annalsăofătheă„constantinăbrancusi”ăuniversityăofătarguăjiu...

12
Annals of the „Constantin Brancusi” University of Targu Jiu, Engineering Series , No. 2/2015 11 PROCESSING RADIAL ROLLING BEARING BY ELECTRICAL EROSION Andrei TIRLA 1 , Ioan BADIU 2 , Marcel S. POPA 3 1 Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected] 2 Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected] 3 Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected] Abstract:Angular contact bearings have tapered raceways as conical surfaces with the same top and rolling bodies are rollers form of truncated cones. The rollers are guided cage tangential direction and the axial direction of the inner ring large collar with that point contact. Because of the linear contact between roller and raceway bearings tapered roller angular can take high loads and taper bearing raceways allow these to take over large axial loads or combined, depending on the contact angle (angle generatrix horses the outer race). Keywords: EDM machining, solid electrode, angular contact bearings, tapered roller. 1.INTRODUCTION Tapered roller bearings consist of inner and outer rings with tapered taxiways and tapered roller cages. The bearings are removable. Thus, the inner ring of the roller cage can be mounted separately from the outer ring. Tapered roller bearings take high radial loads and axial loads in one direction. Normally to counter axial guidance necessary a second bearing disposed symmetrically (mirror). 2.EXPERIMENTAL RESULTS FROM THE POCESSING OF ELECTRICAL EROSION. Figure 1: Machine is manufactured by electrical erosion AQ-600L. Easy to use digital controls for all three axes allows holes to 0.3 mm in diameter with a report diameter / depth of 1: 200 .

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    11

    PROCESSING RADIAL ROLLING BEARING BY ELECTRICAL EROSION

    Andrei TIRLA1, Ioan BADIU2, Marcel S. POPA3 1Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected]

    2Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected] 3Technical University of Cluj-Napoca, ROMANIA, e-mail: [email protected]

    Abstract:Angular contact bearings have tapered raceways as conical surfaces with the same top and rolling bodies are rollers form of truncated cones. The rollers are guided cage tangential direction and the axial direction of the inner ring large collar with that point contact. Because of the linear contact between roller and raceway bearings tapered roller angular can take high loads and taper bearing raceways allow these to take over large axial loads or combined, depending on the contact angle (angle generatrix horses the outer race).

    Keywords: EDM machining, solid electrode, angular contact bearings, tapered roller.

    1.INTRODUCTION

    Tapered roller bearings consist of inner and outer rings with tapered taxiways and tapered roller cages. The bearings are removable. Thus, the inner ring of the roller cage can be

    mounted separately from the outer ring. Tapered roller bearings take high radial loads and axial loads in one direction. Normally to counter axial guidance necessary a second bearing disposed symmetrically (mirror).

    2.EXPERIMENTAL RESULTS FROM THE POCESSING OF ELECTRICAL EROSION.

    Figure 1: Machine is manufactured by electrical erosion AQ-600L. Easy to use digital controls for all three axes allows holes to 0.3 mm in diameter

    with a report diameter / depth of 1: 200

    .

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    12

    Figure 2: Electrical erosion the processing of bearings.

    Drilling EDM electrode tube uses a cheap (usually copper or brass) to give a material hole conductor of electricity at a very high speed. Hole diameter varies normally between 0.3 to 3.0 mm. Very simple and easy to use machine with 3 axes (X, Y, Z) numerical control allows programming of a series of holes for fully automatic processing. This technology is widely used in drilling operations in the aerospace, energy, cutting tools, automotive and mold. Novick ranges of drilling machines are easy to operate and features the latest servo technology and is capable of high speeds. Low wear,

    fast and clean drilling with high performance generator AD200. An essential complement to any processing system by wire EDM machine is high speed EDM drilling by drilling holes eases home for a range of applications. An essential component of any system with wire EDM, EDM high speed drill holes to allow the start of a wide range of applications. Small electrodes of 0.3 mm can be used on this machine CNC drilling by EDM.

    Figure 3: The reduced wear. Figure 4: Drilling perfect.

    Figure 5: Angular contact bearings, double row tapered roller SKF.

    Figure 6: Angular contact bearings Four-row tapered roller SKF

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    13

    Figure 7: Angular contact bearings with SKF Single

    row tapered roller.

    Figure 8: Ball Bearing.

    Deep groove ball bearings are designed to take especially radial loads. They are used

    for a wide range of applications. As a result, they are available in many variants.

    Figure 9: Deep groove ball bearings SKF single row. Figure 10: Deep groove ball bearings SKF double row.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    14

    Figure 11: Deep groove ball bearings SKF self-aligning.

    Figure 12: Deep groove ball bearings SKF increased for

    loads.

    Figure 13: Deep groove ball bearings SKF stainless steel.

    Figure 14: Deep groove ball bearings SKF Energy

    Efficient.

    3. EXPERIMENTAL RESULTS PROCESSING ELECTRICAL EROSION.

    Figure 15: Table containing the

    values the electrical erosion parameters.

    Figure 16: The graph the electrical

    erosion parameters.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    15

    Figure 17: Graphic values of the parameters the electrical erosion.

    Figure 18: Table containing the

    values the electrical erosion parameters.

    Figure 19: The connection between

    the electrical erosion parameters

    Figure 20: The productivity parameter values.

    Figure 21: Electrical erosion

    parameter values.

    Figure 22: Table containing the

    values the electrical erosion parameters

    Figure 23: The connection between

    the electrical erosion parameters .

    Figure 24: 3D graphical shapes the

    electrical erosion parameters.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    16

    Figure 25: 3D graphical shapes the

    electrical erosion parameters.

    Figure 26: Table containing the values parameters the electrical

    erosion.

    Figure 27: 3D graphical shapes the

    electrical erosion parameters.

    Figure 28: 3D graphical shapes the

    electrical erosion parameters.

    Figure 29: 3D graphical shapes the

    electrical erosion parameters.

    Figure 30: Table containing the

    values the electrical erosion parameters.

    Figure 31: 3D graphical shapes the

    electrical erosion parameters.

    Figure 32: 3D graphical shapes the

    electrical erosion parameters.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    17

    Figure 33: 3D graphical shapes the

    electrical erosion parameters.

    Figure 34: Table containing the

    values the electrical erosion parameters.

    Figure 35: 2D shapes the electrical

    erosion parameters.

    Figure 36: 2D shapes the electrical

    erosion parameters.

    Figure 37: Table containing the

    values the electrical erosion parameters.

    Figure 38: 2D shapes the electrical

    erosion parameters.

    Figure 39: 2D shapes the electrical

    erosion parameters.

    Figure 40: 3D graphical shapes the

    electrical erosion parameters.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    18

    Figure 41: Table containing the

    values the electrical erosion parameters

    Figure 42: 2D shapes the electrical

    erosion parameters.

    Figure 43: 2D shapes the electrical

    erosion parameters.

    Figure 44: 2D shapes the electrical

    erosion parameters.

    Figure 45: 2D shapes the electrical

    erosion parameters.

    Figure 46: Table containing the

    values the electrical erosion parameters.

    Figure 47: The reporting the electrical

    erosion productivity parameters.

    Figure 48: Table containing the

    values the electrical erosion parameters.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    19

    Figure 49: 3D graphical shapes the

    electrical erosion parameters.

    Figure 50: 3D graphical shapes the

    electrical erosion parameters.

    Figure 51: The form 2D for impulse parameter, expressed as a percentage

    Figure 52: 2D the form parameter for impulse.

    Figure 53: The form 2D for impulse parameter, expressed as a percentage.

    Figure 54: 2D the form parameter for

    impulse.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    20

    Figure 55: 2D the form parameter for

    impulse .

    Figure 56: The form 2D for impulse parameter, expressed as a percentage.

    Figure 57: 2D the form parameter for

    impulse.

    4.CONCLUSIONS Tapered roller bearings consist of inner and outer rings with tapered taxiways and tapered roller cages. The bearings are removable. Thus, the inner ring of the roller cage can be mounted separately from the outer ring.

    Tapered roller bearings take high radial loads and axial loads in one direction. Normally to counter axial guidance necessary a second bearing disposed symmetrically (mirror).

    REFERENCES [1] Ailincai, G.: Studiul metalelor. Iasi:

    Institutul Politehnic, 1978. [2] Badiu, I. and Popa, M.S.: Cast iron

    processed by electrical erosion. Economics, Management, Information and Technology (EMIT), Vol. 3, No. 1 (March 2014), pp. 34-43. ISSN 2217-9011.

    [3] Badiu, I. and Popa, M.S.: Processing by electrical erosion from brass. In: Proceedings of the 4nd International Conference Economics and Management-Based on New Technologies (EMoNT-2014), Vrnjačka Banja, Serbia, 12-15 June

    2014. Vrnjačka Banjaμ SaTCIP Publisher Ltd., 2014, pp. 101-105. ISBN 978-86-6075-045-9.

    [4] Balc, N.: Tehnologii neconventionale. Cluj-Npoca: Editura Dacia Publishing House, 2001.

    [5] Benedict, G.F.: Nontraditional manufacturing processes. New York (New York – USA): Marcel Dekker Inc., 1987. – 402 pp. ISBN 978-0-8247-7352-6.

    [6] Bolundut, L.I.: Materiale si tehnologii neconventionale. Chisinau: Editura Tehnica-Info, 2012.

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    21

    [7] Bourell, D. and Culpepper, M.L.: Micromanufacturing: International research and development. Dordrecht (Netherlands): Springer, 2007. – 396 pp. ISBN 978-1-4020-5948-3.

    [8] Brown, J.: Advanced machining technology handbook. New York (New York – USA): McGraw-Hill Professional Publishing Inc., 1998 – 579 pp. ISBN 978-0-07-008243-4.

    [9] Buzdugan, Gh.μ Vibraţii mecanice. Bucureştiμ Editura Didactică şi Pedagogică, 1λ7λ.

    [10] Constantinescu, V.μ Lagăre cu alunecare. Bucureştiμ Editura Tehnică, 1980.

    [11] Colan, H.: Studiul metalelor. Bucuresti: Editura Didactica si Pedagogica, 1983.

    [12] Dašić, P.μ Approximation of cutting tool wear function using polynomial regression equation. Journal of Research and Development in Mechanical Industry (JRaDMI), Vol. 3, Issue 3 (September 2011), pp. 171-180. ISSN 1821-3103.

    [13] Dašić, P.μ Comparative analysis of different regression models of the surface roughness in finishing turning of hardened steel with mixed ceramic cutting tools. Journal of Research and Development in Mechanical Industry (JRaDMI), Vol. 5, Issue 2 (June 2013), pp. 101-180. ISSN 1821-3103.

    [14] Domsa, A.: Materiale metalice in constructia de masini si instalatii. Cluj-Npoca: Editura Dacia, 1981.

    [15] Gafiţanu, M.μ Organe de maşini. Vol. 2. Bucureştiμ Editura Tehnică, 2002.

    [16] Guitrau, E.B.: The EDM handbook. Cincinnati (Ohio – USA): Hanser Publications, 1997. – 312 pp. ISBN 978-1-56990-242-4.

    [17] Ho, K.H. and Newman, S.T.: State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, Vol. 43, Issue 13 (October 2003), pp. 1287-1300. ISSN 0890-6955.

    [18] Ho, K.H.; Newman, S.T.; Rahimifard, S. and Allen, R.D.: State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, Vol. 44, Issues 12-13 (October 2004), pp. 1247-1259. ISSN 0890-6955.

    [19] Kovalevskyy, S.V.; Tulupov, V.I.; Dašić, V.P. and Nikolaenko, A.P.μ The research of electro-impulse turning process. Scientific Monography. Vrnjačka Banjaμ SaTCIP, 2012. ISBN 978-86-6075-034-3.

    [20] Kovalev, V.D.; Vasilchenko, Y.V. and Dašić, P.μ Adaptive optimal control of a heavy lathe operation. Journal of Mechanics Engineering and Automation (JMEA), Vol. 4, Issue 4 (April 2014), pp. 269-275. ISSN 2159-5275.

    [21] Mereuta, V.; Dašić, P.; Ciortan, S. and Palaghian, L.: Assessment of the influence of surface processing on fatigue damage using artificial neural networks. Journal of Research and Development in Mechanical Industry (JRaDMI), Vol. 4, Issue 1 (March 2012), pp. 11-20. ISSN 1821-3103.

    [22] Nichici, A.: Prelucrarea prin eroziune electrica in constructia de masini. Timisoara: Editura Facla, 1983.

    [23] Olaru, D.N.: Tribologie: Elemente de bază asupra frecării, uzării şi ungerii. Iaşiμ Litografia Institutului Politehnic „Gheorghe Asachi”, 1λλ5.

    [24] Popa,M.S.: Masini, tehnologii neconventionale si de mecanica fina. Cluj-Napoca: Editie Bilingva, Romana-Germana, Editura U.T.PRESS, 2003.

    [25] Popa, M.S.: Tehnologii si masini neconventionale, pentru mecanica fina si microtehnica. Cluj-Napoca: Editura U.T.PRESS, 2005.

    [26] Popa, M.S.: Tehnologii inovative si procese de productie. Cluj-Napoca: Editura U.T.PRESS, 2009.

    [27] Popescu, L.G.μ Aplicaţii ale liniarizării exacte prin reacţii la acţionările de curent continuu. Analele Universităţii

  • Annalsăofătheă„ConstantinăBrancusi”ăUniversityăofăTarguăJiu,ăEngineeringăSeriesă,ăNo.ă2/2015

    22

    “Constantin Brâncuşi” din Târgu Jiu, seria Inginerie, No.1 (2009), pp 7-14. ISSN 1842-4856.

    [28] Popescu, L.G. and Popescu, C.: Influenţa dispozitivelor de anclanşare automată a rezervei asupra funcţionării întrerupătoarelor de cuplă longitudinală / Influence of reserves automatic release devices on the operation of switches longitudinal couplings. Analele Universităţii “Constantin Brâncuşi” din Târgu Jiu, Seria: Inginerie, Vol. 4, No. 2 (2010), pp. 35-44. ISSN 1842-4856.

    [29] Rădulescu, Gh. and Ilea, M.μ Fizico-chimia şi tehnologia uleiurilor lubrifiante. Bucureştiμ Editura Tehnică, 1λ82.

    [30] Sofroni, L.: Fonta cu grafit nodular. Bucureştiμ Editura Tehnica, 1λ78.

    [31] Sommer, C.: Non-traditional machining handbook. 2nd Edition. Houston (Texas – USA): Advance Publishing Inc., 2000 – 432 pp. ISBN 978-1-57537-325-6.

    [32] Sommer, C. and Sommer, S.: Complete EDM handbook. Houston (Texas – USA): Advance Publishing Inc., 2005. – 207 pp. ISBN 978-1-57537-302-7.

    [33] Trusculescu, M.: Studiul metalelor. Bucureştiμ Editura Didactica si Pedagogica, 1978.