“equilibrium and transport properties of small alkanes and ......1 “equilibrium and transport...

18
1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.” Fernando J. A. L. Cruz , Erich A. Müller Imperial College London [email protected]

Upload: others

Post on 05-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

1

“Equilibrium and Transport Properties of

Small Alkanes and Alkenes Confined in

Single-W

alled Carbon Nanotubes.”

Fernando J. A. L. Cruz, ErichA. Müller

Imperial College London

f.cruz@

imperial.ac.uk

Page 2: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

2

1 –Introduction

1.1 -Motivation

●Separation of close boiling point mixtures (olefin/paraffin) bydistillation are energy

intensive operations.

●Adsorption can play a role in improving this scenario (molecular-level knowledge of

adsorption in confined nanospaces spaces is required).

●For small scale separations (pharmaceuticals, higher added value), nanotube-based

membranes could be good future candidates.

●Extendourexpertisefromflatsurfaces(carbonslitpores) to cilindricalgeommetries.

1.2 –Adsorbents & Methodology

●Carbonnanotubes firstidentifiedintheearly90’s [Iijima1991]: possibleapplications

range fromstoragenanomaterials (H2,CH4) andcompositesfor electronics, to separating

agentsoforganicvaporsandchemicalsensors.

●Studytheadsorptionanddiffusionbehaviouroffluids, whena bulkphaseisexposedto

direct

contact

with

single-walledcarbonnanotubes: ClassicalMolecular Dynamics

(Newton’s3rdlaw) andGrandCanonical Monte Carlosimulations.

Page 3: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

3

2 –Single-walledcarbonnanotubes (SWCNT)

Zig-zag(8,0)

arm

chair(5,5)

chiral (8,4)

graphene sheet

hexagonal simmetry

sp2carbons, 1.41 Å

Page 4: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

4

3 –Force FieldsandMolecular Models

3.1 –All-atompotential(AA-OPLS)

●nonbondedinteractions: All-atomLennard-Jones(12,6) withexplicitCoulombiccharges

●bondsandangles: harmonic

●dihedrals: triple cosine

●nanotubes : All-atomgraphiticcarbons[Steele1973]

(

)∑∑

+

=i

j

ij

ijij

ijij

ij

ijji

ijf

rr

r

eq

qr

U

612

2

σε

()

[]

[]

[] )

cos(

)cos(

)cos(

i

i

i

i

i

i

i

i

VV

VU

φφ

φφ

31

22

12

12

32

1+

+−

++

=∑

3.2 –United-atompotential(2CLJQ)

●nonbondedinteractions: Lennard-Jones(12,6) beads(CH2, CH3) with

a quadrupole momentatthecenterofmass

()

()

()

()

[]

22

22

2

5

026

12

52

15

51

443

4j

ij

ij

i

ab

ij

ijij

ijij

ijab

ijc

cc

cc

cc

r

Q

rr

rr

U−

+−

+−

+

=∑∑

πε

σσ

ε,

3 –Force Fields

δ δδδ+ +++

δ δδδ+ +++

δ δδδ− −−−δ δδδ− −−−

δ δδδ− −−−

δ δδδ− −−− δ δδδ− −−−

δ δδδ− −−−

Q

Page 5: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

5

4 –MD Simulations

3.3 –Single-walledcarbonnanotubes

●frozengraphiticcarbonatoms

d (C-C ) = 1.42 Å

squeezingoutoftheπorbitals

●explicitcarbonatoms: corrugatednanotubes

●effectivediameter: fromsurfaceto surface(accessiblevolume)

CRT

eff

DD

σ−

=

Page 6: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

6

4 –SimulationsDetails

4.1 –ClassicalMolecular Dynamics

●NVTensemble(Nosé-Hoover thermostat)

●T= 300 K

●timestep = 1 fs(Verletleapfrogalgorithm)

●timescale0.5 –3ns

●Potentialcutoff= 15 Å

●Ewaldsummation (fluids)

MD box : 30 ×

30 ×302Å(60 ×60 ×302Å) ; SWCNT box : 30×30 ×

52Å(60 ×60 ×

52Å)

NCRT≈800 atoms(L

z=52 Å), N

fluid= 150-1200 atoms(density)

4.2 –GrandCanonical Monte Carlo

●µVTensemble

●Tpure= 300 K, 260 K ≤Tmix≤450 K

●cycles total= 30 ×106, cycles production= 5 ×106

●Potentialcutoff= 20 Å

●GCMC box : 25 ×25 ×

53 Å

Page 7: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

7

5 –Equilibriumandadsorptionresults

5.1 -Adsorptionofpure

fluids

Bulkfluidequilibration@300K (t> 0.1ns)

Bulk ethylene being adsorbed onto a zig-zagSWCNT (16,0)

●fluids: 4 ×10-4≤pbulk≤53.6 bar

Page 8: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

8

5 –Results

●typeI isotherms(IUPAC)

●similar behaviourwithSipsandTothisotherms

●overestimationwiththe2CLJQ (inaccuraterigidbehaviourandstaticchargedistributionfor

flexiblemoleculeslikeC2H6); convergenceafterp ≈10 bar [Cruz 2008]

●C2H6ispreferentiably adsorbedatlowp(dispersiveenergy); cross-overaround3 −6 bar

(activatedcarbons, slitpores, higherDSWCNTs); atmedium-highpressureC2H4isthe

dominantspecies(entropicfactor / packingefficiency) ; isosteric heatsofadsorption(q

iso=

−∆H)

()

[]t

ts

bP

bP

CC

Toth

1

1+

µ:

()

()nn

s

bP

bP

CC

Sips

1

1

1+

µ:

0

50

100

150

200

250

300

350

400

AA-OPLS

2CLJQ

0.01

1E-3

0.1

110

C2H4

Surface Coverage (µµµµmol/m2)

p / bar

050100

150

200

250

300

350

400

AA-OPLS

2CLJQ

C2H

6

Surface Coverage (µµµµmol/m2)

p / bar

0.01

1E-3

0.1

110

Page 9: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

9

5 –Results

11.7 bar

1.45 bar

0.28 bar

pbulk

25 bar

Page 10: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

10

5 –Results

●armchair(9,9) andchiral (12,6) nanotubes presentsimilar lowpressure(p< 1 bar)

adsorptioncapacities(−3.4 % to 7 %)

●nanotubes loadingcapacityseemsto bea quadraticfunctionofthetubes’diameter

(4.46 Å, 6.80 Å, 9.15 Å, 11.49 Å, 13.83 Å)

05

1015

20

020406080100

120

140

C2H

4 (9.5 Å)

C2H

6 (10 Å)

Surface Coverage (µµµµmol/m

2)

D / Å

Page 11: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

11

5 –Results

5.2 -Separationofbinary

mixtures(C

2H4/C

2H6)

i )refinery mixture (90 mol % C

2H4), p= 1 bar

●Sdecreaseswith

T(high temperatures reduce

the energetic differences between molecules);

Selectivity’s

values

are similar

to larger

nanotubes andotherporegeommetries

ii )equimolar mixture, 0.1 ≤

p≤30 bar

●Sdecreasesrapidlyupto p≈10bar, andfrom

thenonwardsgainsa monotonical behaviour.

●the higher selectivity values coincide with the

low pressure regions, where ethane is the

preferentially adsorbed species

bulk

ethylene

ethane

nanotube

ethylene

ethane

xx

xx

S)

/(

)/

(=

250

300

350

400

450

1234

1 bar

Selectivity

T / K

05

1015

2025

3001234

200K

300K

400K

Selectivity

p / bar

Page 12: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

12

6.1 -Methodology

●Once the adsorption runs were finished, the upper volume of the simulation cell,

containing the nanotube and the adsorbed molecules, was separated from the bulk fluid

and replicated four times along the z-axis to produce a 30 ×

30 ×206Åsupercell

containing ca.3000 graphitic carbon atoms.

●Molecular displacementhasbeenmonitoredfor 0.5 ns: bulkandconfinedfluids.

●0.026 ≤ρ/mol�L–1≤15.751 (C2H4)

●0.011 ≤ρ/mol�L–1≤14.055 (C2H6)

6 –Dynamicalproperties

Page 13: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

13

6.2 -Porecontact

●A previouslyreportedhelicaldiffusivepathfor pureC2’s inzig-zagSWCNT’s[Mao2000],

hasalsobeenobservedherefor denseconfinedfluidsandcorrespondingbinary

mixtures(wallsimmetryandC –C bonds) .

ethaneSWCNT

●Notsurprisingly, chiral tubesexhibita more pronouncedspirallingeffect!

●No coherentdisplacementfor armchairtubes.

Page 14: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

14

5 –Results

Ddt

dr

Fickian

∝2

:

22

Bdt

dr

Ballistic

∝:

6.3 -Effectivediffusion

●Linear behaviour=> Fickian-typediffusion=> self-diffusion(effective), D(10-8m2/s,)

()()

[]2

061

rt

rdtd

D−

=

()()

[]2

20

rt

rr

MSD

−=

=

50100

150

200

250

300

1

2,5x10

3

5,0x10

3

7,5x10

3

1,0x10

4

C2H

4 @ (16,0)SWCNT

MSD / ÅÅÅÅ2

t / ps

Ballistic

Fickian

Page 15: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

15

5 –Results

6.3 -Effectivediffusion

●increaseofD, withdecreaseofmoleculesinsidethetube, untilltransitionto outsidethe

Fickian regime: ρ< 5.5 mol�L–1(@SWCNT) [Cruz 2008]

●lowdensitysystems: ballisticandmixedtyperegimes (freespaceavailablefor molecular

jumps)

●no significative influenceoftheSWCNT’ssimmetryontheFickian diffusivities(Zig-zag,

armchairandchiral nanotubes)

110

100

1000

1

101

102

103

104

105

106

C2H4 @ bulk

MSD / ÅÅÅÅ2

t / ps

ρρρρρρ

110

100

1000

1

101

102

103

104

105

106

C2H6 @ bulk

MSD /

ÅÅÅÅ2

t / ps

ρρ

110

100

1000

1

101

102

103

104

105

106

C2H4 @ bulk

MSD / ÅÅÅÅ2

t / ps

ρ

Page 16: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

16

5 –Results

6.3 -Scalinglaws

●confined phase diffusion data can be estimated by the knowledgeof the corresponding

bulk fluid structural properties, and this idea can become immediately appealing when

one keeps in mind practical and industrial applications (e.g.nanofluidics).

●Dbulk= A �ρ–B : empiricalcorrelationverifiedfor ethylene, againstexperimental data upto

ρ≈9.9 mol�L–1(discrepancieslessthan5 %).

00,01

0,1

110

100

10-8

10-7

10-6

10-5

10-4

SWCNT

bulk

C2H4

D / mmmm2s-1

ρ ρρρ / mol�L-1

00,01

0,1

110

100

10-8

10-7

10-6

10-5

10-4

SWCNT

bulk

C2H6

D / mmmm2s-1

ρ ρρρ / mol�L-1

Page 17: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

17

7 –Conclusions& Futurework

7.1 -Conclusions

●Resultsseem to show that the adsorption and transport behaviourof the pure fluids is

relatively independent of host simmetry.

●Relatively small changes in the nanotube diameter can have a marked effect on the

transport and adsorption properties. Further work would be required to confirm the

present findings in a larger pore with/temperature range.

●Ethane is the preferred adsorbed species (low p), ethylene diffusivities are larger than

those of ethane, although the difference is relatively minor.

●Confinedfluids’diffusiondata canbeestimatedfromthecorrespondingbulkphases

(scalinglaw).

7.2 -Perspectives

●C3fluidsandtheirbinarymixtures(D-ρscalinglaw).

Page 18: “Equilibrium and Transport Properties of Small Alkanes and ......1 “Equilibrium and Transport Properties of Small Alkanes and Alkenes Confined in Single-Walled Carbon Nanotubes.”

18

Acknowledgements

EPSRCGrantEP/D035171/1, UK