anharmonic phonon coupling and in-plane … · dr. matt mccluskey dr. feng zhao slides. van der...

29
ANHARMONIC PHONON COUPLING AND IN-PLANE HETEROJUNCTION FABRICATION IN 2D IN2SE3 John Igo Collaborators Dr. Feng Zhao Dr. Shengwen Zhou Dr. Zhi-Gang Yu Matthew Gabel Committee Dr. Yi Gu Dr. Matt McCluskey Dr. Feng Zhao Slides

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • ANHARMONIC PHONON COUPLING AND IN-PLANE

    HETEROJUNCTION FABRICATION IN 2D IN2SE3

    John Igo

    Collaborators

    Dr. Feng Zhao

    Dr. Shengwen Zhou

    Dr. Zhi-Gang Yu

    Matthew Gabel

    Committee

    Dr. Yi Gu

    Dr. Matt McCluskey

    Dr. Feng Zhao

    Slides

  • van der Waals (vdW) Materials

    Graphene MoS2

    • Layered structure

    • In-plane covalent bonds

    • Inter-layer van der Waals bond

    M. M

    cC

    arthy/N

    ISE N

    etw

    ork

    Radisavljevic

    et a

    l. D

    OI: 10.1038/nnano.201

    0.2

    79

  • vdW In2Se

    3

    Tao et a

    l. D

    OI: 10.1021/nl4008

    88p

    • One way transformations with increasing temperature• α and β have very similar crystals ∆a/a ~ .9% and ∆c/c ~ 1.8%

    473 K 623 K ~ 923 K

  • Raman Spectroscopy

    Crystals

    only support

    special

    vibrational

    modes

    Stokes

    𝜐 = 𝜐𝑖 − 𝜐𝑐

    Anti Stokes

    𝜐 = 𝜐𝑖 + 𝜐𝑐

    Em

    ber et a

    l, D

    OI: 10.1038/s41536

    -0

    17

    -0

    01

    4-3

  • Photoluminescence Spectroscopy

    • Excite with photons whose

    energy is larger than the band

    gap.

    • Measure the decay from the

    bottom of the conduction

    band to defect states or to

    the top of the valence band

  • In2Se

    3optical properties

    Raman Photoluminescence

    a

    b b

    a

    b

    Band Diagram

    • Alpha and Beta are indirect band gap n type semiconductors

    • Alpha has a direct band gap at 1.32 eV

    a

  • In2Se

    3electrical properties

    Wang et a

    l, D

    OI: 10.1

    021/acs.jpclett.7b0108

    9 a

    b

    • Alpha is a n-type semiconductor

    • Beta is a n-type semimetal (metal)

  • Motivation Vertical In2Se

    3a/b junctions

    • b to a short circuit photocurrent indicates that PTE is dominant

    • Thermoelectric Figure of Merit ~ 1 at room temperature

    Wang et a

    l. D

    OI: 10.1

    021/acs.jpclett.7b0108

    9

    Reflectivity Photocurrent

  • Raman vs Temp

    a

    b

    Model

    𝛤 = 𝛤0 + 𝐴[1 +

    𝑖=1

    𝑛

    ሿ𝑛 𝜔𝑖 , 𝑇

    For Alpha

    105 𝑐𝑚−1 = 20 𝑐𝑚−1 + 85 𝑐𝑚−1

    For Beta

    109𝑐𝑚−1 = 25𝑐𝑚−1 + 30𝑐𝑚−1 + 54𝑐𝑚−1

    Menendez et a

    l, D

    OI: 10.1103/PhysRevB.29.2

    05

    1

  • Curve Fitting

    • Extrapolate from lower temperatures

    • Iteratively fit individual peaks until,

    Fit converges sufficiently

    We know fit will not converge

  • a and b FWHM vs Temp

    αβ

    Model

    𝛤 = 𝛤0 + 𝐴[1 +

    𝑖=1

    𝑛

    ሿ𝑛 𝜔𝑖 , 𝑇

    For Alpha

    𝛤0 = .51 𝑐𝑚−1

    𝐴 ≅ .17 𝑐𝑚−1

    For Beta

    𝛤0 = .06 𝑐𝑚−1

    𝐴 ≅ .60 𝑐𝑚−1

  • Experiment to find thermal conductivity

    Simulation

    Experiment

    • Extract peak shift vs laser power

    • Extract peak shift vs ambient temperature

    • Numerically simulate heat dissipation

  • Peak Position vs Temp and vs Power

    𝜒𝑝 ≅ −1.16 ± .07 ∗ 10−3𝑐 Τ𝑚−1 𝑊 𝜒𝑇 ≅ −4.6 ± .16 ∗ 10

    −3𝑐 Τ𝑚−1 𝐾

  • Mechanisms limiting thermal transport

    Callaway Model

    𝑘 𝑇 =𝑘𝐵

    2 𝜋2𝐶

    𝑘𝐵𝑇

    ħ

    3

    න0

    Τ𝜃𝐷 𝑇

    𝜏𝑐𝑥4𝑒𝑥

    𝑒𝑥 − 1 2𝑑𝑥

    𝜏𝑐−1 =

    𝐶

    𝑡+ 𝐴𝜔4 + 𝐵𝜔2𝑇 𝑒 Τ−𝜃𝐷 3𝑇

    For Alpha

    𝐴 ≅ 6.0 ∗ 10−48𝑠3, 𝐵 ≅ 7.8 ∗ 10−19𝑠/𝐾

    For Beta

    𝐴 ≅ 7.1 ∗ 10−48𝑠3, 𝐵 ≅ 3.6 ∗ 10−18𝑠/𝐾

    Callaw

    ay D

    OI: 10.1103/PhysRev.11

    3.10

    46

  • Umklapp Scattering and Anharmonicity

    Normal Scattering Umklapp Scattering

    • Requires anharmonic potential

    𝑈 = 𝑈𝑒𝑞 + 𝑈ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 + 𝑈𝑎𝑛ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐• Momentum is not conserved

    • Required to explain transfer processes

    Ashkroft

    & M

    erm

    in

    chapter 2

    5

  • Mechanisms limiting thermal transport

    Callaway Model

    𝑘 𝑇 =𝑘𝐵

    2 𝜋2𝐶

    𝑘𝐵𝑇

    ħ

    3

    න0

    Τ𝜃𝐷 𝑇

    𝜏𝑐𝑥4𝑒𝑥

    𝑒𝑥 − 1 2𝑑𝑥

    𝜏𝑐−1 =

    𝐶

    𝑡+ 𝐴𝜔4 + 𝐵𝜔2𝑇 𝑒 Τ−𝜃𝐷 3𝑇

    For Alpha

    𝐴 ≅ 6.0 ∗ 10−48𝑠3, 𝐵 ≅ 7.8 ∗ 10−19𝑠/𝐾

    For Beta

    𝐴 ≅ 7.1 ∗ 10−48𝑠3, 𝐵 ≅ 3.6 ∗ 10−18𝑠/𝐾

    Callaw

    ay D

    OI: 10.110

    3/PhysRev.11

    3.10

    46

  • Novoselov

    et a

    l., Science

    35

    3, 461 (201

    6)

    Gong et al. nature m

    aterials

    13, (2014)

    Kang et a

    l., A

    pplied

    Physics

    Letters. 1

    02

    , 012

    11

    1 (2

    01

    3)

    Pant et al., N

    anoscale

    8, 3870 (2016)

    • Semiconductor-Semiconductor heterojunctions enable devices

    ─ Lasers, LEDs, solar cells, etc.

    vdW Heterojunctions

  • Kim

    et al. D

    OI:10.108

    8/2053

    -1583/aa5b0e

    Laser thinning of MoTe2

    • Laser driven post patterning in MoTe2

    • Scalable created atomically thin regions

  • Laser heating in MoTe2

    Seo

    et a

    l. D

    OI: 10.1038/s41928

    -01

    8-01

    29

    -6

    • Local heating of pre-patterned electrodes

    • Defects were created (vacancies) causing local

    p-type doping

  • Fabricating in-plane junctions in In2Se

    3

    • Raise temperature to Tc-100 K

    • Patterned using 3-5 mW pulses• Checked using 3-5 μW pulses

  • ab

    β dots in α crystals

    • Freely pattern beta dots

    • Smooth Topography

    • Single Crystallinity

  • α/β junctions, AFM characterization

    • Smooth topography

    • ~300mV change in the work function

    • ~500 nm junction

    KPFM Mapping KPFM and AFM

  • • PL confirms KPFM

    • Strong Short Circuit

    Photo Current

    a

    b

    α/β junctions, optical characterization

  • Electrical Properties of In2Se

    3 Lateral Junctions

    T = 300K

    • Rectifying IV curve

    • Non standard diode behavior V0 power law

    V > 0, Power law

  • • V < 0 ~Constant E and n

    • Activation Energy

    simulation ~.2 eV

    experiment ~ .14 eV

    Simulation results

  • Conclusion

    We have determined the thermal transport limiting mechanics in a and

    b In2Se

    3, showing b to possibly be an efficient thermoelectric material.

    We have developed a scalable laser-writing procedure capable of

    directly defining in-plane phase patterns in 2D In2Se

    3layers based

    on local optically activated solid-solid phase transitions. These phase

    heterojunctions exhibit sharp junctions, and rectifying behavior.

  • Acknowledgments

    Collaborators

    Dr. Feng Zhao

    Dr. Shengwen Zhou

    Dr. Zhi-Gang Yu

    Matthew Gabel

    Committee

    Dr. Yi Gu

    Dr. Matt McCluskey

    Dr. Feng Zhao

  • Questions

  • Questions

    SCLC generally shows up as I ~ V2

    , why does your device

    deviate from that?

    Do you need the hBN to shield your In2Se3 ?

    Does this junction fabrication transformation have any substrate

    dependence?

    Does the large depletion region lead to a high quantum efficiency?

    What is the minimum size of the b In2Se3 that you can pattern?