annex h

Upload: nanmate8664

Post on 13-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

  • ANNEXE H. ABSORBED FRACTIONS FOR ALPHA, ELECTRON, AND BETA EMISSIONS

    A. C. James,* G. Akabani, A. BirchalLt N. S. Jarvis,t J. K. Briant* and J. S. Durham* *Pacific North west Laboratory, USA

    f National Radiological Protection Board, UK

    H.l. Introduction

    Contents

    H.2. Implementation of Source and Target Configurations

    H.3. Absorbed Fractions for Alpha Particles

    H.4. Absorbed Fractions for Mono-energetic Electrons

    H.5. Absorbed Fractions for p- and @ Particles

    H.6. Algebraic Approximations

    References

    459

    460

    461

    462

    465

    471

    471

    tl. 1. Introduction

    (HI ) In this annexe, the methods used in this report to calculate absorbed fractions for sources of short-range radiations within the respiratory tract arc briefly described. The resulting values of AF(T-S) that are recommended for substitution in the dosimetric model are shown graphically as functions of radiation energy in Chapter g. Tables H.l-H.6 give the values of AF(T-S) calculated for discrete values of the mean energy of short-range particulate radiations of each type. Algebraic formulae derived to approximate these calculated absorbed fractions and to interpolate between them are given in Tables H.7-H.lO. These formulae are provided for ease of calculation to evaluate AF(T- S) adequately for any radionuclide that emits alpha particles, electrons, or beta particles (negatrons or positrons). Other approximations may also be appropriate.

    (H2) The average fraction of energy absorbed in target tissue T per emission of radiation R in source S is given by:

    AF(T-S), = E(T+S), E R

    U-II)

    where E(T-S)a is the average energy (in MeV) absorbed by the target tissue in T per emission of radiation R in source S, and E, is the energy (in MeV) of the radiation.

    The work of Or A. C. James, Or G. Akabani. Or J. K. Briar& and Or J. S. Durham on this annex was supported by the US Department of Energy under Contract DE-ACO6-76RLG 1830 with Battelle Memorial Institute.

    The work of Or A. Birchall and Or N. S. Jarvis on this anncxc was partially supportrd by the Commission of the European Communities under Comract Bf6-0347-Item 2. and also by the UK Health and Safety Executive.

    459

  • 460 THE REPORT OF A TASK GROUP OF COMMITTEE 2

    (H3) All of the absorbed fractions required to evaluate the respiratory tract dosimetry model as a function of the emitted radiation energy were calculated by a three- dimensional, Monte Carlo radiation transport method. This provided substantially improved accuracy in the absorbed fractions calculated for alpha emissions at high energies compared to the approximation method used earlier by the Task Group (James er aL, 1991). The Monte Carlo radiation transport code used here also increased the accuracy of absorbed fractions calculated for electron emissions over that possible with the point-kernel method used earlier (James et al., 1991). by taking realistic account of multiple electron-scattering and the effects of air-tissue interfaces.

    H.2. Implementation of Source and Target Configurations

    (H4) Figure H.1 shows in cross-section the four different arrangements of cylindrical radiation source and target that apply to the various regions of the respiratory tract. For each case, Chapter 2 defines the radius of the inner surface of the airway, and the radial extent of the underlying source. target, and absorbing tissue layers.

    A. Intcmal Source (airway sufhcC of mucus)

    C. External Source (srquesterd)

    Source Region

    la Tqct Region

    D. External Infinite Source (alveoli)

    El Unit Dunsiry Ahsorbcr cl Low Density Ahsdw

    Fig. H. I. Cross-sectional diagrams of source and target configurations used to calculate absorbed fractions for the rcspirntory tract dosimctry model.

  • ABSORBED FRACTIONS FOR ALPHA. ELECTRON AND BETA EMISSIONS 461 (H5) Figure H.lA represents the geometry used to calculate absorbed fractions for

    radiation sources at the airway surface, i.e. AF(ET, - surface). or in a layer of fluid at the airway surface. i.e. AF(ET: -fast mucus), AF(BB-fast mucus), or AF(bb-fast mucus). To calculate the absorbed fractions AF( BB - slow mucus) and AF(bb - slow mucus), the layer of shielding at the airway surface provided by the overlying fast mucus was added.

    (H6) Figure H.lB represents the arrangement of source. target, and shielding layers used to calculate absorbed fractions for radionuclides that are bound in the epithelial tissue, i.e. for AF(ET, - bound), AF(BB + bound), and AF(bb- bound), where the target layer comprises part of the source.

    (H7) Figures H.lC and H.l D represent the two classes of source-target geometry where the source is entirely external to the target layer. Figure H.lC represents the geometrical arrangement used to calculate AF(ET2 + sequestered). AF(BB-sequestered), and AF( bb - sequestered), where the source is composed of a thin macrophage layer of unit-density tissue. Figure H.lD represents all cases where the source is assumed to be distributed through alveolar tissue. of density 0.2 g cme3, and infinite extent, i.e. AF(BB-AI) and AF(bb-Al).

    (H8) In order to carry out the Monte Carlo calculations of AF(BB c Al) and AF(bb-Al). the infinite alveolar-interstitial source was replaced by a finite volume bounded by the radius, Rcsda+ R,,. where RcrJa is the continuous slowing down approximation to the maximum range of the radiation considered, and R,, is the outer radius of the airway wall. The appropriate values of Rcda were obtained for alpha particles from ICRU Report 49 (ICRU, 1993), and for electrons from ICRU Report 37 (ICRU, 1983). Under these conditions, the absorbed fractions for an infinite source were ohtaincd by normalizing the calculated absorbed fraction. AF*(T- AI), as follows:

    AF(T- AI) = AF*(T- AI) d(&.,,+R,,)*-%I k

    (H2)

    whcrc AF*(T-AI) is the absorbed fraction calculated for the source uniformly distributed in a cylindrical volume of material of density 0.2 g cm--, extending between radii R,, and R,, + R,,,,, (in cm), and k is the proportional volume of the whole AI source that corresponds to unit length of target airways. For the reference adult male, the total length of target airways in the BB region is modelled as 183.5 cm, and that of the bb region is 7756 cm. Thus the values of the normalizing constant, k, are 5500 cmJ G 183.5 cm = 29.97 cm? for the BB region, and 5500 cm3 i 7756 cm = 0.709 cm? for the bb region.

    (H9) Monte Carlo sampling of the points of origin and direction of transport of the emitted radiation was carried out uniformly within each source. For each calculation, the number of radiation transport cases followed was chosen to achieve a standard error in the calculated mean absorbed fraction, if possible, of less than 1%. The number of radiation transport histories required to achieve this precision depends rather critically on the spatial extent of the source, and the nature of the radiation (alpha particle or electron).

    H.3. Absorbed Fractions for Alpha Particles

    (H 10) The Monte Carlo code used to calculate absorbed fractions for alpha particles (developed by G. Akabani, Pacific Northwest Laboratory) incorporated the stopping

  • 462 THE REPORT OF A TASK GROUP OF COMMITTEE 2

    power and range values for liquid water and air given on pp. 256 and 213, respectively, of ICRU Report 49 (ICRU. 1993).

    (HII) The trajectory of each alpha particle was followed in the code until all of its energy had been deposited, and the total amount of energy deposited in each target region from many alpha particles emitted from each source was determined. For internal, bound and sequestered sources (Figs H. 1 A-H.1 C). 200.000 alpha particle histories were followed. For AF(bb-AI). where the alpha particle source is in the alveolar-interstitial region and the target is bronchiolar secretory cells, up to 2.000.000 histories were followed.

    (H 12) Table H.l gives the values of absorbed fraction calculated for alpha particles of energy between 2.0 and 11.0 MeV. The table also shows the cut-off energy for each source-target combination. which corresponds to the minimum distance between points in the source and target.

    (H 13) For bound sources. there is no cut-off energy. At low energies, the absorbed fraction approaches asymptotically a constant value. This maximum value is determined by the volumetric proportion of the source that is occupied by the target.

    (H 14) For alpha particle sources in the AI region with the bronchial basal or secretory cells as target. the absorbed fractions AF(BB,,,-AI) and AF(BB,,,-AI) are always zero. because the thickness of absorbing tissue between the source and target exceeds the alpha-particle range.

    11.4. Absorbed Eractions for Mono-rnergetic Electrons

    (1 I 15) The Monte Carlo ccdc used to calculate absorhcd fractions for mono-encrgctic clcctrons (also dcvclopcd by G. Akabani, Pacific Northwest Laboratory) incorporated the tilcctron G;unma Shower transport code EGS4 (N&on cr al., 1985; Biclajcw CI al., I19 I ). The materials used in the code wcrc air, and water to simulate tissue.

    (11 IO) The EGSJ code accurately represents radiation transport phenomena for electrons and photons down to I kcV. The code models the production of both knock-on clcctrons and bremsstrahlung above a certain energy threshold (taken to be 1 keV for these calculations). Transport of the electrons themselves is governed in the code by the Multiple Scattering theory. For these calculations. a practical upper Limit for energy loss in each scattering event was set at 6% of the current electron energy, i.e. the variable ESTEPE in the EGS4 code was set at 0.06. This value of ESTEPE is consistent with the small linear dimensions of tissue targets in which electron energy loss is to be followed. and allows accurate simulation of the electrons curved path.

    (H 17) The energy deposited along an electrons path was scored in each cylindrical shell of absorber for each of the source-target arrangements shown in Figs H.lA-H.lD. Electrons and photons were transported until their energy dropped to I keV, which was assumed to be deposited locally. Thus, the history of all secondary electrons and photons (brcmsstrahlung) produced by each electron emitted in the source was followed completely.

    (H IK) For internal, bound and sequestered sources (Figs H. I A-H. 1 C), the histories of 100.000 electrons of a given energy emitted in the source were followed. For AF(BB - Al) and AF(bb- Al). where the electron source is in the alveolar-interstitial region, up to 4.000,OOO histories were followed for electrons emitted with high energy.

  • Tabl

    e H.

    I.

    \due

    s of

    abs

    orbe

    d fra

    ctio

    n,

    AFtT

    - S)

    ,, fo

    r al

    pha

    parti

    cles

    T=wQ

    ET

    I ET

    z n;

    ET

    2 W

    .. Be

    , B&

    a.,

    Be,

    %a,

    ,

    sour

    ce(s

    ) sl

    nfrc

    sl

    ufax

    Bo

    und

    Sq-

    Fast

    Sl

    ow

    Boun

    d se

    qlBa

    sIud

    Al

    M

    ucus

    M

    ucus

    2.00

    0

    0 0.

    179

    0.01

    31

    0 0

    0.25

    0 0.

    0000

    35

    0

    2.50

    0

    0 0.

    175

    0.03

    74

    0 0

    0.25

    1 0.

    0022

    8 0

    3.00

    0

    0 0.

    167

    0.07

    39

    0 0

    0.24

    9 0.

    0140

    0

    3.50

    0

    0 0.

    161

    0.11

    2 0

    0 0.

    244

    0.03

    93

    0

    4.00

    0

    0 0.

    153

    0.13

    5 0

    0 0.

    239

    0.07

    47

    0

    4.19

    0

    0 0.

    151

    0.13

    9 0

    0 0.

    235

    0.08

    85

    0

    4.39

    0

    0 0.

    147

    0.14

    1 0

    0 0.

    232

    0.10

    2 0

    4.50

    0

    0 0.

    147

    0.14

    2 0

    0 0.

    230

    0.10

    9 0

    4.76

    0

    0 0.

    143

    0.14

    2 0

    0 0.

    227

    0.12

    3 0

    5.00

    0

    0 0.

    140

    0.14

    1 0

    0.00

    0088

    0.

    221

    0.13

    2 0

    5.15

    0

    0 0.

    139

    0.13

    8 0

    0.00

    054

    0.21

    9 0.

    135

    0

    5.50

    0.

    0012

    7 O

    X@00

    76

    0.13

    5 0.

    135

    0.00

    0063

    0.

    0050

    6 0.

    213

    0.14

    1 0

    6.00

    0.

    0162

    0.

    0025

    1 0.

    131

    0.12

    8 0.

    0050

    6 0.

    0217

    0.

    202

    0.14

    1 0

    6.50

    0.

    0478

    0.

    0112

    0.

    125

    0.12

    1 0.

    0218

    0.

    0435

    0.

    191

    0.13

    9 0

    7.00

    0.

    0718

    0.

    0234

    0.

    118

    0.11

    4 0.

    0509

    0.

    0600

    0.

    182

    0.13

    4 0

    7.50

    0.

    0845

    0.

    0321

    0.

    111

    0.10

    7 0.

    0802

    0.

    0778

    0.

    172

    0.12

    8 0

    7.69

    0.

    0873

    0.

    0345

    0.

    109

    0.10

    4 0.

    0893

    0.

    0857

    0.

    167

    0.12

    7 0

    8.00

    0.

    0910

    0.

    0368

    0.

    104

    0.10

    1 0.

    101

    0.09

    88

    0.16

    3 0.

    123

    0

    8.50

    0.

    093 1

    0.

    0393

    0.

    0984

    0.

    0948

    0.

    112

    0.11

    0 0.

    156

    0.11

    7 0

    8.78

    0.

    0939

    0.

    0399

    0.

    0949

    0.

    0926

    0.

    114

    0.11

    5 0.

    154

    0.11

    4 0

    9.00

    0.

    0942

    0.

    0415

    0.

    0926

    0.

    0897

    0.

    116

    0.11

    5 0.

    150

    0.11

    2 0

    10.0

    0 0.

    0917

    0.

    0578

    0.

    0835

    0.

    0802

    0.

    119

    0.11

    9 0.

    144

    0.10

    2 0

    11.0

    0 0.

    0871

    0.

    0647

    0.

    0797

    0.

    0716

    0.

    116

    0.11

    6 0.

    140

    0.09

    30

    0

    cubo

    ff -6

    Y.

    5.21

    5.

    21

    - 0.

    79

    5.29

    4.

    76

    - 1.

    79

    - M

    eV

  • Tabl

    e H.

    I. (

    co~r

    rincr

    uc/)

    Targ

    el

    BB,

    BB,

    BB,

    BB,

    BB,

    bb,

    bb,

    bb,

    bhc

    s0ur

    c.e

    (S)

    Fast

    SI

    OW

    Bo

    und

    Sequ

    estrr

    ed

    AI

    Fnzt

    Sl

    ow

    Boun

    d Se

    ques

    tere

    d AI

    M

    ucus

    M

    ucus

    M

    lhm

    s M

    IKXI

    S

    Ener

    gy.

    MeV

    2.00

    0

    0 0.

    500

    0 0

    0.00

    526

    0.05

    62

    0.38

    7 0.

    0020

    9 0

    2.50

    0

    0.00

    388

    O.b

    99

    0 0

    0.03

    87

    0.11

    0 0.

    367

    0.01

    81

    0 3.

    00

    0.00

    022

    0.02

    27

    0.49

    7 0

    0 0.

    115

    0.16

    2 0.

    338

    0.05

    44

    0 3.

    50

    0.00

    775

    0.05

    99

    0.49

    3 o.

    ooo1

    I 0

    0.19

    2 0.

    203

    0.30

    5 0.

    0918

    0

    4.00

    0.

    0327

    0.

    101

    O.b

    85

    0.00

    373

    0 0.

    231

    0.23

    5 0.

    278

    0.11

    1 1.

    22 n

    lOA

    4.19

    0.

    0455

    0.

    116

    0.48

    1 0.

    0075

    9 0

    0.23

    7 0.

    241

    0.27

    0 0.

    113

    4.23

    x I

    O4

    4.39

    0.

    0609

    0.

    132

    0.47

    7 0.

    0136

    0

    0.23

    9 0.

    243

    0.26

    3 0.

    114

    1.07

    x I

    O

    4.50

    0.

    0708

    0.

    140

    0.47

    4 0.

    0182

    0

    0.24

    0 0.

    245

    0.26

    1 0.

    115

    1.61

    x I

    O

    4.76

    0.

    0965

    0.

    159

    0.46

    7 0.

    0304

    0

    0.23

    8 0.

    243

    0.25

    3 0.

    114

    3.40

    x l

    o-

    5.00

    0.

    125

    0.17

    9 0.

    459

    0.04

    32

    0 0.

    236

    0.24

    0 0.

    247

    0.11

    3 5.

    55 x

    Iu

    5.

    15

    0.14

    4 0.

    192

    0.45

    4 0.

    0515

    0

    0.23

    3 0.

    237

    0.24

    4 0.

    111

    7.06

    x 1

    0

    5.50

    0.

    189

    0.22

    7 0.

    439

    0.07

    26

    0 0.

    225

    0.22

    9 0.

    239

    0.11

    0 1.

    08 x

    IO

    4 6.

    00

    0.24

    9 0.

    272

    0.42

    0 0.

    102

    0 0.

    214

    0.21

    7 0.

    227

    0.11

    7 1.

    63 x

    IO

    4 6.

    50

    0.30

    1 0.

    309

    0.39

    8 0.

    130

    0 0.

    200

    0.20

    2 0.

    214

    0.12

    3 2.

    17 x

    IO

    - 7.

    00

    0.33

    4 0.

    333

    0.38

    1 0.

    14%

    0

    0.18

    8 0.

    190

    0.20

    2 0.

    124

    2.76

    x I

    O4

    7.50

    0.

    348

    0.35

    0 0.

    370

    0.15

    6 0

    0.17

    7 0.

    178

    0.18

    8 0.

    121

    3.47

    x I

    O4

    7.69

    0.

    353

    0.35

    5 0.

    362

    0.15

    9 0

    0.17

    2 0.

    173

    0.18

    3 0.

    120

    3.76

    x I

    O4

    8.00

    0.

    353

    0.35

    6 0.

    354

    0.16

    0 0

    0.16

    6 0.

    166

    0.17

    5 0.

    118

    4.23

    x I

    O4

    8.50

    0.

    349

    0.35

    4 0.

    346

    0.15

    9 0

    0.15

    5 0.

    155

    0.16

    5 0.

    113

    4.99

    x 1

    04

    8.78

    0.

    346

    0.35

    0 0.

    341

    0.15

    9 0

    0.15

    0 0.

    151

    0.16

    0 0.

    111

    5.42

    x l

    Oa

    9.00

    0.

    342

    0.34

    5 0.

    339

    0.15

    7 0

    0.14

    6 0.

    146

    0.15

    4 0.

    108

    5.71

    x I

    O-

    10.0

    0 0.

    323

    0.32

    5 0.

    324

    0.15

    5 0

    0.12

    8 0.

    128

    0.13

    5 0.

    0990

    7.

    04 *

    lO

    A 11

    .00

    0.30

    0 0.

    303

    0.30

    7 0.

    167

    0 0.

    113

    0.11

    3 0.

    121

    0.08

    94

    8.23

    x l

    OA

    cuio

    ff Em

    rIm.

    2.70

    1.

    79

    - 3.

    20

    - 1.

    43

    0.57

    -

    1.43

    3.

    56

  • ABSORBED FRACTIONS FOR ALPHA, ELECTRON AND BETA EMlSSlONS 365

    (HI91 Table H.2 gives the values of absorbed fraction calculated for mono-energetic electrons of energy between 0.01 and 9.0 McV. For each source-target combination. the absorbed fractions were calculated for at least l-l, and generally more than 20. values of electron energy. Additional values shown in Table H.2 were obtained by cubic-spline interpolation between the calculated nodes.

    (H20l In contrast to the transport of alpha particles, where the highest range in unit density tissue that needs to be considered is about 130 pm (for an I I-XleV alpha particle), high-energy electrons travel many centimetres. The csda range for a 9-MeV electron is about 4.5 cm in unit density tissue. and up to 22.5 cm in alveolated tissue. Therefore. a high-energy electron emitted in the wall of one airway can traverse many other airways in its path through the AI region.

    (H21) However, the Monte Carlo calculation of absorbed fractions for all sources associated with the airway internal surface or airway wall (Figs H.lA-H.10 represents only the local absorption of energy in a single airway, which is assumed to be surrounded by an infinite cylinder of AI tissue. Additional energy deposition in each regional target tissue that results from cross-irradiation of remote airways is not represented explicitly in the calculation. However, this additional contribution can be adequately approximated by adding the surrogate calculated value of AF(T- AI) to each calculated value of the locally ahsorhcd fraction, AF(T- SdlrueJ. The values of AF(BB- mucus), AF(BB - bound), AF(BB- sequestercdl, and of AF(hb - mucus). AF(bb+ bound), AF(hh -sequestcrcd) given in Tahlc HZ!, therefore includs the respectivecomponcnts from AF(BH-Al) and AF(hb-All.

    (H22) This USC of AF(T* AI) 21s it surrogate for the additive effect of II local airway source also irradiating remotc airways at high clcctron cncrgics will. in fact, tend to ovcrestimatc the contribution of airway cross-fire within the IN and hb regions when these arc considcrcd as discrete sources and tnrgcts. In reality, thcrc will aIs0 bc cross- fire at high cncrgics bctwccn the bb and I1fI rgions. and rice wr.w. This additional cross- fire will tend to off-set the ovcrcstimation of ahsorbcd fractions at high cncrgics that results from using AF(T- AI) to rcprcscnt rcmotc airway sources within each region. Consequently, it is not ncccssary to add in explicitly the rclativcly small fractions of emitted clcctron cncrgy absorbed by cross-fire bctwccn the BB and bb regions.

    (H23) AS for alpha particles. Table H .2 also shows the cut-off electron energy for each source-target combination. This corresponds to the minimum distance bctwccn points in the source and target. Again, for bound sources. there is no cut-off energy. and at low energies the absorbed fraction approaches asymptotically the constant value determined by the volumetric proportion of the source that is occuped by the target.

    H.5. Absorbed Fractions for @- and p Particles

    (H24) Absorbed fractions for beta particles (negatrons and positrons) were calculated from the absorbed fraction data for mono-energetic electrons and the beta spectra for a series of radionuclidcs. The spectral-average absorbed fraction for a beta emitter is:

    AF 8=

    1 Y(E)EAF(T- S;E) dE

    IY( dE (H3)

    where Y(E) is the spectral yield at energy E.

  • Tabl

    e H.

    t. Va

    lues

    of a

    bsor

    bed

    fract

    ion,

    AFi

    T-

    St,,

    for

    elec

    trons

    ii

    sow

    w

    Sl

    UfU

    O

    sluf

    aeo

    Boun

    d tk

    quda

    d Fu

    tMuc

    ua

    Slow

    Mwu

    a Bo

    und

    Sequ

    este

    red

    Al

    B z 2 >

    0.01

    0 0

    0.01

    5 0

    0.02

    0 0

    0.02

    5 0

    0.03

    0 0

    0.03

    5 0

    0.04

    0 0

    0.04

    5 0

    0.05

    0 4.

    05 x

    lo1

    0.05

    5 8.

    65 x

    IO

    4 0.

    060

    8.13

    x IO

    * 0.

    065

    2.57

    x lo

    - 0.

    070

    4.84

    K IO

    J 0.

    075

    6.65

    x I

    O

    0.00

    0 8.

    02 x

    10

    0.

    085

    8.91

    x I

    O

    0 0 0 0 0 0 0 0 4.

    42 x

    lo-

    7.59

    x lo

    1.

    39 x

    104

    6.

    09 x

    lo-

    1.34

    x 1

    OJ

    2.20

    x I

    OJ

    3.03

    x 1

    05

    3.69

    x I

    O*

    1.82

    x IO

    - 1.

    82 x

    lo

    1.82

    x IO

    - 1.

    80 x

    IO

    -1

    1.75

    x 1

    0-l

    1.66

    x lo

    1.

    56 x

    10

    1.

    49 x

    IO-

    1.43

    x lo

    1.

    38 x

    lo-

    1.33

    x lo

    1.

    27 x

    lo-

    1.20

    x lO

    - 1.

    13 x

    lo

    1.07

    x lo

    1.

    01 x

    IO-

    0 3.

    69 x

    10

    8.

    33 x

    10.

    1.

    22 x

    1O

    J 4.

    05 x

    1O

    J 8.

    11 x

    10

    1.

    19 x

    lo-

    1.42

    x lo

    1.

    49 x

    lo-

    1.49

    x 10

    4 1.

    42 x

    lo-

    1.34

    x lo

    - 1.

    24 x

    lo

    1.17

    x lo

    1.

    08 x

    lo

    1.01

    x lo

    -

    0 0 0 0 0 0 0 0 2.

    22 x

    lo

    2.06

    x I

    O4

    3.03

    x 1

    04

    1.36

    x I

    O=

    3.16

    x lO

    a 5.

    45 x

    104

    7.

    76 x

    lOa

    9.62

    x 1

    OJ

    0 0 0 0 0 0 0 1.

    15 x

    10

    1.

    31 x

    lo4

    2.53

    x IO

    * 1.

    13 x

    10-J

    2.

    62 x

    10

    4.

    49 x

    1O

    J 6.

    46 x

    lo3

    8.32

    x 1

    0

    9.87

    x 10

    2.50

    x lO

    - 2.

    50 x

    IO

    - 2.

    50 x

    lo-

    2.50

    x lo

    2.

    50 x

    lo

    2.47

    x lo

    2.

    42 x

    lo-

    2.36

    x lo

    2.

    28 x

    16

    2.18

    x lo

    2.

    07 *

    lo

    1.96

    x 1

    0

    1.86

    x lo

    1.

    76 x

    lo

    1.67

    x lo

    1.

    58 x

    10-

    l

    0 0 0 3.

    24 x

    lo+

    2.61

    x 1

    0.

    1.69

    x lO

    J 4.

    58 x

    lo*

    8.11

    x 1

    0

    1.15

    x lo

    1.

    35 x

    lo

    1.45

    x lo

    1.

    49 x

    lo-

    1.45

    x lo

    1.

    39 x

    lo-

    1.33

    x lo

    - 1.

    27 x

    10-

    l

    0 0

    0 $

    0 s

    0 8

    0 CI

    0 s

    0 0 3 m

    0

    N

  • 0.09

    0 9.

    36 x

    10'

    0.

    095

    9.54

    x 1

    04

    0.10

    0 9.

    57 x

    1O

    J 0.

    1125

    9.

    04 x

    IO

    J 0.

    125

    8.40

    ~ lO

    a 0.

    150

    7.03

    x I

    OJ

    0.17

    5 5.

    90 x

    !O

    J 0.

    200

    5.12

    x lo

    = 0.

    300

    3.14

    x 1

    04

    0.40

    0 2.

    19 x

    IO

    = 0.

    500

    1.66

    x 10

    3 0.

    600

    1.33

    x 1

    OJ

    0.70

    0 1.

    10 x

    105

    0.80

    0 9.

    34 x

    1O

    J 0.

    900

    8.15

    x I

    O-'

    !.ooo

    7.

    25 x

    1O

    J 1.

    500

    4.36

    x I

    O*

    2.00

    0 3.

    07 K

    IOJ

    3.00

    0 1.

    93 x

    10J

    4.00

    0 1.

    41 x

    lo=

    9.00

    0 5.

    50 x

    IO

    4

    4.26

    x IO

    ' 4.

    83 x

    104

    5.

    36 x

    10J

    6.

    19 x

    IO*

    6.36

    x lO

    a 5.

    59 x

    !O

    J 4.

    69 x

    IO*

    3.97

    x !

    OJ

    2.25

    x IO

    * 1.

    50 x

    104

    1.

    12 x

    loa

    9.06

    * 1

    0.'

    7.63

    x IO

    -' 6.

    61 x

    lo*

    5.83

    x 1

    0"

    5.22

    x 1

    0J

    3.50

    x !O

    J 2.

    67 x

    lo-'

    1.85

    x lO

    a I.4

    2 *

    lo-'

    6.61

    * 1

    04

    9.48

    x 1

    0'

    9.00

    x 1

    0'

    8.60

    ~ IO

    * 7.

    86 *

    IO

    * 7.

    39 x

    103

    6.

    78 x

    IO

    4 6.

    07 x

    IO*

    5.30

    x I

    OJ

    3.34

    x 1

    0-J

    2.40

    1.1

    04

    1.87

    x IO

    J 1.

    54 x

    104

    1.

    31 x

    IO

    J 1.

    13 x

    10-

    z 9.

    95 x

    10'

    8.

    88 x

    103

    5.

    72 x

    IO-'

    4.21

    * 1

    0.'

    2.80

    * I

    O*

    2.02

    * l

    o-'

    8.69

    * I

    O4

    9.36

    x 1

    0'

    8.83

    x lO

    a 8.

    32 x

    lo*

    7.11

    x 1

    0-J

    6.38

    x lo

    * 5.

    84 x

    IO*

    5.35

    x 1

    04

    4.75

    x 1

    05

    3.09

    x 1O

    J 2.

    26 x

    10'

    1.

    77 x

    104

    1.46

    x 1

    05

    1.23

    x IO

    * 1.

    07 x

    104

    9.50

    * 1

    04

    8.54

    x 1

    05

    5.78

    x IO

    * 4.

    31 x

    104

    2.

    90 *

    10.

    ' 2.

    15 *

    10"

    9.

    65 x

    IO

    4

    1.09

    x lo

    - 1.

    16 x

    lo"

    1.19

    x lo

    -' I.1

    9 *

    lo"

    1.13

    x lo

    - 9.

    66 x

    lOa

    8.24

    * I

    O=

    7.12

    x lo

    * 4.

    37 x

    !O

    J 3.

    07x

    103

    2.35

    x IO

    * 1.

    89 x

    lOa

    1.56

    x I

    O<

    1.32

    * IO

    3 1.

    14 x

    loa

    9.86

    x IO

    -' 5.

    65 x

    105

    4.

    56 x

    IO-'

    3.08

    * 1

    0.'

    2.39

    * I

    O-'

    1.18

    x 1

    0.'

    1.10

    x lo

    - 1.

    17 x

    !WL

    1.20

    x lo

    -' 1.

    20 x

    lo"

    1.14

    x lo

    -' 9.

    71 x

    1O

    J 8.

    27 x

    10"

    7.

    15 x

    IO

    4 4.

    39 x

    10'

    3.

    09 x

    104

    2.

    35 x

    lOa

    1.89

    x lO

    a 1.

    56 x

    IO*

    1.32

    x lO

    a 1.

    14 x

    lo*

    1.01

    x 10

    ' 6.

    11 x

    lO

    a 4.

    58 x

    lo=

    3.08

    * 10

    " 2.

    41 x

    lO

    a 1.

    17 x

    IO"

    1.50

    x lo

    -' 1.

    46 x

    lo-'

    1.43

    x lo

    -' 1.

    36 x

    lo-'

    1.27

    x lo

    " 1.

    09 x

    lo"

    9.32

    x I

    O'

    8.01

    x lO

    a 4.

    90x

    lo=

    3.42

    x 1

    0'

    2.62

    x 1

    0J

    2.12

    x lo

    * 1.

    76 x

    lO

    a 1.

    47 x

    IO'

    1.28

    * lO

    a I.1

    3 x

    IO4

    7.10

    x 1

    0"

    5.22

    x I

    O=

    3.51

    x 1

    05

    2.72

    * 1

    0.'

    1.35

    * IO

    4

    1.21

    x lo

    -' 1.

    14 x

    lo"

    1.07

    x lo

    -' 9.

    71 x

    10'

    9.

    36 x

    10'

    8.

    77 x

    IO

    = 7.

    85 x

    IO4

    6.83

    x IO

    * 4.

    34 x

    lo=

    3.13

    x I

    O4

    2.37

    x lO

    a 1.

    90 x

    103

    1.

    58 x

    104

    1.

    34 x

    lo=

    I.15

    x 10

    J 1.

    02 x

    !O

    J 6.

    44 x

    lo-'

    4.78

    x IO

    -' 3.

    28 x

    10"

    2.

    54 *

    IO

    5 1.

    30 x

    104

    0 0 0 0 0 0 0 0 1.

    57 x

    IO'

    7.66

    x I

    OJ

    1.39

    x IO

    4 1.

    85 x

    lo4

    2.21

    x I

    O4

    2.49

    x I

    O4

    2.70

    x 1

    0.

    2.85

    x I

    O4

    3.23

    x 1

    0.

    3.34

    x I

    O4

    3.66

    x IO

    * 3.

    93 x

    104

    3.

    93 *

    101

    cut-o

    ff En

    W8Y

    . 0.

    0478

    0.

    0478

    0.

    0141

    0.

    0485

    0.

    0443

    0.

    0217

    0.

    215

    l&V

  • Tabl

    e 11

    .2. (r

    n,lri

    nlru

    c/)

    Twa0

    -I BL

    BJ

    L BE

    4.c

    B&m

    B&

    c L

    bb

    , bb

    , bh

    m

    &.a

    3 ii so

    urce

    (S)

    Fast

    Muc

    us

    Slow

    hlu

    cua

    Boun

    d Se

    ques

    tere

    d Al

    Fa

    st M

    ucua

    Sl

    ow M

    ucua

    Bo

    und

    Sequ

    osto

    rad

    Al

    B -i h

    0.01

    0 0

    0.01

    5 0

    0.02

    0 0

    0.02

    5 0

    0.03

    0 3.

    56 x

    lo1

    0.03

    5 9.

    12 x

    IO

    4

    0.04

    0 1.

    22 x

    10

    0.

    045

    4.00

    x I

    O4

    0.05

    0 8.

    50 x

    IO

    *

    0.05

    5 1.

    42 x

    10-

    J

    0.06

    0 2.

    06 x

    10

    0.06

    5 2.

    64 x

    lo-

    0.07

    0 3.

    09 x

    10

    0.07

    5 3.

    39 x

    lo

    0.

    080

    3.56

    x 1

    0-l

    0.08

    5 3.

    61 x

    lo-

    0 5.

    00 x

    lo

    0

    4.99

    x l

    o

    0 4.

    97 x

    10

    6.43

    x 1

    0.

    4.96

    x I

    O

    4.13

    x I

    O3

    4.96

    x I

    O

    2.65

    x I

    O

    4.95

    x l

    o

    6.50

    x l

    Oa

    4.92

    x I

    O-

    1.08

    x I

    O-

    4.85

    x lo

    I.55

    x lo

    - 4.

    73 x

    lo-

    1.99

    x l

    o-

    4.56

    x l

    o

    2.45

    x l

    o

    4.35

    x l

    o

    2.88

    x J

    O-

    4.14

    x I

    O-

    3.22

    x 1

    0-l

    3.94

    x l

    o

    3.46

    x I

    O-

    3.77

    x l

    o

    3.59

    x l

    o

    3.63

    x l

    o

    3.64

    x l

    o

    3.51

    x l

    o

    0 0 0 0 0 4.

    40 x

    10.

    7.

    96 x

    10.

    7.

    34 x

    10

    2.

    39 x

    IO

    = 4.

    98 x

    1O

    J 7.

    88 x

    lo*

    1.

    09 x

    IO

    - 1.

    34 x

    lo-

    1.

    51 x

    lo

    1.

    61 x

    IO

    1.

    65 x

    IO

    -

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0

    3.98

    x l

    o

    0

    0 2.

    08 x

    10.

    3.

    97 x

    lo-

    0

    3.40

    x l

    o4

    9.72

    x l

    Oa

    3.95

    x I

    O-

    0

    3.45

    x 1

    0-J

    5.60

    x l

    Oa

    3.88

    x l

    o

    1.40

    x l

    o=

    4.30

    x I

    OJ

    1.22

    x I

    O

    3.66

    x 1

    0

    1.90

    x 1

    04

    1.28

    x l

    o

    1.79

    x l

    o

    3.30

    x 1

    0

    5.82

    x 1

    OJ

    2.06

    x l

    o

    2.22

    x l

    o

    2.97

    x I

    O

    9.69

    x l

    Oa

    2.45

    x I

    O

    2.49

    x 1

    0-l

    2.70

    x I

    O

    1.17

    x I

    O

    2.54

    x I

    O

    2.55

    x l

    o

    2.53

    x I

    O

    1.22

    x I

    O

    2.44

    x l

    o

    2.49

    x I

    O-

    2.39

    x I

    O-

    1.20

    x I

    O

    2.33

    x l

    o

    2.35

    x I

    O-

    2.27

    x I

    O

    1.22

    x l

    o

    2.18

    x l

    o-

    2.20

    x l

    o-

    2.15

    x I

    O-

    1.24

    x l

    o

    2.02

    x l

    o

    2.04

    x l

    o-

    2.05

    x 1

    0-l

    1.25

    x l

    o

    1.87

    x I

    O

    1.88

    x I

    O

    1.92

    x l

    o-

    1.25

    x I

    O-

    1.74

    x l

    o

    1.75

    x I

    O

    1.80

    x l

    o

    1.21

    x l

    o

    1.63

    x l

    o

    1.63

    x l

    o-

    1.69

    x l

    o

    1.18

    x l

    o

    0 0

    0 5

    0 0

    0

    0 n

    0 A

    0 P

    1.73

    x 1

    0

    7 1.

    84 x

    IO

    $

    5.25

    x I

    O

    ,J

    1.02

    x I

    O4

    1.62

    x l

    o4

    2.28

    x l

    o+

    2.98

    x l

    O*

    3.71

    x l

    o4

    4.44

    x 1

    04

    5.17

    x I

    O4

  • ABSORBED FRACTIONS FOR ALPHA. ELECTRON AND BETA EMISSIONS 469

    7 o~~~bbbbbbbb%gbb%%bb~ e-------- w---e------- x x x x x x x x * x x x x * x x x x x x x

    xxx*xxxxx*xxxxxxxxxxx

  • 470 THE REPORT OF A TASK GROUP OF COMMIITEE 2

    (H25) The energy spectra of each of the beta particle emissions listed in Table H.3 for negatrons, and Table H.4 for positrons, were obtained from the National Nuclear Data Center (Brookhaven National Laboratory). Each spectrum was calculated from the Evaluated Nuclear Structure Data Files (ENSDF), using the computer code FUDLST (Burrows, 1988). In order to evaluate the above integral, at least 150 energy bins were used to represent each energy spectrum.

    (H26) Table H.5 gives the spectral-average absorbed fractions, as a function of mean spectral energy, for each of the negatron emissions listed in Table H.3.

    (H27) Table H.6 gives the absorbed fractions calculated in the same manner for the positron emissions listed in Table H.4. For positron emissions of energy higher than the maximum listed value of 0.7353 MeV (from IsO), the absorbed fractions are identical to the values calculated for negatrons.

    Table H.3. Beta-emitting isotopes with their average emitted energy used to evaluate

    AF(T- S)d- for jJ - emissions

    lsotopc numc Avcragc energy (McV)

    H 16R Ni WRu 5s C Pm 4sCil T-C Co 12Sn *Sn *Sn Yr IMTI Cl Kr ?lllBi 24Na Sr yY 32p P3c *Y Al Kr AS

    0.0056 0.0 IO0 0.0174 0.03 Is* O.OJH7 O.OlJX 0.06 I7 0.0773 0.0x45 o.ousn 0.1354 0.1581 0.1604" 0.2010 0.2394 0.2507 0.2562 0.38X8 0.55 16 0.5672 0.5886 0.691H 0.x153 0.9258 1.2350 1.6938 1.8570

    Branch-energy selected from complex spectrum.

  • ABSORBED FRACTIONS FOR ALPHA, ELECTRON AND BETA EMISSIONS

    Table H.4. Beta-emitting isotopes with their average emitted energy used to evaluate

    AF(T- S)p+ for B l emissions

    471

    Isotope name Average energy ( MeV)

    JYCl Cr 3b 7Cd JC0 L:Na -2Mn F r*Y JN 0

    0.0502 0.09 I4a 0.1300 0.1418 0.2013 0.2 I55 0.24 16 0.2498 0.3595 0.4918 0.7353

    Branch energy selected from complex spectrum.

    H.6. Algebraic Approximations

    (H28) To facilitate the evaluation of AF(T- S), for emissions of intermediate energy, and for complex emission spectra involving multiple radiation energies, the calculated values of AF(T+S), are conveniently represented as functions of radiation energy by fitted algebraic expressions. Appriopriate expressions, which were developed by A. Birchall and N. S. Jarvis (National Radiological Protection Board), are given in Table H.7. Values of the parameters to be substituted in thcsc expressions, in order to evaluate absorbed fractions for emissions of alpha particles, electrons, negatrons, and positrons, respectively, are listed in Tables H.8-H. II. The approximate values so obtained represent the calculated values of absorbed fraction to within about f 1% relative error. As noted above, however, other approximations to the calculated values of AF(T-S), may also be appropriate.

    References

    Bielajew. A. F. and Rogers, 0. W. 0. ( 1991). PRESTA. The paramctcr rcduccd electron-step size transport algorithm for electron Monte Carlo transport. National Research Council of Canada. Publication PIRS- 0042.

    Burrows. T. W. (1988). The program RADLST. Brookhaven National Laboratory. New York. information Analysis Center Report. BNI-NCS-52142.

    ICRU ( 1984). Slopping bwers jar &lecfrons and Positrotts, International Commission on Radiological Units and Measurements Report 37. ICRU Press. Bethesda, MD.

    ICRU (1993). Stopping Pours and Runges fir Prorons and Alphu )Irrricles. International Commission on Radiological Units and Measurements Report 49. KRU Press, Bethesda. MD.

    James. A. C.. Gehr. P.. Masse, R.. Cuddihy. R. G.. Cross, F. T.. Birchall. A,, Durham. J. S. and Briant, J. K. (1991). Dosimetry model for bronchial and extrrthoracic tissues of the respiratory tract. Rudiur. Prot. Dosim. 37.22 I-230.

    Nelson. W. R.. Hirayama. H. and Rogers, 0. W. 0. (1985). The EGS4 code system. SLAC-Report-265, Stanford Linear Accelerator Center.

  • Tabl

    e H.

    5.

    Valu

    es o

    f abs

    orbe

    d fra

    ctio

    n. A

    F(T-

    S)J-

    . fo

    r ne

    gatro

    ns

    6

    Sour

    ce(S

    ) ET

    , ET

    2 ET

    2 ET

    2 B&

    I BB

    b,

    B&VU

    B&

    a B&

    s 4 8

    Targ

    et (T

    ) SU

    lf&X

    Surfa

    ce

    Boun

    d Se

    pues

    tero

    d Fa

    rt Sl

    ow

    Boun

    d Se

    ques

    tere

    d AI

    M

    llc~

    MU

    CU

    S i n

    Aver

    age

    Ener

    gy,

    MC

    V

    0.00

    56

    0 0

    1.82

    x lo

    - 2.

    81 x

    lo-

    0.01

    00

    0 0

    1.81

    x lo

    - 5.

    91 x

    10-J

    0.

    0174

    1.

    17 x

    104

    1.94

    x lo

    1.

    71 x

    lo-

    4.87

    x lo

    0.

    03 I5

    1.

    76 x

    IO

    6.60

    x lo

    - 1.

    48 x

    lo-

    9.07

    x lo

    0.

    0487

    4.

    70 x

    lo-

    2.48

    x lo

    - 1.

    20 x

    lo-

    9.41

    x lo

    0.

    0498

    4.

    56 x

    lo-*

    2.

    32 x

    lo-

    1.22

    x lo

    9.

    71 x

    lo

    0.06

    17

    5.60

    x lo

    -2 3

    .43

    x lo

    -2

    1.04

    x lo

    - 8.

    44 x

    105

    0.07

    73

    6.00

    x W

    2 3.

    90 x

    lo

    9.23

    x lo

    - 7.

    78 x

    lo-

    0.08

    49

    5.86

    x 10

    -2 3

    .91

    x lo

    -2

    8.62

    x IO

    7.

    27 x

    lo

    0 0 4.

    42 x

    10

    1.

    62 x

    lo

    5.33

    x 10

    -Z

    5.08

    x W

    2 6.

    82 x

    lo

    7.54

    x lo

    7.

    47 x

    10

    0 0 1.

    97 x

    IO-

    1.91

    x lo

    - 5.

    64 x

    lo-

    5.42

    x 10

    7.

    06 x

    lo-

    7.74

    x 10

    7.

    64 x

    10-2

    2.5

    0 x

    lo

    2.50

    x lo

    - 2.

    46 x

    lo

    2.21

    x lo

    - 1.

    86 x

    10-l

    1.89

    x lo

    - 1.

    63 x.

    lo

    1.46

    x lo

    1.

    36 x

    10-l

    1.01

    x 10

    4 4.

    96 x

    lo-

    2.24

    x lo

    - 7.

    49 x

    lo-

    9.67

    x lo

    - 9.

    85 x

    lo-

    9.53

    x Ia

    2 9.

    34 x

    lo-

    8.90

    x lo

    -

    0 h)

    0 0 0 0 0 0

  • ABSORBED FRACTIONS FOR ALPHA, ELECTRON AND BETA EMlSSlONS 473

    0

    4 0

    X

    % od

    X

    X

    x

    X

  • 474 THE REPORT OF A TASK GROUP OF COMMIITEE 2

  • 0.09

    58

    2.15

    x l

    o

    2.22

    x lo

    - 2.

    69 x

    lo-

    1.32

    x lo

    0

    9.49

    x lo

    - 9.

    69 x

    lo-

    1.

    15 x

    lo-

    6.

    87 x

    lo-

    9.72

    x l

    Oa

    0.13

    54

    1.77

    x I

    O-

    1.80

    x lo

    - 2.

    07 x

    lo-

    1.19

    x lo

    1.

    24 x

    lo-

    6.76

    x 1

    8

    6.85

    x lo

    -* 7

    .95

    x lo

    -*

    5.12

    x lo

    - 1.

    21 x

    lo

    0.15

    81

    1.57

    x lo

    - 1.

    60 x

    lo-

    1.80

    x lo

    1.

    10 x

    lo

    2.

    86 x

    lo-

    5.66

    x lo

    - 5.

    72 x

    lo-2

    6.5

    8 X

    lo

    4.37

    x l

    O-*

    1.3

    0 x

    lo-

    0.16

    94

    1.49

    x lo

    1.

    51 x

    lo

    1.69

    x lo

    - 1.

    05 x

    10

    3.

    88 x

    IO

    - 5.

    21 x

    lo-

    5.26

    x l

    Wz

    6.04

    x 1

    0

    4.07

    x lo

    - 1.

    34 x

    lo-

    0.

    2010

    1.

    30 x

    lo

    1.32

    x I

    O-

    1.44

    x 1

    0-l 9

    .60

    x lo

    - 5.

    83 x

    lo-

    4.21

    x lo

    - 4.

    24 x

    lo

    4.81

    x 1

    04 3

    .38

    x lo

    1.

    43 x

    IO

    - 0.

    2394

    1.

    08 x

    lo-

    1.09

    x lo

    - 1.

    19 x

    lo-

    8.10

    x lo

    - 1.

    26 x

    lO

    A 3.

    39 x

    lo

    3.41

    x lo

    -*

    3.87

    x l

    o

    2.74

    x 1

    0-*

    1.49

    x l

    o-

    0.25

    07

    1.08

    x l

    o-

    1.08

    x 1

    0-l

    1.17

    x lo

    - 8.

    18 x

    lo

    1.

    17 x

    lO

    a 3.

    25 x

    lo-*

    3.2

    6 x

    lo-2

    3.6

    6 x

    10-2

    2.6

    7 x

    lo-

    1.50

    x l

    o

    0.25

    62

    1.03

    x lo

    - 1.

    04 x

    lo-

    1.12

    x lo

    7.

    87 x

    lo-

    1.27

    x 1

    0d 3

    .11

    x lo

    - 3.

    12 x

    lo

    3.

    53 x

    lo-2

    2.5

    5 x

    l@*

    1.52

    x lo

    - 0.

    3888

    6.

    62 x

    lo

    6.66

    x lo

    - 7.

    15 x

    lo-

    5.28

    x lo

    - 2.

    89 x

    lO

    A 1.

    86 x

    lo-*

    1.

    87 x

    10-

    2 2.

    09 x

    10-

    2 1.

    57 x

    lo

    1.

    62 x

    lo-

    0.

    5516

    4.

    60 x

    lo

    4.69

    x lo

    4.

    88 x

    lO

    - 3.

    83 x

    1~

    3.93

    x

    10d

    1.19

    x IO

    -* 1

    .20

    x IO

    -2 1

    .32

    x lo

    -2 1

    .06

    x 10

    -2 1

    .68

    x 1~

    0.

    5672

    4.

    39 x

    lo

    * 4.

    51 x

    lo

    4.69

    x lo

    3.

    66 x

    10

    4.

    11 x

    10-

    1.

    16 x

    lo-

    1.17

    x 1

    0-2

    1.30

    x 1

    0-2

    1.02

    x l

    @*

    1.68

    x 1

    0.

    0.58

    86

    4.20

    x l

    o-

    4.34

    x lo

    4.

    49 x

    lo-*

    3.5

    1 x

    lo-

    4.24

    x 1

    0d 1

    .12

    x lo

    - 1.

    12 x

    lo-

    1.

    24 x

    l@

    * 9.

    84 x

    l@

    1.

    69 x

    10.

    0.

    6918

    3.

    50 x

    lo-

    3.67

    x 1

    05 3

    .73

    x lo

    2.

    98 x

    IO

    - 4.

    69 x

    10d

    9.2

    0 x

    lo-

    9.25

    x 1

    0-l

    1.02

    x lo

    -*

    8.26

    x 1

    0 1.

    71 x

    lo-

    0.

    8153

    2.

    87 x

    lo-

    3.04

    x lo

    - 3.

    07 x

    lo-

    2.47

    x l

    o-

    5.17

    x l

    OA

    7.73

    x I

    O-

    7.79

    x l

    @

    8.51

    x 1

    0-3

    7.02

    x lo

    1.

    72 x

    lo

    0.

    9258

    2.

    47 x

    lo-

    2.61

    x lo

    - 2.

    64 x

    lo

    2.14

    x 1

    0

    5.50

    x l

    OA

    6.84

    x lo

    - 6.

    91 x

    lo

    7.

    53 x

    10

    6.

    25 x

    10-

    3 1.

    73 x

    10-

    J 1.

    2350

    1.

    76 x

    lo-

    1.86

    x l

    o-

    1.89

    x lo

    -*

    1.55

    x lo

    6.

    04 x

    lo-

    5.24

    x lo

    5.

    29 x

    10-

    5.

    71 x

    lo-

    4.89

    x 1

    0-

    1.75

    x 1

    0

    1.69

    38

    1.22

    x lo

    -*

    1.28

    x lo

    - 1.

    32 x

    lo-

    1.10

    x lo

    - 6.

    55 x

    10d

    4.1

    4 x

    lo

    4.19

    x I

    @

    4.48

    x I

    O-

    3.93

    x l

    @

    1.76

    x l

    o

    1.85

    70

    1.11

    x lo

    1.

    16 x

    lo-

    1.19

    x lo

    - 9.

    97 x

    10

    6.

    69 x

    10d

    3.9

    0 x

    lo-

    3.95

    x 1

    0

    4.21

    x 1

    0-3

    3.72

    x 1

    0-3

    1.76

    x l

    o

  • Tabl

    e H.

    6. V

    alue

    s of

    abs

    orbe

    d fra

    ctio

    n,

    AF(T

    - S)

    b..

    for

    posi

    trons

    ET?

    ml

    BBb,

    BB

    b,

    BBb,

    Bs

    , Bh

    sour

    ce

    (S)

    sulfe

    ee

    surfa

    ce

    Boun

    d Se

    ques

    tertd

    FM

    t

    hluc

    ua

    Slow

    M

    UCUS

    Boun

    d Se

    quea

    tmd

    Al

    o.os

    o2

    3.23

    x I

    O*

    1.26

    x l

    o*

    1.32

    x l

    o

    0.09

    14

    6.77

    x I

    i* 4.

    30

    x 10

    -J

    9.07

    x l

    o+

    0.13

    00

    6.53

    x I

    O*

    4.59

    x

    loa

    7.14

    x

    10s

    0.14

    18

    6.20

    x 1

    0

    4.44

    x

    IO5

    6.67

    x 1

    0J

    0.20

    13

    4.49

    x 1

    OJ

    3.24

    x

    10

    4.83

    x

    IO*

    0.21

    55

    3.94

    x I

    OJ

    2.82

    x

    IO=

    4.32

    x

    10J

    0.24

    16

    3.74

    x I

    OJ

    2.69

    x

    10J

    4.02

    x

    IO*

    0.24

    98

    3.48

    x l

    o*

    2.48

    x

    IO5

    3.81

    x

    lo=

    0.35

    95

    2.46

    x 1

    0J

    1.74

    x 1

    0

    2.68

    x

    lo*

    0.49

    18

    1.68

    x 1

    04

    1.18

    x 1

    0

    1.90

    x l

    o*

    0.73

    53

    1.06

    x l

    o4

    7.S7

    x l

    o=

    1.24

    x I

    O*

    1.11

    x l

    o

    8.25

    x l

    o*

    6.48

    x

    IO3

    6.04

    x

    10J

    4.39

    x 1

    OJ

    3.94

    x 1

    03

    3.68

    x

    10

    3.49

    x 1

    04

    2.49

    x 1

    0J

    1.78

    x I

    O*

    1.18

    x 1

    0J

    3.12

    x

    lo*

    3.55

    x

    1Oj

    2.03

    x

    lo-

    1.03

    x l

    o-

    8.42

    x 1

    0s

    8.65

    x 1

    04

    1.46

    x l

    o-

    1.02

    x I

    O-

    8.57

    x

    lo4

    8.69

    x 1

    0J

    1.14

    x l

    o-

    8.77

    x

    lo4

    8.22

    x 1

    0

    8.32

    x 1

    0J

    1.06

    x l

    o

    8.27

    x 1

    0

    6.08

    x I

    O*

    6.13

    x 1

    Oj

    7.41

    x

    104

    6.08

    x

    lOa

    5.35

    x 1

    0J

    5.40

    x 1

    0J

    6.58

    x

    103

    5.41

    x I

    O*

    5.11

    x 1

    0J

    5.15

    x 1

    04

    6.08

    x

    10-z

    5.

    11 x

    10-

    2

    4.75

    x

    10

    4.79

    x

    10

    5.75

    x I

    O*

    4.80

    x

    10

    3.42

    x

    10

    3.44

    x

    lo5

    3.91

    x

    lo4

    3.42

    x

    10

    2.35

    x 1

    0J

    2.36

    x

    lo5

    2.70

    x

    IO*

    2.37

    x

    lo4

    1.47

    x l

    o*

    1.49

    x 1

    0

    1.69

    x l

    o-

    1.51

    x I

    O5

    3.44

    x

    IO-

    1.87

    x l

    o

    1.24

    x l

    o

    4.30

    x

    lo

    1.49

    x 1

    0

    3.08

    x

    lo

    3.45

    x

    lo

    4.72

    x

    10

    9.76

    x

    10

    1.73

    * l

    o4

    2.43

    x

    lo4

  • B&e

    BL

    BBuo

    bb

    , bb

    , bb

    , ha

    sour

    ce (S

    ) FU

    t M

    ucus

    Sl

    ow

    Muc

    us

    Boun

    d Sq

    uest

    ercd

    Al

    Fu

    t Sl

    ow

    Boun

    d Se

    ques

    tere

    d Al

    M

    ucw

    Muc

    us

    o.os

    o2

    1.91

    x lo

    - 2.

    18 x

    lo

    4.26

    x l

    o-

    0.09

    14

    2.63

    K lo

    2.

    71 x

    lo-

    3.16

    x lo

    - 0.

    1300

    2.

    31 x

    lo

    2.

    34 x

    lo-

    2.47

    x lo

    - 0.

    1418

    2.

    16 x

    lo

    2.18

    x 1

    0-l

    2.28

    x lo

    0.

    2013

    1.

    50 x

    lo

    1.51

    x 1

    0-l

    1.58

    x lo

    - 0.

    2155

    1.

    31 x

    lo-

    1.32

    x I

    O-

    1.40

    x 1

    0-l

    0.24

    16

    1.23

    x lo

    1.

    23 x

    lo-

    1.29

    x l

    o-

    0.24

    98

    1.14

    x lo

    1.

    15 x

    lo-

    1.21

    x lo

    - 0.

    3595

    7.

    85 x

    10

    7.

    85 x

    lO

    a 8.

    19 x

    10

    0.

    4918

    5.

    31 x

    1O

    J 5.

    35 x

    1O

    J 5.

    60 x

    lo*

    0.73

    53

    3.28

    x 1

    0

    3.45

    x l

    Oa

    3.48

    x 1

    0

    8.16

    x 1

    OJ

    6.38

    x lo

    1.

    45 x

    lo

    3.38

    x 1

    0-L

    1.

    47 x

    lo

    1.83

    x lo

    - 1.

    42 x

    lO+

    6.96

    x lo

    1.

    09 x

    IO

    - 2.

    87 x

    lo

    9.72

    x 1

    0

    6.05

    x lo

    9.

    33 x

    104

    6.

    78 x

    10

    8.

    71 x

    lOa

    9.33

    x l

    o-

    6.38

    x l

    Oa

    1.94

    x lo

    4 4.

    40 x

    10

    3.

    43 x

    104

    2.

    81 x

    lo*

    4.83

    x 1

    0.

    1.80

    x I

    O-

    1.91

    x l

    o

    2.39

    x lo

    - 1.

    25 x

    IO

    - 1.

    27 x

    lo

    1.39

    x I

    O

    8.64

    x I

    O=

    8.65

    x 1

    Oa

    9.25

    x 1

    Oa

    7.69

    x I

    O*

    7.68

    x 1

    0

    8.23

    x 1

    0

    4.69

    x l

    Oa

    4.68

    x l

    Oa

    J.08

    x I

    O-

    4.05

    x 1

    0

    4.0s

    x t

    o=

    4.44

    x I

    Oj

    3.S9

    x l

    Oa

    3.S8

    x lo

    * 3.

    90 x

    IO

    * 3.

    39 x

    1O

    J 3.

    39 x

    lO

    a 3.

    72 x

    IO

    2.

    02 x

    IO

    4 2.

    02 x

    10

    2.

    21 x

    104

    1.

    36 x

    lOa

    1.37

    x lO

    a 1.

    50 x

    10

    8.

    50 x

    lO

    a 8.

    55 x

    IO

    = 9.

    33 x

    lo=

    1.03

    x lo

    2.

    28 x

    lo4

    8.66

    x 1

    0J

    7.72

    x I

    O4

    6.70

    x l

    o=

    1.09

    x 1

    0

    6.06

    x 1

    OJ

    1.16

    x 1

    0

    3.83

    x l

    Oa

    1.40

    x 1

    0d

    3.31

    x 1

    04

    1.4s

    x I

    O

    3.00

    x I

    O=

    1.48

    x 1

    0

    2.81

    x l

    Oa

    I.50

    x 10

    4 1.

    76 x

    IO

    = 1.

    61 x

    10

    1.

    20 x

    10J

    1.

    66 x

    10

    7.

    71 x

    IO

    J 1.

    71 x

    10

  • Tabl

    e H.

    7. A

    lgeb

    raic

    fu

    nctio

    ns u

    sed

    to a

    ppro

    xim

    ate

    AF(T

    -S)

    for

    alph

    a-,

    elec

    tron-

    , ne

    gatro

    n- a

    nd p

    ositr

    on-

    emitt

    ing

    sour

    ces

    Func

    tion

    2

    AF(r)

    -

    [ 1 -

    e-*

    ~a]

    [a,(l

    +

    a#

    + a,

    e*

    + a.

    e

    + a,

    c)]

    Func

    tion

    3

  • Tabl

    e H.

    X.

    Fitte

    d va

    lues

    of

    par

    amet

    ers

    fur

    suhs

    tirui

    ion

    in a

    lgrh

    raic

    fu

    nctio

    ns

    to a

    ppro

    xim

    ate

    AF(T

    - S)

    ,, fo

    r al

    pha-

    rmill

    ing

    stn~

    rces

    CLFC

    FU

    UCtio

    ll Fi

    ned

    V~~I

    C of

    Fol

    lowi

    ng

    Para

    met

    er

    I 2

    3 4

    5 6

    7 8

    9 IO

    II

    12

    I I 3 I I I 3 I I I 3 I I I 3 I I

    0.01

    7%14

    5 -3

    119.

    876

    0.19

    0049

    9 0.

    08llS

    nS

    -332

    .281

    -0

    .043

    7065

    6 0.

    0385

    861

    -177

    3.79

    7 0.

    1467

    869

    0.05

    5917

    18

    0.00

    1987

    374

    -560

    1.58

    5 0.

    1983

    734

    0.06

    4996

    44

    -917

    .118

    6 -0

    .033

    lOlS

    7 0.

    0217

    9814

    -2

    029.

    563

    0.14

    0741

    0.

    027S

    7517

    0.18

    18

    0.07

    1772

    34

    2.16

    186

    0.41

    4282

    3 0.

    67Sl

    693

    0.9U

    8594

    0.

    0116

    813

    7.59

    OlS

    2 0.

    1566

    737

    -

    0.00

    4805

    373

    -432

    .934

    8 0.

    2460

    405

    0.06

    2665

    83

    -48.

    0913

    3 0.

    2673

    197

    0.05

    4824

    65

    -26.

    6463

    4 0.

    2542

    903

    0.03

    3302

    28

    .884

    .288

    0.

    0816

    4135

    -179

    2.14

    9 0.

    0764

    8437

    -304

    .843

    6 0.

    3973

    314

    0.06

    9833

    29

    -118

    4.59

    3 0.

    0874

    2065

    0.

    0240

    528

    -252

    6.06

    9

    0.06

    9921

    42

    -IO36

    153

    0.09

    1662

    63

    0.03

    1967

    2 -2

    478.

    645

    0.25

    0.

    0156

    3289

    6.

    C352

    4l

    0.36

    5012

    7 l.s

    3643

    1

    0.02

    2l66

    91

    -394

    .886

    9 O

    .ll27

    097

    O.l3

    5027

    3 -1

    69.1

    389

    0.14

    7914

    9 0.

    006S

    3401

    4

    0.17

    a478

    9 0.

    0076

    9929

    0.27

    0432

    6 0.

    0352

    6641

    0.26

    5075

    5 0.

    0072

    6001

    I

    -121

    65.9

    2 0.

    2029

    002

    0.11

    4287

    2

    4477

    .944

    0.

    2313

    976

    0.11

    3453

    8

    8.84

    8307

    0.

    08l7

    0446

    -

    -470

    .537

    5 0.

    4806

    218

    0.07

    4649

    73

    416.

    8051

    -0

    .032

    1554

    9

    -376

    .569

    3 -0

    .035

    56l5

    8

    -133

    .05u

    -0

    .052

    5050

    2

    .

    0.17

    5204

    3 -3

    81.9

    491

    0.15

    8163

    0.

    0158

    9757

    -1

    162.

    612

    0.39

    1113

    4 0.

    2871

    758

    .tii.n

    57

    0.09

    2728

    64

    -311

    .263

    8 0.

    1371

    357

    -0.0

    1108

    624

    -182

    4.43

    2 0.

    1549

    19s

    0.20

    9227

    7 -2

    9.22

    377

    0.5

    0.26

    6322

    2 1.

    2479

    13

    0.39

    5056

    2.

    5955

    32

    0.23

    4951

    7 0.

    0937

    5M3

    6.07

    3588

    0.09

    8114

    %

    -390

    .233

    3 0.

    1676

    271

    0.01

    9688

    22

    -859

    .253

    1 0.

    2946

    132

    0.13

    2886

    4 -1

    63.7

    452

    -0.0

    1612

    15

    0.08

    1755

    %

    0.00

    9140

    343

    0.02

    5271

    41

    0.08

    536O

    a3

    - -8

    .931

    576

    0.03

    5131

    11

    = IO

    -S28

    .738

    8

    -353

    .292

    1

    -322

    1.80

    7

    0.2n

    osl6

    0.38

    749'

    2

    -0.0

    5428

    12

    0.04

    3OSl

    29

    -394

    .261

    4 0.

    4336

    853

    0.07

    3268

    54

    -152

    .643

    0.

    3898

    331

    O.l7

    0419

    8 -4

    4.87

    835

    0.00

    7152

    097

    -1U9

    .924

    0.

    3744

    433

    0.18

    9707

    5 -3

    0.60

    365

    0.32

    9908

    0.

    0506

    0541

    -1

    13.7

    795

    0.21

    0405

    7 0.

    0051

    3349

    7

    0.31

    1957

    8 -4

    .889

    305

    I lo

    0.24

    0524

    -

    0.18

    3926

    7 O

    .OZl

    l418

    2

    0.06

    6623

    89

    l.811

    3$7

    -741

    .428

    2 0.

    2740

    834

    -580

    .599

    5 0.

    1890

    273

    0.4

    0.23

    3037

    5 1.

    6069

    37

    0.69

    4407

    6 I.6

    1783

    5 0.

    2810

    387

    -0.0

    2880

    487

    7.88

    7438

    0.06

    0820

    I5

    -217

    .541

    3 0.

    4092

    593

    0.09

    193%

    27

    -25.

    7198

    7 0.

    1000

    563

    0.01

    1882

    4 -1

    568.

    605

    9.51

    3849

    -7

    92.4

    591

    0.21

    9184

    8 9.

    6216

    04

    -133

    .714

    5 -0

    .I589

    l39

    3.21

    2547

    -3

    09.0

    881

    -417

    .279

    5 0.

    1039

    428

    -149

    7.62

    0.

    3003

    989

    x lo

    " x1

    0-

    x IO

    ' x

    IW'

  • T&k

    H.9.

    Fi

    tcal

    va

    lurs

    of

    par

    amcr

    rrs

    for

    suhh

    turh

    in

    slp

    zhra

    ic

    func

    tions

    IO

    app

    roxi

    mat

    e AF

    (T-

    SI,

    for

    elrc

    lron-

    cmitt

    iug

    sour

    ces

    Cl&C

    Fu

    nctio

    n Fi

    tted

    Valu

    e of

    Fol

    lowi

    ng

    Para

    met

    er

    ET, -

    .mfa

    ce

    ET+a

    face

    ET+a

    md

    ET*-

    seq.

    B&-fa

    st

    BB,,&

    ow

    B&-b

    ound

    Bb-s

    eq.

    B&-A

    I

    BB,-f

    pst

    BB,,-

    slow

    BB,,-

    boun

    d

    BB,-s

    eq.

    BB,,-

    AI

    bb,-f

    pst

    bb,-s

    low

    bb&m

    md

    bb,-s

    eq.

    bb,c

    AI

    1 1 3 I I I 3 I 2 1 I 3 I 2 1 1 3 1 2

    0.06

    5053

    -3

    54.4

    06

    2.01

    4387

    0.

    0363

    35

    -991

    .429

    2.

    1254

    58

    O.O

    lY84

    2 -2

    4.63

    74

    1.58

    0302

    0.

    0460

    65

    0.00

    9434

    -1

    8.25

    63

    1.52

    1565

    0.

    0109

    17

    -I 13

    4.08

    2.

    1080

    72

    0.03

    0823

    -8

    0.07

    44

    I.788

    97

    0.03

    9695

    0.18

    18

    0.01

    2801

    0.

    7908

    06

    13.4

    5734

    1.

    1627

    24

    53.7

    0593

    -0

    .009

    02

    11.5

    1802

    10

    .273

    88

    -

    0.03

    6493

    -1

    7.09

    9 1.

    9570

    65

    0.01

    2268

    -4

    90.9

    83

    2.37

    2073

    0.

    0139

    01

    -80.

    9776

    1.

    7667

    27

    0.12

    1082

    0.02

    2208

    -2

    3.54

    3 1.

    5268

    98

    0.05

    5161

    -6

    78.6

    04

    2.07

    6011

    0.

    0520

    48

    -89.

    4917

    1.

    7723

    34

    0.07

    7509

    0.02

    4444

    -2

    3.37

    06

    1.56

    2825

    0.

    0287

    98

    -705

    .929

    2.

    1233

    17

    0.05

    7382

    -8

    7.78

    9 1.

    8082

    63

    0.08

    3806

    0.25

    0.

    0233

    37

    0.86

    7548

    14

    .665

    98

    1.38

    1178

    33

    .946

    87

    -0.0

    168

    8.05

    6959

    11

    .691

    28

    -

    0.08

    4383

    -4

    3.11

    91

    1.91

    8628

    0.

    1179

    06

    -169

    .24

    2.23

    4064

    0.

    0014

    11

    -86.

    00 1

    1.

    2630

    35

    0.00

    9699

    0.00

    0393

    -4

    00.4

    56

    -1.8

    0563

    77

    7.72

    34

    -1.7

    32

    3.73

    3329

    -1

    0.24

    82

    -379

    .908

    -1

    .662

    48

    0.28

    7203

    0.21

    9072

    -1

    80.3

    89

    2.12

    3581

    0.

    0722

    01

    -21.

    9379

    1.

    7244

    34

    0.01

    0307

    -1

    090.

    27

    2.32

    3796

    0.

    1657

    66

    0.19

    0302

    -1

    31.2

    82

    2.11

    3636

    0.

    0612

    25

    -18.

    8215

    1.

    7920

    23

    0.04

    9712

    -3

    94.0

    19

    2.35

    0691

    0.

    1579

    4

    0.5

    0.07

    042

    0.88

    6749

    19

    .058

    02

    1.54

    244

    27.3

    7533

    -0

    .032

    74

    6.96

    8345

    13

    .335

    13

    -

    -0.2

    0809

    -5

    72.7

    2 2.

    1745

    99

    0.27

    8314

    -4

    76.0

    06

    2.16

    8483

    0.

    1252

    74

    -69.

    2237

    1.

    9184

    43

    0.05

    8332

    0.00

    0786

    -8

    59.7

    4 -1

    .614

    89

    1689

    .772

    -1

    .573

    64

    124.

    4556

    -2

    5.11

    86

    -832

    .213

    -1

    .533

    68

    0.28

    7178

    0.11

    2968

    -3

    58.2

    16

    2.39

    3708

    0.

    1316

    71

    -170

    .786

    2.

    2684

    27

    0.01

    5445

    -1

    8.79

    36

    1.87

    0242

    0.

    1019

    48

    -60.

    4808

    2.

    0886

    22

    0.02

    5629

    -5

    38.8

    17

    2.53

    5345

    0.

    1757

    29

    -48.

    4179

    2.

    2578

    59

    0.01

    8913

    -1

    6.76

    86

    2.05

    5972

    0.

    0717

    51

    -189

    .165

    2.

    3443

    06

    0.4

    0.04

    8063

    0.

    7114

    81

    149.

    3354

    1.

    6212

    45

    45.5

    38

    -0.0

    3676

    6.

    9606

    92

    22.5

    9052

    -

    I

    0.05

    9129

    -1

    39.7

    56

    2.15

    3796

    0.

    0596

    99

    -53.

    6711

    2.

    0263

    1

    0.01

    0356

    -1

    6.87

    11

    1.82

    904

    0.08

    5985

    -3

    06.9

    2 2,

    3699

    79

    0.00

    1772

    -2

    .644

    63

    -16.

    7712

    1.

    1166

    24

    -2.1

    1559

    3.

    2915

    14

    -46.

    8517

    -1

    .275

    88

    -2.1

    1622

    0.

    04

    -

    - 100

    .628

    I .

    8355

    25

    -234

    .006

    I.9

    5968

    4

    -89.

    8524

    2.

    2864

    18

    -288

    .868

    1.

    9573

    59

    -281

    .914

    1.

    9972

    5

    -16.

    5773

    1.

    4143

    84

    -67.

    5677

    I.9

    39

    -46.

    6822

    1.

    9638

    19

    -21.

    8086

    I .

    6898

    66

  • t&e

    Func

    tion

    I 2

    3

    Fitte

    d V&

    e of

    Fo

    llowi

    ng

    Para

    met

    er

    4 5

    6 7

    8 9

    IO

    II I2

    BB,&

    uc

    B&&W

    BB,&

    ound

    BI&-

    wq.

    B&-A

    l

    BB&f

    ut

    B&&W

    BB,-b

    ound

    BfL-

    lcg.

    BB

    ,&At

    bb,-f

    -1

    bb,-s

    low

    bb,-b

    ound

    bb,-r

    eq.

    I I 3 I I I 3 I 2 I I 3 I 2 I I 3 I

    0.00

    7260

    547

    -214

    .975

    2.

    1386

    41

    0.01

    3313

    65

    -15.

    60-1

    2 1.

    8455

    84

    0.18

    18

    o.oO

    5491

    0.

    6245

    98

    0.01

    80 I4

    72

    -17.

    2882

    2.

    1750

    34

    0.04

    2368

    o.oo

    1949

    13.8

    6767

    -4.8

    8363

    4 x

    lOA

    -72

    4619

    2.

    2777

    61

    0 02

    2782

    -2

    2.09

    16

    I .69

    1069

    -197

    .04

    2.44

    O31

    5 0.

    0278

    93

    -32.

    53 1

    9 2.

    0808

    03

    0.91

    1726

    I0

    9 23

    02

    0.00

    6082

    a

    a507

    2 26

    .444

    96

    -299

    2.34

    1 I.4

    4166

    3 0.

    0 I3

    695

    -17

    2668

    2.

    1759

    7

    0.01

    0659

    45

    -21.

    24Q

    5 1.

    5ol1

    57

    0.00

    7667

    -I4

    4 42

    2 2

    4023

    5

    0.00

    1019

    174

    -461

    .785

    t .

    6a96

    8 o.

    oo33

    a9

    -237

    .087

    2.

    5202

    64

    0.25

    0.

    0522

    29

    I.052

    155

    Il.14

    68

    I.111

    43

    63.9

    6697

    0.03

    7944

    -1

    7.76

    81

    I.987

    425

    0.07

    5468

    -2

    8.39

    41

    2 37

    9867

    -31.

    5976

    2.

    0643

    26

    -3 I

    .044

    2 2.

    0973

    91

    I.387

    472

    5.61

    7411

    -0. I

    7368

    0.

    4102

    69

    o.oo

    o393

    -3

    99.0

    76

    -1.9

    2481

    77

    6.02

    08

    -I 86

    139

    1074

    593

    0.07

    3701

    0.07

    5876

    -0.0

    2104

    3.44

    5695

    * IO

    4

    -13.

    1079

    -3

    78.6

    07

    -I .7

    9829

    0.

    1254

    93

    0.14

    3302

    -1

    7.75

    31

    2.19

    0977

    0

    0068

    98

    -27.

    6829

    18

    1579

    7 0

    0348

    8 I

    -32

    2445

    1.

    8645

    87

    O.lo

    6393

    -5

    0.98

    56

    2.05

    9853

    0.

    0875

    23

    -20.

    5774

    I

    7945

    22

    0 17

    8955

    -7

    9.91

    2 2.

    3615

    94

    0.5

    0.35

    9364

    0

    9805

    82

    29.6

    o645

    1.

    7264

    7 J8

    148

    44

    -0.0

    6287

    1.

    4409

    5.

    4342

    51

    0.00

    1561

    -4

    22.1

    27

    I .6a

    267

    0.12

    8516

    -2

    6. I2

    7 2

    1054

    97

    0.01

    5492

    -1

    92.2

    27

    2.57

    3017

    O.o

    oO78

    6 -8

    58.9

    87

    -I .8

    0744

    16

    89.3

    34

    -1.7

    6746

    I.4

    9134

    1 -1

    7.02

    19

    -831

    .919

    -I

    .727

    68

    0.11

    8654

    -4

    2.98

    86

    2.54

    2548

    0.

    0171

    49

    -163

    .798

    2.

    3645

    03

    0.00

    2686

    -0

    .074

    16

    I .99

    9984

    0.00

    9441

    -l0

    7.09

    8 I 9

    677o

    a 0.

    0279

    29

    -I 17

    .991

    2.

    3467

    19

    0. I4

    8723

    -2

    0.62

    29

    2.49

    0604

    0.4

    0.38

    4747

    1.

    0810

    31

    117.

    5969

    0.

    2780

    79

    I II

    16.3

    4 0.

    01 I7

    72

    3.93

    2391

    25

    .072

    08

    0.00

    7053

    .5

    17.2

    97

    2.36

    0246

    0.

    0527

    97

    -27.

    4988

    2

    1313

    17

    0.00

    355

    -4.0

    4509

    1.

    5507

    54

    0.02

    2747

    -5

    9.75

    927

    I941

    653

    o.oO

    3504

    -1

    961.

    651

    2.16

    8247

    0.05

    804

    -42.

    8039

    8 2.

    5875

    52

    o.oo

    2144

    -1

    1.89

    227

    I.485

    352

    0.01

    4213

    -1

    8.83

    598

    I .53

    6484

    0.00

    5617

    -3

    0.82

    74

    I .70

    29%

    0.07

    7187

    -J

    7.93

    59

    2.25

    0686

    0.

    0325

    24

    -IJI.S

    J2

    2.68

    8903

    0.02

    262

    0.13

    5082

    -17.

    lIY3

    1.58

    2392

    0.06

    4615

    -2

    7.53

    46

    2.11

    5816

    0.00

    1544

    -3

    .062

    I8

    0.26

    6570

    6

    0.06

    1775

    -4

    1 82

    98

    2 52

    7532

    bb,-A

    l 2

    o.oo

    1772

    I.1

    8713

    2 -6

    .502

    16

    -0 9

    3579

    -4

    .923

    43

    -1.5

    S613

    -1

    2 30

    08

    -0.0

    4425

    -I

    1170

    9 0.

    0282

    17

  • Tabl

    e H.

    I I.

    Fitte

    d va

    lues

    of

    para

    met

    ers

    for

    subs

    titut

    ion

    in a

    lgeb

    raic

    fu

    nctio

    ns

    to a

    ppro

    xiam

    te

    AF(T

    - S)

    p. f

    or p

    ositr

    on-e

    mitt

    ing

    sour

    ces

    caw

    FUlK

    li0n

    Fiid

    V&

    e of

    Fol

    lowi

    ng

    Panm

    etcr

    I 2

    3 4

    5 6

    7 8

    9 10

    B&-fa

    st

    B&-S

    bW

    BB&O

    WJ

    WDC

    WP.

    B&

    -Al

    bb,-f

    asl

    bb,-*

    loa

    bb,-b

    arad

    kc-u

    q.

    I 0.

    0532

    2816

    t 0.

    0213

    I926

    3 0.

    1818

    1 0.

    1125

    952

    -21.

    7145

    1 2.

    0019

    1 0.

    0171

    4905

    -1

    30.3

    817

    1.96

    4898

    -42.

    1711

    6 1.

    9732

    19

    0006

    3643

    13

    -18.

    8606

    1.

    38S2

    8 0.

    0391

    2S37

    0.

    7279

    522

    62.O

    7332

    u3

    on

    ?0.0

    %61

    -I8

    .7l8

    9l

    2.4o

    lo96

    oa

    oi64

    67m

    -4

    95.9

    539

    1.8.

    6378

    5

    t od

    8on5

    2 -3

    0.55

    993

    2.32

    im

    0.00

    337l

    729

    -12.

    2U36

    1.

    0311

    05

    1 0.

    0315

    1113

    6 -9

    3.69

    928

    1.95

    5103

    0.

    0029

    ?028

    -2

    43.6

    406

    I.405

    51

    3 0.

    25

    0.04

    072J

    82

    0.74

    684o

    8 45

    .666

    27

    1.21

    0492

    49

    .992

    81

    I 0.

    1082

    752

    -19.

    9026

    9 2.

    1933

    76

    o.o0

    5t93

    tn

    -284

    .861

    9 I.8

    8931

    2

    2 o.

    uoO

    393

    0.38

    2015

    2 .S

    .U88

    0?8

    I5.6

    4m3

    -6.2

    1192

    3 -0

    .506

    4243

    I 0.

    2223

    405

    I 0.

    2789

    94

    3 0.

    5

    I 0.

    1456

    224

    2 O

    .oO

    O78

    6

    -21.

    3l97

    7 2.

    1208

    113

    0.05

    3wD9

    5 -1

    30.6

    415

    I.%?5

    7 -3

    5.08

    35

    2.12

    3887

    0.

    0306

    (369

    -1

    9.41

    535

    1.48

    2641

    0.41

    6o?O

    t 1.

    2613

    45

    43.4

    7673

    0.

    1699

    746

    39.8

    7t67

    -2

    4.75

    3 2.

    0022

    7 0.

    0046

    3291

    6 -9

    .655

    8?3

    1.18

    2674

    -8

    63.2

    721

    -1.6

    0625

    6 16

    97.4

    92

    -1.5

    6977

    ? 1.

    2501

    45

    I 0.

    38on

    52

    I 0.

    1912

    379

    3 0.

    4

    I 0.

    1001

    748

    -30.

    5599

    3 2.

    321m

    o.

    oO33

    7172

    9 -1

    2.24

    436

    I.031

    105

    -3

    4.05

    969

    2.33

    0431

    0.

    OO

    6o24

    704

    -8.2

    rn I

    I3

    t.555

    65J

    0.36

    7254

    3 I.3

    2143

    2 71

    .069

    28

    O.S

    JO37

    4 22

    9.11

    79

    -30.

    3826

    6 2.

    2631

    86

    0.00

    518?

    536

    -5.4

    6699

    3 1.

    8026

    Sl

    0.00

    3121

    981

    -619

    .581

    1 I.8

    5608

    1

    0.00

    2588

    461

    9.48

    9306

    6.

    7196

    9

    o.oO

    2025

    164

    6.60

    1281

    1.

    9913

    95

    0.05

    9849

    07

    -19.

    9143

    4 I .

    9?82

    S7

    0.00

    5529

    276

    6.96

    4317

    1.

    9489

    o4

    -0.6

    8l77

    57

    -i6..1

    %9?

    -5

    .144

    O2

    0.14

    8889

    2

    0.01

    6365

    37

    -383

    .925

    2 1.

    8742

    74

    0.01

    7337

    94

    a. 1

    782

    17

    (I.51

    3134

    0.00

    9628

    979

    -544

    .225

    1 I.8

    6026

    1

    -I2.0

    1085

    -8

    35.9

    406

    -1.5

    3389

    9

    0.00

    4494

    271

    5.85

    6029

    9.

    #234

    9

    0.00

    6954

    227

    -22

    I .82

    2 I

    I .93

    9597

    0.14

    6455

    3

    bb,-A

    l 2

    0.00

    1772

    2 1.

    7692

    39

    -16.

    12l4

    7 8.

    8769

    24

    -16.

    7528

    9 -1

    1.95

    439

    -16.

    1230

    9 -0

    .186

    0699

    -2

    .244

    41

    0.03

    3742

    13