1990) Defect microdynamics in minerals and solid-state mechanisms ofseismic wave attenuation and velocity dispersion in the mantle. Rev Geophysics 28(4):399–421

Kato K, Aki K, Takemura M (1995) Site amplification from coda waves: Validation and applicationto S-wave site response. Bull Seism Soc Am 85:467–477

Kato K, Takemura M, Yashiro K (1998) Regional variation of source spectra in high-frequencyrange determined from strong motion records (in Japanese with English abstract). Zisin (inJapanese) 51:123–138

Kawahara J (2002) Cutoff scattering angles for random acoustic media. J Geophys Res 107(B1),DOI 10.1029/2001JB000429

Kawahara J, Yamashita T (1992) Scattering of elastic waves by a fracture zone containingrandomly distributed cracks. Pure Appl Geophys 139:121–144, DOI 10.1007/BF00876828

Kawahara J, Ohno T, Yomogida K (2009) Attenuation and dispersion of antiplane shear wavesdue to scattering by many two-dimensional cavities. J Acoust Soc Am 125:3589, DOI 10.1121/1.3124779

Keenan JH, Keys FG, Hill PG, Moore JG (1969) Steam tables - thermodynamic properties of waterincluding vapor, liquid, and solid phases. Wiley, New York

Keller JB (1964) Stochastic equations and wave propagation in random media. In: StochasticProcesses in Mathematical Physics and Engineering: Proceedings of a Symposium in AppliedMathematics of the American Mathematical Society: Held in New York City, April 30-May 2,1963, American Mathematical Society, pp 145–170

Kennett BLN (1985) Seismic wave propagation in stratified media. Cambridge University Press,Cambridge, UK

Kenter J, Braaksma H, Verwer K, van Lanen X (2007) Acoustic behavior of sedimentary rocks:Geologic properties versus Poisson’s ratios. Leading Edge 26(4):436–444

Kikuchi M (1981) Dispersion and attenuation of elastic waves due to multiple scattering fromcracks. Phys Earth Planet Inter 27:100–105, DOI 10.1016/0031-9201(81)90037-6

Kinoshita S (1994) Frequency-dependent attenuation of shear waves in the crust of the southernKanto, Japan. Bull Seism Soc Am 84:1387–1396

Kinoshita S, Ohike M (2002) Scaling relations of earthquakes that occured in the upper part ofthe Philippine Sea Plate beneath the Kanto region, Japan, estimated by means of boreholerecordings. Bull Seism Soc Am 92:611–624, DOI 10.1785/0120010134

Page 15: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 471

Klimes L (2002) Correlation functions of random media. Pure Appl Geophys 159:1811–1831,DOI 10.1007/s00024-002-8710-2

Knopoff L (1964) Q. Rev Geophys 2:625–660, DOI 10.1029/RG002i004p00625Knopoff L, Hudson JA (1964) Scattering of elastic waves by small inhomogeneities. J Acoust Soc

Am 36(2):338–343, DOI 10.1121/1.1918957Kopnichev YF (1975) A model of generation of the tail of the seismogram. Dok Akad Nauk, SSSR

(Engl trans) 222:333–335Kopnichev YF (1985) Short-period seismic wave fields (in Russian). Nauka, MoscowKorn M (1990) A modified energy flux model for lithospheric scattering of teleseismic body waves.

Geophys J Int 102:165–175, DOI 10.1111/j.1365-246X.1990.tb00538.xKorn M (1993) Determination of site-dependent scattering Q from P-wave coda analysis with an

energy-flux model. Geophys J Int 113:54–72, DOI 10.1111/j.1365-246X.1993.tb02528.xKorn M, Sato H (2005) Synthesis of plane vector wave envelopes in two-dimensional random

elastic media based on the Markov approximation and comparison with finite-differencesimulations. Geophys J Int 161(3):839–848, DOI 10.1111/j.1365-246X.2005.02624.x

Korn M, Sato H and Scherbaum F (eds) (1997) Stochastic Seismology: Stochastic Seismic WaveFields and Realistic Media. Phys Earth Planet Inter 104:1–281, DOI 10.1016/S0031-9201(97)00040-X

Korneev VA, Johnson LR (1993a) Scattering of elastic wave by a spherical inclusion - I. Theoryand numerical results. Geophys J Int 115:230–250, DOI 10.1111/j.1365-246X.1993.tb05601.x

Korneev VA, Johnson LR (1993b) Scattering of elastic wave by a spherical inclusion - II.Limitations of asymptotic solutions. Geophys J Int 115:251–263, DOI 10.1111/j.1365-246X.1993.tb05602.x

Korneev VA, Johnson LR (1996) Scattering of P and S waves by a spherically symmetric inclusion.Pure Appl Geophys 147:675–718, DOI 10.1007/BF01089697

Kosuga M (1992) Dependence of coda Q on frequency and lapse time in the western Naganoregion, central Japan. J Phys Earth 40:421–445

Kubanza M, Nishimura T, Sato H (2006) Spatial variation of lithospheric heterogeneity on theglobe as revealed from transverse amplitudes of short-period teleseismic P-waves. Earth PlanetsSpace 58:e45–e48

Kubanza M, Nishimura T, Sato H (2007) Evaluation of strength of heterogeneity in the lithospherefrom peak amplitude analyses of teleseismic short-period vector P waves. Geophys J Int171(1):390–398, DOI 10.1111/j.1365-246X.2007.03544.x

Kubelka P, Munk F (1931) Bin beitrag zur optik der farbanstriche. Z Techn Phys 11a:593–601Kumagai H, Palacios P, Maeda T, Castillo D, Nakano M (2009) Seismic tracking of lahars using

tremor signals. J Volcanol Geoth Res 183(1-2):112–121, DOI 10.1016/j.jvolgeores.2009.03.010Kumagai H, Nakano M, Maeda T, Yepes H, Palacios P, Ruiz M, Arraiz S, Vaca M (2010) Broad-

band seismic monitoring of active volcanoes using deterministic and stochastic approaches.J Geophys Res 115, B08303, DOI 10.1029/2009JB006889

Kurita T (1975) Attenuation of shear waves along the San Andreas fault zone in central California.Bull Seism Soc Am 65:277–292

Kuwahara Y, Ito H, Kawakatsu H, Ohminato T, Kiguchi T (1997) Crustal heterogeneity as inferredfrom seismic coda wave: Decomposition by small-aperture array observations. Phys EarthPlanet Inter 104:247–256, DOI 10.1016/S0031-9201(97)00057-5

Kvamme LB, Havskov J (1989) Q in southern Norway. Bull Seism Soc Am 79:1575–1588Lacombe C, Campillo M, Paul A, Margerin L (2003) Separation of intrinsic absorption and

scattering attenuation from Lg coda decay in central France using acoustic radiative transfertheory. Geophys J Int 154:417–425, DOI 10.1046/j.1365-246X.2003.01976.x

Lacoss T, Kelly EJ, Toksoz MN (1969) Estimation of seismic noise structure using arrays.Geophysics 34:21–38, DOI 10.1190/1.1439995

Landau L, Lifshitz E (2003) Quantum mechanics (3rd Ed., Engl. trans. by J. B. Sykes and J. S.Bell). Butterworth-Heinemann

Langston C (1979) Structure under Mount Rainier, Washington, inferred from teleseismic bodywaves. J Geophys Res 84:4749–4762, DOI 10.1029/JB084iB09p04749

Page 16: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

472 References

Langston CA (1989) Scattering of teleseismic body waves under Pasadena, California. J GeophysRes 94:1935–1951, DOI 10.1029/JB094iB02p01935

Larose E, Margerin L, Van Tiggelen B, Campillo M (2004) Weak localization of seismic waves.Phys Rev Lett 93(4):48,501, DOI 10.1103/PhysRevLett.93.048501

Larose E, Margerin L, Derode A, van Tiggelen B, Campillo M, Shapiro N, Paul A, Stehly L,Tanter M (2006) Correlation of random wavefields: An interdisciplinary review. Geophysics71:SI11–SI21, DOI 10.1190/1.2213356

Lay T, Wallace TC (1995) Modern global seismology. Academic Press, San DiegoLeary P, Abercrombie R (1994) Frequency dependent crustal scattering and absorption at 5-160

Hz from coda decay observed at 2.5 km depth. Geophys Res Lett 21:971–974, DOI 10.1029/94GL00977

Lee LC, Jokipii JR (1975a) Strong scintillations in astrophysics. I. The Markov approximation, itsvalidity and application to angular broadening. Astrophys J 196:695–707

Lee LC, Jokipii JR (1975b) Strong scintillations in astrophysics. II. A theory of temporalbroadening of pulses. Astrophys J 201:532–543

Lee W, Sato H (2006) Power-law decay characteristic of coda envelopes revealed from the analysisof regional earthquakes. Geophys Res Lett 33:L07317, DOI 10.1029/2006GL025840

Lee WHK, Stewart S (1981) Principles and applications of microearthquake networks. AcademicPress, New York

Lee WS, Sato H, Lee K (2003) Estimation of S-wave scattering coefficient in the mantle fromenvelope characteristics before and after the ScS arrival. Geophys Res Lett 30(24):2248, DOI10.1029/2003GL018413

Lee WS, Sato H, Lee K (2006) Scattering coefficients in the mantle revealed from the seismogramenvelope analysis based on the multiple isotropic scattering model. Earth Planet Sci Lett241:888–900, DOI 10.1016/j.epsl.2005.10.035

Lee WS, Yun S, Do JY (2010) Scattering and intrinsic attenuation of short-period S-waves in theGyeongsang Basin, South Korea, revealed from S-wave seismogram envelopes based on theradiative transfer theory. Bull Seism Soc Am 100:833–840, DOI 10.1785/0120090149

Liu P H, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; Implicationsfor seismology and mantle composition. Geophys J R Astron Soc 47:41–58, DOI 10.1111/j.1365-246X.1976.tb01261.x

Lobkis O, Weaver R (2001) On the emergence of the Green’s function in the correlations of adiffuse field. J Acoust Soc Am 110:3011, DOI 10.1121/1.1417528

Lu L, Ding Z, Zeng R, He Z (2011) Retrieval of Green’s function and generalized optical theoremfor the scattering of complete dyadic fields. J Acoustical Soc Am 129:1935

Lundquist GM, Cormier VC (1980) Constraints on the absorption band model of Q. J GeophysRes 85:5244–5256, DOI 10.1029/JB085iB10p05244

Maeda T, Obara K (2009) Spatiotemporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan. J Geophys Res 114:B00A09, DOI 10.1029/2008JB006043

Maeda T, Sato H, Ohtake M (2003) Synthesis of Rayleigh-wave envelope on the sphericalEarth: Analytic solution of the single isotropic-scattering model for a circular source radiation.Geophys Res Lett 30(6):1286, DOI 10.1029/2002GL016629

Maeda T, Sato H, Ohtake M (2006) Constituents of vertical-component coda waves at long periods.Pure Appl Geophys 163:549–566, DOI 10.1007/s00024-005-0031-9

Maeda T, Sato H, Nishimura T (2008) Synthesis of coda wave envelopes in randomly inhomoge-neous elastic media in a half-space: single scattering model including Rayleigh waves. GeophysJ Int 172:130–154, DOI 10.1111/j.1365-246X.2007.03603.x

Maeda T, Obara K, Yukutake Y (2010) Seismic velocity decrease and recovery related toearthquake swarms in a geothermal area. Earth Planets Space 62(9):685–691, DOI 10.5047/eps.2010.08.006

Malin PE (1980) A first order scattering solution for modeling elastic wave codas - I. The acousticcase. Geophys J R Astron Soc 63:361–380, DOI 10.1111/j.1365-246X.1980.tb02626.x

Page 17: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 473

Malin PE, Phinney RA (1985) On the relative scattering of P- and S-waves. Geophys J R AstronSoc 80:603–618, DOI 10.1111/j.1365-246X.1985.tb05113.x

Manghnani MH, Ramananantoandro R, S P Clark J (1974) Compressional and shear wavevelocities in granulite faces rocks and eclogites to 10 kb. J Geophys Res 79:5427–5446, DOI10.1029/JB079i035p05427

Margerin L (2005) Introduction to radiative transfer of seismic waves, in “Seismic Earth: ArrayAnalysis of Broadband Seismograms” (Eds. A. Levander and G. Nolet), vol 157, GeophysicalMonograph-Ameerican Geophysical Union, pp 229–252

Margerin L (2006) Attenuation, transport and diffusion of scalar waves in textured random media.Tectonophysics 416(1-4):229–244

Margerin L (2008) Coherent Back-Scattering and Weak Localization of Seismic Waves. In: Sato H,Fehler MC (eds) Earth heterogeneity and scattering effects on seismic waves, advances ingeophysics (Series Ed. R. Dmowska), vol 50, Academic Press, New York, Chap. 1, pp 1–20

Margerin L, Nolet G (2003b) Multiple scattering of high-frequency seismic waves in thedeep Earth: PKP precursor analysis and inversion for mantle granularity. J Geophys Res108(B11):2514, DOI 10.1029/2003JB002455

Margerin L, Nollet G (2003a) Multiple scattering of high-frequency seismic in the deepEarth:Modeling and numerical examples. J Geophys Res 108(B5):2234, DOI 10.1029/2002JB001974

Margerin L, Sato H (2011a) Reconstruction of multiply-scattered arrivals from the cross-correlation of waves excited by random noise sources in a a heterogeneous dissipative medium.Wave Motion 48:146–160, DOI 10.1016/j.wavemoti.2010.10.001

Margerin L, Sato H (2011b) Generalized optical theorems for the reconstruction of Green’sfunction of an inhomogeneous elastic medium. J. Acoust. Soc. Am. in press, DOI 10.1121/1.3652856

Margerin L, Campillo M, Van Tiggelen BA (1998) Radiative transfer and diffusion of waves in alayered medium: new insight into coda Q. Geophys J Int 134(2):596–612

Margerin L, Campillo M, Shapiro NM, Van Tiggelen B (1999) Residence time of diffuse waves inthe crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico.Geophys J Int 138(2):343–352, DOI 10.1046/j.1365-246X.1999.00897.x

Margerin L, Campillo M, Tiggelen BV (2000) Monte Carlo simulation of multiple scattering ofelastic waves. J Geophys Res 105:7873–7893, DOI 10.1029/1999JB900359

Matsumoto S, Hasegawa A (1996) Distinct S wave reflector in the midcrust beneath Nikko-Shiranevolcano in the northeastern Japan arc. J Geophys Res 101:3067–3083, DOI 10.1029/95JB02883

Matsumoto S, Obara K, Yoshimoto K, Saito T, Hasegawa A, Ito A (1999) Imaging of crustalinhomogeneous structure of the crust beneath Ou Backbone Range, northeastern Japan, basedon small aperture seismic array obsevations. Zisin (in Japanese) 52:293–297

Matsumura S (1981) Three-dimensional expression of seismic particle motions by the trajectoryellipsoid and its application to the seismic data observed in the Kanto district, Japan. J PhysEarth 29:221–239

Matsunami K (1990) Laboratory measurements of spatial fluctuation and attenuation of elasticwaves by scattering due to random heterogeneities. Pure Appl Geophys 132:197–220, DOI10.1007/BF00874363

Matsunami K (1991) Laboratory tests of excitation and attenuation of coda waves using 2-Dmodels of scattering media. Phys Earth Planet Inter 67:36–47, DOI 10.1016/0031-9201(91)90058-P

Mavko G, Kjartansson E, Winkler K (1979) Seismic wave attenuation in rocks. Rev Geophys SpacePhys 17:1155–1164, DOI 10.1029/RG017i006p01155

Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44:161–178,DOI 10.1190/1.1440958

Mayeda K, Walter WR (1996) Moment, energy, stress drop, and source spectra of western UnitedStates earthquakes from regional coda envelopes. J Geophys Res 101:11,195–11,208, DOI10.1029/96JB00112

Page 18: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

474 References

Mayeda K, Koyanagi S, Hoshiba M, Aki K, Zeng Y (1992) A comparative study of scattering,intrinsic, and codaQ�1 for Hawaii, Long Valley and Central California between 1.5 and 15 Hz.J Geophys Res 97:6643–6659, DOI 10.1029/91JB03094

McLaughlin KL, Anderson LM (1987) Stochastic dispersion of short-period P-waves due toscattering and multipathing. Geophys J R Astron Soc 89:933–963, DOI 10.1111/j.1365-246X.1987.tb05202.x

Menke W (1984a) Asymptotic formulas for the apparent Q of weakly scattering three-dimensionalmedia. Bull Seism Soc Am 74:1079–1081

Menke W (1984b) Geophysical data analysis: discrete inverse theory. Academic Press, New YorkMenke W, Chen R (1984) Numerical studies of the coda falloff rate of multiply scattered waves in

randomly layered media. Bull Seism Soc Am 74:1605–1614Mikada H, Watanabe H, Sakashita S (1997) Evidence for subsurface magma bodies beneath Izu-

Oshima volcano inferred from a seismic scattering analysis and possible interpretation of themagma plumbing system of the 1986 eruptive activity. Phys Earth Planet Inter 104:257–269,DOI 10.1016/S0031-9201(97)00060-5

Miles JW (1960) Scattering of elastic waves by small inhomogeneities. Geophysics 15:642–648,DOI 10.1190/1.1438745

Mishchenko M, Travis L, Lacis A (2006) Multiple scattering of light by particles: Radiative transferand coherent backscattering. Cambridge University Press, Cambridge

Mitchell BJ (1995) Anelastic structure and evolution of the continental crust and upper mantlefrom seismic surface wave attenuation. Rev Geophys 33:441–462, DOI 10.1029/95RG02074

Modiano T, Hatzfeld D (1982) Experimental study of the spectral content for shallow earthquakes.Bull Seism Soc Am 72:1739–1758

Mohorovicic A (1909) Das Beben vom 8. X. Jahrb Meterol Obs Zagreb 9:1–63Mooney W (1989) Seismic methods for determining earthquake source parameters and lithospheric

structure, in Geophysical Framework of the Continental United States (eds., L. Pakiser andW. Mooney), Geol. Soc. Am. Memoir 172, Geological Society of America, Boulder, Colo.,pp 11–34

Mora P (1992) The lattice Boltzman phononic lattice solid. J Stat Phys 68:591–609, DOI 10.1007/BF01341765

Mori J, Frankel A (1992) Correlation of P wave amplitudes and travel time residuals for teleseismsrecorded on the southern California seismic network. J Geophys Res 97:6661–6674, DOI 10.1029/91JB02578

Mori J, Shimazaki K (1985) Inversion of intermediate-period Rayleigh waves for source charac-teristics of the 1968 Tokachi-Oki earthquake. J Geophys Res 90:11,374–11,382, DOI 10.1029/JB090iB13p11374

Morse PM, Feshbach H (1953) Methods of theoretical physics, vols. I and II. McGraw-Hill,New York

Muller G, Roth M, Korn M (1992) Seismic wave traveltimes in random media. Geophys J Int110:29–41, DOI 10.1111/j.1365-246X.1992.tb00710.x

Murai Y, Kawahara J, Yamashita T (1995) Multiple scattering of SH waves in 2-D elastic mediawith distributed cracks. Geophys J Int 122:925–937, DOI 10.1111/j.1365-246X.1995.tb06846.x

Nakahara H (2006b) A systematic study of theoretical relations between spatial correlation andGreen’s function in one-, two-and three-dimensional random scalar wavefields. Geophys J Int167(3):1097–1105, DOI 10.1111/j.1365-246X.2006.03170.x

Nakahara H (2008) Seismogram envelope inversion for high-frequency seismic energy radiationfrom moderate-to-large earthquakes. In: Sato H, Fehler MC (eds) Earth heterogeneity andscattering effects on seismic waves, advances in geophysics (Series Ed. R. Dmowska), vol 50,Academic Press, New York, Chap. 15, pp 402–426

Nakahara H, Nishimura T, Sato H, Ohtake M (1998) Seismogram envelope inversion for thespatial distribution of high-frequency energy radiation from the earthquake fault: Applicationto the 1994 far east off Sanriku earthquake, Japan. J Geophys Res 103:855–867, DOI10.1029/97JB02676

Page 19: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 475

Nakajima J, Hasegawa A (2003) Estimation of thermal structure in the mantle wedge ofnortheastern Japan from seismic attenuation data. Geophys Res Lett 30(14):1760, DOI10.1029/2003GL017185

Nakamura Y (1977a) Seismic energy transmission in an intensively scattering environment.J Geophys 43:389–399

Nakamura Y (1977b) HFT events: Shallow moonquakes? Phys Earth Planet Inter 14:217–223,DOI 10.1016/0031-9201(77)90174-1

Neidell NS, Taner MT (1971) Semblance and other coherency measures for multi-channel data.Geophysics 36:482–497, DOI 10.1190/1.1440186

Nielsen L, Thybo H (2003) The origin of teleseismic Pn waves: Multiple crustal scattering of uppermantle whispering gallery phases. J Geophysical Res 108(B10):2460

Nikolaev AV (1975) The Seismics of Heterogeneous and Turbid Media (Engl. trans. by R. Hardin).Israel Program for Science translations, Jerusalem

Nishigami K (1991) A new inversion method of coda waveforms to determine spatial distributionof coda scatterers in the crust and uppermost mantle. Geophys Res Lett 18:2225–2228, DOI10.1029/91GL02823

Nishigami K (2000) Deep crustal heterogeneity along and around the San Andreas fault systemin central California and its relation to the segmentation. J Geophys Res 105:7983–7998, DOI10.1029/1999JB900381

Nishimura T, Nakahara H, Sato H, Ohtake M (1996) Source process of the 1994 far east offSanriku earthquake, Japan, as inferred from a broad-band seismogram. Sci Rep Tohoku Univ 34:121–134

Nishimura T, Fehler M, Baldridge W, Roberts P, Steck L (1997) Heterogeneous structurearound the Jemez Volcanic field, New Mexico, USA, as inferred from envelope inversion ofactive experiment seismic data. Geophys J Int 131:667–681, DOI 10.1111/j.1365-246X.1997.tb06605.x

Nishimura T, Yoshimoto K, Ohtaki T, Kanjo K, Purwana I (2002) Spatial distribution of lateralheterogeneity in the upper mantle around the western Pacific region as inferred from analysisof transverse components of teleseismic P-coda. Geophys Res Lett 29(23):2137, DOI 10.1029/2002GL015606

Nishimura T, Tanaka S, Yamawaki T, Yamamoto H, Sano T, Sato M, Nakahara H, Uchida N,Hori S, Sato H (2005) Temporal changes in seismic velocity of the crust around Iwate volcano,Japan, as inferred from analyses of repeated active seismic experiment data from 1998 to 2003.Earth Planets Space 57(6):491–505

Nishizawa O, Fukushima Y (2008) Laboratory Experiments of Seismic Wave Propagation inRandom Heterogeneous Media. In: Sato H, Fehler M (eds) Earth Heterogeneity and ScatteringEffects on Seismic Waves, Advances in Geophysics (Series Ed. R. Dmowska), vol 50, AcademicPress, New York, Chap. 8, pp 219–246

Nishizawa O, Pearson C, Albright J (1983) Properties of seismic wave scattering around waterinjection well at Fenton Hill hot dry rock geothermal site. Geophys Res Lett 10:101–104, DOI10.1029/GL010i001p00101

Noguchi S (1990) Regional difference in maximum velocity amplitude decay with distance andearthquake magnitude (in Japanese). Res Notes Nat Res Ctr Disast Prev 86:1–40

Nolet G (1987) Seismic wave propagation and seismic tomography, in Seismic Tomography(ed. G. Nolet), D. Reidel, Boston, pp 11–23

Novelo-Casanova DA, Berg E, Hsu V, Helsley E (1985) Time-space variations of seismic S-wavecoda attenuation Qc�1 and magnitude distribution (b-value) for the Petatlan earthquake.Geophys Res Lett 12:789–792, DOI 10.1029/GL012i011p00789

Nur A (1971) Viscous phase in rocks and the low-velocity zone. J Geophys Res 76:1270–1277,DOI 10.1029/JB076i005p01270

Nur A, Simmons G (1969) The effect of saturation on velocity in low porosity rocks. Earth PlanetSci Lett 7:183–193, DOI 10.1016/0012-821X(69)90035-1

Obara K (1989) Regional extent of the S wave reflector beneath the Kanto district, Japan. GeophysRes Lett 16:839–842, DOI 10.1029/GL016i008p00839

Page 20: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

476 References

Obara K (2002) Nonvolcanic deep tremor associated with subduction in sourthwest Japan. Science296(5573):1679–1681, DOI 10.1126/science.1070378

Obara K, Maeda T (2009) Reverse propagation of T waves from the Emperor seamount chain.Geophys Res Lett 36:L08304, DOI 10.1029/2009GL037454

Obara K, Sato H (1988) Existence of an S wave reflector near the upper plane of the doubleseismic zone beneath the southern Kanto district, Japan. J Geophys Res 93:15,037–15,045,DOI 10.1029/JB093iB12p15037

Obara K, Sato H (1995) Regional differences of random inhomogeneities around the volcanic frontin the Kanto-Tokai area, Japan, revealed from the broadening of S wave seismogram envelopes.J Geophys Res 100:2103–2121, DOI 10.1029/94JB02644

O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid-saturated cracked solids.J Geophys Res 82:5719–5735, DOI 10.1029/JB082i036p05719

Ojeda A, Ottemoller L (2002)QLg tomography in Colombia. Phys Earth Planet Inter 130:253–270,DOI 10.1016/S0031-9201(02)00010-9

Okal EA (2008) The generation of T waves by earthquakes. In: Advances in Geophysics, vol 49,Academic Press, New York, pp 1–58

Olson AH, Anderson JG (1988) Implications of frequency-domain inversion of earthquake groundmotions for resolving the space-time dependence of slip on an extended fault. Geophys J Int94:443–455, DOI 10.1111/j.1365-246X.1988.tb02267.x

Ordaz M, Singh SK (1992) Source spectra and spectral attenuation of seismic waves from Mexicanearthquakes, and evidence of amplification in the hill zone of Mexico city. Bull Seism Soc Am82:24–43

Paasschens JCJ (1997) Solution of the time-dependent Boltzmann equation. Phys Rev E56(1):1135–1141, DOI 10.1103/PhysRevE.56.1135

Padhy S (2009) Characteristics of body-wave attenuation in the Bhuj crust. Bull Seism Soc Am99:3300–3313, DOI 10.1785/0120080337

Papanicolaou GC, Ryzhik LV, Keller JB (1996) Stability of the P to S wave energy ratio in thediffusive regime. Bull Seism Soc Am 86:1107–1115

Pavlenko O, Irikura K (2002) Changes in shear moduli of liquefied and nonliquefied soils duringthe 1995 Kobe earthquake and its aftershocks at three vertical-array sites. Bull Seism Soc Am92(5):1952, DOI 10.1785/0120010143

Peng Z, Ben-Zion Y (2006) Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion. Pure Appl Geophysics163(2):567–600

Perry F, Baldridge WS, DePaolo DJ, Shafiqullah M (1990) Evolution of a magmatic systemduring continental extension: The Mount Taylor volcanic field, New Mexico. J Geophys Res95:19,327–19,348, DOI 10.1029/JB095iB12p19327

Petukhin A, Gusev A (2003) The duration-distance relationship and average envelope shapesof small Kamchatka earthquakes. Pure Appl Geophys 160(9):1717–1743, DOI 10.1007/s00024-003-2373-5

Phillips WS, Aki K (1986) Site amplification of coda waves from local earthquakes in centralCalifornia. Bull Seism Soc Am 76:627–648

Phillips WS, Stead RJ, Randall GE, Hartse HE, MMayeda K (2008) Source Effects From BroadArea Network Calibration of Regional Distance Coda Waves. In: Sato H, Fehler MC (eds)Earth heterogeneity and scattering effects on seismic waves, advances in geophysics (SeriesEd. R. Dmowska), vol 50, Academic Press, Chap. 12, pp 319–352

Poupinet G, Kennett B (2004) On the observation of high frequency PKiKP and its coda inAustralia. Phys Earth Planet Inter 146(3-4):497–511, DOI 10.1016/j.pepi.2004.05.003

Poupinet G, Ellsworth VL, Frechet J (1984) Monitoring velocity variations in the crust using earth-quake doublets: An application to the Calaveras fault, California. J Geophys Res 89:5719–5732,DOI 10.1029/JB089iB07p05719

Poupinet G, GOT J, Brenguier F (2008) Monitoring Temporal Variations of Physical Properties inthe Crust by Cross-Correlating the Waveforms of Seismic Doublets. In: Sato H, Fehler MC (eds)

Page 21: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 477

Earth heterogeneity and scattering effects on seismic waves, advances in geophysics (SeriesEd. R. Dmowska), vol 50, Academic Press, New York, Chap. 14, pp 374–401

Powell CA, Meltzer AS (1984) Scattering of P-waves beneath SCARLET in southern California.Geophys Res Lett 11:481–484, DOI 10.1029/GL011i005p00481

Pratt R (1999) Seismic waveform inversion in the frequency domain, Part 1: Theory andverification in a physical scale model. Geophysics 64(3):888–901, DOI 10.1190/1.1444597

Press F (1966) Seismic Velocities, in Handbook of Physical Constants (ed., S. P. Clark), Geol. Soc.Am. Memoir 97, Geological Society of America, New York, pp 195–218

Prokhorov A, Bunkin F, Gochelashvily K, Shishov V (1975) Laser irradiance propagation inturbulent media. Proc IEEE 63(5):790–811, DOI 10.1109/PROC.1975.9828

Przybilla J, Korn M (2008) Monte Carlo simulation of radiative energy transfer in continuouselastic random media-three-component envelopes and numerical validation. Geophys J Int173(2):566–576, DOI 10.1111/j.1365-246X.2008.03747.x

Przybilla J, Korn M, Wegler U (2006) Radiative transfer of elastic waves versus finite dif-ference simulations in two-dimensional random media. J Geophys Res 111, DOI 10.1029/2005JB003952

Przybilla J, Wegler U, Korn M (2009) Estimation of crustal scattering parameters with elasticradiative transfer theory. Geophys J Int 178(2):1105–1111, DOI 10.1111/j.1365-246X.2009.04204.x

Pujol J (1996) An integrated 3D velocity inversion - joint hypocentral determination relocationanalysis of events in the Northridge area. Bull Seism Soc Am 86:s138–s155

Radon J (1917) Uber die bestimmung von funktionen durch ihre integralwerte langs gewissermannigfaltigkeiten. Ber Verh Sachs Akad Wiss Leipzig, Math Phys Kl 69:262–267

Raoof M, Hermann RB, Malagnini L (1999) Attenuation and Excitation of Three-ComponentGround Motion in Southern California. Bull Seism Soc Am 89:888–902

Ratdomopurdo A, Poupinet G (1995) Monitoring a temporal change of seismic velocity ina volcano: application to the 1992 eruption of Mt. Merapi (Indonesia). Geophys Res Lett22(7):775–778, DOI 10.1029/95GL00302

Rautian TG, Khalturin VI (1978) The use of the coda for determination of the earthquake sourcespectrum. Bull Seism Soc Am 68:923–948

Rautian TG, Khalturin VI, Martinov VG, Molnar P (1978) Preliminary analysis of the spectralcontent of P and S waves from local earthquakes in the Garm, Tadjikistan region. Bull SeismSoc Am 68:949–971

Rautian TG, Khalturin VI, Zakirov MS, Zemchova AG, Proskurin AP, Pustovitenko BG,Pustovitenko AN, Sinelinikova LG, Filina AG, Tchengelia IS (1981) Experimental Studies ofSeismic Coda (in Russian). Nauka, Moscow

Revenaugh J (1995a) The contribution of topographic scattering to teleseismic coda in SouthernCalifornia. Geophys Res Lett 22(5):543–546, DOI 10.1029/95GL00162

Revenaugh J (1995b) A scattered-wave image of subduction beneath the Transverse Ranges.Science 268(5219):1888–1892, DOI 10.1126/science.268.5219.1888

Richtmyer R (1978) Principles of advances mathematical physics. Springer, New YorkRoecker SW, Tucker B, King J, Hatzfeld D (1982) Estimation of Q in central Asia as a function

of frequency and depth using the coda of locally recorded earthquakes. Bull Seism Soc Am72:129–149

Rondenay S, Bostock M, Shragge J (2001) Multiparameter two-dimensional inversion of scat-tered teleseismic body waves 3. Application to the Cascadia 1993 data set. J Geophys Res106(30):795–808, DOI 10.1029/2000JB000039

Roth M (1997) Statistical interpretation of traveltime fluctuations. Phys Earth Planet Inter104:213–228, DOI 10.1016/S0031-9201(97)00048-4

Roth M, Korn M (1993) Single scattering theory versus numerical modelling in 2-D random media.Geophys J Int 112:124–140, DOI 10.1111/j.1365-246X.1993.tb01442.x

Roth M, Muller G, Snieder R (1993) Velocity shift in random media. Geophys J Int 115:552–563,DOI 10.1111/j.1365-246X.1993.tb01206.x

Page 22: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

478 References

Rothman D (1988) Cellular-automaton fluids: A model for flow in porous media. Geophysics53:509–518, DOI 10.1190/1.1442482

Roux P, Sabra K, Kuperman W, Roux A (2005a) Ambient noise cross correlation in free space:Theoretical approach. J Acoust Soc Am 117:79–84, DOI 10.1121/1.1830673

Roux P, Sabra KG, Gerstoft P, Kuperman WA, Fehler MC (2005b) P-waves from cross-correlationof seismic noise. Geophys Res Lett 32, DOI 10.1029/2005GL023803

Rovelli A (1983) Frequency relationship for seismic Q of central southern Italy from accelero-grams for the Irpinia earthquake (1980). Phys Earth Planet Inter 32:209–217, DOI 10.1016/0031-9201(83)90126-7

Rovelli A (1984) Seismic Q for the lithosphere of the Montenegro region (Yugoslavia): Fre-quency, depth and time windowing effect. Phys Earth Planet Inter 34:159–172, DOI 10.1016/0031-9201(84)90004-9

Rubinstein J, Beroza G (2004) Evidence for widespread nonlinear strong ground motion in the Mw6.9 Loma Prieta earthquake. Bull Seism Soc Am 94(5):1595, DOI 10.1785/012004009

Rubinstein J, Beroza G (2005) Depth constraints on nonlinear strong ground motion from the 2004Parkfield earthquake. Geophys Res Lett 32(14):L14,313, DOI 10.1029/2005GL023189

Rubinstein J, Uchida N, Beroza G (2007) Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake. J Geophys Res 112(B5):B05,315, DOI 10.1029/2006JB004440

Rytov SM, Kravstov YA, Tatarskii VI (1989) Principles of statistical radiophysics (Vol. 4) Wavepropagation through random media. Springer-Verlag, Berlin

Ryzhik LV, Papanicolaou GC, Keller JB (1996) Transport equations for elastic and other waves inrandom media. Wave Motion 24:327–370, DOI 10.1016/S0165-2125(96)00021-2

Sabra K, Gerstoft P, Roux P, Kuperman W, Fehler M (2005a) Extracting time-domain Green’sfunction estimates from ambient seismic noise. Geophys Res Lett 32:L03310, DOI 10.1029/2004GL021862

Sabra K, Gerstoft P, Roux P, Kuperman W, Fehler M (2005b) Surface wave tomographyfrom microseisms in Southern California. Geophys Res Lett 32:L14311, DOI 10.1029/2005GL023155

Sahin S, Erduran M, Alptekin O, Cakir O (2007) Intrinsic and scattering seismic atten-uation in southewestern Anatolia. Pure Appl Geophys 164:2255–2270, DOI 10.1007/s00024-007-0263-y

Saito T (2006a) Synthesis of scalar-wave envelopes in two-dimensional weakly anisotropic randommedia by using the Markov approximation. Geophys J Int 165(2):501–515, DOI 10.1111/j.1365-246X.2006.02896.x

Saito T (2006b) Velocity shift in two-dimensional anisotropic random media using the Rytovmethod. Geophys J Int 166:293–308, DOI 10.1111/j.1365-246X.2006.02976.x

Saito T, Sato H, Ohtake M (2002) Envelope broadening of spherically outgoing waves in three-dimensional random media having power-law spectra. J Geophys Res 107(10.1029), DOI 10.1029/2001JB000264

Saito T, Sato H, Fehler M, Ohtake M (2003) Simulating the envelope of scalar waves in 2D randommedia having power-law spectra of velocity fluctuation. Bull Seism Soc Am 93(1):240–252,DOI 10.1785/0120020105

Saito T, Sato H, Ohtake M, Obara K (2005) Unified explanation of envelope broadening andmaximum-amplitude decay of high-frequency seismograms based on the envelope simulationusing the Markov approximation: Forearc side of the volcanic front in northeastern Honshu,Japan. J Geophys Res 110, DOI 10.1029/2004JB003225

Saito T, Sato H, Takahashi T (2008) Direct simulation methods for scalar-wave envelopes intwo-dimensional layered random media based on the small-angle scattering approximation.Commun Comput Phys 3:63–84

Samuelides Y (1998) Velocity shift using the Rytov approximation. J Acoust Soc Am 104:2596Sanchez-Sesma F, Campillo M (2006) Retrieval of the Green’s function from cross correlation: the

canonical elastic problem. Bull Seism Soc Am 96(3):1182, DOI 10.1785/0120050181Sanford A, Long LT (1965) Microearthquake crustal reflections, Socorro, New Mexico. Bull Seism

Soc Am 55:579–586

Page 23: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 479

Sato H (1977a) Energy propagation including scattering effects: Single isotropic scatteringapproximation. J Phys Earth 25:27–41

Sato H (1977b) Single isotropic scattering model including wave conversions: Simple theoreticalmodel of the short period body wave propagation. J Phys Earth 25:163–176

Sato H (1978) Mean free path of S-waves under the Kanto district of Japan. J Phys Earth26:185–198

Sato H (1979) Wave propagation in one dimensional inhomogeneous elastic media. J Phys Earth27:455–466

Sato H (1982a) Amplitude attenuation of impulsive waves in random media based on travel timecorrected mean wave formalism. J Acoust Soc Am 71:559–564, DOI 10.1121/1.387525

Sato H (1982b) Attenuation of S waves in the lithosphere due to scattering by its random velocitystructure. J Geophys Res 87:7779–7785, DOI 10.1029/JB087iB09p07779

Sato H (1984a) Attenuation and envelope formation of three-component seismograms of smalllocal earthquakes in randomly inhomogeneous lithosphere. J Geophys Res 89:1221–1241, DOI10.1029/JB089iB02p01221

Sato H (1984b) Scattering and attenuation of seismic waves in the lithosphere: Single scatteringtheory in a randomly inhomogeneous lithosphere (in Japanese). Rep Nat Res Ctr Disast Prev33:101–186

Sato H (1986) Temporal change in attenuation intensity before and after the eastern Yamanashiearthquake of 1983 in central Japan. J Geophys Res 91:2049–2061, DOI 10.1029/JB091iB02p02049

Sato H (1987) A precursorlike change in coda excitation before the western Nagano earth-quake (Ms=6.8) of 1984 in central Japan. J Geophys Res 92:1356–1360, DOI 10.1029/JB092iB02p01356

Sato H (1988b) Temporal change in scattering and attenuation associated with the earthquakeoccurrence - A review of recent studies on coda waves. Pure Appl Geophys 126:465–497, DOI10.1007/BF00879007

Sato H (1989) Broadening of seismogram envelopes in the randomly inhomogeneous lithospherebased on the parabolic approximation: Southeastern Honshu, Japan. J Geophys Res 94:17,735–17,747, DOI 10.1029/JB094iB12p17735

Sato H (1990) Unified approach to amplitude attenuation and coda excitation in the randomlyinhomogeneous lithosphere. Pure Appl Geophys 132:93–121, DOI 10.1007/BF00874359

Sato H (1991a) Study of seismogram envelopes based on scattering by random inhomogeneitiesin the lithosphere: A review. Phys Earth Planet Inter 67:4–19, DOI 10.1016/0031-9201(91)90056-N

Sato H (ed) (1991b) Scattering and attenuation of seismic waves. Phys. Earth Planet. Inter.67:1–210

Sato H (1993) Energy transportation in one- and two-dimensional scattering media: Analyticsolutions of the multiple isotropic scattering model. Geophys J Int 112:141–146, DOI 10.1111/j.1365-246X.1993.tb01443.x

Sato H (1994a) Multiple isotropic scattering model including P-S conversions for the seismogramenvelope formation. Geophys J Int 117:487–494, DOI 10.1111/j.1365-246X.1994.tb03946.x

Sato H (1995a) Formulation of the multiple non-isotropic scattering process in 3-D space on thebasis of energy transport theory. Geophys J Int 121:523–531, DOI 10.1111/j.1365-246X.1995.tb05730.x

Sato H (2006) Synthesis of vector wave envelopes in three-dimensional random elastic mediacharacterized by a Gaussian autocorrelation function based on the Markov approximation: Planewave case. J Geophys Res 111(B6):B06,306, DOI 10.1029/2005JB004036

Sato H (2007) Synthesis of vector wave envelopes in three-dimensional random elastic mediacharacterized by a Gaussian autocorrelation function based on the Markov approximation:Spherical wave case. J Geophys Res 112(B1):B01,301, DOI 10.1029/2006JB004437

Sato H (2008) Synthesis of vector-wave envelopes in 3-D random media characterized by a non-isotropic Gaussian ACF based on the Markov approximation. J Geophys Res 113(B8):B08,304,DOI 10.1029/2007JB005524

Page 24: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

480 References

Sato H (2009a) Retrieval of Green’s function having coda from the cross-correlation function in ascattering medium illuminated by surrounding noise sources on the basis of the first order Bornapproximation. Geophys J Int 179(1):408–412, DOI 10.1111/j.1365-246X.2009.04296.x

Sato H (2009b) Green’s function retrieval from the CCF of coda waves in a scattering medium.Geophys J Int 179:1580–1583, DOI 10.1111/j.1365-246X.2009.04398.x

Sato H (2010) Retrieval of Green’s function having coda waves from the cross-correlation functionin a scattering medium illuminated by a randomly homogeneous distribution of noise sourceson the basis of the first order Born approximation. Geophys J Int 180:759–764, DOI 10.1111/j.1365-246X.2009.04432.x

Sato H, Fehler M (1998) Seismic wave propagation and scattering in the heterogeneous earth. AIPPress/Springer, New York

Sato H, Fehler M (2007) Synthesis of seismigram envelopes in heterogeneous media. In: Wu R,Maupin V (eds) Advances in wave propagation in heterogeneous earth, advances in geophysics(Series Ed.: R. Dmowska), vol 48, Academic Press, New York, Chap. 10, pp 561–596

Sato H, Fehler M (eds) (2008) Advances in geophysics (Series Ed.: R. Dmowska): Earthheterogeneity and scattering effects on seismic waves, vol 50. Academic Press, New York

Sato H, Korn M (2007) Envelope syntheses of cylindrical vector-waves in 2-D random elasticmedia based on the Markov approximation. Earth Planets Space 59:4209–219

Sato H, Korn M (2008) Synthesis of vector-wave envelopes in random elastic media on the basisof the Markov approximation. In: Sato H, Fehler MC (eds) Earth heterogeneity and scatteringeffects on seismic waves, advances in geophysics (Series Ed. R. Dmowska), vol 50, AcademicPress, New York, Chap. 3, pp 43– 94

Sato H, Matsumura S (1980) Q�1 value for S-waves (2-32 Hz) under the Kanto district in Japan.Zisin (in Japanese) 33:541–543

Sato H, Nishino M (2002) Multiple isotropic-scattering model on the spherical Earth for the synthe-sis of Rayleigh-wave envelopes. J Geophys Res 107(B12):2343, DOI 10.1029/2001JB000915

Sato H, Nohechi M (2001) Envelope formation of long-period Rayleigh waves in verticalcomponent seismograms: Single isotropic scattering model. J Geophys Res 106:6589–6594,DOI 10.1029/2000JB900383

Sato H, Nakahara H, Ohtake M (1997) Synthesis of scattered energy density for non-sphericalradiation from a point shear dislocation source based on the radiative transfer theory. PhysEarth Planet Inter 104:1–13, DOI 10.1016/S0031-9201(97)00050-2

Sato H, Fehler M, Saito T (2004) Hybrid synthesis of scalar wave enveloopes in two-dimensionalrandom media having rich short-wavelength spectra. J Geophys Res 109:B06303, DOI 10.1029/2003JB002673

Savage JC (1965) Attenuation of elastic waves in granular medium. J Geophys Res 70:3935–3942,DOI 10.1029/JZ070i016p03935

Savage JC (1966) Thermoelastic attenuation of elastic waves by cracks. J Geophys Res 71:3929–3938, DOI 10.1029/JZ071i016p03929

Sawazaki K, Sato H, Nakahara H, Nishimura T (2006) Temporal change in site response causedby earthquake strong motion as revealed from coda spectral ratio measurement. Geophys ResLett 33(L21303), DOI 10.1029/2006GL027938

Sawazaki K, Sato H, Nakahara H, Nishimura T (2009) Time-lapse changes of seismic velocityin the shallow ground caused by strong ground motion shock of the 2000 Western-Tottoriearthquake, Japan, as revealed from coda deconvolution analysis. Bull Seism Soc Am 99(1):352,DOI 10.1785/0120080058

Scherbaum F, Sato H (1991) Inversion of full seismogram envelopes based on the parabolic approx-imation: Estimation of randomness and attenuation in southeast Honshu, Japan. J Geophys Res96:2223–2232, DOI 10.1029/90JB01538

Scherbaum F, Gillard D, Deichmann N (1991) Slowness power spectrum analysis of the codacomposition of two microearthquake clusters in northern Switzerland. Phys Earth Planet Inter67:137–161, DOI 10.1016/0031-9201(91)90067-R

Schilt S, Oliver J, Brown L, Kaufman S, Albauch D, Brewer J, Cook F, Jensen L, Krumhansl P,Long G, Steiner D (1979) The heterogeneity of the continental crust: Results from deep crustal

Page 25: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 481

reflection profiling using the Vibroseis technique. Rev Geophys Space Phys 17:354–368, DOI10.1029/RG017i002p00354

Schneider WA (1978) Integral formulation for migration in two and three dimensions. Geophysics43:49–76, DOI 10.1190/1.1440828

Schuster GT (2009) Seismic interferometry. Cambridge University Press, Cambridge, UKSens-Schonfelder C, Wegler U (2006) Radiative transfer theory for estimation of the seismic

moment. Geophys J Int 167:1363–1372, DOI 10.1111/j.1365-246X.2006.03139.xSens-Schonfelder C, Margerin L, Campillo M (2009) Laterally heterogeneous scattering explains

Lg blockage in the Pyrenees. J Geophys Res 114:B07,309, DOI 10.1029/2008JB006107Shang T, Gao L (1988) Transportation theory of multiple scattering and its application to seismic

coda waves of impulsive source. Scientia Sinica (series B, China) 31:1503–1514Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomog-

raphy from ambient seismic noise. Science 307(11):1615–1618, DOI 10.1126/science.1108339Shapiro S, Hubral P (1999) Elastic waves in random media. Lecture Notes in Earth Sciences,

Springer, Berlin 80Shapiro SA, Kneib G (1993) Seismic attenuation by scattering: Theory and numerical results.

Geophys J Int 114:373–391, DOI 10.1111/j.1365-246X.1993.tb03925.xShapiro SA, Schwarz R, Gold N (1996) The effect of random isotropic inhomogeneities on the

phase velocity of seismic waves. Geophys J Int 127:783–794, DOI 10.1111/j.1365-246X.1996.tb04057.x

Shearer P (2007) Seismic scattering in the deep Earth. Treatise on geophysics, vol 1: Deep EarthStructure, Schubert, G (ed) pp 695–730

Shearer PM, Earle PS (2004) The global short-period wavefield modelled with a Monte Carloseismic phonon method. Geophys J Int 158:1103–1117, DOI 10.1111/j.1365-246X.2004.02378.x

Shearer PM, Earle PS (2008) Observing and Modeling Elastic Scattering in the Deep Earth.In: Sato H, Fehler MC (eds) Earth heterogeneity and scattering effects on seismic waves,advances in geophysics (Series Ed. R. Dmowska), vol 50, Academic Press, New York, Chap. 6,pp 167–195

Sheng P (2006) Introduction to wave scattering, localization and mesoscopic phenomena. Springer,Berlin

Shiomi K, Sato H, Ohtake M (1997) Broad-band power-law spectra of well-log data in Japan.Geophys J Int 130:57–64, DOI 10.1111/j.1365-246X.1997.tb00987.x

Shiomi K, Sato H, Obara K, Ohtake M (2004) Configuration of subducting Philippine Sea platebeneath southwest Japan revealed from receiver function analysis based on the multivariateautoregressive model. J Geophys Res 109(B4):B04,308, DOI 10.1029/2003JB002774

Shiomi K, Matsubara M, Ito Y, Obara K (2008) Simple relationship between seismic activity alongPhilippine Sea slab and geometry of oceanic Moho beneath southwest Japan. Geophys J Int173:1018–1029, DOI 10.1111/j.1365-246X.2008.03786.x

Shishov VI (1974) Effect of refraction on scintillation characteristics and average pulse shape ofpulsars. Sov Astron 17:598–602

Shriner JF, Thompson WJ (1993) Angular momentum coupling coefficients: New and improvedalgorithm. Comp Phys 7:144–148

Simmons G, Nur A (1968) Granites - Relation of properties in situ to laboratory measurements.Science 162:789–791, DOI 10.1126/science.162.3855.789

Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties:a handbook. MIT Press, Cambridge, Mass.

Singh S, Herrmann RB (1983) Regionalization of crustal coda Q in the continental United States.J Geophys Res 88:527–538, DOI 10.1029/JB088iB01p00527

Singh SK, Apsel RJ, Fried J, Brune JN (1982) Spectral attenuation of SH waves along the Imperialfault. Bull Seism Soc Am 72:2003–2016

Sivaji C, Nishizawa O, Kitagawa G, Fukushima Y (2002) A physical-model study of the statisticsof seismic waveform fluctuations in random heterogeneous media. Geophys J Int 148(3):575–595, DOI 10.1046/j.1365-246x.2002.01606.x

Page 26: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

482 References

Snieder R (1986a) The influence of topography on the propagation and scattering of surface waves.Phys Earth Planet Inter 44:226–241, DOI 10.1016/0031-9201(86)90072-5

Snieder R (2004a) Extracting the Green’s function from the correlation of coda waves: A derivationbased on stationary phase. Phys Rev E 69:046610, DOI 10.1103/PhysRevE.69.046610

Snieder R, Fleury C (2010) Cancellation of spurious arrivals in the Green’s function retrieval ofmultiple scattered waves. J Acoust Soc Am 128:1598–1605, DOI 10.1121/1.348372

Snieder R, Gret A, Douma H, Scales J (2002) Coda wave interferometry for estimating nonlinearbehavior in seismic velocity. Science 295(5563):2253–2255, DOI 10.1126/science.1070015

Snieder R, Wapenaar K, Wegler U (2007) Unified Green’s function retrieval by cross-correlation;connection with energy principles. Phys Rev E 75(3):36,103, DOI 10.1103/PhysRevE.75.036103

Snieder R, Sanchez-Sesma FJ, Wapenaar K (2009) Field fluctuations, imaging with backscatteredwaves, a generalized energy theorem, and the optical theorem. SIAM J Img Sci 2:763–776

Solov’ev SL (1965) Seismicity of sakhalin. Bull Earthq Res Inst Univ Tokyo 43:95–102Souriau A (2007) Deep Earth structure - The Earth’s cores. In: Dziewonski A, Romanowicz B

(eds) Seismology and Structure of the Earth, Treatise on Geophysics (Ed. G. Schubert), vol 1,Academic Press, New York, Chap. 1.19, pp 655–693

Spencer JJW (1981) Stress relaxation at low frequencies in fluid-saturated rocks: Attenuation andmodulus dispersion. J Geophys Res 86:1803–1812, DOI 10.1029/JB086iB03p01803

Spudich P, Bostwick T (1987) Studies of the seismic coda using an earthquake cluster as a deeplyburied seismograph array. J Geophys Res 92:10,526–10,546, DOI 10.1029/JB092iB10p10526

Sreenivasiah I, Ishimaru A, Hong ST (1976) Two-frequency mutual coherence function and pulsepropagation in a random medium: An analytic solution to the plane wave case. Radio Sci11:775–778, DOI 10.1029/RS011i010p00775

Stehly L, Campillo M, Froment B, Weaver R (2008) Reconstructing Green’s function bycorrelation of the coda of the correlation (C3) of ambient seismic noise. J Geophys Res113:B11,306, DOI 10.1029/2008JB005693

Su F, Aki K, Biswas N (1991) Discriminating quarry blasts from earthquakes using coda waves.Bull Seism Soc Am 81:162–178

Sugimura A (1960) Zonal arrangement of some geophysical and petrological features in Japan andits environs. J Fac Sci Univ Tokyo (Sect. 2) 12:133–153

Suzuki H, Ikeda R, Mikoshiba T, Kinoshita S, Sato H, Takahashi H (1981) Deep well logs in theKanto-Tokai area (in Japanese). Rev Nat Res Ctr Disast Prev 65:1–162

Takagi N, Sato H, Nishimura T, Obara K (2006) Rayleigh-wave group velocity in Japan revealedfrom the cross-correlation analysis of microseisms excited by typhoons. Proc 8th SEGJ Symppp 207–210

Takahara M, Yomogida K (1992) Estimation of coda Q using the maximum likelihood method.Pure Appl Geophys 139:255–268, DOI 10.1007/BF00876330

Takahashi T, Sato H, Ohtake M, Obara K (2005) Scale Dependence of Apparent Stress forEarthquakes along the Subducting Pacific Plate in Northeastern Honshu, Japan. Bull SeismSoc Am 95(4):1334, DOI 10.1785/0120040075

Takahashi T, Sato H, Nishimura T (2007) Strong inhomogeneity beneath Quaternary volcanoesrevealed from the peak delay analysis of S-wave seismograms of microearthquakes in north-eastern, Japan. Geophys J Int 168:90–99, DOI 10.1111/j.1365-246X.2006.03197.x

Takahashi T, Sato H, Nishimura T (2008) Recursive formula for the peak delay time withtravel distance in von Karman type non-uniform random media on the basis of the Markovapproximation. Geophys J Int 173(2):534–545, DOI 10.1111/j.1365-246X.2008.03739.x

Takahashi T, Sato H, Nishimura T, Obara K (2009) Tomographic inversion of the peak delay timesto reveal random velocity fluctuations in the lithosphere: method and application to northeasternJapan. Geophys J Int 178(47):1437–1455, DOI 10.1111/j.1365-246X.2009.04227.x

Takemura S, Furumura T, Saito T (2009) Distortion of the apparent S-wave radiation pattern inthe high-frequency wavefield: Tottori-Ken Seibu, Japan, earthquake of 2000. Geophys J Int178(2):950–961, DOI 10.1111/j.1365-246X.2009.04210.x

Page 27: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 483

Tanimoto T (1987) The three-dimensional shear wave structure in the mantle by overtonewaveform inversion - I. Radial seismogram inversion. Geophys J R Astron Soc 89:713–740,DOI 10.1111/j.1365-246X.1987.tb05189.x

Tarantola A (1987) Inverse problem theory. Elsevier Science, AmsterdamTatarski VI, Gertensshtein ME (1963) Propagation of waves in a medium with strong fluctuations

of the refractive index. Zh Ekspelim i Teor Fiz 44:676–685Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Israel Program

for Science translations, JerusalemTatsukawa M (1983) Determination of earthquake magnitude from total duration time of seismic

waves based on the automatic recording for the Kanto-Tokai observation net. Rep Natl Res CtrDisast Prev 31:89–100

Tatsumi Y (1986) Formation of the volcanic front in subduction zones. Geophys Res Lett13:717–720, DOI 10.1029/GL013i008p00717

Taylor SR, Bonner BP, Zandt G (1986) Attenuation and scattering of broadband P and S wavesacross North America. J Geophys Res 91:7309–7325, DOI 10.1029/JB091iB07p07309

Telford W, Geldart L, Sheriff R, Keys D (1976) Applied geophysics. Cambridge University Press,Cambridge, UK

Thatcher W, Hanks TC (1973) Source parameters of southern California earthquakes. J GeophysRes 78:8547–8576, DOI 10.1029/JB078i035p08547

Thurber C (1993) Local earthquake tomography: Velocities and Vp/Vs - theory, in SeismicTomography: Theory and Practice (eds. H. M. Iyer and K. Hirahara), Chapmann & Hall,London, pp 563–583

Tittmann BR (1977) Internal friction measurements and their implications in seismic Q structuremodel of the crust, in The Earth’s Crust, AGU monograph, pp 197–213

Tittmann BR, Ahlberg L, Curnow J (1976) Internal friction and velocity measurements. Proc 7thLunar Sci Conf pp 3123–3132

Tittmann BR, Clark VA, Richardson JM (1980) Possible mechanism for seismic attenuationin rocks containing small amount of volatiles. J Geophys Res 85:5199–5208, DOI 10.1029/JB085iB10p05199

Toksoz MN, Dainty AM, Charrette EE (1991) Coherency of ground motion at regional distancesand scattering. Phys Earth Planet Inter 67:162–179, DOI 10.1016/0031-9201(91)90068-S

Toksoz N, Johnston DH (1981) Seismic wave attenuation. Soc. Expl. Geophys., Tulsa, OklaTonegawa T, K Nishida TW, Shiomi K (2009) Seismic interferometry of teleseismic S-wave coda

for retrieval of body waves: an application to the Philippine Sea slab underneath the JapaneseIslands. Geophys J Int 178:1574–1586, DOI 10.1111/j.1365-246X.2009.04249.x

Trifunac M, Brady A (1975) A study on the duration of strong earthquake ground motion. BullSeism Soc Am 65(3):581

Tripathi J, Sato H, Yamamoto M (2010) Envelope broadening characteristics of crustal earthquakesin northeastern Honshu, Japan. Geophys J Int 182(2):988–1000, DOI 10.1111/j.1365-246X.2010.04657.x

Tsujiura M (1978) Spectral analysis of the coda waves from local earthquakes. Bull Earthq ResInst Univ Tokyo 53:1–48

Tsukuda T (1988) Coda before and after the 1983 Misasa earthquake of M 6.2, Tottori Prefecture,Japan. Pure Appl Geophys 128:261–280, DOI 10.1007/BF01772600

Tsumura K (1967) Determination of Earthquake Magnitude from Total Duration of Oscillation.Bull Earthquake Res Inst 45:7–18

Tsumura N, Matsumoto S, Horiuchi S, Hasegawa A (2000) Three-dimensional attenuationstructure beneath the northeastern Japan arc estimated from spectra of small earthquakes.Tectonophysics 319(4):241–260, DOI 10.1016/S0040-1951(99)00297-8

Tsvankin I, Gaiser J, Grechka V, van der Baan M, Thomsen L (2010) Seismic anisotropy inexploration and reservoir characterization: An overview. Geophysics 75(5):75A15–75A29,DOI 10.1190/1.3481775

Page 28: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

484 References

Tucker B, Brune J (1977) Source mechanism and mb-Ms analysis of aftershocks of the SanFernando earthquake. Geophys J R Astron Soc 49:371–426, DOI 10.1111/j.1365-246X.1977.tb03714.x

Turner J (1998) Scattering and diffusion of seismic waves. Bull Seism Soc Am 88(1):276–283Turner J, Weaver R (1994) Radiative transfer and multiple scattering of diffuse ultrasound in

polycrystalline media. J Acoust Soc Am 96(6):3675–3683, DOI 10.1121/1.407739Tuvc T, Bianco F, Ibanez J, Patanc D, Del Pezzo E, Bottari A (2006) Attenuation study in the Straits

of Messina area (southern Italy). Tectonophysics 421(3-4):173–185, DOI 10.1016/j.tecto.2006.04.005

Ugalde A, Carcole E (2009) Comments on “Separation of Qi and Qs from passive data at Mt.Vesuvius: A reappraisal of the seismic attenuation estimates” by E. Del Pezzo et al. (2006).Phys Earth Planet Inter 173(1-2):191–194, DOI 10.1016/j.pepi.2008.10.001

Ugalde A, Pujades LG, Canas JA, Villasenor A (1998) Estimation of the intrinsic absorption andscattering attenuation in northeastern Venezuela (southeastern Caribbean) using coda waves.Pure Appl Geophys 153:685–702, DOI 10.1007/s000240050214

Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seism Soc Am77:972–986

Uyeda S, Horai K (1964) Terrestrial heat flow in Japan. J Geophys Res 69:2121–2141, DOI 10.1029/JZ069i010p02121

Varadan VK, Varadan VV, Pao YH (1978) Multiple scattering of elastic waves by cylinders ofarbitrary cross section. I. SH waves. J Acoust Soc Am 63:1310–1319, DOI 10.1121/1.381883

Vargas CA, Ugalde A, Pujades LG, Canas JA (2004) Spatial variation of coda wave attenuation innorthwestern Colombia. Geophys J Int 158:609–624, DOI 10.1111/j.1365-246X.2004.02307.x

Vasco DW, Johnson LR, Pulliam RJ, Earle P (1994) Robust inversion of IASP91 travel timeresiduals for mantle P and S velocity structure, earthquake mislocations, and station corrections.J Geophys Res 99:13,727–13,755, DOI 10.1029/93JB02023

Vidale J (1988) Finite-difference calculation of travel times. Bull Seism Soc Am 78:2062–2076,DOI 10.1038/35005059

Vidale J, Earle P (2000) Fine-scale heterogeneity in the Earth’s inner core. Nature404(6775):273–275, DOI 10.1038/35005059

Vinogradov SD, Troitskiy PA, Solov’yeva MS (1992) Study of propagation of elastic waves inmedium with oriented cracks. Izv Acad Sci USSR (Engl trans Phys Solid Earth) 28:367–384

Wagner GS, Owens TJ (1993) Broadband bearing-time records of three-component seismicarray data and their application to the study of local earthquake coda. Geophys Res Lett20:1823–1826, DOI 10.1029/93GL01884

Walsh JB (1965) The effects of cracks on the compressibility of rocks. J Geophys Res 70:381–389,DOI 10.1029/JZ070i002p00381

Walsh JB (1966) Seismic wave attenuation in rock due to friction. J Geophys Res 71:2591–2599,DOI 10.1029/JZ071i010p02591

Walsh JB (1969) New analysis of attenuation in partially melted rock. J Geophys Res74:4333–4337, DOI 10.1029/JB074i017p04333

Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry.Geophysics 71:SI33–SI46, DOI 10.1190/1.2213955

Wapenaar K, Slob E, Snieder R (2010) On seismic interferometry, the generalized optical theorem,and the scattering matrix of a point scatterer. Geophysics 75:SA27–SA35, DOI 10.1190/1.3374359

Warner M (1990a) Absolute reflection coefficients from deep seismic reflections. Tectonophysics173:15–23, DOI 10.1016/0040-1951(90)90199-I

Warner M (1990b) Basalts, water, or shear zones in the lower continental crust? Tectonophysics173:163–174, DOI 10.1016/0040-1951(90)90214-S

Watanabe H (1971) Determination of earthquake magnitude at regional distance in and near Japan.Zisin (in Japanese) 24:189–200

Weaver R (1982) On diffuse waves in solid media. J Acoust Soc Am 71:1608, DOI 10.1121/1.387816

Page 29: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 485

Weaver R (1990) Diffusivity of ultrasound in polycrystals. J Mech Phys Solids 38(1):55–86,DOI 10.1016/0022-5096(90)90021-U

Weaver R (2008) Ward identities and the retrieval of Green’s functions in the correlations of adiffuse field. Wave Motion 45(5):596–604

Weaver R, Lobkis O (2004) Diffuse fields in open systems and the emergence of the Green’sfunction (L). J Acoust Soc Am 116:2731, DOI 10.1121/1.1810232

Weaver R, Froment B, Campillo M (2009) On the correlation of non-isotropically distributedballistic scalar diffuse waves. J Acoust Soc Am 126(4):1817–1826, DOI 10.1121/1.3203359

Wegler U (2004) Diffusion of seismic waves in a thick layer: Theory and application to Vesviusvolcano. J Geophys Res 109:B07303, DOI 10.1029/2004JB003048

Wegler U (2005) Diffusion of seismic waves in layered media: boundary conditions and analyticalsolutions. Geophys J Int 163(3):1123–1135, DOI 10.1111/j.1365-246X.2005.02798.x

Wegler U, Luhr B (2001) Scattering behaviour at Merapi volcano (Java) revealed from an activeseismic experiment. Geophys J Int 145(3):579–592, DOI 10.1046/j.1365-246x.2001.01390.x

Wegler U, Sens-Schonfelder C (2007) Fault zone monitoring with passive image interferometry.Geophys J Int 168(3):1029–1033, DOI 10.1111/j.1365-246X.2006.03284.x

Wegler U, Korn M, Przybilla J (2006a) Modeling full seismogram envelopes using radiativetransfer theory with Born scattering coefficients. Pure Appl Geophys 163:503–531, DOI10.1007/s00024-005-0027-5

Wegler U, Luhr B, Snieder R, Ratdomopurbo A (2006b) Increase of shear wave velocity beforethe 1998 eruption of Merapi volcano (Indonesia). Geophys Res Lett 33:L09303, DOI 10.1029/2006GL025928

Wegler U, Nakahara H, Sens-Schonfelder C, Korn M, Shiomi K (2009) Sudden drop of seismicvelocity after the 2004 Mw 6.6 Mid-Niigata earthquake, Japan, observed with passive imageinterferometry. J Geophys Res 114(B6):B06,305, DOI 10.1029/2008JB005869

Weiland CM, Steck LK, Dawson PB, Korneev V (1995) Nonlinear teleseismic tomography atLong Valley Caldera, using three-dimensional minimum travel time ray tracing. J Geophys Res100:20,379–20,390, DOI 10.1029/95JB01147

Wesley JP (1965) Diffusion of seismic energy in the near range. J Geophys Res 70:5099–5106,DOI 10.1029/JZ070i020p05099

White JE (1965) Seismic waves; radiation, transmission, and attenuation. McGraw-Hill, New YorkWilliamson IP (1975) The broadening of pulses due to multi-path propagation of radiation. Proc R

Soc Lond A 342:131–147Williamson PR (1991) A guide to the limits of resolution imposed by scattering in ray tomography.

Geophysics 56:202–207, DOI 10.1190/1.1443032Wolfram S (1991) Mathematica: a system for doing mathematics by computer (2nd edn.). Addison-

Wesley, Redwood, Calif.Woodgold CRD (1994) Coda Qin the Charlevoix, Quebec, region: Lapse-time dependence and

spatial and temporal comparisons. Bull Seism Soc Am 84:1123–1131Wu R, Maupin V (eds) (2007) Advances in wave propagation in heterogeneous earth, Advances in

geophysics (Series Ed.: R. Dmowska), vol 48. Academic PressWu R, Jin S, Xie X (2000) Seismic wave propagation and scattering in heterogeneous crustal

waveguides using screen propagators: I SH waves. Bull Seism Soc Am 90(2):401, DOI 10.1785/0119990102

Wu RS (1982a) Attenuation of short period seismic waves due to scattering. Geophys Res Lett9:9–12, DOI 10.1029/GL009i001p00009

Wu RS (1982b) Mean field attenuation and amplitude attenuation due to wave scattering. WaveMotion 4:305–316, DOI 10.1016/0165-2125(82)90026-9

Wu RS (1985) Multiple scattering and energy transfer of seismic waves - separation of scatteringeffect from intrinsic attenuation - I. Theoretical modeling. Geophys J R Astron Soc 82:57–80,DOI 10.1111/j.1365-246X.1985.tb05128.x

Wu RS (1989) The perturbation method in elastic wave scattering. Pure Appl Geophys131:605–638, DOI 10.1007/BF00876266

Page 30: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

486 References

Wu RS, Aki K (1985) Elastic wave scattering by a random medium and the small-scale inhomo-geneities in the lithosphere. J Geophys Res 90:10,261–10,273, DOI 10.1029/JB090iB12p10261

Wu RS, Aki K (1988) Multiple scattering and energy transfer of seismic waves - Separation ofscattering effect from intrinsic attenuation. II. Application of the theory to Hindu-Kush region.Pure Appl Geophys 128:49–80, DOI 10.1007/BF01772590

Wu RS, Aki K (eds) (1988b) Seismic wave scattering in three-dimensionally heterogeneous earth,Part I. Pure Appl Geophys 128:1–447

Wu RS, Aki K (eds) (1989) Seismic wave scattering in three-dimensionally heterogeneous earth,Part II. Pure Appl Geophys 131:551–739

Wu RS, Aki K (eds) (1990) Seismic wave scattering in three-dimensionally heterogeneous earth,Part III. Pure Appl Geophys 132:1–244

Wu RS, Flatte SM (1990) Transmission fluctuations across an array and heterogeneities in the crustand upper mantle. Pure Appl Geophys 132:175–196, DOI 10.1007/BF00874362

Wu RS, Toksoz MN (1987) Diffraction tomography and multisource holography applied to seismicimaging. Geophysics 52:11–25, DOI 10.1190/1.1442237

Wu RS, Xu Z, Li XP (1994) Heterogeneity spectrum and scale-anisotropy in the upper crustrevealed by the German Continental Deep-Drilling (KTB) holes. Geophys Res Lett 21:911–914,DOI 10.1029/94GL00772

Yamakawa N (1962) Scattering and attenuation of elastic waves. Geophys Mag 31:63–103Yamamoto M, Sato H (2010) Multiple scattering and mode conversion revealed by an active

seismic experiment at Asama volcano, Japan. J Geophys Res 115:B07304, DOI 10.1029/2009JB007109

Yamashita T (1990) Attenuation and dispersion of SH waves due to scattering by randomlydistributed cracks. Pure Appl Geophys 132:545–568, DOI 10.1007/BF00876929

Ying CF, Truell R (1956) Scattering of a plane longitudinal wave by a spherical obstacle in anisotropically elastic solid. J Appl Phys 27:1086–1097, DOI 10.1063/1.1722545

Yomogida K, Benites R (1995) Relation between direct wave Q and coda Q: A numerical approach.Geophys J Int 123:471–483, DOI 10.1111/j.1365-246X.1995.tb06866.x

Yoshimoto K (2000) Monte-Carlo simulation of seismogram envelope in scattering media.J Geophys Res 105:6153–6161, DOI 10.1029/1999JB900437

Yoshimoto K, Jin A (2008) Coda Energy Distribution and Attenuation. In: Sato H, Fehler MC (eds)Earth Heterogeneity and Scattering Effects on Seismic Waves, Advances in Geophysics (SeriesEd. R. Dmowska), vol 50, Academic Press, New York, Chap. 10, pp 265–300

Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves inthe Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114:165–174,DOI 10.1111/j.1365-246X.1993.tb01476.x

Yoshimoto K, Sato H, Ohtake M (1997a) Short-wavelength crustal heterogeneities in the Nikkoarea, central Japan, revealed from the three-component seismogram envelope analysis. PhysEarth Planet Inter 104:63–73, DOI 10.1016/S0031-9201(97)00062-9

Yoshimoto K, Sato H, Ohtake M (1997b) Three-component seismogram envelope synthesis inrandomly inhomogeneous semi-infinite media based on the single scattering approximation.Phys Earth Planet Inter 104:37–61, DOI 10.1016/S0031-9201(97)00061-7

Yoshimoto K, Sato H, Iio Y, Ito H, Ohminato T, Ohtake M (1998) Frequency-dependent attenuationof high-frequency P and S waves in the upper crust in western Nagano, Japan. Pure ApplGeophys 153:489–502, DOI 10.1007/s000240050205

Yoshimoto K, Wegler U, Korn M (2006) A volcanic front as a boundary of seismic-attenuationstructures in northeastern Honshu, Japan. Bull Seism Soc Am 96(2):637–646, DOI 10.1785/0120050085

Yun S, Lee WS, Lee K, Noh MH (2007) Spatial distribution of coda Q in South Korea. Bull SeismSoc Am 97:1012–1018, DOI 10.1785/0120060097

Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. GeophysJ Int 108:16–34, DOI 10.1111/j.1365-246X.1992.tb00836.x

Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

Page 31: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

References 487

Zeng Y (1993) Theory of scattered P- and S-wave energy in a random isotropic scattering medium.Bull Seism Soc Am 83:1264–1276

Zeng Y (2006) Scattered surface wave energy in the seismic coda. Pure Appl Geophys163:533–548, DOI 10.1007/s00024-005-0025-7

Zeng Y, Su F, Aki K (1991) Scattering wave energy propagation in a random isotropic scatteringmedium 1. Theory. J Geophys Res 96:607–619, DOI 10.1029/90JB02012

Zeng Y, Aki K, Teng TL (1993) Mapping of the high-frequency source radiation for the LomaPrieta earthquake, California. J Geophys Res 98:11,981–11,993, DOI 10.1029/93JB00346

Zhang H, Thurber C (2003) Double-difference tomography: The method and its application to theHayward fault, California. Bull Seism Soc Am 93(5):1875, DOI 10.1785/0120020190

Zhang H, Thurber C, Bedrosian P (2009) Joint inversion for Vp, Vs, and Vp/Vs at SAFOD,Parkfield, California. Geochem Geophys Geosyst 10(11):Q11,002

Zhao D, Wang Z, Umino N, Hasegawa A (2009) Mapping the mantle wedge and interplate thrustzone of the northeast Japan arc. Tectonophysics 467:89–106, DOI 10.1016/j.tecto.2008.12.01

Zhu T, Chun K, West GF (1991) Geometrical spreading and Q of Pn waves: An investigative studyin eastern Canada. Bull Seism Soc Am 81:882–896

Page 32: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

Index

Acoustic impedance, 141Active seismic experiment, 276, 329Active volcano, 8, 38, 79, 278Addition theorem, 296, 435, 436, 458African plume, 118Alaska, 98Ambient noise, 3, 59, 401, 413Angular brackets, 11Angular correlation function, 330Angular spectrum function (ASF), 346Apparent duration, 5, 202, 377Approximate solution, 257Array analysis, 3, 45Asama volcano, 276ASO in Kanto, Japan, 51, 370Attenuation measurement, 99Autocorrelation function (ACF), 19, 20, 39,

118, 131, 189, 401

Back-arc side, 52, 106, 375Back scattering, 69, 142, 176, 307Backscattering coefficient, 7, 67, 133, 134,

198S-to-S backscattering coefficient, 147, 175

Basalt, 159Basic scattering pattern, 142, 173

body to body wave scattering, 151Rayleigh to body waves, 150

Basin and Range Province, 154Binary interaction approximation, 215Biot, 158Birch’s law, 16, 141, 172, 189Body-wave reflection, 203Body waves, 446Boltzmann equation, 222, 230Boltzmann lattice gas approach, 77

Born approximation, 125, 160, 161, 270, 370,430

Born scattering coefficients, 9, 315Boundary integral method, 77, 182Bounded 1-D medium, 425Bourret approximation, 217Branch cut, 254, 271, 273Brownian particle motion, 246b value, 110

California, 37, 85, 154, 329, 369Cartesian coordinates, 127, 137, 242, 347, 417Cavity, 77, 180Cell, 222Center-of-mass coordinates, 324Central Africa, 118Characteristic time, 156, 343, 350, 353, 354ChISS, 98Coda, 2, 41

attenuation, 67, 80, 81, 316deconvolution, 116, 117interferometry, 114magnitude residuals, 108normalization method, 92, 123, 154, 260Q, 67spectral ratio, 116

Coherence radius, 338Coherent wave, 336

energy, 236Collision zone, 57, 395Confluent hypergeometric function, 326Conservation of total energy, 72, 241, 253, 368Continuity equation, 129Conventional Born approximation, 161, 220Conversion between body and Rayleigh waves,

208

H. Sato et al., Seismic Wave Propagation and Scattering in the Heterogeneous Earth:Second Edition, DOI 10.1007/978-3-642-23029-5,© Springer-Verlag Berlin Heidelberg 2012

489

Page 33: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

490 Index

Conversion scattering, 141, 148, 200, 235, 268,391

Convolution type reciprocity, 420Corner frequency, 97, 188Correction terms, 171Correlation between Q�1

c and the b-value, 111Correlation distance, 20, 53, 76, 131, 204, 246,

398Correlation of log-amplitude fluctuation, 323Correlation type reciprocity, 410, 418, 421,

436Coupled diffusion equation, 240, 2781979 Coyote Lake earthquake, 114Crack, 15, 77, 180Cross-correlation function (CCF), 59, 401, 443

of ambient noise, 443of random waves, 423of singly-scattered coda waves, 440

Crustal inhomogeneity, 205, 291Cutoff scattering angle, 167, 178Cylindrical wavelet, 362

Difference coordinates, 324Differential operator, 212, 443Differential scattering cross section, 65, 129,

144Diffraction

effect, 179, 324tomography, 37, 105

Diffusionapproximation, 237, 270, 278equation, 72, 239model, 8, 72, 73, 240, 276process, 316solution, 72, 132, 248, 256, 280

Diffusivity, 72, 73, 239, 280Directional distribution of mean energy

density, 230, 232, 233, 294Directional Green’s function, 295Direct simulation Monte Carlo method, 310Dislocation, 159Dispersion relation, 148, 211, 216, 220Double seismic zone, 119Doublet analysis, 113Duration magnitude, 42, 84Dyson equation, 216

Earthquakefault, 290swarm, 447

Eigenfunctions of Rayleigh wave, 148Einstein summation convention, 10

Elastic vector waves, 135, 315Elastic wave, 50, 143, 161, 185, 221, 270, 418Elastic wave case, 235, 240Elliptic theta function, 346, 351Emperor Seamount Chain, 120Energy density, 41, 84, 130, 191, 221, 270Energy partition, 281Energy-flux density, 65, 130, 188, 230Energy-flux model, 73Ensemble, 19, 162, 189, 211, 322, 381, 388

average, 27, 131, 189, 193, 214, 381of random media, 20of random noise, 403

Envelopebroadening, 6, 50, 52, 369correlation method, 122

Equipartitionof radiated energy, 422state, 241, 270, 281, 405

Equivalent body force, 136, 170, 172Exchanged wavenumber, 130, 139, 172Excitation of the orthogonal component, 55Expansion formula, 296Exponential ACF, 23, 132, 146, 162, 167, 175,

217

f -k analysis, 46, 89F-net, 90F-P duration time, 42, 45Far-field, 137, 422

displacement vector, 186Fast (micro) variables, 222Fenton Hill, 38, 57, 268FFT, 75, 274, 354Finite difference, 73, 75, 143, 179, 362, 390First Fresnel zone, 325First-order perturbation method, 125First-order smoothing method, 215Fluctuations of elastic coefficients, 170Fore-arc side, 6, 53, 106, 372Forward scattering, 52, 179, 328Fourier transform, 11, 20, 45, 128, 139, 142,

184, 222, 249, 383Fourier-Laplace

domain, 247transform, 253, 279

Four single-scattering modes, 192, 199Fractional fluctuation, 20, 77, 126, 139, 163,

189, 223, 390Fractional velocity fluctuation, 8Free surface, 56, 78, 148, 200, 203, 243, 312,

392Frequency-independent Q�1, 156

Page 34: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

Index 491

Fresnel zone, 37, 339

Gauss hypergeometric function, 284Gaussian ACF, 22, 23, 26, 27, 325, 334, 339,

343, 350, 361, 362, 383, 389Gaussian source time function, 277General ACFs, 220General source and receiver locations, 68Geological evidence, 13Geometrical spreading factor, 153, 203, 275Geothermal area, 447Grain boundary mechanism, 159Grain size, 27, 160Granite, 27, 158Green’s function, 31, 127, 137, 149, 166, 212,

213, 233, 237, 268, 332, 402, 419,429

Green’s function retrieval, 61, 402Guided wave, 119Gutenberg-Richter formula, 84

Half-space, 179, 204, 369Harvard CMT, 293Helioseismology, 401Higher mode Rayleigh wave, 91, 303, 309Hilbert transform, 41, 413Hi-net, 60, 84, 96, 263, 396, 446Honshu, Japan, 38, 96, 159, 290, 372, 373, 446Horizontal-component seismograms, 93Hot dry rock, 38

Illumination by noise source, 405Inada granite, 58Incident plane

P-wave, 136, 171S-wave, 137wave, 65, 126, 136, 162

Infinitesimal shift of the pole, 128Integral equation, 181, 232Integral form, 232, 234, 246, 336Integral-differential equation, 232, 236Intensity, 53, 127, 340Intensity spectral density (ISD), 340, 381Intermediate scale, 337Intrinsic absorption, 159Intrinsic attenuation, 5, 49, 54, 73, 105, 153,

154, 258, 370Inversion for energy radiation, 290Irregular surface topography, 77Island arc, 57, 395Isochronal scattering curve, 305

Isochronal scattering shell, 69, 195, 204, 300Isotropic scattering, 7, 49, 72, 132, 246, 258,

282, 432, 433Isotropic scattering with conversion, 267Isotropic source radiation, 246, 294Iwate volcano, 114Izu Peninsula, 49, 372

Japan, 276, 291arc, 6Sea, 60

Jordan’s lemma, 128, 219, 254, 272, 427JST, 121

� value, 142Kamchatka, 108, 379Kanto, 27, 42, 47, 49, 51, 56, 93, 264Kanto–Tokai region, Japan, 52, 95, 259, 3721995 Kobe earthquake, 115KTB deep well, 27Kurikoma volcano, 376Kyushu, Japan, 18, 84, 155, 264, 447

Lame coefficients, 135, 379, 419Laplace transform, 11, 233, 255, 269, 272Lapse time, 1, 41, 84, 92, 193, 211, 261, 360,

425dependence, 86

Large Aperture Seismic Array (LASA), 118,329

Large cylindrical shell, 410Large spherical shell, 405, 433Laser Doppler vibrometer, 57Late coda, 309Lg-coda, 85Lg-wave, 97, 317Line-of-sight propagation, 320Lithospheric heterogeneity, 6, 54, 103, 370Local Born approximation, 214, 225Local earthquake, 56, 105, 175, 201, 243, 245,

413Localized velocity inhomogeneity, 125Local magnitude, 42, 96, 189, 260, 370Log-amplitude fluctuation, 321, 326, 328, 3291989 Loma Prieta earthquake, 111Long period band, 89, 303Los Angeles, 445Lower crust, 32, 85, 275Lower mantle, 8, 107, 315, 370Low-frequency events, 121Lunar rock, 159

Page 35: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

492 Index

Lunar seismograms, 79

Major arc, 304Mantle, 54Markov approximation, 52, 315, 322, 336, 371Mass operator, 215Mean energy density, 229Mean free path, 6, 66, 316Mean Green’s function, 216Mean square (MS)

envelope, 41, 86, 185, 267, 391fractional fluctuation, 20, 26, 163, 214of the phase fluctuation, 324trace, 41

Mean wave, 214, 336Merapi volcano, 114Microearthquakes, 198Microseisms, 59, 63, 401, 413Mid-crustal reflector, 322004 Mid-Niigata earthquake, 447Minor arc, 304Modified Bessel function, 24, 248, 250, 352Moho, 1, 29, 32, 33, 77, 316, 371, 446Monte Carlo simulation, 259, 309, 356Moving window cross-correlation analysis,

114Mt. Dodaira, 93Mt. St. Helens volcano, 109Multiple isotropic scattering model, 8, 277,

308Multiple Lapse Time Window Analysis

(MLTWA), 258, 266, 267, 293Multiple scattering, 87, 132, 182, 202, 237,

245, 255, 278, 368, 440Multi-scaling, 222Mutual coherence function (MCF), 338

Nevada, 15, 99NIED, 2, 35, 44, 116Nikko area, northern Kanto, Japan, 205Nikko–Shirane volcano, 32Noise body forces, 422Noise source, 403Nonisotropic ACF, 26Nonisotropic random elastic media, 397Nonisotropic random media, 53, 244Nonisotropic scattering, 142, 185, 294Nonlinear site effect, 116, 447Nonspherical source radiation, 282Nonvolcanic deep low-frequency tremor, 121Non-volcanic tremor, 447NORSAR, 118, 329

North America, 118Northern California, 95North of India, 118NRCDP, 51Numerical simulation, 118, 134, 159, 198, 398,

450

Oceanic slab, 53, 106, 398Omega-square model, 188One-dimensional case, 246One-fiction approximation, 217Optical theorem, 184, 440, 450Orthogonality, 287, 296, 297, 434Oshima granite, 58

Pacific Ocean, 60Pacific plate, 38, 52, 53, 106Parabolic approximation, 52, 180, 319, 328Parabolic equation, 321, 347, 380, 386Parabolic wave equation, 339Parkfield, 37, 38, 113, 4462004 Parkfield earthquake, 447Particle motion trajectory, 55P-coda, 47, 49, 54, 77, 199, 267, 395Pennsylvania, 369Perturbed velocity, 20Phase fluctuation, 326, 329Phase screen method, 336Philippine Sea plate, 121, 446Phononic lattice solid method, 77Piezoelectric transducer (PZT), 57PKIKP, 117, 118PKiKP, 118, 119PKiKP precursor, 118PKP precursor, 118Plane P-wavelet, 380Plane S-wavelet, 386Plane wave, 45, 63, 130, 181, 192, 349Point scatterer, 432Point shear-dislocation source, 185, 189, 203,

288, 360Polarization, 58, 65, 137, 145, 193, 242, 315,

386of S waves, 235vector, 148

Porosity, 15Power law decay, 87Power spectral density function (PSDF), 8, 19,

20, 131, 146, 189, 191, 194PREM model, 8, 79, 309Principal value, 228Process of stationary increments, 21

Page 36: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

Index 493

Prolate spheroidal coordinates, 69, 194, 300,414, 415, 438

Prolate spheroidal shell, 69P-to-P scatterer distribution, 103P-wave, 9, 54, 84, 136, 170, 185, 242, 278, 422

Q�1c , 3, 80, 86, 307

in China, 82in Japan, 83in the Eurasian continent, 83in United States, 82temporal changes, 109

IQ�1S , 258

ScQ�1S , 258

Q�1 factor of the mean wave, 220Q�1P , 102, 153, 181

for the lithosphere, 156Q�1P =Q�1

S for the lithosphere, 157Q�1S , 102, 153, 181, 258

for the lithosphere, 155Quasi-monochromatic wave, 341, 348Quaternary volcano, 53, 54, 376

Radiation angle, 69Radiation boundary condition, 128Radiation pattern, 49, 97, 186, 232, 282, 360Radiative transfer equation, 211, 222, 230,

246, 257, 294, 368Radon transform, 36Random angles, 359Random fluctuation, 13, 174, 189, 194, 322Random inhomogeneity, 18Random media, 1, 21, 64, 76, 131, 164, 185,

211, 315, 322Rayleigh wave, 6, 61, 79, 148, 208, 303, 444,

446Rayleigh wave coda, 88Ray-tracing, 36Realizations of random media, 21, 75, 328Receiver function, 34Reciprocity, 409, 420Reduction of independent parameters, 141Reflected S-phase, 106Reflection surveys, 30Refraction surveys, 29Regional earthquake, 370Residue, 219, 271, 345Resolvent formula, 418, 422RMS

envelope, 40, 120, 205, 276, 354velocity amplitude, 200

Rytov method, 321

Salt body, 32Salton Sea Trough, 445San Joaquin valley, 4452003 San Simeon earthquake, 446Scalar wave, 30, 75, 125, 153, 211, 335, 402,

413case, 232, 238

Scattered wave, 4, 67, 126, 129, 136, 162, 185,268, 361, 413

Scattergram, 18Scattering amplitude, 129, 130, 138, 192, 317,

370, 433Scattering angle, 69, 193Scattering attenuation, 4, 48, 66, 153, 160, 198,

220Scattering coefficient, 3, 65, 130, 145, 146,

160, 208, 231, 245, 328Scattering loss, 49, 173Scattering medium, 4, 64, 246, 401, 450Scattering strength parameter, 324S-coda, 3, 42, 49, 92, 93, 147, 175, 185, 258

attenuation, 3wave excitation, 64, 197

ScS Envelopes, 396Seismic albedo, 5, 258Seismic moment, 97, 188, 290Seismic-moment time function, 186Seismogram envelope, 3, 40, 49, 121, 185,

240, 274, 319Semblance coefficient, 47, 201SH-wave, 77, 179, 203Single backscattering model, 66Single isotropic scattering model, 68, 303Single scattering, 3, 50, 80, 178, 191, 204, 211,

299, 393term, 254, 271

Single station method, 100Site amplification, 93, 206, 293Site factor, 115Slow (macro) variables, 222Slowness, 35, 47, 89, 91, 329Smoothing method, 214Snell’s law, 203, 311SOFAR channel, 119Solid angle element, 10, 65, 229, 295, 406Source duration, 191Source energy spectral density, 188Source radiation, 92, 97, 185, 245, 360Source-receiver reciprocity, 403, 409, 410,

418, 420, 432Southern California, 110, 445Spatial variation, 103Specific intensity, 230Spectral decay method, 154

Page 37: Appendix A Spherical Harmonic Functions and Wigner 3-j Symbols978-3-642-23029-5/1.pdf · Appendix A Spherical Harmonic Functions and Wigner 3-jSymbols Spherical Harmonic Functions

494 Index

Spectral density, 11Spherical coordinates, 20, 67, 126, 186, 217,

271, 347Spherical earth, 92, 303Spherical harmonic function, 246, 283, 297,

434, 458Spherical harmonics expansion, 283, 296Spherical P-wavelet, 396Spherical wavelet, 347Split-step solution, 357Spurious term, 440Stable continent, 57, 395Stacked RMS envelope, 87Stochastic ray-path method, 359Stress tensor, 135, 170Structure function, 21, 339Superposition of plane waves, 361, 380, 388,

392Surface waves, 444

envelope, 303SV-wave, 151, 179, 203S-wave, 4, 19, 79, 136, 145, 153, 186, 236,

258, 370, 422S-wave envelope, 5, 52, 370S-wave polarization, 147, 192, 243

T90, 3771976 Tangshan earthquake, 108Teleseismic P-wave, 34, 56, 103, 317, 329,

369, 395Temporal change, 107, 199, 239, 257, 367, 446

in site factors, 115Tethys trench, 118tF , 84tF�P , 84Thermal diffusivity, 160Thermoelastic effect, 159Thermoelasticity, 160Three-component RMS envelopes, 200Three-component seismograms, 49, 202, 260Three-dimensional case, 2512003 Tokachi-Oki earthquake, 115Total scattering coefficient, 3, 6, 64, 78, 132,

133, 147, 175, 231, 274, 368Total scattering cross-section, 66Transport scattering coefficient, 7, 73, 132,

240, 369Transverse component, 5, 57, 140, 187, 385Transverse correlation function, 330Transverse plane, 323, 339Travel-time correction, 170

corrected Born approximation, 165, 167,169, 194

corrected PP-scattering amplitude, 171corrected scattering amplitude, 172corrected SS-scattering amplitude, 172corrected wavefield, 166

Travel-time fluctuation, 4, 165, 179, 199, 327Triangular condition, 297, 460Trms , 377Tsukuba, 42Turbidity, coefficient, 328T waves, 119Twelve single-scattering modes, 203Two-dimensional acoustic random media, 178Two-dimensional case, 249Two-frequency mutual coherence function

(TFMCF), 340, 346, 361TYM, 290Type curves, 99

Ultrasonic waves, 57, 77Uniformly distributed noise sources, 437U. S. Pacific Northwest, 981971 Ust–Kamchatsk earthquake, 108

Vector wave, 169, 170, 315, 378scattering, 135

Velocity inhomogeneity spectra, 376Velocity ratio, 17, 138Velocity shift, 331Velocity source spectrum, 189Velocity tomography, 1, 34, 39, 445Ventura, 445Volcanic eruption, 108Volcanic front, 6, 52, 105, 372Volcano, 53, 205, 245, 275von Karman ACF, 23, 147, 176, 352, 364

Wandering effect, 315, 342Wave equation, 3, 37, 126, 166, 216, 379, 402,

419, 425, 430Wave parameter D, 325Well-log data, 18, 27, 116, 1411984 Western Nagano earthquake, 1092000 Western Tottori earthquake, 116Western U.S.A., 15, 99White spectrum, 329, 407, 413, 416, 425, 436,

439Wigner 3-j symbol, 297, 460