ap chemistry chapter 11 notes properties of solutions

53
AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Upload: norma-matthew

Post on 16-Dec-2015

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

AP CHEMISTRYCHAPTER 11 NOTES

PROPERTIES OF SOLUTIONS

Page 2: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Solution terms:

Page 3: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Solution- a homogeneous mixture (gases, liquids, or solids)

Page 4: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Saturated solution- a solution containing the maximum amount of solute that will dissolve under a given set of conditions. Saturated solutions are at dynamic equilibrium with any excess undissolved solute present. Solute particles dissolve and recrystallize at equal rates.

Page 5: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Unsaturated solution- a solution containing less than the maximum amount of solute that will dissolve under a given set of conditions. (more solute can dissolve)

Page 6: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Supersaturated solution- a solution that has been prepared at an elevated temperature and then slowly cooled. It contains more than the usual maximum amount of solution dissolved. A supersaturated solution is very unstable and the addition of a “seed crystal’; will cause all excess solute to crystallize out of solution leaving the remaining solvent saturated.

Page 7: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 8: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

A saturated solution is an equilibrium system. Solute is dissolving and recrystallizing at the same rate.

Page 9: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 10: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Units of solution concentration:

Page 11: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Molarity (M) = # of moles of solute per liter of solution

solution of literssolute of moles

M

Page 12: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Mole fraction () = ratio of the number of moles of a given component to the total number of moles of solution.

Mole fractiona = a

ba

a

nnn

Page 13: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Hydrogen sulfide gas has a solubility of 0.385 g/100 mL of water at 20oC and 1 atm. Calculate the mole fractions of both the solute and the solvent in a saturated solution of hydrogen sulfide in water under these conditions. Assume 100 mL of solution, volume of the H2S(g) is

negligible, density is 1.00g/mL

0.385g H2S × 1 mol H2S = 0.0113 mol H2S

34.08 g H2S

100.g H2O × 1 mol H2O = 5.55 mol H2O

18.02 g H2O

χH2S = 0.0113 = 0.00203

0.0113 + 5.55

H2O = 5.55 = 0.998

0.0113 + 5.55

Page 14: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Energies involved in solution formation:

Page 15: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Whether or not a solute dissolves in a solvent depends upon the strengths of 3 different types of attractions, as well as a change in the entropy (disorder) of the system. 1. Attraction of solute particles for each other2. Attraction of solvent particles for each other3. Attraction of solute particles for solvent particles

These 3 attractions add up to give the overall heat of solution.

Page 16: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 17: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

“like dissolves like” -general observation for solubility, not a reasonSubstances with similar types of intermolecular forces dissolve in each other.

Polar solvents dissolve polar or ionic solutes. Nonpolar solvents dissolve nonpolar solutes.

Page 18: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Water dissolves many salts because the strong ion-dipole attractions that water forms with the ions are very similar to the strong attractions between the ions themselves.

Page 19: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

The same salts are insoluble in hexane (C6H14) because the weak LDF forces their ions could form with this nonpolar solvent are much weaker than the attraction between ions.

Page 20: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Oil does not dissolve in water because the LDF-dipole forces are much weaker than the hydrogen bonding of water.

Page 21: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Solubilities of alcohols in water: As the hydrocarbon portion of the alcohol increases in length, the alcohol becomes less soluble. (More of the molecule is nonpolar.) The opposite situation would exist if hexane were the solvent.

Page 22: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Heat of solution (Hsoln) = enthalpy change associated with the formation of a solution

3 steps: Hsoln = H1 + H2 + H3

Hsoln can be positive (endothermic) or negative (exothermic).

Page 23: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Step 1 = Breaking up solute (endothermic)“expanding the solute”High in ionic and polar solutes, low in nonpolar solutes Hsolute = −Hlattice energy

Page 24: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Step 2 = Breaking up solvent (endothermic)“expanding the solvent” High in polar solvent, low in nonpolar solvent

Page 25: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Step 3 = Interaction of solute and solvent (exothermic) (High negative in polar-polar, low negative in rest)

Page 26: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

H2 + H3 = enthalpy of hydration

Enthalpy of hydration is more negative for small ions and highly charged ions.

Page 27: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 28: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Most heats of solution are positive (endothermic). The reason that the solute dissolves is that the solution process usually increases the entropy (disorder). This makes the process thermodynamically favorable. The solution process involves two factors, the change in heat and the change in entropy, and their relative sizes determine whether a solute dissolves in a

solvent.

Page 29: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Factors Affecting Solubility:

Page 30: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Molecular Structure:

Fat soluble vitamins, (A,D,E,K) –nonpolar (can be stored in the body tissue)Water soluble vitamins, (B&C) –polar (are not stored, must be consumed regularly)Hydrophobic- water fearing (nonpolar)Hydrophilic – water loving (polar)

Page 31: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Pressure Effects:

The solubility of a gas is higher with increased pressure. Pressure had very little affect on the solubility of liquids and solids

Page 32: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Henry’s Law- the amount of a gas dissolved in a solution is directly proportional to the pressure of the gas above the solution.

Page 33: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 34: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Henry’s Law is obeyed best for dilute solutions of gases that don’t dissociate or react with the solvent.

Page 35: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Temperature Effects:The amount of solute that will

dissolve usually increases with increasing temperature but may decrease. Solubility generally increases with temperature if the solution process is endothermic (Hsoln > 0 ). Solubility generally decreases with temperature if the solution process is exothermic (Hsoln < 0).

Page 36: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 37: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Potassium hydroxide, sodium hydroxide and sodium sulfate are three compounds that become less soluble as the temperature rises. This can be explained by LeChatelier’s Principle.

The solubility of a gas in a liquid always decreases with increasing temperature.

Page 38: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 39: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Vapor Pressure Lowering- While the presence of a volatile solute (more volatile than the solvent) increases the vapor

pressure of a solution, the presence of a nonvolatile solute lowers the vapor pressure of

a solvent. This is because the dissolved nonvolatile solute decreases the number of solvent molecules per unit volume. (Nonvolatile solute dilutes the solution). There are fewer solvent molecules on the surface to escape.

Page 40: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 41: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

The Presence of a Nonvolatile Solute Inhibits the Escape of Solvent Molecules from the Liquid

Page 42: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Liquid-Liquid solutions-

Solutions in which both solute and solvent are liquid and the liquids are volatile do not behave ideally. Both solute and solvent contribute to the vapor pressure. If the solute is more volatile than the solvent, the vapor pressure of the solution is higher

than the vapor pressure of the solvent.

Page 43: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Total Vapor Pressure of a Solution

Page 44: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Colloids- (also called colloidal dispersions) - a suspension of tiny

particles in some medium. The dispersed colloidal particles are larger than a simple molecule but small enough to remain distributed and not settle out. A colloidal particle has a diameter between 1 and 1000 nm and may contain many atoms, ions, or molecules. Because of their small particle size, colloids have an enormous total surface area.

Page 45: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

The particles stay suspended because of electrostatic repulsion. Coagulation occurs by heating (particles collide so hard that they stick together) or by the addition of an electrolyte (neutralizes ion layers).

The particles can be separated by filtration.

Foams, aerosols, emulsions, and sols are various types of colloidal dispersions.

Page 46: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Tyndall effect- the scattering of light by particles

-used to distinguish between a suspension and a true solution. A true solution has particles that are too small to scatter light.

Page 47: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

Brownian motion- a characteristic movement in which the particles change speed and direction erratically (solvent molecules collide with the colloidal particles).

Like a troop of Brownie scouts who ate too many Girl Scout cookies!

Page 48: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

BEER’S LAW A = bc or A = abc

Solution concentration can sometimes be measured by analyzing the intensity of the color of a solution through the use of a colorimeter or spectrophotometer.

Beer's Law is a way of summarizing and quantifying the relationship between the absorbance of light of a given wavelength, the nature of the absorbing chemical, the path length of the solution, and the concentration of the solution. It expresses the ideal situation in which these factors are truly proportional to the absorbance.

Page 49: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

A = bc or A = abc

• The symbol "A" stands for the absorbance, which is measured with an instrument such as a spectrophotometer or colorimeter.

• The symbol "a" or “” is a proportionality factor called the molar absorptivity which is how much light will be absorbed by 1 cm of a 1 M solution of this chemical. Its value depends on what the chemical is and also on what wavelength (or color) of light is being used.

• The symbol "b" stands for the path length of the cuvette in which the sample is contained measured in centimeters.

• The symbol "c" stands for concentration measured in molarity.

Page 50: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

A standard curve can be prepared by measuring and graphing the absorbance of light of a certain wavelength by different concentrations of the same solution. When an unknown concentration of that solution is tested, the standard curve can be used to determine its concentration.

Page 51: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS
Page 52: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS

2012

Page 53: AP CHEMISTRY CHAPTER 11 NOTES PROPERTIES OF SOLUTIONS