ap biology lab 12

7
AP Lab #12: Dissolved Oxygen and Primary Productivity Paula Zdanowski, Ivy Zhou, Kylie O’Hara, Sara Kuramitsu April 13, 2015 Gold 1 Mr. Hilvert Abstract The objective of this lab was to calculate dissolved oxygen concentration and determine the primary productivity of an aquatic ecosystem. To accomplish this, the dissolved oxygen in water at different temperatures first was determined through titration. Then, to measure the productivity of an aquatic environment, different bottles with varying degrees of light were left under a light for 24 hours, and titrated again to determine the dissolved oxygen concentration. The results of this lab demonstrated no strong correlation between the intensity of the light and the net productivity, so something other than light must have been influencing the productivity in the aquatic environment. Introduction Oxygen is a necessary part in aquatic as well as terrestrial environments. Because it is needed in virtually all metabolic processes, dissolved oxygen is a great indicator of water quality (Robson). Because water is not as efficient at holding oxygen as air is, it is imperative that oxygen is constantly replenished from the atmosphere and surrounding biological activity. This dissolved oxygen is a byproduct of photosynthesis. There are various factors that impact the dissolved oxygen content of a body of water, including temperature, wind, turbulence, and the trophic state (Hargreaves and Tucker). A measure of the production of oxygen over a period of time is found by calculating the amount of carbon that has been found on organic compounds over time (Sanchez). The objectives of this experiment were to demonstrate importance of carbon and oxygen cycles in an ecosystem, the effect of light and nutrients on photosynthesis, and to identify the factors that affect the solubility of dissolved gasses in aquatic environments. . We hypothesized that the temperature of the water would impact the amount of dissolved oxygen, and that the bottles with lower light would be less productive. Procedure/Materials/Methods The objective of this lab is to measure the dissolved oxygen concentration, calculate productivity and respiration rate, and demonstrate this knowledge in correspondence with the ecosystem. In this first part of this lab, we measured the amount of dissolved oxygen. To do so, we first prepared a sampling water bottle. We filled a bottle with 20 C water to the top. We did not allow any air bubbles to be trapped inside and then capped it bottle. Then we placed the bottle in a white shallow pan and added eight drops of manganous sulfate and eight drops of alkaline iodide.The solution was an orange color. When we did this, a precipitate formed

Upload: poisonivy2535

Post on 10-Nov-2015

83 views

Category:

Documents


3 download

DESCRIPTION

Lab on dissolved oxygen and primary productivityComplete lab write up with discussion/conclusion

TRANSCRIPT

  • APLab#12:DissolvedOxygenandPrimaryProductivityPaulaZdanowski,IvyZhou,KylieOHara,SaraKuramitsu

    April13,2015Gold1

    Mr.Hilvert

    AbstractTheobjectiveofthislabwastocalculatedissolvedoxygenconcentrationanddetermine

    theprimaryproductivityofanaquaticecosystem.Toaccomplishthis,thedissolvedoxygeninwateratdifferenttemperaturesfirstwasdeterminedthroughtitration.Then,tomeasuretheproductivityofanaquaticenvironment,differentbottleswithvaryingdegreesoflightwereleftunderalightfor24hours,andtitratedagaintodeterminethedissolvedoxygenconcentration.Theresultsofthislabdemonstratednostrongcorrelationbetweentheintensityofthelightandthenetproductivity,sosomethingotherthanlightmusthavebeeninfluencingtheproductivityintheaquaticenvironment.

    Introduction

    Oxygenisanecessarypartinaquaticaswellasterrestrialenvironments.Becauseitisneededinvirtuallyallmetabolicprocesses,dissolvedoxygenisagreatindicatorofwaterquality(Robson).Becausewaterisnotasefficientatholdingoxygenasairis,itisimperativethatoxygenisconstantlyreplenishedfromtheatmosphereandsurroundingbiologicalactivity.Thisdissolvedoxygenisabyproductofphotosynthesis.Therearevariousfactorsthatimpactthedissolvedoxygencontentofabodyofwater,includingtemperature,wind,turbulence,andthetrophicstate(HargreavesandTucker).Ameasureoftheproductionofoxygenoveraperiodoftimeisfoundbycalculatingtheamountofcarbonthathasbeenfoundonorganiccompoundsovertime(Sanchez).Theobjectivesofthisexperimentweretodemonstrateimportanceofcarbonandoxygencyclesinanecosystem,theeffectoflightandnutrientsonphotosynthesis,andtoidentifythefactorsthataffectthesolubilityofdissolvedgassesinaquaticenvironments..Wehypothesizedthatthetemperatureofthewaterwouldimpacttheamountofdissolvedoxygen,andthatthebottleswithlowerlightwouldbelessproductive.Procedure/Materials/Methods

    Theobjectiveofthislabistomeasurethedissolvedoxygenconcentration,calculateproductivityandrespirationrate,anddemonstratethisknowledgeincorrespondencewiththeecosystem.Inthisfirstpartofthislab,wemeasuredtheamountofdissolvedoxygen.Todoso,wefirstpreparedasamplingwaterbottle.Wefilledabottlewith20Cwatertothetop.Wedidnotallowanyairbubblestobetrappedinsideandthencappeditbottle.Thenweplacedthebottleinawhiteshallowpanandaddedeightdropsofmanganoussulfateandeightdropsofalkalineiodide.Thesolutionwasanorangecolor.Whenwedidthis,aprecipitateformed

  • immediately.Nextwemixedtheingredientsbyinvertingitseveraltimes.Welettheprecipitatesettleandthenaddedonescoopofacidintothebottleandalsomixeditbyinvertingthebottle.

    Whenweaddedtheacid,theprecipitatedissolvedandthesolutionturnadarkyellow.Wethenmeasured20mLofthesampleandplaceditintoatitrationvial.Apieceofwhitepaperwasplacedunderthevialtoseethecolorbetter.Next,weaddedeightdropsofstarchindicatortothesamplewhichcausedthecolortochangetoapurple.Atitrationsyringewasfilledwithsodiumthiosulfateandwasusedtotitratethesampleuntilthecolorchangedfrompurpletopaleyellow/clear.Wethenmeasuredtheamountofdissolvedoxygenbymeasuringtheamountoftitrantused.Wealsogatheredclassdata.

    Inthesecondpartofthelabwemeasuredproductivity.Firstwefilledsevensamplingbottlesbysubmergingtheminthedirtygreenfishtankonthesideoftheroom.Weplacedeachbottleinsideuntilalltheairbubblescameoutandthenwecappedthebottleunderwater.Thenwelabeledeachbottlewith17.Afterwards,wewrappedthebottleswiththeappropriateamountofscreenforthelightintensities.Thiscanbeseeninthetableonpage11.(Bottle2hadfoilaroundit,bottle3had1screen,etc...)Weliedbottles27downontheirsidesunderalightovernight.Next,wepreparedawetmountofthewatersampleinbottle1andobserveditunderamicroscope.Weidentifiedtheorganismswefoundanddrewthem.Wealsopreparedbottle1thesameasthesamplebottleinthepreviousexperimentandtitratedthesolution.Onthenextdaywepreparedtheotherbottlesaccordingtothesamestepsasbeforeinthepreviouslabandbottle#1.Afterwards,wemeasureddissolvedoxygenineachbottleandtitratedeachsample.Usingspecificformulaswecalculatedtheproductivityandrespirationratesofthesamples.Classdatawasalsoobtained.Inthelastpartofthelab,wegraphedthedatagiventomeasuretheproductivityofabodyofwater.DataTable1:DissolvedOxygenConcentration,LabGroupSample

    Temperature DissolvedOxygen(mg/L) %Saturation

    20C 1mg/L 10%

    Table2:DissolvedOxygenConcentration,ClassSample

    Temperature(Celsius) DissolvedOxygen(mg/L) %Saturation

    0(Group1) 0.7 5%

    0(Group6) 0.9 8%

  • 20(Group2) 0.97 10%

    20(Group5) 0.88 10%

    30(Group3) 0.96 12%

    30(Group4) 0.75 11%

    Astemperatureincreases,thedissolvedoxygenandthe%saturationalsogenerallyincreases.Table3:GrossandNetProductivity/RespirationRate,ClassSample

    PercentLight DissolvedOxygen(mg/L)

    NetProductivity GrossProductivity(mlO2/L)

    GrossProductivity(mgC/m^3)

    Initial 0.83

    Dark 0.80

    100% 0.79 0.04 0.01 5.36

    65% 0.83 0 0.03 16.08

    25% 0.78 0.05 0.02 10.72

    10% 0.91 0.08 0.11 58.96

    2% 0.69 0.14 0.11 58.96

    Respiration=InitialBottleDarkBottleNetPrimaryProduction=LightBottleInitialBottleGrossProduction=LightBottleDarkBottleThereisnotastrongcorrelationbetweenthepercentlightexposedandthedissolvedoxygen.Thecurveincreasesanddecreasesoftensothatapatternisdifficulttoidentify.Thereisalsonospecificcorrelationbetweenlightpercentageandnetproductivityaswellaslightpercentageandgrossproductivity.

  • Discussion/ConclusionForPartA,ourfindingsshowthatthetemperatureofthewaterdidimpactthedissolved

    oxygencontent.Theoveralltrendshowsthatthelowerthetemperature,thehigherthedissolvedoxygencontentinthewater.Thisishoworganismsinaquaticenvironmentssurviveincoldweatherwhenthewaterfreezes.Becauseofthehighoxygencontentinthewater,theyareabletoslowdowntheirmetabolisms,whilestillmaintainingahighenoughoxygenintaketosurvive.

    ForpartB,ourfindingsshowthatlighthaslittleeffectontheproductivityofaquaticenvironments,whichdisprovesourhypothesis.Thereasonforthisisbecauselightcannotpenetratewaterverywell,whichmeansthatorganismslivingdeepinwaterarelimitednotbylight,butbynutrients.Thevaryingdissolvedoxygencontentsforeachbottledemonstratesthattheamountoflightdidnotreallylimittheproductivity.WorksCitedHargreaves,JohnA.,andCraigS.Tucker."MeasuringDissolvedOxygenConcentrationin

    Aquaculture."TheFishSite.5mPublishing,09Jan.2006.Web.20Apr.2015.Robson,MarkG."DissolvedOxygen."Encyclopedia.com.HighBeamResearch,01Jan.2003.Web.20

    Apr.2015.Sanchez,Enrique."UseoftheWaterQualityIndexandDissolvedOxygenDeficitasSimpleIndicators

    ofWatershedsPollution."UseoftheWaterQualityIndexandDissolvedOxygenDeficitasSimpleIndicatorsofWatershedsPollution.ElsevierLtd.,21Nov.2005.Web.20Apr.2015.

    Questions

    1) Howdoestemperatureaffectthesolubilityofoxygeninwater?Thelowerthetemperature,themoresolubleoxygenisinwater.

    2)Howdoessalinityaffectthesolubilityofoxygeninwater?Thehigherthesalinity,thelowerdissolvedoxygenthereisinwater.

    3)Wouldyouexpecttofindhigherdissolvedoxygencontentinabodyofwaterinwinteror summer?

    Iwouldexpecttheretobeahigherdissolvedoxygencontentinabodyofwaterinthewinterbecausethewateriscolder.4)Discusshoweachofthefollowingfactorscouldinfluencethedissolvedoxygen concentrationinabodyofwater:

    Wind:Windwouldincreasethedissolvedoxygenconcentrationbecauseitmovesairacrossthesurfaceofthewaterallowingmoreoxygentobeintroduced.Temperature:Thehigherthetemperature,thelowertheamountofdissolvedoxygenin

  • water.Altitude:Asaltitudeincreases,thedissolvedoxygencontentwoulddecreasebecauseofthedropinpressure.

    5)Doyouthinkitwouldbewisetostockapondwithgamefishifithadadissolvedoxygencontentof3ppm?Whyorwhynot?Itwouldnotbewisebecausemostfishneedadissolvedoxygencontentofatleast5or6ppm.

    6)Ichosetolabelthelowdissolvedoxygencontentassummer,andthehighdissolvedoxygencontentaswinterbecausetemperatureisindirectlyrelatedtothelevelofdissolvedoxygeninwater.

    7)InpartB,wereanyofthesampleslightlimited?Why?

    Itdoesntappearthatanyofthesampleswerelightlimited,becausetherewasnotrendindissolvedoxygencontentforvaryingdegreesoflight.Thisisbecausemostaquaticenvironmentsaremorelimitedbytheirnutrientssincelightcannotpenetratedeeplyintowater.

    8)BasedonyouranalysisofthelakespresentedinpartCofthelab,whichlakeismoreproductive?Lake2appearstobemoreproductivebecauselightcanpenetratedeeperintothewaterthaninlake1.

    9)Whatisusedasthebasisformeasuringprimaryproductivity?DissolvedoxygencontentisusedasthebasisformeasuringprimaryproductivitybecauseitcandemonstratetheamountofO2usedinrespiration.

  • 10)

    11)a.additionofmanganoussulfate:producesmanganoushydroxidewhenaddedwithwater

    b.additionofalkalineiodide:oxidizesmanganoushydroxidetomanganichydroxidec.additionofsulfamicacid:convertsmanganichydroxidetomanganicsulfated.additionofstarchindicator:makestitrationendpointmorevisiblee.titrationwithsodiumthiosulfate:freeiodinecombinesintosodiumiodide