anfis (1).docx

3
The fluoride ion is known to act as donor in many complexes, partially negative fluorine may act likewise, although probably to a lesser degree. The weakness of the bond in F1 has been explained as resulting from interference of nonbonding outer electron pairs on the two atoms, suggesting that such pairs are in a position to interact attractively with another atom if it has vacant orbitals available. Furthermore, bonds of other elements to fluorine are frequently disproportionately strong and unexpectedly short, both of which suggest partial multiplicity. The bond lengths in fluorides of other highly electronegative elements are as would be predicted from adding the covalent radii, but to less electronegative elements teh calculated radius sum commonly must be divided by 0.04 to give the observed bond length, indicating a bond order approximating 1.5. Further evidence in support of the partial multiplicity in fluorine bonding id available from its resemblance to oxygen, which forming twi binds, discloses something of the nature of its bonding by the bond angle. Although two single bonds to oxygen would be expected to make an angle not excecding 109o (Cl2O, 110.8o; F2O, 103,3o ; H2O, 104.5o),many examples are known where the angle is much larger. Even approaching 180o. For example, in numerous silicates and the silicones, the Si- O-Si angle is in the range 140-150o ; in P4O6 the P-O-P angle is 128o, as it is also in As-O-As and Sb-O-Sb ; the range of 120-140o. All such wider than excected angles suggest partial utilization of the two other wise unused pairs of outer electrons on the oxygen, involving the fourth sp3 orbital of born or outer d orbitals of the silicon, phosphorus, and others. If oxygen can enter into such partial multiplicity, there seems to be no reason why fluorine cannot do so similarly. As a probable consequence of such partial multiplicity, heats of atomization (per equivalent) of BF3 (154.5), B2O3 (126.9), AlF3 (148.5), Al2O3 (121.9), SiF3 (137.8), SiO3 (107.2), AsF3 (114.9), and similar compounds are appreciable higher than

Upload: aya-sofia

Post on 13-Dec-2015

217 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: anfis (1).docx

The fluoride ion is known to act as donor in many complexes, partially negative fluorine may act likewise, although probably to a lesser degree. The weakness of the bond in F1 has been explained as resulting from interference of nonbonding outer electron pairs on the two atoms, suggesting that such pairs are in a position to interact attractively with another atom if it has vacant orbitals available. Furthermore, bonds of other elements to fluorine are frequently disproportionately strong and unexpectedly short, both of which suggest partial multiplicity. The bond lengths in fluorides of other highly electronegative elements are as would be predicted from adding the covalent radii, but to less electronegative elements teh calculated radius sum commonly must be divided by 0.04 to give the observed bond length, indicating a bond order approximating 1.5.

Further evidence in support of the partial multiplicity in fluorine bonding id available from its resemblance to oxygen, which forming twi binds, discloses something of the nature of its bonding by the bond angle. Although two single bonds to oxygen would be expected to make an angle not excecding 109o (Cl2O, 110.8o; F2O, 103,3o ; H2O, 104.5o),many examples are known where the angle is much larger. Even approaching 180o. For example, in numerous silicates and the silicones, the Si-O-Si angle is in the range 140-150o ; in P4O6 the P-O-P angle is 128o, as it is also in As-O-As and Sb-O-Sb ; the range of 120-140o. All such wider than excected angles suggest partial utilization of the two other wise unused pairs of outer electrons on the oxygen, involving the fourth sp3 orbital of born or outer d orbitals of the silicon, phosphorus, and others. If oxygen can enter into such partial multiplicity, there seems to be no reason why fluorine cannot do so similarly.

As a probable consequence of such partial multiplicity, heats of atomization (per equivalent) of BF3 (154.5), B2O3 (126.9), AlF3 (148.5), Al2O3 (121.9), SiF3 (137.8), SiO3 (107.2), AsF3 (114.9), and similar compounds are appreciable higher than average bond energies for all the gaseous molecules listed in NBS Circular 500 (z) are arranged in descending order, the leaders are : B-F, Si-F, H-F, Li-Cl, Na-F, As-F, H-O. As will be seen, these facts become especially important when one attempts to predict the course of reactions involving such compoaunds.

Page 2: anfis (1).docx

Ion fluorida dikenal bertindak sebagai donor di banyak kompleks, sebagian fluor negatif dapat bertindak juga, meskipun mungkin untuk tingkat yang lebih rendah. Kelemahan ikatan di F2 telah dijelaskan sebagai akibat dari gangguan non-ikatan pasangan elektron terluar pada dua atom, menunjukkan bahwa pasangan tersebut berada dalam posisi untuk berinteraksi dengan menarik atom lain jika memiliki orbital kosong yang tersedia. Selanjutnya, obligasi elemen lain dengan fluor sering tidak proporsional dengan kuat dan tiba-tiba memendek, yang keduanya menunjukkan keragaman parsial. Panjang obligasi unsur fluorida yang sangat elektronegatif bergantung dengan penambahan jari-jari kovalen, tapi unsur yang kurang elektronegatif jumlah radiusnya dihitung dengan membagi 0,04 untuk memberikan panjang ikatan yang diamati, menunjukkan orde ikatan mendekati 1,5.

Bukti lebih lanjut untuk mendukung keragaman parsial dalam ikatan fluor tersedia dari kemiripannya dengan oksigen, yang membentuk dua ikatan, mengungkapkan sesuatu tentang sifat ikatan sebesar sudut ikatan. Meskipun dua ikatan tunggal oksigen akan diharapkan untuk membuat sudut tidak exceding 109o (Cl2O, 110.8o; F2O, 103,3o; H2O, 104.5o), banyak contoh yang dikenal dengan sudut yang jauh lebih besar, bahkan mendekati 180o. Misalnya, dalam berbagai silikat dan silikon, sudut Si-O-Si berkisaran 140-150o; di P4O6 sudut P-O-P adalah 128o, seperti juga di As-O-As dan Sb-O-Sb; kisaran 120-140o. Semua seperti lebar dari sudut excected menyarankan pemanfaatan parsial dari dua pasangan yang tidak terpakai bijak lain dari elektron terluar pada oksigen, yang melibatkan orbital sp3 keempat dari dalam atau luar orbital d dari silikon, fosfor, dan lain-lain. Jika oksigen dapat masuk ke dalam multiplisitas parsial seperti itu, maka tidak ada alasan mengapa fluor tidak bisa melakukan hal yang sama.

Sebagai konsekuensi kemungkinan banyaknya parsial seperti memanaskan atomisasi (per setara) dari BF3 (154,5), B2O3 (126,9), AlF3 (148,5), Al2O3 (121,9), SiF3 (137,8), SiO3

(107,2), AsF3 (114,9 ), dan senyawa serupa yang memiliki energi ikatan rata-rata cukup tinggi untuk semua molekul gas yang tercantum dalam NBS Edaran 500 (z) yang disusun dalam urutan, yang tertinggi adalah: B-F, Si-F, H-F, Li-Cl, Na-F , As-F, H-O. Seperti yang akan terlihat, fakta-fakta ini menjadi sangat penting ketika seseorang mencoba untuk memprediksi jalannya reaksi yang melibatkan senyawa tersebut.