“all microbiology is local · web viewthe q24h dose for both gentamicin and tobramycin is 6 mg/kg...

113
“ALL MICROBIOLOGY IS LOCAL.” Paraphrase of a famous quotation by Thomas P. (Tip) O’Neill, United States representative from Massachusetts from 1953 to 1987 and Speaker of the House of Representatives from 1977 to 1987 ANTIBIOTIC ALGORITHMS FOR ADULT PATIENTS AND ANTIBIOGRAMS AT MONTEFIORE AND EINSTEIN

Upload: others

Post on 28-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

“ALL MICROBIOLOGY IS LOCAL.”Paraphrase of a famous quotation by Thomas P. (Tip) O’Neill,

United States representative from Massachusetts from 1953 to 1987and Speaker of the House of Representatives from 1977 to 1987

ANTIBIOTIC ALGORITHMS FOR ADULT PATIENTSAND ANTIBIOGRAMS AT MONTEFIORE AND EINSTEIN

6th edition© 2007

Page 2: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

TABLE OF CONTENTS

Click on a subject to go to its page.

Why use this booklet?..................................................2Why not just use broad-spectrum antibiotics?.............3List of restricted antibiotics..........................................4Non-formulary antibiotics............................................5Automatic antibiotic substitutions................................5General principles of treating infectious diseases........6Prior to selecting antibiotics......................................7-9C.M.S. standards for pneumonia................................10Prediction of mortality in community-acquired

pneumonia (the “Fine score”)......................11-12Algorithms for empiric antibiotics in adults

Community-acquired pneumonia....................13-14Nosocomial pneumonia...................................15-16Skin and soft tissue infections.........................17-18Bacterial meningitis........................................19-20Intra-abdominal infections..............................21-22Sepsis without an obvious source...................23-24Antibiotic prophylaxis in adults with cancer. .25-27Febrile neutropenia in cancer patients............28-29

Estimation (calculation) of creatinine clearance........30Vancomycin dosing guidelines..................................30Aminoglycoside dosing guidelines............................31Using serum antibiotic levels.....................................32Antibiotics for perioperative prophylaxis

Principles..............................................................33“Clean” surgery....................................................34“Clean-contaminated” surgery.............................35

AntibiogramsBacterial susceptibility and resistance data

at Montefiore.............................................36-40at Einstein..................................................41-43

Fungal susceptibility and resistance data.............44Important information about the antibiograms.....45

Microbiology Laboratory FAQs...........................46-50Quinolone guide – ciprofloxacin vs. moxifloxacin....51References.............................................................52-56Documentation of sepsis............................................57Afterthought...............................................................58

Page 3: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

WHY USE THIS BOOKLET WHEN THERE ALREADY SEEM TO BENATIONAL GUIDELINES FOR EVERYTHING?

Formulas, critical pathways, algorithms, and recommendations published by national groups for the empiric treatment of various types of infectious diseases are helpful starting points in the selection of antibiotic therapy. However, by their nature, they cannot apply to every situation. Broad-based formulas often must be modified to account for a number of factors — most importantly the antibiotic susceptibility patterns of common local bacteria and the frequency with which those organisms are encountered. Many published consensus guidelines for empiric antibiotic therapy contain statements that remind physicians to be familiar with their local data and adjust their patients’ treatments accordingly, but this critically important detail is often in the background and overlooked. The guidelines in this booklet are local — based on the most recent antibiograms from the Montefiore Microbiology Laboratory and the antibiotics available in the Montefiore/Einstein Pharmacy. They were developed by the Department of Pharmacy and the Division of Infectious Diseases of the Department of Medicine, and took into consideration recommendations by national professional societies.

No set of formulas, no matter how comprehensive or how carefully constructed, apply to every patient or replace sound clinical decision making. It should also be noted that some antibiotic recommendations contained in this booklet are different from the indications in their package inserts. Finally, physicians should obtain consultations from appropriate subspecialists whenever patients’ diagnoses are unclear, unusually complex cases are encountered, hazardous treatment is planned, unexpected complications occur, or the response to treatment seems unusually delayed.

2

Page 4: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

WHY NOT JUST USE BROAD-SPECTRUM ANTIBIOTICS ALL THE TIME?

Although it’s reasonable to start very broad-spectrum antibiotics for infected patients who are very ill (i.e., when all possible organisms have to be “covered”), there are many reasons to not use the broadest possible coverage all the time. First, there’s the resistance issue. Bacteria eventually become resistant to whatever is used, and once they do, they often stay that way, turning broad-spectrum antibiotics into narrow spectrum antibiotics, and making many older antibiotics much less useful than previously. (Eventually can be a short time or a long time, and like the rest of the future, it can’t be predicted well).

There’s also the money issue – it’s much easier for a pharmaceutical company to make a profit on a medication used to treat diabetes or high cholesterol because a person might be taking it for years, or for cancer because the price of a single course of chemotherapy is thousands of dollars. Whatever you think of pharmaceutical companies (i.e., whether they make money to return it to their officers, stockholders, and investors, or use it to finance education and research), they must make a profit to be successful.

For more than a decade, very few pharmaceutical companies have been developing antibiotics, and therefore, few are still sold only by their brand name. Some well-known older brands (e.g., Kefzol) are no longer even available because they are made generically (generic cefazolin is still made). Some older antibiotics (e.g., Timentin) are sold only under their brand name because even though their patents have expired, they are relatively low-profit and not manufactured by generic drug makers. (A manufacturer cannot stop production of a medication without giving six months notice to the F.D.A. and either stating that it is no longer needed or that an alternative source exists, so the original brand manufacturer can be forced to continue to make it.)

When old antibiotics lose their antimicrobial activity and new antibiotics don’t make as much money as other categories of medications, that’s a big problem. That is the current situation, and why we have to preserve the antibiotics we have even more so than previously.

Other reasons to use antibiotics smartly, and not rely on broad-spectrum antibiotics in every single patient, include unanticipated problems like broad-spectrum quinolones being linked to the development of a substantially higher incidence of Clostridium difficile colitis. Some C. difficile seen nowadays is not only resistant to quinolones, but often causes more severe colitis. Remember, the bacteria always win. There are many other reasons to use antibiotics wisely, but there’s not enough space in this booklet to review all of them.

33

Page 5: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

RESTRICTED ANTIBIOTICS

Except as noted, the following require approval by a member of the Division of Infectious Diseases for inpatient use.

Callers for restricted antibiotics should know the reason for the request and the patient’s medical record number, age and weight. For approval of more than one dose, the patient’s age renal function must also be known.

acyclovir............................................................................intravenousalso approvable by Dermatology;no approval is needed for capsules

albendazole................................................................................tabletsamikacin..............................................intramuscular and intravenousamphotericin B deoxycholate............................................intravenous

no approval is needed for bladder irrigationamphotericin B lipid complex and liposomal ..................intravenousazithromycin...................................................intravenous and tablets

no approval is needed for use on Pediatrics,1200 mg weekly doses for MAI prophylaxis,

and one-time 1000 mg doses for Chlamydia trachomatisaztreonam..........................................................................intravenouscefepime............................................................................intravenous

no approval is needed for use in I.C.U.s and Oncologycefotaxime...........................................intramuscular and intravenous

only for use on Pediatrics (for adults, use ceftriaxone)ceftriaxone........intramuscular and intravenous more than 1000 mg/d

no approval is needed for 1000 mg/d and lesschloramphenicol................................................................intravenous

no approval is needed for tabletscidofovir............................................................................intravenousciprofloxacin.....................................................................intravenous

no approval is needed for tabletsclarithromycin...........................................................................tabletsno approval is needed to treat M. avium-intracellulare or H. pylori

daptomycin........................................................................intravenousfluconazole..........................tablets, oral suspension, and intravenous

no approval is needed for 400 mg/d or less in AIDS patients

flucytosine............................................................................capsulesfoscarnet..........................................................................intravenousganciclovir.......................................................................intravenous

oral is non-formulary(use oral valganciclovir, which also needs approval)

imipenem...........................................intramuscular and intravenousitraconazole...............................................capsules and oral solution

also approvable by Dermatology; intravenous is non-formularylinezolid.........................................................tablets and intravenousmeropenem......................................................................intravenous

should be used only on Pediatrics and for “imipenem-R meropenem-S” organisms in adults (otherwise, even for patients

with seizures, use imipenem, which also needs approval)micafungin.......................................................................intravenousmoxifloxacin....................................................................intravenous

no approval is needed for tabletspentamidine.........................intramuscular, intravenous, and inhaledpiperacillin-tazobactam...................................................intravenous

restricted only in the E.R. and on Vascular Surgerypolymyxin B....................................................................intravenousrifabutin...................................................................................tabletstigecycline.......................................................................intravenousvalganciclovir.......................................................................capsules

also approvable by Renal and by Transplant Surgeryvancomycin.........................capsules, oral solution, and intravenous

approval is needed for more than 72 hours of intravenous administration, and requires a documented infection;approval is needed at all times for oral administration

voriconazole......................tablets, oral suspension, and intravenous

4

Page 6: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

NON-FORMULARY ANTIBIOTICS

Non-formulary antibiotics are not routinely available because there is nearly always another antibiotic already on the formulary with an equal or better efficacy and toxicity profile. For example, piperacillin-tazobactam can be used instead of ticarcillin-clavulanic acid, cefepime instead of ceftazidime, and a variety of cephalosporins instead of cefuroxime. For the rare instances that non-formulary items are necessary (e.g., infections caused by bacteria that are resistant to all antibiotics on the formulary), consultations by Infectious Diseases should be obtained. If they agree that the non-formulary item is necessary, it will be obtained by the Pharmacy on an expedited basis.

ANTIBIOTIC SUBSTITUTIONSUnless a member of the Division of Infectious Diseases makes an exception, the Pharmacy automatically makes these substitutions:

As “therapeutically equivalent alternatives”liposomal amphotericin B is changed to.......amphotericin B lipid complexcaspofungin is changed to...........................................................micafungincefotaxime is changed to.........................ceftriaxone (except on Pediatrics)cefoxitin is changed to................................cefotetan (except on Pediatrics)intravenous cefuroxime is changed to.....ceftriaxone (except on Pediatrics)oral cefuroxime is changed to..............cefpodoxime (except on Pediatrics)cephradine is changed to..............................................................cephalexinoxacillin is changed to......................................................................nafcillinmeropenem is changed to..........................imipenem (except on Pediatrics)

For bioequivalenceExcept for patients who are unable to swallow or have NPO orders, administration of the following may be changed from intravenous to oral:

ciprofloxacin doxycycline fluconazole linezolid

metronidazole moxifloxacintrimethoprim-sulfamethoxazole

voriconazole

55

Page 7: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

GENERAL PRINCIPLES OF TREATMENT

1. *First, obtain cultures (see pages 7 to 9 for details)*a) *Order routine cultures.*b) *If necessary, perform procedures (e.g., spinal tap, pleuracentesis, arthrocentesis) necessary to obtain adequate specimens for additional cultures, and make sure that the cultures and laboratory tests on body fluids are properly ordered. The only additional tests on body fluids that are routinely helpful are cell counts, protein, glucose, Gram stain, and bacterial culture.c) *If an invasive procedure is necessary to obtain fluid or pus for a culture, request a consultation from the appropriate subpecialist.*

2. *Then, order antibiotics (see algorithms on pages 12 to 29)*a) *Consider the risk for resistant bacteria — use narrow spectrum therapy when possible, very broad spectrum antibiotics when necessary.*b) Order the proper dose and frequency of antibiotics — use the patient’s age, weight, and creatinine to calculate the creatinine clearance, and consider the type, location, cause, and severity of the infection.*

For patients with community-acquired pneumonia or sepsis syndrome, this step should be completed within 4 hours of the initial contact or the onset of symptoms, and in even less time for patients with meningitis or febrile neutropenia

3. *Simultaneous with step 2, consider non-antibiotic issues and non-infectious diagnoses*a) *Fluid resuscitation.*b) *Drainage of abscesses and other “closed-space” infections, debridement of necrotic tissue.*c) *Think about alternative diagnoses (e.g., ARDS vs. diffuse pneumonia, cardiogenic shock vs. septic shock).*

4. *Re-assess the patient daily1

a) *Stop antibiotics if cultures do not grow pathogens and an alternative diagnosis has been made. b) *Either change to a narrow spectrum antibiotic when culture and susceptibility results show that one can be used (except for neutropenic oncology patients), or change to broader spectrum antibiotics if results unexpectedly show that they are necessary, or continue the initial empiric antibiotics if they are appropriate.*

1Wash your hands!

6

Page 8: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PRIOR TO SELECTING ANTIBIOTICS

The following principles apply to all antibiotic algorithms – and are as important as selecting the correct empiric antibiotic(s):1. Prior to the first dose of antibiotics, two blood cultures (16 to 20 mL for each culture, or 8 to 10 mL in each

bottle) should be drawn, and cultures from the following sites should also be taken:a) expectorated sputum from non-intubated patients with pneumoniab) an endotracheal aspirate from intubated patients with pneumoniac) debrided tissue from patients with decubitus ulcers that are infected, diabetic foot infections, or possible

necrotizing fasciitisd) cerebrospinal fluid from patients with meningismus (also send for cell count, glucose, and protein)e) pus from aspiration or drainage of abscessesf) at least three blood cultures from patients with suspected native valve endocarditis or infected long-term

vascular access devicesg) at least four blood cultures from patients with suspected prosthetic valve endocarditish) pleural fluid from patients with significant pleural effusions (also send for cell count, glucose, and protein)i) peritoneal fluid from patients with ascites (also send for cell count, glucose, and protein)

2. Actual tissue, pus, exudates, and other body fluids should be cultured by collection in a sterile container — swab cultures are usually either inadequate for diagnosis or provide misleading information. Even when swabs are taken from surfaces that appear infected, Gram stains cannot be done and cultures almost always grow several species of colonizing bacteria. Swabs are only for when specific bacteria are sought (e.g., group A strep in pharyngitis).

3. Cultures of tissues, pus, exudates, and other body fluids should be sent in anaerobic transport media when anaerobes are reasonable clinical possibilities.

4. Specific antibiotic dosages in this booklet are for adult patients with normal renal function. Adjustments in dosages of some antibiotics are necessary for patients with renal insufficiency. It’s always a good idea to calculate creatinine clearance prior to ordering antibiotics — can you guess the creatinine clearance of an 85 year old woman who weighs 90 lbs. and has a serum creatinine of 0.9 mg/dL? (See page 30 for the answer.)

77

Page 9: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PRIOR TO SELECTING ANTIBIOTICS(continued)

5. Except for profoundly neutropenic cancer patients, empiric antibiotics should be changed to the narrowest spectrum and least expensive available agent based on final culture results — even if a patient has responded well to the empiric antibiotics.

6. Empiric treatment of Pseudomonas aeruginosa for community-acquired infections is generally not needed except for patients receiving high-dose steroids or recent broad-spectrum antibiotics, with a white blood cell count <1000 per mm3, or (for pneumonia) bronchiectasis or cystic fibrosis. It is not needed in patients admitted from nursing homes unless they have one of these conditions or have been on broad-spectrum antibiotics prior to admission.

Blood Cultures1. Separate blood cultures means obtaining them at separate times. It is usually better to draw two blood cultures at

different times for a better chance of detecting bacteremia, rather than drawing them at times that are too close to each other. The purpose of obtaining two blood cultures is to double the chance of detecting pathogens (compared to a single blood culture), as well as to distinguish pathogens from contaminants. Although some consensus guidelines state that the time interval between blood cultures should be at least 10 minutes, this is not based on data.

2. When native valve endocarditis is a possible diagnosis, at least three blood cultures should be obtained (over a period of several hours) because if one blood culture does not grow bacteria, two of three blood cultures with bacteria makes endocarditis much more likely than one of two blood cultures.

3. At least three blood cultures should be obtained from patients with permanent indwelling devices (e.g., a Hickman or Hemocath).

4. Whenever prosthetic valve endocarditis is a possible diagnosis, four or five blood cultures should be obtained because the likely pathogens are also likely contaminants. A patient with a prosthetic valve and coagulase-negative staphylococci growing in one of two blood cultures must be treated for endocarditis; a patient with the same bacteria in one of four blood cultures does not.

5. Blood cultures should not be drawn through an intravenous line except to document that catheter as the source of bacteremia. Bacteria on the catheter hub frequently contaminate these when they are drawn.

8

Page 10: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PRIOR TO SELECTING ANTIBIOTICS(continued)

6. An ample volume of blood (16-20 mL per blood culture, or 8-10 mL per bottle) should be obtained because the degree of bacteremia in many patients is less than 1 bacterium per mL.

7. If only a small volume of blood can be obtained for culture, and anaerobes are not suspected, it is better to send only an aerobic bottle.

8. Coagulase-negative staphylococci (including Staphylococcus epidermidis), Corynebacterium spp., Bacillus spp., or Proprionibacterium spp. growing in only one of several blood cultures is due to contamination, not infection. Therefore, if these bacteria grow from only one blood culture, standard procedure at any laboratory is to not fully identify them unless there is a specific request based on a clear clinical need.

9. If an unusual species of bacteria is suspected, then it should be specified in the comments section of the laboratory order, or an infectious diseases consultation should be obtained so that the proper culture media are used in the laboratory.

Sputum cultures1. Only purulent sputum should be sent for culture. Sputum that is mixed with saliva grows mixed oral flora that

overgrows pathogens.

Other Cultures1. Blood culture bottles are only for blood; all other body fluids should be sent in sterile containers.2. Swabs are useful only when seeking a specific organism, e.g., group A strep from a throat culture. Swab

specimens of wounds, decubitus ulcers, and other surfaces should not be sent for culture because bacteria always colonize these sites; instead, the tissue should be surface-sterilized, debrided, and sent for culture.

3. In addition to cultures, send cell counts, glucose, and protein on specimens of cerebrospinal, joint, pleural, and ascitic fluids.

99

Page 11: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

CENTERS FOR MEDICARE AND MEDICAID STANDARDSFOR THE EVALUATION AND TREATMENT OF PATIENTS ADMITTED TO THE

HOSPITAL WITH COMMUNITY-ACQUIRED PNEUMONIA

THE FOLLOWING ARE REQUIRED COMPONENTS OF CARE AND ALSO MUST BE DOCUMENTED:

1.Blood cultures must be drawn prior to starting antibiotics.

2.Antibiotics must be started within four hours of the patient’s arrival at the hospital.a) The time of arrival is the first set of vital signs (e.g., triage in the Emergency Room).b) Use the table on page 12 to help determine the specific antibiotics that should be given.c) If other infections besides pneumonia are possible (especially endocarditis), then the additional cultures to evaluate for

those diagnoses should still be drawn or obtained within this four hour time, prior to starting antibiotics. Go to page 7 for more information about the additional cultures that must be obtained.

3.Within 24 hours of arrival, the arterial oxygenation level must be assessed. Pulse oximetry and arterial blood gases are acceptable methods.

4.At any time during the admission, smoking cessation must be discussed with all patients who are cigarette smokers or have smoked within the past year.

5.At any time during the admission, pneumococcal vaccine must be administered. Documentation of a valid reason for not giving it (e.g., significant egg allergy, patient refusal, or previously given) is also acceptable.

6.For all patients in the hospital from the beginning of October until the end of February, at any time during the admission, influenza vaccine must be administered. Documentation of a valid reason for not giving it (e.g., egg allergy, previous reaction to it, patient refusal, or previously given during the same winter) is also acceptable.

10

Page 12: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PREDICTION OF MORTALITY IN COMMUNITY-ACQUIRED PNEUMONIA

This classification system applies to nearly all adult patients with community-acquired pneumonia, including nursing home residents. The only types of patients to which it does not apply are those who have been discharged from a hospital (i.e., an acute care facility) within the previous 7 days, those with known HIV infection, and pregnant women. Although it was developed as a predictor of mortality at 30 to 60 days, it should be noted that this system is also used by some to help determine the need for hospitalization. Most patients in classes I, II, and III usually do not need to be admitted to a hospital, and patients in classes IV and V usually are admitted. However, other factors, such whether a patient lives alone, also play a role in determining whether or not hospitalization is required. Note that scoring is “all or none” — there are no “partial” scores. For example, a patient with a temperature of 103.8oF gets no points for temperature.

Step 1. Determine the patient’s Pneumonia Patient Outcomes Research Team score (“PORT” or “Fine” score):a. For patients 50 years of age or less skip the first box in this table (demographic factors) and start with the next

box (coexisting illnesses). If there are no points from either that section or the next (physical findings), skip the rest and simply assign them to severity class I.

b. For patients older than 50 years of age, use all four sections of this table:Demographic factors: Points

men........................................................................................................................................................................................ agewomen..............................................................................................................................................................................age–10

Coexisting illnesses: Pointsneoplastic disease (initial diagnosis within the past year, or any that is active; except basal cell carcinoma of the skin). . .+30liver disease (clinical or histological diagnosis of cirrhosis, chronic active hepatitis, or any other chronic liver disease). .+20congestive heart failure (systolic or diastolic ventricular dysfunction determined by history, physical exam, or any test).+10cerebrovascular disease (clinical, CT, or MRI diagnosis of a stroke or TIA).......................................................................+10renal disease (any history of chronic renal disease, or of abnormal BUN and creatinine)...................................................+10

1111

Page 13: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Physical findings: Pointsaltered mental status (acute disorientation, stupor, or coma)............................................................................................... +20respiratory rate >30 per minute.............................................................................................................................................+20systolic blood pressure <90 mm Hg......................................................................................................................................+20temperature <35.0oC or >40.0oC (<95oC or >104.0oF)..........................................................................................................+15pulse >125 per min................................................................................................................................................................+10

Laboratory and X-ray findings: Pointsarterial pH <7.35....................................................................................................................................................................+30BUN >30 mg/dL....................................................................................................................................................................+30Na+ <130 mEq/L....................................................................................................................................................................+20glucose >250 mg/dL..............................................................................................................................................................+10hematocrit <30%...................................................................................................................................................................+10pO2 <60 mm Hg, O2 sat <90%, or intubation........................................................................................................................+10pleural effusion......................................................................................................................................................................+10

Step 2. Determine the patient’s severity class and predict their mortality:Patient characteristics or score

(from the table above)Severity

classPredicted mortality

at 30 to 60 daysAge less than 50, without any of the above coexisting illnesses or physical findings(skip the laboratory and X-ray findings as instructed in step 1a) .................................................. “PORT” or “Fine” score 70 points.............................................................................................. “PORT” or “Fine” score 71 to 90 points...................................................................................... “PORT” or “Fine” score 91 to 130 points.................................................................................... “PORT” or “Fine” score >130 points...........................................................................................

IIIIIIIVV

0.1 to 0.4%0.6 to 0.7%0.9 to 2.8%8.2 to 9.3%

27.0 to 31.1%

12

Page 14: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF COMMUNITY-ACQUIRED BACTERIAL PNEUMONIA INADULT PATIENTS

(To calculate the “Fine score” and predict mortality in community-acquired pneumonia, see the previous two pages)

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

treated as an outpatient(formulary status and restrictions do

not apply at outside pharmacies)

doxycycline 100 mg q12h x 7 to 10 days,amoxicillin-clavulanic acid 2000 mg (XR formulation) q12h x 7 to 10 days,

azithromycin 500 mg x 1 dose, then 250 mg q24h x 4 days2,clarithromycin 1000 mg (XL formulation) q24h x 7 days or 500 mg q12h x 7 to 14 days3

mild to moderately ill withtypical pneumonia,

and requiring hospitalization(including nursing home patients)

ceftriaxone 1000 mg q24h (alone)

mild to moderately ill withatypical pneumonia

(typical bacteria not suspected),and requiring hospitalization1

azithromycin 500 mg q24h2 (alone),or moxifloxacin 400 mg q24h4 (alone)

severely or critically ill ceftriaxone 1000 mg q24h, azithromycin 500 mg q24h2, and vancomycin 1000 mg q12h5,or moxifloxacin 400 mg q24h4 (alone)

anaerobic aspiration suspected(e.g., seizures or alcoholism),and requiring hospitalization

clindamycin 600-900 mg q6-8h (alone),or ampicillin-sulbactam 1500 mg q6h (alone),

or amoxicillin-clavulanic acid 875 mg q12h (alone)severe penicillin allergy

(anaphylaxis or hives, but not a simple “rash”)

moxifloxacin 400 mg q24h4 (alone)

1313

Page 15: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

year

at Montefiore at Einstein

CAPcases

Legionella tests CAP

casesLegionella tests

done pos. done pos.2000 2158 448 2 828 224 22001 2297 342 6 778 176 02002 2352 292 2 868 164 52003 2135 263 1 872 203 32004 2147 275 3 1015 187 1

General comments about community-acquired pneumonia:(a) For patients admitted to the hospital, two blood cultures drawn at least 10 minutes apart and a sputum culture should be

obtained prior to giving antibiotics. Urine should be tested for pneumococcal antigen and if indicated, for Legionella pneumophila antigens.

(b) Empiric antibiotics should include an agent active against bacteria seen in significant numbers on a Gram stain of purulent sputum (if available), started within 4 hours of the initial set of vital signs, and changed to a narrow spectrum agent based on culture results that become available during the course of treatment.

(c) Specific antibiotic dosages above are for adult patients with normal renal function. Adjustments in dosages may be necessary in patients with renal insufficiency.

(d) Empiric treatment of Pseudomonas aeruginosa causing community-acquired pneumonia is needed only for patients receiving systemic steroids, or who have bronchiectasis, a white blood cell count <1000 per mm 3, or cystic fibrosis. It is not routinely needed in patients admitted from nursing homes unless they have recently been given broad-spectrum antibiotics.

(e) Antibiotics are unnecessary in afebrile patients admitted to the hospital with an asthma exacerbation or acute bronchitis.

Footnotes for the table of empiric treatment of community-acquired pneumonia:1 – This is rare; patients admitted to Montefiore and Einstein for community-acquired pneumonia almost always have “typical”

pneumonia. Data for the last 5 years of urinary antigen testing for Legionella pneumophila serotype 01, which causes about 80% of Legionnaire’s disease, are shown at the right (the number of CAP cases were determined from ICD-9-CM discharge diagnosis coding). Hospitalized patients who are severely ill should receive treatment for both typical and atypical pneumonia, but based on our local data, “typical” patients should be treated only for “typical” pneumonia.

2 – The use of azithromycin for inpatients requires approval by Infectious Diseases.

3 – Clarithromycin XL is non-formulary. Except for treating infections due to Mycobacterium avium-intracellulare in AIDS patients and Helicobacter pylori, the use of regular clarithromycin for inpatients requires approval by Infectious Diseases.

4 – The use of intravenous moxifloxacin requires approval by Infectious Diseases, and the dosing is automatically switched to oral in patients who can take oral medications. Moxifloxacin should not be used in any form when tuberculosis is a possibility.

5 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by culture of an organism that cannot be treated with other antibiotics (e.g., MRSA or multiple-antibiotic-resistant

14

Page 16: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Streptococcus pneumoniae). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels.

1515

Page 17: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF NOSOCOMIAL PNEUMONIA IN ADULT PATIENTS

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

not previously receiving antibiotics

piperacillin-tazobactam 4500 mg q6h2

or cefepime 1000-2000 mg q8-12h3,plus

ciprofloxacin 400 mg q8h4,gentamicin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h5,tobramycin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h5,

or amikacin 5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h5,6

plusvancomycin 1000 mg q12h7

or linezolid 600 mg q12h4

already receiving antibiotics depends on the antibiotics already given

severe penicillin allergy1

(anaphylaxis or hives, but not a simple rash) substitute aztreonam 1000 mg q8h6 for piperacillin-tazobactam or cefepime above

General comments about nosocomial pneumonia:(a) Take steps to prevent nosocomial/ventilator-associated pneumonia: extubate as soon as possible, evaluate for tracheostomy

when a long period of intubation is expected, elevate the head of the bed, use sedation only when needed and use the smallest amount necessary, and suction secretions frequently.

(b) The most common causative organisms are enteric Gram-negative rods, Pseudomonas aeruginosa, and Staphylococcus aureus. Empiric treatment of Pseudomonas aeruginosa is usually needed only for patients in the I.C.U., or receiving (or who have recently received) broad-spectrum antibiotics or high-dose steroids, or with bronchiectasis, a white blood cell count <1000 per mm3, or cystic fibrosis. For patients in an I.C.U or on broad-spectrum antibiotics, highly resistant Gram-negative rods such as Acinetobacter baumannii and extended-spectrum -lactamase producing K. pneumoniae are also common.

16

Page 18: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

(c) For patients from nursing homes on no antibiotics, do not use this table — use the table for community-acquired pneumonia.(d) Prior to the administration of antibiotics, two blood cultures at least 10 minutes apart and a sputum culture should be done.(e) Empiric antibiotics should include an agent active against bacteria seen on a Gram stain of purulent sputum.(f) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be

necessary in patients with renal insufficiency.(g) All empiric antibiotics should be changed to the narrowest spectrum and least expensive available agent based on culture

results that become available during the course of treatment.(h) Nosocomial pneumonia due to enteric Gram-negative rods (mostly lactose fermenters such as Klebsiella spp., Enterobacter,

spp., Citrobacter spp.) can be treated for about 8 days; for Pseudomonas aeruginosa, Acinetobacter baumannii, other non-enteric Gram-negative rods, and Staphylococcus aureus, about 15 days of treatment is needed. For the treatment of Gram-negative rods, aminoglycosides are synergistic with penicillin and cephalosporins; ciprofloxacin is not synergistic.

Footnotes for the table of empiric treatment of nosocomial pneumonia:1 – Pseudomonas aeruginosa and other resistant Gram-negative rods are more likely to be susceptible to piperacillin-

tazobactam or cefepime than to ciprofloxacin or aztreonam. For a patient with nosocomial pneumonia who has a penicillin allergy, piperacillin-tazobactam or cefepime are usually preferable to ciprofloxacin and aztreonam because the risk of a significant allergic reaction caused by piperacillin-tazobactam or cefepime is outweighed by the benefit of their greater antimicrobial activity.

2 – Piperacillin-tazobactam should be given at a dose of 4500 mg q6h to treat nosocomial pneumonia and for pseudomonal infections. Its use in patients on Vascular Surgery and in the Emergency Room requires approval by Infectious Diseases.

3 – The use of cefepime outside of Oncology or an I.C.U. requires approval by Infectious Diseases.4 – The use of linezolid and intravenous ciprofloxacin require approval by Infectious Diseases, and the dosing of both is

automatically switched to oral in patients who can take oral medications.5 – Go to pages 30 and 31 of this booklet for information about estimating creatinine clearance and proper dosing of

aminoglycosides, including high-dose q24h administration. Go to page 32 for information about drawing and monitoring aminoglycoside levels.

6 – The use of amikacin and aztreonam require approval by Infectious Diseases.7 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by

culture of an organism that cannot be treated with other antibiotics (e.g., MRSA). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels. For treating pneumonia, higher trough levels than usual (about 15 g/mL) should be sought.

1717

Page 19: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF SKIN AND SOFT TISSUE INFECTIONS INADULT PATIENTS REQUIRING HOSPITALIZATION

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

cellulitis oxacillin or nafcillin 1000 mg q4-6h

mild or moderate diabetic foot infection cefazolin 1000 mg q8h

severe diabetic foot infection ceftriaxone 1000 mg q24h, either with or without metronidazole 500 mg q8h1

any of the above categories,and previously treated with antibiotics depends on the antibiotics already given

any of the above categories,and a severe penicillin allergy

(anaphylaxis or hives, but not a simple rash)

vancomycin 1000 mg q12h2 or clindamycin 600-900 mg q6-8h,(and call Infectious Diseases to discuss the case if empiric treatment of Gram-

negative rods is also necessary for a severe infection on the lower half of the body)

suspected necrotizing fasciitison the upper portion of the body

penicillin G 4 million units q4h plus clindamycin 600-900 mg q6-8h3,and an emergency surgical consultation

suspected necrotizing fasciitison the lower portion of the body(including Fournier’s gangrene)

piperacillin-tazobactam 4500 mg q8h4, ampicillin-sulbactam 1500 mg q6h,or cefotetan 1000 mg q12h (and consider adding clindamycin 600-900 mg q6-8h3),

and an emergency surgical consultation

methicillin-resistantStaphylococcus aureus suspected vancomycin 1000 mg q12h2

18

Page 20: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about skin and soft tissue infections:(a) Staphylococcus aureus, Streptococcus pyogenes (group A strep), and Streptococcus agalactiae (group B strep) cause the

vast majority of skin and soft tissue infections, including those in diabetics. Enteric Gram-negative rods, enteric anaerobes, and enterococci may play a role in more severe diabetic foot infections, but it is not possible to empirically treat for all bacteria all the time.

(b) Prior to the administration of antibiotics, two blood cultures drawn at least 10 minutes apart should be done. For diabetic foot infections and necrotizing fasciitis, a culture of the infected site should also be done. Only debrided tissue should be sent for culture; swab cultures should not be sent.

(c) Debridement of infected necrotic tissue is as important as antibiotics.(d) Specific antibiotic dosages given above are for adult patients with normal renal function; adjustments in dosages may be

necessary in patients with renal insufficiency.(e) Empiric treatment of Pseudomonas aeruginosa causing a skin or soft tissue infection is usually not needed except for

patients already receiving (or who have recently received) broad-spectrum antibiotics or high-dose steroids.(f) All empiric antibiotics should be changed to the narrowest spectrum and least expensive available agent based on culture

results that become available during the course of treatment.(g) The prevalence of osteomyelitis underlying an infected diabetic foot ulcer is not known.

Footnotes for the table of empiric treatment of skin and soft tissue infections:1 – Metronidazole is automatically given orally to patients who can take oral medications.2 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by

culture of an organism that cannot be treated with other antibiotics (e.g., MRSA). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels.

3 – In necrotizing fasciitis, clindamycin is added because it inhibits bacterial protein synthesis, which theoretically prevents production of bacterial toxins, not because of antibiotic activity that penicillins and cephalosporins do not have.

4 – The use of piperacillin-tazobactam in patients on Vascular Surgery and in the Emergency Room requires approval by Infectious Diseases.

1919

Page 21: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF BACTERIAL MENINGITIS IN ADULT PATIENTS

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

no trauma to CNS; cloudy spinal fluid;Gram stain results not yet available or no organisms seen1 ceftriaxone 2000 mg q12h3 plus vancomycin 1000 mg q12h4

no trauma to CNS;Gram stain or bacterial antigen testing2

detects specific bacteria

Gram-positive cocci in pairs (Streptococcus pneumoniae):ceftriaxone 2000 mg q12h3 plus vancomycin 1000 mg q12h4

Gram-negative cocci (Neisseria meningitidis):penicillin G 4 million units q4h

Gram-positive rods (Listeria monocytogenes):ampicillin 2000 mg q4h

or trimethoprim-sulfamethoxazole 5-25 mg/kg q6h

pleiomorphic Gram-negative rods (Haemophilus influenzae):ceftriaxone 2000 mg q12h3

recent neurosurgery enteringsubarachnoid space,

or trauma resulting in CSF leak

vancomycin 1000 mg q12h4 plus cefepime 2000 mg q8h5

and consider addinggentamicin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h6,tobramycin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h6,

or amikacin 5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h6,7

20

Page 22: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about meningitis:(a) In patients with meningismus, a CT scan of the brain is not routinely necessary prior to performing a spinal tap.(b) Prior to the administration of antibiotics, two blood cultures drawn at least 10 minutes apart and a spinal tap should be done.

The blood cultures can be done and the antibiotics set up while doing the spinal tap, and administration of the antibiotics should be started as soon as the blood cultures and spinal tap have been completed.

(c) In patients with meningismus, CSF should always be sent for cell count, glucose, protein, and bacterial smears and culture. Ordering other tests depends on clinical circumstances.

(c) All empiric antibiotics should be changed to the narrowest spectrum and least expensive available agent based on culture results that become available during the course of treatment.

(d) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be necessary in patients with renal insufficiency.

Footnotes for the table of empiric treatment of meningitis:1 – If no bacteria are detected by either Gram stain or bacterial antigen (latex agglutination) testing, or in patients who are

alcoholic, cirrhotic, or receiving systemic steroids, then addition of either ampicillin 2000 mg q4h or trimethoprim-sulfamethoxazole 5-25 mg/kg q6h for the treatment of Listeria monocytogenes should be considered.

2 – Bacterial antigen (latex agglutination) testing is needed only for patients with cloudy spinal fluid without organisms on Gram stain, and in patients already on antibiotics. On the computerized order entry system, it is ordered by selecting “Labs A-Z” on the orders pad, selecting “CSF,” and then choosing “Bacterial Ag.” This test exists only for Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and Streptococcus agalactiae (group B strep).

3 – The use of more than 1000 mg q24h of ceftriaxone requires approval by Infectious Diseases.4 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by

culture of an organism that cannot be treated with other antibiotics (e.g., MRSA). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels.

5 – The use of cefepime outside of Oncology or an I.C.U. requires approval by Infectious Diseases.6 – Go to pages 30 and 31 of this booklet for information on estimating creatinine clearance and for proper dosing of

aminoglycosides, including high-dose q24h administration. Go to page 32 for information about drawing and monitoring aminoglycoside levels.

7 – The use of amikacin requires approval by Infectious Diseases.

2121

Page 23: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF INTRA-ABDOMINAL INFECTIONS IN ADULT PATIENTS

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

no allergy to penicillincefotetan 1000 mg q12h (alone),

piperacillin-tazobactam 4500 mg q8h2 (alone),or ampicillin-sulbactam 1500 mg q6h (alone)

severe penicillin allergy(anaphylaxis or hives, but not a simple rash)

call the Infectious Diseases Fellow to discuss the case

pancreatitis with necrosis on abdominal CT scan1

imipenem 500 mg q6h3 (alone),ceftriaxone 1000 mg q24h plus metronidazole 500 mg q8h4,

piperacillin-tazobactam 4500 mg q8h2 (alone),or ciprofloxacin 400 mg q12h5 plus metronidazole 500 mg q8h4

or moxifloxacin 400 mg q24h5 (alone)

pelvic inflammatory diseaseor tubo-ovarian abscess

ceftriaxone 1000 mg q24h plus doxycycline 100 mg q12h4,or ciprofloxacin 400 mg q12h5 (alone)

22

Page 24: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about intra-abdominal infections:(a) The most common causative organisms are all bowel flora — enteric Gram-negative rods (most frequently Escherichia coli,

Klebsiella pneumoniae, and Proteus mirabilis), followed by Enterococcus faecalis, Enterococcus faecium, Bacteroides fragilis, and other enteric anaerobes. It is not possible to empirically treat all possible organisms all the time.

(b) Prior to administration of the first dose of antibiotics, two blood cultures drawn at least 10 minutes apart and a culture of any easily accessible intra-abdominal fluid (e.g., ascites) should be obtained. Intra-abdominal fluid should be sent in a simple sterile container (not blood culture bottles) so that the Microbiology Laboratory can do a Gram stain and proper subcultures.

(c) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be necessary in patients with renal insufficiency.

(d) In seriously ill patients, the addition of gentamicin (1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h), tobramycin (1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h), or amikacin (5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h) to the above regimens should be considered. Go to pages 30 and 31 of this booklet for information about estimating creatinine clearance and proper dosing of aminoglycosides, including high-dose q24h administration. Go to page 32 for information about drawing and monitoring aminoglycoside levels. The use of amikacin requires approval by Infectious Diseases.

Footnotes for the table of empiric treatment of intra-abdominal infections:1 – Antibiotics should not be given to patients with pancreatitis prior to obtaining the imaging study used to determine whether

or not pancreatic necrosis is also present, i.e., they should be given only after pancreatic necrosis has been confirmed. Antibiotics have no effect on either morbidity or mortality in patients with pancreatitis without pancreatic necrosis.

2 – The use of piperacillin-tazobactam in patients on Vascular Surgery and in the Emergency Room requires approval by Infectious Diseases. It should be given at a dose of 4500 mg q6h to treat documented or suspected infections due to Pseudomonas aeruginosa. However, Pseudomonas aeruginosa is not a common cause of intra-abdominal infections except in patients with receiving (or who have recently received) broad-spectrum antibiotics or high-dose steroids, a white blood cell count <1000 per mm3.

3 – The use of imipenem requires approval by Infectious Diseases.4 – Metronidazole and doxycycline are automatically given orally to patients who can take oral medications.5 – The intravenous formulations of ciprofloxacin and moxifloxacin require approval by Infectious Diseases, and the dosing is

automatically switched to oral in patients who can take oral medications.

2323

Page 25: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EMPIRIC TREATMENT OF SEPSIS IN PATIENTS WITHOUT AN OBVIOUS SOURCE

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

significant possibility of sepsis,but without evidence of

pneumonia, urinary tract infection,intra-abdominal infection, meningitis,soft tissue infection, gastroenteritis,

or any other source of infection

ceftriaxone 1000 mg q24hand for seriously ill patients, consider adding

gentamicin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h1,tobramycin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h1,

or amikacin 5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h1,2

orpiperacillin-tazobactam 4500 mg q8h3

and for seriously ill patients, consider addinggentamicin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h1,tobramycin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h1,

or amikacin 5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h1,2

methicillin-resistant staphylococci suspected(e.g., indwelling catheters present)

add vancomycin 1000 mg q12h to the above4

already on antibiotics depends on the antibiotics already given

severe penicillin allergy(anaphylaxis or hives, but not a simple rash) call Infectious Diseases to discuss the case

24

Page 26: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about sepsis without an obvious source:(a) Prior to administration of the first dose of antibiotics, two blood cultures drawn at least 10 minutes apart, a urine culture and

urinalysis, a sputum culture, and a culture of any other potentially infected accessible tissue or fluid (e.g., ascites) should be obtained.

(b) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be necessary in patients with renal insufficiency.

(c) Empiric treatment of Pseudomonas aeruginosa causing sepsis is usually not needed except for patients receiving (or who have recently received) broad-spectrum antibiotics or high-dose steroids, or who have bronchiectasis, a white blood cell count <1000 per mm3, or cystic fibrosis.

Footnotes for the table of empiric treatment of sepsis without a source:1 – Go to pages 30 and 31 of this booklet for information about estimating creatinine clearance and proper dosing of

aminoglycosides, including high-dose q24h administration. Go to page 32 for information about drawing and monitoring aminoglycoside levels.

2 – The use of amikacin requires approval by Infectious Diseases.3 – Piperacillin-tazobactam should be given at a dose of 4500 mg q6h to treat documented or suspected pseudomonal infections.

Its use in patients on Vascular Surgery and in the Emergency Room requires approval by Infectious Diseases.4 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by

culture of an organism that cannot be treated with other antibiotics (e.g., MRSA). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels.

2525

Page 27: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PRIMARY ANTIBIOTIC PROPHYLAXIS IN ADULT PATIENTS WITH CANCER

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)

acute lymphoblastic leukemia,HIV-related hematologic malignancies,

allogeneic bone marrow recipients,or prolonged steroid treatment (such as for multiple myeloma)

trimethoprim-sulfamethoxazole1 DS tab daily three times a week, or bid twice a week

stem cell recipient

fluconazole 200 mg daily3

and eitheracyclovir 400 mg bid, 200 mg tid, or 5 mg/kg q8h4,

or valacyclovir 500 mg daily

allogeneic bone marrow recipient1

fluconazole 200 mg daily3

and eitheracyclovir 400 mg bid 200 mg tid, or 5 mg/kg q8h4,

or valacyclovir 500 mg daily,or (if bone marrow recipient has CMV antibodies)

ganciclovir 5 mg/kg q12 x 5-7d, then 5 mg/kg q24h4,5,or valganciclovir 900 mg daily4,5

all other cancers2 routine primary antibiotic prophylaxis is not indicated

26

Page 28: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about prophylactic antibiotics for patients with cancer:(a) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be

necessary in patients with renal insufficiency. All doses are for prophylaxis, and not for the treatment of any type of infection.

Footnotes for the table of antibiotic prophylaxis in patients with cancer:1 – Allogeneic bone marrow recipients who do not have CMV antibodies but received their bone marrow from a donor with

CMV antibodies should have weekly tests for CMV viremia by antigen or DNA detection, and treatment for CMV infection should start if this weekly screening detects CMV (it should be noted that when CMV is detected by these tests, it means that patients are infected with CMV, and medications used are for the treatment of CMV infection, not for prophylaxis). Allogeneic bone marrow recipients who have CMV antibodies also have CMV infection, and should receive treatment because of a high risk of developing CMV disease, whether or not the donor has CMV antibodies; screening tests for CMV viremia are not necessary to establish infection.

2 – The prevention of fever and infection by giving prophylactic antibiotics to afebrile neutropenic patients is outweighed by antibiotic toxicity, emergence of antibiotic-resistant bacteria, overgrowth by resistant bacteria and fungi, and the lack of consistent data that antibiotics have efficacy in this situation. Routine primary prophylaxis with antibacterials, antifungals, or antivirals to prevent febrile neutropenia is not indicated in patients with cancer, even with neutropenia resulting from myelotoxic chemotherapy, except for the specific types of patients in the above table. The use of antibiotics may be useful for “secondary prophylaxis” of some infections that remain dormant and have been previously documented in a patient, such as aspergillosis, histoplasmosis, or herpes, but it should be noted that this actually treats infection, and is not prophylaxis.

3 – The use of fluconazole in patients without HIV infection requires approval by Infectious Diseases.4 – The use of intravenous acyclovir and intravenous ganciclovir require approval by Infectious Diseases.5 – Oral ganciclovir is non-formulary because it is poorly absorbed. Oral valganciclovir is absorbed much better and should be

used instead; its use requires approval by Infectious Diseases, Renal, or Transplant Surgery.

2727

Page 29: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

INITIAL EMPIRIC TREATMENT OF FEBRILE NEUTROPENIA IN ADULT PATIENTSWITH CANCER WHO HAVE RECEIVED CHEMOTHERAPY

Use the scoring index to assess the risk of morbidity or complications:Choose one of the following:5 points for no or mild symptoms3 points for moderate symptoms0 points for severe symptoms

Use all of the remaining six parameters:5 points for systolic blood pressure >90 mm Hg 3 points for no dehydration4 points for no COPD 3 points for outpatient at onset of fever4 points for solid tumor or no fungal infection 2 points for age <60 years

21 points or more — low risk of morbidity:consider using oral antibiotics from the table below

20 points or less — high risk of morbidity:use intravenous antibiotics from the table below

TYPE OF PATIENT EMPIRIC ANTIBIOTIC(S)“low risk”— treatment as an outpatient

(formulary status and restrictions do not apply at outside pharmacies)

ciprofloxacin 500 mg (orally) q12hplus amoxicillin-clavulanic acid 875 mg (orally) q12h

“high risk” — treatment as an inpatient

cefepime 2000 mg q8h1,piperacillin-tazobactam 4500 mg q6h2,

or imipenem 500 mg q6h3

and consider addinggentamicin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h4,tobramycin 1.5 to 2.0 mg/kg q12h, or 6 mg/kg q24h4,

or amikacin 5.0 to 7.5 mg/kg q12h, or 20 mg/kg q24h4,5

hypotensive,clinical evidence of infection at catheter site,

cultures growing Gram-positive cocci or rods,or previous MRSA or penicillin-resistant

Streptococcus pneumoniae

add vancomycin 1000 mg q12h6

28

Page 30: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

General comments about febrile neutropenia in cancer patients who have received chemotherapy:(a) Febrile neutropenia is a temperature of 100.4oF measured at two separate times at least one hour apart, or a single oral

temperature of 101.0oF in a patient with an absolute neutrophil count of <500 per mm3 or with a count of <1000 per mm3

and a predicted decrease to <500 per mm3 due to myelotoxic chemotherapy. Patients with lower temperatures or higher neutrophil counts may need closer observation, but do not need immediate antibiotics if they look well.

(b) This table does not apply to patients with neutropenia not due to chemotherapy, who usually do not need immediate antibiotics.

(c) Prior to administration of the first dose of antibiotics, three blood cultures at least 10 minutes apart from patients with long-term indwelling vascular devices (e.g., a Hickman or Portacath), a urine culture with a urinalysis, and a Gram stain and culture of any other potentially infected accessible tissue or fluid (e.g., sputum, diarrhea, or ascitic fluid) should be obtained.

(d) Specific antibiotic dosages given above are for adult patients with normal renal function. Adjustments in dosages may be necessary in patients with renal insufficiency.

(e) Persistent fever for 72 hours indicates a non-bacterial infection, a resistant bacterial infection, a second infection, emergence of resistance, an abscess or collection that needs drainage, an infection at an avascular site, an infection by susceptible bacteria that is slow to respond to proper antibiotics, inadequate doses of proper antibiotics, or a non-infectious cause. Assessments should be done very carefully because specific symptoms are usually absent. The decision to continue the same antibiotics, change antibiotics, or add antifungals should be based on the most likely diagnostic possibilities.

(f) If fevers persist after the first change in antibiotics, adding more antibiotics is unlikely to help. This is also true for combination antifungal treatment, which is not standard treatment for febrile neutropenia unresponsive to broad-spectrum antibacterials.

(g) Whether or not cultures grow bacteria, in patients who become afebrile broad-spectrum empiric antibiotics should be given for at least 7 days, cultures are sterile, clinical recovery has occurred, and when the neutrophil count has reached >500 per mm3.

(h) If cultures grow bacteria, broad-spectrum empiric antibiotics should not be changed to narrow-spectrum because of the possibility of “breakthrough” bacteremia by other bacteria.

Footnotes for the table ofinitial empiric treatment of febrile neutropenia in cancer patients who have received chemotherapy

are on the next page

2929

Page 31: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Footnotes for the table of initial empiric treatment of febrile neutropenia in cancer patients who have received chemotherapy:1 – The use of cefepime outside of Oncology or an I.C.U. requires approval by Infectious Diseases.2 – The dose given for piperacillin-tazobactam is the dose to treat infections due to Pseudomonas aeruginosa. Its use in patients

on Vascular Surgery and in the Emergency Room requires approval by Infectious Diseases.3 – The use of imipenem requires approval by Infectious Diseases.4 – In patients with infections due to Gram-negative rods, aminoglycosides are used for synergy with certain types of antibiotics

(only penicillins, cephalosporins, carbapenems, and aztreonam) and to delay the emergence of resistance while patients are on treatment. Aminoglycosides are not synergistic with quinolones. Go to pages 30 and 31 of this booklet for information about estimating creatinine clearance and proper dosing of aminoglycosides, including high-dose q24h administration. Go to page 32 for information about drawing and monitoring aminoglycoside levels.

5 – The use of amikacin requires approval by Infectious Diseases.6 – The use of vancomycin for more than 72 hours requires approval by Infectious Diseases and should be documented by

culture of an organism that cannot be treated with other antibiotics (e.g., MRSA). Go to page 30 of this booklet for information about estimating creatinine clearance and proper dosing of vancomycin, and to page 32 for information about drawing and interpreting vancomycin levels.

30

Page 32: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

CALCULATION OF CREATININE CLEARANCE

3131

Page 33: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

1. Calculate the lean body weight (LBW):

men = 50 kg + 2.3 kg for every inch over 5 feet

women = 45.5 kg + 2.3 kg for every inch over 5 feet

(Patients’ heights and weights are available in the computer system by clicking on the “Allergy” tab.)

2. Estimate the creatinine clearance:

men = (140 age) x (LBW in kg) (72) x (serum creatinine)

women = men x 0.85(Do the math – an 85 year old woman who weighs 90 lbs. and has a serum creatinine of 0.9 mg/dL has a creatinine clearance of only 29.5 mL/min!)

Page 34: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

DOSING GUIDELINES FOR VANCOMYCIN1. Give a loading dose of 15 mg/kg — use more than 1000 mg if necessary.2. Using the above formulas, estimate the creatinine clearance.3. The maintenance dose is based on the estimated creatinine clearance. Higher doses may be necessary in some patients.

calculated creatinine maintenanceclearance (in mL/min) dose ____

>90........1000 mg q12h 50-89....750 mg q12h 30-49. .1000 mg q24h 10-29....500 mg q24h <10........base the dose on two widely spaced random serum levels

4. Obtain a trough concentration prior to the fourth dose. (Go to page 32 for information about vancomycin levels.)5. Vancomycin should not be continued for more than 72 hours without a documented culture need for it, and its use for more

than 72 hours requires approval by a member of Infectious Diseases.

3333

Page 35: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

DOSING GUIDELINES FOR GENTAMICIN, TOBRAMYCIN, AND AMIKACIN

2. Determine the patient’s dosing weight (DW).(a) edematous or non-obese patients: DW = actual body weight (ABW)(b) obese patients: calculate lean body weight (LBW, formula in left-hand column on the previous page), then determine the DW: DW = LBW + (0.4) x (ABW – LBW)(c) emaciated patients: DW = ABW if less than LBW

3. Give a loading dose: 1.5 to 2.0 mg/kg of DW for gentamicin and tobramycin; 5.0 to 7.5 mg/kg of DW for amikacin.4. Using the formulas on the previous page, estimate the creatinine clearance.5. Using the table below, determine the maintenance dose (round it to the nearest 10 mg):

creat. clearance maintenance in mL/min dose >80.....100% of loading dose q12h 70........90% of loading dose q12h 60........84% of loading dose q12h 50........79% of loading dose q12h 40........72% of loading dose q12h

creat. clearance maintenance in mL/min dose 30..........63% of loading dose q12h 25..........57% of loading dose q12h 20..........50% of loading dose q12h 17..........46% of loading dose q12h 15..........42% of loading dose q12h

creat. clearance maintenance in mL/min dose 12..........37% of loading dose q12h 10..........56% of loading dose q24h 7..........47% of loading dose q24h 5..........41% of loading dose q24h 2..........30% of loading dose q24h

6. Obtain peak and trough concentrations within 24 hours. (Go to the next page for information on levels.)

High-dose q24h aminoglycoside administration: this type of dosing is should be used only when the aminoglycoside is used in combination with a penicillin, cephalosporin, imipenem, or aztreonam, and for infections other than endocarditis caused by Gram-negative rods. It should be used only in patients who are at least 18 years old, not pregnant or nursing, and have a creatinine clearance >60 mL/min. The q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration, peak levels should not be measured — only trough levels should be monitored (go to the next page for interpretation of aminoglycoside levels). This type of aminoglycoside dosing should not be used in patients with endocarditis (even due to a Gram-negative rod) or for the synergistic treatment of any infections caused by Gram-positive cocci.

34

Page 36: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

SERUM ANTIBIOTIC LEVELS

antibiotic type of level best time to draw desired level in g/mLamikacin peak.............

trough..........30 min after completion of dose..........immediately before next dose.............

20.0 - 30.05.0 - 8.0 (or <5.0 for high-dose q24h administration)

gentamicin peak.............trough..........

30 min after completion of dose..........immediately before next dose.............

4.0 - 10.00.5 - 2.0 (or <1.0 for high-dose q24h administration)

tobramycin peak.............trough..........

30 min after completion of dose..........immediately before next dose.............

4.0 - 10.00.5 - 2.0 (or <1.0 for high-dose q24h administration)

vancomycin trough..........random.........

immediately before next dose.............at two widely spaced intervals;only for patients with renal failure......

5.0 - 15.0 (15.0 for pneumonia and other serious infections)

NA — see comments below

Equilibrium levels of all antibiotics — and other medications — are generally reached after four to five half-lives (not four to five doses). In patients with normal renal function, the half-lives of amikacin, gentamicin, and tobramycin are 0.7 to 3 hours. Therefore, the usual time to equilibrium is 3 to 15 hours, and initial peak and trough levels should be obtained within 24 hours of the first dose.

The half-life of vancomycin is about 6 hours in patients with normal renal function. Therefore, initial trough levels to assess for potential toxicity should be drawn prior to the third dose. Measurement of peak levels of vancomycin is not necessary because they do not correlate with either efficacy or toxicity. Random vancomycin levels are useful only for patients with renal insufficiency and when two separate random levels are measured in a dosing cycle; with two distinct levels, the time when the level will be 5 to 15 g/mL can be estimated, and the next dose can be given at that time. Random vancomycin levels should not be measured at any time in patients with normal renal function because they do not provide useful information.

For any uncertainty about correct dosages, a consultation from Infectious Diseases or Pharmacy should be obtained.

3535

Page 37: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PRINCIPLES OF PERIOPERATIVE ANTIBIOTIC PROPHYLAXIS

Perioperative antimicrobial prophylaxis decreases the incidence of surgical site infections following certain types of surgery. This benefit must be weighed against the risks of allergic reactions and side effects, interactions with other medications, infection by resistant bacteria, and cost. Prophylaxis is necessary only for procedures that have significant infection rates, or involving the insertion of prosthetic material, or when the consequences of infection are potentially very serious.

For inpatients, the evening before scheduled surgery, the order for perioperative antibiotic prophylaxis should be written for the antibiotic to be given in the O.R. The order will be processed on the patient’s ward in the usual manner, but the inpatient pharmacy will not send the antibiotic to the ward, since it will be given by the anesthesiologist in the O.R. The anesthesiologist should administer the dose 30 to 60 minutes prior to the expected time of initial incision and chart it in the medication administration record. A second dose is needed only if surgery is delayed or prolonged beyond four hours (when this occurs, a second dose is recommended). Postoperative administration of antimicrobials is not necessary.

In “dirty” surgery, infection is already present and therefore treatment must be given. The term “prophylaxis” does not apply and these tables should not be used.

The tables of perioperative antibiotic prophylaxis do not include any antibiotics that require approval by Infectious Diseases or have other restrictions. There should never be a reason to request the release of a restricted antibiotic for perioperative prophylaxis, which might delay the start of surgery. For deviations from the tables of perioperative prophylaxis, a consultation from infectious diseases should be obtained in advance of the surgery. (See page 4 for the list of restricted antimicrobials.)

36

Page 38: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PERIOPERATIVE ANTIBIOTIC PROPHYLAXIS“CLEAN” OPERATIONS

type of surgery antibiotic and dose antibiotic and dose for patients with severe penicillin allergy

CARDIACprosthetic valve insertion,

coronary artery bypass,other open heart surgery,or pacemaker insertion

cefazolin 1000 mg IV(20 mg/kg for pediatrics)

vancomycin 1000 mg IV(20 mg/kg for pediatrics)

NON-CARDIAC THORACIC

VASCULARarterial surgery involving the

abdominal aorta, a prosthesis, or a groin incision

ORTHOPEDICtotal joint replacement, internal

fixation of fractures

NEUROLOGICcraniotomy, spinal surgery, or

other (e.g., VP shunt)

nafcillin 1000-2000mg IV(20 mg/kg for pediatrics)

vancomycin 1000 mg IV(20 mg/kg for pediatrics)

UROLOGICTURP

cefazolin 1000 mg IV or cephalexin 500 mg

trimethoprim-sulfamethoxazole 1 DS tab

3737

Page 39: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

PERIOPERATIVE ANTIBIOTIC PROPHYLAXIS“CLEAN-CONTAMINATED” OPERATIONS

type of surgery antibiotic and dose antibiotic and dose for patients with severe penicillin allergy

PLASTICimplantation of permanent

prosthetic material, or entering the oral cavity or pharynx

cefotetan 1000 mg IV(20 mg/kg for pediatrics)

clindamycin 600 mg IV plusgentamicin 1.5 mg/kg IV4

(clindamycin 5 mg/kg IV plusgentamicin 2 mg/kg for pediatrics)

HEAD AND NECK or ENTinvolving oral cavity or pharynx

ABDOMINAL and GYNECOLOGICAL

high-risk gastroduodenal1,high-risk biliary tract2, colorectal3,

appendectomy, hysterectomyFootnotes for the table of perioperative antibiotic prophylaxis for “clean-contaminated” operations:1 - High risk refers to the risk of infection. The risk of infection is high after gastroduodenal surgery when gastric acidity or

motility are diminished by obstruction, hemorrhage, gastric ulcer, or malignancy, or by therapy with H2 blockers or proton pump inhibitors, and in patients with morbid obesity.

2 - High risk refers to the risk of infection. The risk of infection is high after biliary surgery in patients older than 70 years, or with acute cholecystitis, a non-functioning gallbladder, obstructive jaundice, or common bile duct stones.

3 - As an alternative, after an appropriate diet and catharsis, 1000 mg of each of oral kanamycin plus erythromycin may be given at 1PM, 2PM, and 11 PM the day before an 8AM operation.

4 - The weight in kilograms refers to the patient’s DW, or dosing weight. Go to page 31 for information on how to calculate the DW for proper gentamicin dosing.

38

Page 40: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MONTEFIORE ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)DATA FOR COMMUNITY-ACQUIRED ISOLATES

Enteric Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefepime

cefotetan

ceftriaxone

cefazolin

imipen

pip-tazo cipro trim-

sulfa gent tobra amik

Citrobacter freundii 34 0 0 100 100 2 96 0 100 100 100 82 88 100 100Citrobacter koseri 113 0 97 99 100 100 100 97 100 100 99 100 100 100 100

Enterobacter aerogenes 78 0 2 97 100 1 98 0 100 100 98 93 100 98 100

Enterobacter cloacae 119 0 3 85 95 2 80 0 100 91 86 77 95 93 99

Escherichia coli 4686 49 70 97 97 97 96 92 100 97 80 73 91 97 99

Klebsiella oxytoca 37 0 83 91 91 91 91 84 100 91 91 91 91 91 100

Klebsiella pneumoniae 865 0 76 80 86 82 81 78 97 80 78 78 90 82 87

Morganella morganii 68 0 0 98 100 98 100 0 100 100 76 71 91 100 100

Proteus mirabilis 521 83 96 96 97 100 97 95 74 99 86 86 93 94 99

Providencia stuartii 30 0 0 100 100 100 100 0 93 100 33 56 0 100

Serratia marcescens 57 0 0 100 100 100 98 0 98 98 100 100 100 94 96

Salmonella spp. (not typhi) 66 82 100 100 99all enteric Gram-negative rods (weighted average)

6674 42 69 94 95 91 94 84 97 94 81 76 90 93 96

Go to page 45 for important comments about the antibiograms.

3939

Page 41: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MONTEFIORE ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)DATA FOR NOSOCOMIAL ISOLATES

Enteric Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefepime

cefotetan

ceftriaxone

cefazolin

imipen

pip-tazo cipro trim-

sulfa gent tobra amik

Citrobacter freundii 12 0 0 70 100 8 58 0 100 100 91 91 100 100 100Citrobacter koseri 14 0 100 100 100 100 100 92 100 100 100 100 100 100 100

Enterobacter aerogenes 21 0 0 94 100 0 94 0 100 94 85 90 95 90 100

Enterobacter cloacae 80 0 10 75 96 6 72 1 100 92 92 86 93 93 100

Escherichia coli 466 33 48 84 86 86 84 74 100 86 56 63 82 85 98

Klebsiella oxytoca 21 0 61 71 76 71 71 42 100 71 76 76 80 76 100

Klebsiella pneumoniae 391 0 30 39 63 43 42 35 97 38 38 41 77 43 53

Morganella morganii 28 0 0 85 85 100 88 0 100 85 46 42 92 100 100

Proteus mirabilis 89 74 89 89 89 100 89 86 74 98 63 77 86 90 100

Providencia stuartii 19 0 0 100 100 100 100 0 93 100 11 57 100

Serratia marcescens 47 0 0 100 100 97 100 0 98 100 97 100 97 97 97all enteric Gram-negative rods(weighted average)

1188 18 38 70 80 66 71 49 97 72 55 61 82 72 84

Go to page 45 for important information about these antibiograms.

40

Page 42: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MONTEFIORE ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)DATA FOR COMMUNITY-ACQUIRED ISOLATES

Staphylococci — % susceptible

species no. of isolates pen G oxacillin ampi-sulb cefazolin clinda erythro moxiflox vanco tmp-sxt gent

Staphylococcus aureus (MSSA) 895 2 100 99 99 66 96 100 99Staphylococcus aureus (MRSA) 630 0 0 0 0 12 75 100 91 96

all Staphylococcus aureus 1525 1 59 59 59 43 87 100 98

Staphylococcus epidermidis 123 7 23 28 28 30 66 100 75

other coagulase-neg staphylococci 367 8 48 42 42 39 77 100 93

Miscellaneous Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefaclor

cefepime ceftaz cefu

roximipen

pip-tazo

ticar-clav azith cipro/

levomino/doxy

trim-sulfa gent tobra amik

Pseudomonas aeruginosa 356 80 95 94 95 82 0 91 95 98Acinetobacter baumannii 122 0 80 3 64 86 65 45 49 59 89 82

Stenotrophomonas maltophilia 20 52 89 89 100 92

Haemophilus influenzae 61 75 90 98 92 100 56 80Go to page 45 for important information about these antibiograms.

4141

Page 43: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MONTEFIORE ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)DATA FOR NOSOCOMIAL ISOLATES

Staphylococci — % susceptible

species no. of isolates pen G oxacillin ampi-sulb cefazolin clinda erythro moxiflox vanco tmp-sxt gent

Staphylococcus aureus (MSSA) 183 4 100 100 100 59 92 100 99Staphylococcus aureus (MRSA) 248 0 0 0 0 6 56 100 84 88

all Staphylococcus aureus 431 1 42 42 42 29 71 100 92

Staphylococcus epidermidis 108 0 9 14 14 24 54 100 69

other coagulase-neg staphylococci 171 4 24 21 21 24 68 100 71

Miscellaneous Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefaclor

cefepime ceftaz cefu

roximipen

pip-tazo

ticar-clav azith cipro/

levomino/doxy

trim-sulfa gent tobra amik

Pseudomonas aeruginosa 330 63 94 82 92 70 0 86 92 96Acinetobacter baumannii 174 0 54 0 31 70 30 13 33 32 92 79

Stenotrophomonas maltophilia 35 30 64 84 100 92

Haemophilus influenzae 20 50 61 100 100 100 20 71Go to page 45 for important information about these antibiograms.

42

Page 44: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MONTEFIORE ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)COMBINED DATA FOR COMMUNITY-ACQUIRED & NOSOCOMIAL ISOLATES

Pneumococci and Enterococci — % susceptible

species source no. ofisolates

pen G/ampi3 ceftriax vanco moxi/

cipro4 doxy erythro/azithro

trim-sulfa linezol gent4 strep4

Streptococcus pneumoniaesputum 62 81 100 100 100 68 77other1 90 58 97 100 99total 152 67 98 100 99

Enterococcus faecalisurine2 119 97 82 48 37other1 100 99 85 34 43 99 56 49total 219 98 84 42 40

Enterococcus faeciumurine2 31 20 26 19 84other1 100 15 18 6 84 100 78 38total 131 16 20 10 84

1 - “Other” sites include blood and all sterile body fluids other than urine.2 - Susceptibility testing for enterococci that grow from urine is done only upon specific request, which generally should be

limited to when a patient does not respond to empiric antibiotics.3 - Penicillin G is tested against Streptococcus pneumoniae and ampicillin is tested against Enterococcus spp.4 - Moxifloxacin is tested against Streptococcus pneumoniae and ciprofloxacin against Enterococcus spp.5 - Gentamicin and streptomycin should only be used for synergy in treating serious enterococcal infections, and only with

either a penicillin or vancomycin. They are not synergistic with other antibiotics against enterococci.

Go to page 45 for more important information about these antibiograms.

4343

Page 45: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EINSTEIN ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)COMBINED DATA FOR COMMUNITY-ACQUIRED & NOSOCOMIAL ISOLATES

Enteric Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefepime

cefotetan

ceftriaxone

cefazolin

imipen

pip-tazo cipro trim-

sulfa gent tobra amik

Citrobacter freundii 44 0 12 89 95 6 78 0 100 100 79 79 79 95 100Citrobacter koseri 44 2 100 100 100 100 100 100 100 100 100 100 100 100 100

Enterobacter aerogenes 49 0 0 100 100 0 100 0 100 100 100 100 100 100 100

Enterobacter cloacae 105 0 8 68 97 5 72 0 98 86 85 88 95 98 100

Escherichia coli 1492 51 71 96 96 96 96 90 100 96 76 80 91 96 100

Klebsiella oxytoca 23 0 85 91 91 95 91 80 100 86 91 91 91 91 100

Klebsiella pneumoniae 516 0 62 69 82 69 71 65 93 69 70 70 83 72 80

Morganella morganii 34 0 0 96 100 100 100 0 100 97 70 58 90 100 100

Proteus mirabilis 224 76 92 96 96 100 96 92 69 100 77 79 83 89 100

Providencia stuartii 31 0 0 100 100 100 100 0 83 100 10 45 4 5 90

Serratia marcescens 60 0 0 93 100 96 98 0 100 100 94 96 91 94 96all enteric Gram-negative rods (weighted avg)

2622 36 63 90 94 84 90 74 96 91 76 79 88 90 96

Go to page 45 for important information about these antibiograms.

44

Page 46: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EINSTEIN ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)COMBINED DATA FOR COMMUNITY-ACQUIRED & NOSOCOMIAL ISOLATES

Staphylococci — % susceptible

species no. of isolates pen G oxacillin ampi-

sulbcefazoli

n clinda erythro moxiflox vanco tmp-sxt gent

Staphylococcus aureus (MSSA) 377 5 100 99 99 67 96 100 99Staphylococcus aureus (MRSA) 358 0 0 0 0 8 54 100 97 96

all Staphylococcus aureus 735 1 51 51 51 75 100 97

Staphylococcus epidermidis 124 1 20 15 15 20 75 100 62

other coagulase-neg staphylococci 242 7 43 32 32 35 75 100 82

Miscellaneous Gram-Negative Rods — % susceptible

species no. ofisolates ampi ampi-

sulb aztreo cefaclor

cefepime ceftaz cefu

roximipen

pip-tazo

ticar-clav azith cipro/

levomino/doxy

trim-sulfa gent tobra amik

Pseudomonas aeruginosa 290 77 94 86 91 65 0 82 86 96Acinetobacter baumannii 122 0 72 0 25 74 42 17 38 45 89 80

Stenotrophomonas maltophilia 31 37 77 82 100 94

Haemophilus influenzae 11 45 62 100 100 100 66 80Go to page 45 for important information about these antibiograms.

4545

Page 47: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

EINSTEIN ANTIBIOGRAM — APRIL 2006 TO MARCH 2007 (12 MONTHS)COMBINED DATA FOR COMMUNITY-ACQUIRED & NOSOCOMIAL ISOLATES

Pneumococci and Enterococci — % susceptible

species source no. ofisolates

pen G/ampi3 ceftriax vanco moxi/

cipro4 doxy erythro/azithro

trim-sulfa linezol gent5 strep5

Streptococcus pneumoniaesputum 21 79 100 100 100 57 86other1 7 57 100 100 100total 28 62 100 100 100

Enterococcus faecalisurine2 45 100 89 48 38other1 69 100 73 38 45 97 56 54total 114 100 78 42 42

Enterococcus faeciumurine2 14 14 29 0 57other1 38 11 8 3 84 100 88 38total 52 12 14 2 77

1 - “Other” sites include blood and all sterile body fluids other than urine.2 - Susceptibility testing for enterococci that grow from urine is done only upon specific request, which generally should be

limited to when a patient does not respond to empiric antibiotics.3 - Penicillin G is tested against Streptococcus pneumoniae and ampicillin is tested against Enterococcus spp.4 - Moxifloxacin is tested against Streptococcus pneumoniae and ciprofloxacin against Enterococcus spp.5 - Gentamicin and streptomycin should only be used for synergy in treating serious enterococcal infections, and only with

either a penicillin or vancomycin. They are not synergistic with other antibiotics against enterococci.

Go to page 45 for more important information about these antibiograms.

46

Page 48: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

SUSCEPTIBILITIES OF CANDIDA SPP. — APRIL 2006 TO MARCH 2007 (12 MONTHS)(FUNGAL ANTIBIOGRAM)

species

Montefiore Einstein

no. ofisolates

fluconazole itraconazole no. ofisolates

fluconazole itraconazole

%S %DDS %R %S %DDS %R %S %DDS %R %S %DDS %RCandida albicans 56 86 5 9 86 12 2 22 100 0 0 100 0 0Torulopsis glabrata 15 7 80 13 7 7 86 14 29 71 0 0 46 54Candida parapsilosis 8 100 0 0 38 62 0 4 100 0 0 75 25 0Candida tropicalis 11 100 0 0 60 40 0 7 100 0 0 0 100 0all Candida spp.(weighted average) 90 76 16 8 66 19 15 47 79 21 0 53 31 16

Susceptibility testing is not available for amphotericin B, micafungin, or voriconazole, or for fungi other than Candida spp.

Intravenous itraconazole is non-formulary. Results of itraconazole testing are included because when an isolate is resistant to both fluconazole and itraconazole, it is likely to be also resistant to voriconazole.

DDS = dose-dependent susceptible (therapeutic concentrations can be achieved with a high dose).

4747

Page 49: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

IMPORTANT INFORMATION ABOUT THE ANTIBIOGRAMS ON PAGES 36 TO 44

1. Numbers under the column heading “no. of isolates” represent individual patient isolates – multiple cultures of the same species from the same patient, even from different body sites on different days, are counted as one isolate. Numbers in columns under antibiotic names are percentages of strains susceptible to that antibiotic.

2. For results from Montefiore, most data are divided into separate charts of community-acquired isolates (when the first culture was obtained within 48 hours of admission) and nosocomially-acquired isolates (when the first culture was obtained at least 48 hours after admission). Although these are the standard definitions of community-acquired and nosocomially-acquired, they may not reflect true community or nosocomially acquired infection. For results from Einstein, all data for community and nosocomial isolates are combined.

3. Blank boxes mean that antibiotic is not tested against that species, either because it is not expected to have activity, is duplicated by a similar antibiotic, is unnecessary, or should not be used against that species of bacteria.

4. Dashes mean that percentages were not calculated because fewer than 10 isolates were tested. (According to the Clinical and Laboratory Standards Institute, percentages should be reported only when a particular antibiotic has been tested against at least 10 isolates). Some percentages are provided for organisms with fewer than 10 isolates, but should be used with caution.

6. Levofloxacin results may be used for ciprofloxacin and moxifloxacin, since the latter two are the quinolones on our formulary. (Levofloxacin is tested against some organisms because it is recommended by the Clinical and Laboratory Standards Institute.) Go to page 50 for information on when to choose ciprofloxacin vs. moxifloxacin. Similarly, cefotetan is used for laboratory testing but cefoxitin is on the formulary (cefotetan is no longer on the market for use in patients).

7. Ceftazidime and ticarcillin-clavulanic acid (for Stenotrophomonas maltophilia) and cefaclor (for Haemophilus influenzae) are non-formulary, but like other non-formulary medications, they can be obtained on an expedited basis when there are no other alternatives due to bacterial resistance.

8. Boxes in red represent a >10% decrease in susceptibility compared to 2005-2006 to show where resistance is increasing at the fastest rates. Nevertheless, some red numbers are in columns for antibiotics that are still good empiric choices.

48

Page 50: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

MICROBIOLOGY LABORATORY FAQs

1. How long will it take to get my result?It depends on the test. Nearly all microbiological identifications depend on the growth of micro-organisms

and their metabolism of substrates in specific patterns. Antimicrobial susceptibility and resistance results depend on whether the organism grows (or doesn’t) in the presence of various antibiotics at different concentrations. Even automated tests take time because the bacteria have to grow, so like all other good things, the results can’t be rushed. Results are usually available 48 to 72 hours after a specimen is plated in the laboratory, or 24 to 48 hours after growth is detected. Other results, like ELISAs and rapid antigen detection, often take less than 24 hours.

2. But something is already growing from my patient’s culture specimen. What is it and what antibiotic can I use to treat it?

Culture and susceptibility results appear in CIS as soon as they’re ready in the laboratory. Results take time (see FAQ #1). If results aren’t in the computer, it’s most likely because they’re simply not ready yet.

3. You don’t understand. It’s serious — a positive blood culture. The computer says it’s positive, but it’s not giving me any other information. I can’t even tell if my patient has a Gram-positive or a Gram-negative. Why?

After arriving in the laboratory, blood culture bottles are placed in an incubator, where a light continually shines through each bottle. If organisms are present and replicating, they produce carbon dioxide, which increases the fluorescence of an indicator inside the bottle. The change in fluorescence is immediately detected and causes a “growth detected by instrument, confirmation to follow” result in the computer. A “positive blood cult” line with a result that says “pending” is simultaneously created below the blood culture line. The next step, a Gram stain of a drop of blood taken from the “positive” bottle, is a manual procedure done four times per day. As soon as the Gram stain is ready, its result replaces the “pending” result, but it can take several hours from the

4949

Page 51: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

time the culture is called “positive” until the Gram stain is performed. The Gram stain result is also reported by telephone to the patient’s location. (Occasionally, the positive blood culture result is a false-positive — no organisms are seen on the Gram stain, and nothing grows.) Identification of the organism after the Gram stain result takes additional time. Blood cultures are held for 5 days for final negative results, except if the “endocarditis suspected” box on the order is checked, in which case they’re held for 28 days to detect slow-growing organisms.

4. OK, so it says “final ID” — but it’s not a complete identification with antibiotic susceptibilities. What’s going on?

Full species identification and antimicrobial susceptibility testing are not routinely done on every specimen that grows something. This is because some types of results are almost always due to contamination, not infection. In some situations organisms are identified, but antimicrobial susceptibility testing is not done because the results almost never matter and therefore aren’t used. If full results are needed, a specific request, which should be based on a clear clinical need, must be made or sent to the laboratory. Here some common situations that draw this question:

a) Coagulase-negative staphylococci (including Staphylococcus epidermidis), Corynebacterium spp., Proprionibacterium acnes, or Bacillus spp. growing from a single blood culture. These are due to contamination, not infection. Therefore, if these bacteria grow from only one blood culture, they are identified only to the genus level, and susceptibility testing is not routinely done. (If they grow from two or more blood cultures, identification and susceptibility testing are routinely done.)

b) Viridans streptococci growing from a single blood culture. Although this is usually not due to contamination, it results from bacteremia, not endocarditis, and susceptibility results are unlikely to matter because viridans strep infections other than endocarditis are relatively easy to treat with many different types of antibiotics. In this situation, identification is made to the species level, but antimicrobial susceptibility testing is not routinely done. (When viridans streptococci grow from more than one blood culture, endocarditis is much

50

Page 52: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

more likely than if they grow from one blood culture, and antibiotic susceptibility testing is performed.)c) Three or more species of bacteria in a urine culture (or more than three in a wound) without a predominant

organism. This is due to contamination, and it’s impossible to determine which species (if any) is causing the infection. Bacteria that predominate, Staphylococcus aureus, and all β-hemolytic streptococci are fully identified from wounds, but as part of a “mixed bacterial species” report, without susceptibility testing.

d) Enterococci in urine. It is usually not necessary to know the species, so it is simply identified as Enterococcus sp. Either ampicillin or (in an inpatient with a severe penicillin allergy) vancomycin can be used. If the Enterococcus sp. persists despite treatment, it can be fully identified and antimicrobial susceptibilities tested, but these tests are not routinely done because the results usually don’t matter.

e) Normal flora in cultures obtained from stool, sputum, nares, ears, genital areas, hair, skin, and mucosal surfaces are not identified.

For many results, some additional testing is performed and recorded in the laboratory, but reported only in the rare event that it’s positive. For example, every Bacillus sp. is screened to see if it can be B. anthracis, and E. coli from bloody stool is tested to see if it’s serotype O157:H7. Note that the type of additional testing done depends on the type of sample, so it’s always important to label the source of the culture correctly (wound, abscess, etc).

If cultures were suboptimally taken from a patient but there is clinical evidence of infection (e.g., a patient with two weeks of fevers and a prosthetic aortic valve, but only one blood culture drawn prior to antibiotics and it’s growing coagulase-negative staphylococci), identification and susceptibility testing can be requested. However, no laboratory in the world can determine whether it’s a contaminant or a pathogen – that’s a clinical decision. If the proper number of cultures is drawn and the specimens are collected correctly, this type of situation should not occur. (See pages 7 to 9 for how to obtain culture specimens properly.)

5151

Page 53: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

5. I see where it says “Staph sp. coagulase neg.” on a blood culture result. What does the “CNST” under it mean?It’s simply an abbreviation for coagulase-negative staphylococci, and is the column heading for the

antimicrobial susceptibilities that are reported. (Have you ever noticed that whenever antimicrobial susceptibilities are done, the organism name appears twice? Note that the presence of the susceptibility report probably means that coagulase-negative staphylococci grew from at least one more blood culture.)

6. OK, now I see a full identification and antibiotic susceptibility results, but not the antibiotic that I want. What’s the story?

There are two main possibilities. The first is that the antibiotic that you want is not tested because it never has any antimicrobial activity against the organism that grew, like erythromycin for E. coli. The other reason is that it’s a secondary or tertiary antibiotic — results are reported in a “cascade” system, so if a culture grows something that’s susceptible to a narrow spectrum antibiotic like ampicillin, then there’s no need to report results for piperacillin-tazobactam, ceftriaxone, cefepime, imipenem, and other broad-spectrum antibiotics. If a patient has a mixed or second infection (other bacteria also grew, such that a broad-spectrum antibiotic may be necessary to treat both), it is possible to obtain results for unreported secondary antibiotics to be sure that both bacterial species are susceptible to a single antibiotic.

7. So now I have all the results. But the spinal fluid TB PCR that I brought to the lab myself isn’t in the computer. Why not?

Some tests shouldn’t be done routinely, like this one. TB PCR is often ordered as an initial test with cell counts, chemistries, and cultures, but it is inappropriate to do so because it has a very low specificity and sensitivity as a screening test. After several days, another diagnosis has almost always been made and the results are no longer needed. It’s better to ask the lab to freeze an aliquot of CSF and then do the TB PCR only if the cell counts and chemistries are abnormal and no other diagnosis has been made. (And if a patient is so complicated that a TB PCR is needed, then generally so is a consultation by Infectious Diseases.) The most common reasons a

52

Page 54: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

specimen that was brought to the lab isn’t in the computer are that the test on it was incorrectly ordered, or that it was improperly labeled. When this occurs, the lab attempts to contact the person who ordered the test, which can easily be determined if the order was done by computer (but not when it is done by paper).

8. OK, OK, so forget about that test. How am I supposed to send a...No need to finish this question. Proper container or tube types, specimen requirements, and other information

for every test performed by Microbiology, Hematology, Chemistry, Serology, and other laboratories can be quickly and easily obtained on Montefiore’s Intranet site. On the Intranet home page, select Pathology from the choices in the Clinical Dept pull-down tab (left-most choice from the tabs across the top of the screen), then click on Test Compendium (toward the bottom of the narrow panel on the left), and then use the search feature. After you find the test, you can click on the test name for even more details, like the days of the week that the test is performed and which lab does the test. (And best of all, you’ll never be transferred to voicemail or put on “hold.”)

This entire booklet is on the Montefiore Intranet. From the home page, select Clinical Dept from the tabs across the top, then The Department of Medicine, then Infectious Diseases, and then The Antibiotic Booklet – “All Microbiology is Local.” (And then bookmark the page!)

For information about the Microbiology Laboratory, its operational procedures, and the tests it performs and how to properly order them, from the Intranet home page, select Clinical Dept, then Pathology, then Test Compendium, and then use the search function for information about specific tests. If you’re already on CIS, you can get to the CIS Links page on the Intranet site by simply clicking on the Lab Help key, located immediately to the right of the F12 key.

5353

Page 55: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

QUICK CIPROFLOXACIN VS. MOXIFLOXACIN GUIDE

When to choose ciprofloxacinfor infections caused by enteric Gram-negative rods

(such as E. coli, Klebsiella spp., Proteus spp., Citrobacter spp., Enterobacter spp., Morganella spp., Serratia spp., Salmonella spp., Shigella spp., and others)

for infections due to Pseudomonas aeruginosa

When to choose moxifloxacinfor simultaneous treatment of typical and atypical

community-acquired pneumonia (e.g., in very ill patients)

for mixed infections (Gram-negative bacilli with either Gram-positive cocci or anaerobic bacteria)

When not to choose ciprofloxacinfor community-acquired pneumonia (it does not have

adequate in vivo activity against Streptococcus pneumoniae)

for infections in which anaerobes and Gram-positive cocci may be present

When not to choose moxifloxacinfor urinary tract infections (it’s mostly metabolized,

so only 20% reaches the kidneys)for infections due to Pseudomonas aeruginosa

According to the antibiograms in this booklet, quinolones are usually not the best class of antibiotics for the empiric treatment of most infections due to enteric Gram-negative rods, Pseudomonas aeruginosa, and other miscellaneous Gram-negative bacilli except Stenotrophomonas maltophilia.

54

Page 56: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

REFERENCES — PRACTICE GUIDELINES AND REVIEW ARTICLES

Practice guidelines of the Infectious Diseases Society of America are available as both html and pdf documents (without a password) on the Internet at http://www.journals.uchicago.edu/IDSA/guidelines/. The other articles in this section are also available via their respective journals’ web sites on the Internet. Some require a subscription and password but are available on Montefiore or AECOM computers (via institutional subscriptions and passwords).

Community-Acquired PneumoniaL.A. Mandell et al. Update of Practice Guidelines for the Management of Community-Acquired Pneumonia in Immunocompetent Adults. Clinical Infectious Diseases, vol. 37, no. 11, pp. 1405-1433 (December 1 st, 2003), PMID 14614663; letter and authors’ response in vol. 39, no. 11, pp. 1734-1738 (December 1st, 2004).

E.A. Halm and A.S. Teirstein. Management of Community-Acquired Pneumonia. New England Journal of Medicine, vol. 347, no. 25, pp. 2039-2045 (December 19th, 2002), PMID 12490686; letters and authors’ response in vol. 348, no. 14, pp. 1408-1409 (April 3rd, 2003).

M.J. Fine et al. A Prediction Rule to Identify Low-Risk Patients with Community-Acquired Pneumonia. New England Journal of Medicine, vol. 336 no. 4, pp. 243-250 (January 23rd, 1997), PMID 8995086; letters and authors’ response in vol. 336, no. 26, pp. 1913-1915 (June 26th, 1997).

J.M. Mylotte. Nursing Home-Acquired Pneumonia. Clinical Infectious Diseases, vol. 37, no. 10, pp. 1205-1211 (November 15th, 2002), PMID 12410480; letter and author’s response in vol. 348, no. 1, pp. 148-150 (July 1st, 2003).

P.E. Marik. Aspiration Pneumonitis and Aspiration Pneumonia. New England Journal of Medicine, vol. 344, no. 9, pp. 665-671 (March 1st, 2001), PMID 11228282; letters and authors’ response in vol. 344, no. 24, pp. 1868-1870 (June 14th, 2001).

5555

Page 57: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Hospital-Acquired PneumoniaThe American Thoracic Society and the Infectious Diseases Society of America. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 4, pp. 388-416 (February 15th, 2005), PMID 15699079.

J. Chastre et al. Comparison of 8 vs. 15 Days of Antibiotic Therapy for Ventilator-Associated Pneumonia in Adults. Journal of the American Medical Association, vol. 290, no. 19, pp. 2588-2598 (November 19th, 2003), PMID 14625336; letter and authors’ response in vol. 291, no. 7, p. 820 (February 18, 2004).

Skin and Soft Tissue InfectionsM.N. Swartz. Cellulitis. New England Journal of Medicine, vol. 350, no. 9, pp. 904-912 (February 26 th, 2004), PMID 14985488; letters and author’s response in vol. 350, no. 24, pp. 2522-2544 (June 10th, 2004).

B.A. Lipsky et al. Diagnosis and Treatment of Diabetic Foot Infections. Clinical Infectious Diseases, vol. 39, no. 7, pp. 885-910 (October 1st, 2004), PMID 15472838.

D.L. Stevens et al. Practice Guidelines for the Diagnosis and Management of Skin and Soft-Tissue Infections. Clinical Infectious Diseases, vol. 41, pp. 1373-1406 (November 15 th, 2005), PMID 16231249; correction in vol. 41, no. 12, p. 1830 (December 15th, 2005).

OsteomyelitisW.J. Jeffcoate and B.A. Lipsky. Controversies in Diagnosing and Managing Osteomyelitis of the Foot in Diabetes. Clinical Infectious Diseases, vol. 39, supp. 2, pp. S115-S122 (August 1st, 2004), PMID 15306989. Part of the supplement “Diabetic Foot Infection: Epidemiology, Pathophysiology, Diagnosis, Treatment, and Prevention.”

56

Page 58: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

D.P. Lew and F. Waldvogel. Osteomyelitis. New England Journal of Medicine, vol. 336, no. 14, pp. 999-1007 (April 3 rd, 1997), PMID 9077380; letters and authors’ response in vol. 337, no. 14, pp. 428-429 (August 7th, 1997).

W. Zimmerli et al. Prosthetic Joint Infections. New England Journal of Medicine, vol. 351, no. 16, pp. 1645-1654 (October 14th, 2004), PMID 15483283; letters and authors’ response in vol. 352, no. 1, pp. 95-97 (January 6th, 2005).

E. Senneville et al. Culture of Percutaneous Bone Biopsy Specimens for Diagnosis of Diabetic Foot Osteomyelitis: Concordance with Ulcer Swab Cultures. Clinical Infectious Diseases, vol. 42, no. 1, pp. 57-62 (January 1 st, 2006), PMID 16323092; accompanying editorial by J.M. Embil and E. Trepman on pp. 63-65, PMID 16323093.

Bacterial MeningitisK.I. Martin and A.D. Gean. The Spinal Tap: A New Look at an Old Test. Annals of Internal Medicine, vol. 104, no. 6, pp. 840-848 (June 1986), PMID 3518565.

A.R. Tunkel et al. Practice Guidelines for the Management of Bacterial Meningitis. Clinical Infectious Diseases, vol. 39, no. 9, pp. 1267-1284 (November 1st, 2004), PMID 15494903; letters and authors’ response in vol. 40, no. 7, pp. 1061-1063 (April 1 st, 2005).

J. de Gans et al. Dexamethasone in Adults with Bacterial Meningitis. New England Journal of Medicine, vol. 347, no. 20, pp. 1549-1556 (November 14th, 2002), PMID 12432041; accompanying editorial by A.R. Tunkel and W.M. Scheld on pp. 1613-1614, PMID 12432049; letters and authors’ response in vol. 348, no. 10, pp. 954-956 (March 6th, 2003).

R. Hasbun. Computed Tomography of the Head before Lumbar Puncture in Adults with Suspected Meningitis. New England Journal of Medicine, vol. 345, no. 24, pp. 1727-1733 (December 13th, 2001), PMID 11742046; accompanying editorial by N.H. Steigbigel on pp. 1768-1770, PMID 11742053.

5757

Page 59: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

D. van de Beek et al. Community-Acquired Bacterial Meningitis in Adults (Current Concepts). New England Journal of Medicine, vol. 354, no. 1 pp. 44-53 (January 5th, 2006), PMID 16394301.

Intra-abdominal InfectionsJ.S. Solomkin et al. Guidelines for the Selection of Anti-infective Agents for Complicated Intra-abdominal Infections. Clinical Infectious Diseases, vol. 37, no. 8, pp. 995-1005 (October 15th, 2003), PMID 14523762.

J.E. Mazuski et al. The Surgical Infection Society Guidelines on Antimicrobial Therapy for Intra-Abdominal Infections: An Executive Summary. Surgical Infections, vol. 3, no. 3, pp. 161-173 (fall 2002), PMID 12542922; and Evidence for the Recommendations, pp. 175-233, PMID 12542923.

L.B. Ferzoco, V. Raptopoulos, and W. Silen. Acute diverticulitis. New England Journal of Medicine, vol. 338, no. 21, pp. 1521-1526, May 21st, 1998) PMID 9593792; letters and authors’ response in vol. 339, no. 15, pp. 1081-1083 (October 8 th, 1998).

T.H. Baron and D.E. Morgan. Acute Necrotizing Pancreatitis. New England Journal of Medicine, vol. 340, no. 18, pp.1412-1417, May 6th, 1999), PMID 10228193. Correction in vol. 341, no. 6, p. 460 (Aug 5 th, 1999), PMID10432422.

D.C. Whitcomb. Acute Pancreatitits. New England Journal of Medicine, vol. 354, no. 20, pp. 2142-2150 (May 18 th, 2006), PMID 16707751 (a paragraph on page 2147 addresses the use of antibiotics).

CancerW.T. Hughes et al. 2002 Guidelines for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer. Clinical Infectious Diseases, vol. 34, no. 6, pp. 730-751 (March 15th, 2002), PMID 11850858.

58

Page 60: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Guidelines for Preventing Opportunistic Infections Among Hematopoietic Stem Cell Transplant Recipients: recommendations of CDC, the Infectious Diseases Society of America, and the American Society of Blood and Marrow Transplantation. MMWR Morbidity and Mortality Weekly Report, vol. 49, no. RR-10, pp. 1-128 (October 20 th, 2000), PMID 11718124; correction in vol. 58, no. 18, p. 396 (May 14th, 2004 – yes, 3½ years later!); Cytotherapy, vol. 3, no. 1, pp. 41-54 (January 1 st, 2001), PMID 12028843; Biology of Blood and Marrow Transplantation, vol. 6, no. 6a, pp. 659-713, 715, 717-727, and 729-733 (quiz), PMID 111858897.

C.A. Dykewicz. Summary of the Guidelines for Preventing Opportunistic Infections among Hematopoietic Stem Cell Transplant Recipients. Clinical Infectious Diseases, vol. 33, no. 2, pp. 139-144 (July 15 th, 2001), PMID 11418871.

Perioperative Antimicrobial ProphylaxisE.P. Dellinger et al. Quality Standard for Antimicrobial Prophylaxis in Surgical Procedures. Clinical Infectious Diseases, vol. 18, no. 3, pp. 422-427 (March 1994), PMID 8011827; Infection Control and Hospital Epidemiology, vol. 15, no. 3, pp. 182-188 (March 1994), PMID 8207176.

ASHP Therapeutic Guidelines on Antimicrobial Prophylaxis in Surgery. American Journal of Health System Pharmacy, vol. 56, no. 18, pp. 1839-1888 (September 15th, 1999), PMID 10511234.

Antimicrobial Prophylaxis in Surgery. The Medical Letter on Drugs and Therapeutics, vol. 43, pp. 92-97 (October 29 th, 2001), PMID 11689761; correction in vol. 43, p. 108 (November 26th, 2001).

Antimicrobial Prophylaxis for Surgery. Treatment Guidelines from the Medical Letter, vol. 2, pp. 27-32 (April 2004), PMID 15529111.

D.W. Bratzler and P.M. Houck. Antimicrobial Prophylaxis for Surgery: An Advisory Statement from the National Surgical Infection Prevention Project. Clinical Infectious Diseases, vol. 38, no. 12, pp. 1706-1715 (June 15 th, 2004), PMID 15227616; American Journal of Surgery, vol. 189, no. 4, pp. 395-404 (April 2005), PMID 15820449.

5959

Page 61: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

GENERAL CHART DOCUMENTATION FOR INFECTIONS AND SEPSIS

The Centers for Medicare and Medicaid Services have implemented major changes to chart documentation requirements of several common diseases. These changes influence diagnosis coding and severity of illness, both of which affect coding of DRGs and hospital reimbursement. Physicians are responsible for proper chart documentation, and infections are one category of diagnosis subject to the new regulations.

Infections should be documented according to primary diagnosis (e.g., pneumonia, cellulitis, peritonitis), and when appropriate, with the following additional terms that are clinical consequences of the infection:

Bacteremia: the presence of bacteria in the bloodstream, without associated signs or symptoms of systemic disease.Septicemia: any signs or symptoms of systemic disease associated with bacteria, fungi, or viruses in the blood.Sepsis: the systemic inflammatory response to infection (SIRS), with at least two of the following in the presence of infection:

temperature >38ºC (100.4ºF) or hypothermia <36ºC (96.8ºF) white blood cell count >12.0K per mm3, <4.0K per mm3, or >10% bands

pulse >90 beats per minute respirations >20 breaths per minute

Severe sepsis: SIRS with at least one sign or symptom of organ dysfunction and/or shock in the presence of infection, for example: hypotension acute tubular necrosis metabolic acidosis

adult respiratory distress syndrome acute respiratory failure shock liver

disseminated intravascular coagulation delirium encephalopathy

“Urosepsis” is the same as a urinary tract infection, and “positive blood cultures” is a laboratory result, not a clinical finding. Neither of these terms change a diagnosis or its severity, and they should not be used in charts because they are not useful in documentation.

The diagnosis of an infection is a medical judgment that does not always require confirmation with microbiological results. However, in the absence of culture results (e.g., most cases of pneumonia or uncomplicated cellulitis), the clinical information must support the diagnosis. Microbiological and other laboratory results should be documented when they are available, and linked to the diagnosis of bacteremia, septicemia, sepsis or severe sepsis (e.g., staphylococcal cellulitis with sepsis) as outlined on this page.

60

Page 62: “ALL MICROBIOLOGY IS LOCAL · Web viewThe q24h dose for both gentamicin and tobramycin is 6 mg/kg q24h, and for amikacin it is 20 mg/kg q24h. With high-dose q24h administration,

Is there something else that you want to see in the next edition of this booklet?Do you want to express your opinion about its content, style, or format?

Or do you have a question about something that is mentioned (or perhaps something that isn’t)?

To make comments, or to obtain a printed version of this booklet, please send an e-mail message to [email protected].

6161