andrei andryieuski, andrei lavrinenkoย ยท 2017. 3. 7.ย ยท maximum impact speed ๐‘ฃimpmax arises...

21
The Maribo Meteorite T1 Page 1 of 3 Solutions 1.1 Top view: Triangle MCB: |CM| = 195 km, โˆ MCB = 230ยฐ โˆ’ 180ยฐ = 50ยฐ, and โˆ MBC = 75ยฐ, so โˆ CMB = 180ยฐ โˆ’ 75ยฐ โˆ’ 50ยฐ = 55ยฐ. Then |CB| = |CM| sin(โˆ CMB) sin(โˆ MBC) = 165.4 km. Triangle DCB: |CB| = 165.4 km, โˆ DCB = 215ยฐ โˆ’ 180ยฐ = 35ยฐ,and โˆ DBC = 75ยฐ, so โˆ CDB = 180ยฐ โˆ’ 75ยฐ โˆ’ 35ยฐ = 70ยฐ. Then |CD| = |CB| sin(โˆ DBC) sin(โˆ CDB) = 170.0 km. Triangle ECB: |CB| = 165.4 km, โˆ ECB = 221ยฐ โˆ’ 180ยฐ = 41ยฐ, and โˆ EBC = 75ยฐ, so โˆ CEB = 180ยฐ โˆ’ 75ยฐ โˆ’ 41ยฐ = 64ยฐ. Then |CE| = |CB| sin(โˆ EBC) sin(โˆ CEB) = 177.7 km. Triangle ECD:โˆ ECD = 41ยฐ โˆ’ 35ยฐ = 6ยฐ. Horisontal distance travelled by Maribo:|DE| = |DC| sin(โˆ ECD) sin(โˆ CED) = 19.77 km Side view: Triangle CFD: |FD| = |CD| tan(โˆ FCD) = 59.20 km Triangle CGE: |GE| = |CE| tan(โˆ GCE) = 46.62 km Thus vertical distance travelled by Maribo: |FD| โˆ’ |GE| = 12.57 km. Total distance travelled by Maribo from frame 155 to 161: |FG| = ๏ฟฝ|DE| 2 + (|FD| โˆ’ |GE|) 2 = 23.43 km. The speed of Maribo is = 23.43 km 2.28 sโˆ’1.46 s = 28.6 km/s 1.2 1.2a Newton's second law: M d d = โˆ’ atm M 2 2 yields 1 2 d = โˆ’ atmฯ€ M 2 M d. By integration = M atm M 2 ๏ฟฝ 1 0.9 โˆ’ 1๏ฟฝ 1 M = 0.88 s. 0.7 1.2b kin melt = 1 2 M 2 sm ( sm โˆ’ 0 ) + sm = 4.2ร—10 8 2.1ร—10 6 = 2.1 ร— 10 2 โ‰ซ 1. 0.3

Upload: others

Post on 28-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

Page 1 of 3

Solutions

1.1

Top view: Triangle MCB: |CM| = 195 km, โˆ MCB = 230ยฐ โˆ’ 180ยฐ = 50ยฐ, and โˆ MBC = 75ยฐ, so โˆ CMB = 180ยฐ โˆ’ 75ยฐ โˆ’ 50ยฐ = 55ยฐ. Then |CB| = |CM| sin(โˆ CMB)

sin(โˆ MBC) = 165.4 km. Triangle DCB: |CB| = 165.4 km, โˆ DCB = 215ยฐ โˆ’ 180ยฐ = 35ยฐ,and โˆ DBC = 75ยฐ, so โˆ CDB = 180ยฐ โˆ’ 75ยฐ โˆ’ 35ยฐ = 70ยฐ. Then |CD| = |CB| sin(โˆ DBC)

sin(โˆ CDB) = 170.0 km. Triangle ECB: |CB| = 165.4 km, โˆ ECB = 221ยฐ โˆ’ 180ยฐ = 41ยฐ, and โˆ EBC = 75ยฐ, so โˆ CEB = 180ยฐ โˆ’ 75ยฐ โˆ’ 41ยฐ = 64ยฐ. Then |CE| = |CB| sin(โˆ EBC)

sin(โˆ CEB) = 177.7 km. Triangle ECD:โˆ ECD = 41ยฐ โˆ’ 35ยฐ = 6ยฐ. Horisontal distance travelled by Maribo:|DE| = |DC| sin(โˆ ECD)

sin(โˆ CED) = 19.77 km Side view: Triangle CFD: |FD| = |CD| tan(โˆ FCD) = 59.20 km Triangle CGE: |GE| = |CE| tan(โˆ GCE) = 46.62 km Thus vertical distance travelled by Maribo: |FD| โˆ’ |GE| = 12.57 km. Total distance travelled by Maribo from frame 155 to 161: |FG| = ๏ฟฝ|DE|2 + (|FD| โˆ’ |GE|)2 = 23.43 km. The speed of Maribo is ๐‘ฃ = 23.43 km

2.28 sโˆ’1.46 s= 28.6 km/s

1.2

1.2a Newton's second law: ๐‘šM

d๐‘ฃd๐‘ก

= โˆ’๐‘˜๐œŒatm๐œ‹๐‘…M2 ๐‘ฃ2 yields 1๐‘ฃ2

d๐‘ฃ = โˆ’๐‘˜๐œŒatmฯ€๐‘…M2

๐‘šM d๐‘ก.

By integration ๐‘ก = ๐‘šM๐‘˜๐œŒatm๐œ‹๐‘…M

2 ๏ฟฝ 10.9โˆ’ 1๏ฟฝ 1

๐‘ฃM= 0.88 s.

0.7

1.2b ๐ธkin๐ธmelt

=12 ๐‘ฃM

2

๐‘sm(๐‘‡smโˆ’๐‘‡0) + ๐ฟsm = 4.2ร—108

2.1ร—106= 2.1 ร— 102 โ‰ซ 1. 0.3

Page 2: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

Page 2 of 3

1.3a

[๐‘ฅ] = [๐‘ก]๐›ผ[๐œŒsm]๐›ฝ[๐‘sm]๐›พ [๐‘˜sm]๐›ฟ = [s]๐›ผ[kg mโˆ’3]๐›ฝ[m2 sโˆ’2Kโˆ’1]๐›พ [kg m sโˆ’3Kโˆ’1]๐›ฟ, so [m] = [kg]๐›ฝ+๐›ฟ[m]โˆ’3๐›ฝ+2๐›พ+๐›ฟ[s]๐›ผโˆ’2๐›พโˆ’3๐›ฟ[K]โˆ’๐›พโˆ’๐›ฟ. Thus ๐›ฝ + ๐›ฟ = 0, โˆ’3๐›ฝ + 2๐›พ + ๐›ฟ = 1, ๐›ผ โˆ’ 2๐›พ โˆ’ 3๐›ฟ = 0, and โˆ’๐›พ โˆ’ ๐›ฟ = 0.

From which (๐›ผ,๐›ฝ, ๐›พ, ๐›ฟ) = ๏ฟฝ+ 12

,โˆ’12

,โˆ’12

, + 12๏ฟฝ and ๐‘ฅ(๐‘ก) โ‰ˆ ๏ฟฝ ๐‘˜sm๐‘ก

๐œŒsm๐‘sm.

0.6

1.3b ๐‘ฅ(5 s) = 1.6 mm ๐‘ฅ/๐‘…M = 1.6 mm/130 mm = 0.012. 0.4 1.4a Rb-Sr decay scheme: Rb37

87 โ†’ Sr 3887 + eโˆ’1

0 + ๏ฟฝฬ…๏ฟฝe 0.3

1.4b

๐‘87Rb(๐‘ก) = ๐‘87Rb(0)eโˆ’๐œ†๐‘กand Rbโ†’Sr: ๐‘87Sr(๐‘ก) = ๐‘87Sr(0) + [๐‘87Rb(0) โˆ’ ๐‘87Rb(๐‘ก)]. Thus ๐‘87Sr(๐‘ก) = ๐‘87Sr(0) + (e๐œ†๐‘ก โˆ’ 1)๐‘87Rb(๐‘ก), and dividing by ๐‘86Sr we obtain the equation of a straight line:

๐‘87Sr(๐‘ก)๐‘86Sr

= ๐‘87Sr(0)๐‘86Sr

+ (e๐œ†๐‘ก โˆ’ 1) ๐‘87Rb(๐‘ก)๐‘86Sr

.

0.7

1.4c Slope: e๐œ†๐‘ก โˆ’ 1 = ๐‘Ž = 0.712โˆ’0.700

0.25= 0.050 and ๐‘‡ยฝ = ln(2)

๐œ†= 4.9 ร— 1010 year.

So ๐œ๐‘€ = ln(1 + ๐‘Ž) 1

๐œ†= ln(1+๐‘Ž)

ln(2) ๐‘‡ยฝ = 3.4 ร— 109 year . 0.4

1.5 Kepler's 3rd law on comet Encke and Earth, with the orbital semi-major axis of Encke

given by ๐‘Ž = 12

(๐‘Žmin + ๐‘Žmax). Thus ๐‘กEncke = ๏ฟฝ ๐‘Ž๐‘ŽE๏ฟฝ32 ๐‘กE = 3.30 year = 1.04 ร— 108 s.

0.6

1.6a

For Earth around its rotation axis: Angular velocity ๐œ”E = 2๐œ‹24 h

= 7.27 ร— 10โˆ’5 sโˆ’1.

Moment of inertia ๐ผE = 0.83 25๐‘šE๐‘…E2 = 8.07 ร— 1037 kg m2.

Angular momentum ๐ฟE = ๐ผE๐œ”E = 5.87 ร— 1033 kg m2sโˆ’1. Astroid ๐‘šast = 4๐œ‹

3๐‘…ast3 ๐œŒast = 1.57 ร— 1015 kg and angular momentum ๐ฟast =

๐‘šast๐‘ฃast๐‘…E = 2.51 ร— 1026 kg m2sโˆ’1. ๐ฟast is perpendicular to ๐ฟE, so by conservation angular momentum: tan (ฮ”๐œƒ) = ๐ฟast/๐ฟE = 4.27 ร— 10โˆ’8. The axis tilt ฮ”๐œƒ = 4.27 ร— 10โˆ’8 rad (so the north pole move ๐‘…E ฮ”๐œƒ = 0.27 m).

0.7

1.6b At vertical impact ฮ”๐ฟE = 0 so ฮ”(๐ผE๐œ”E) = 0. Thus ฮ”๐œ”E = โˆ’๐œ”E(ฮ”๐ผE)/๐ผE, and since ฮ”๐ผE/๐ผE = ๐‘šast๐‘…E2/๐ผE = 7.9 ร— 10โˆ’10 we obtain ฮ”๐œ”E = โˆ’5.76 ร— 10โˆ’14 sโˆ’1. The change in rotation period is ฮ”๐‘‡E = 2๐œ‹ ๏ฟฝ 1

๐œ”E+ฮ”๐œ”Eโˆ’ 1

๐œ”E๏ฟฝ โ‰ˆ โˆ’2๐œ‹ ฮ”๐œ”E

๐œ”E2 = 6.84 ร— 10โˆ’5 s.

0.7

1.6c At tangential impact ๐ฟast is parallel to ๐ฟE so ๐ฟE + ๐ฟast = ( ๐ผE + ฮ”๐ผE)(๐œ”E + ฮ”๐œ”E) and thus ฮ”๐‘‡E = 2๐œ‹ ๏ฟฝ 1

๐œ”E+ฮ”๐œ”Eโˆ’ 1

๐œ”E๏ฟฝ = 2๐œ‹ ๏ฟฝ ๐ผE+ฮ”๐ผE

๐ฟE+๐ฟastโˆ’ 1

๐œ”E๏ฟฝ = โˆ’3.62 ร— 10โˆ’3 s. 0.7

Page 3: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

Page 3 of 3

1.7a Minimum impact speed is the escape velocity from Earth: ๐‘ฃimpmin = ๏ฟฝ2๐บ๐‘š๐ธ๐‘…๐ธ

= 11.2 km/s 0.5

1.7b

Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth orbit radius) from the Sun,

๐‘ฃb = ๏ฟฝ2๐บ๐‘š๐‘†๐‘Ž๐ธ

= 42.1 km/s.

(II) The orbital velocity of the Earth, ๐‘ฃE = 2๐œ‹๐‘Ž๐ธ1 year

= 29.8 km/s. (III) Gravitational attraction from the Earth and kinetic energy seen from the Earth: 1

2(๐‘ฃb + ๐‘ฃE)2 = โˆ’๐บ๐‘š๐ธ

๐‘…๐ธ+ 1

2๏ฟฝ๐‘ฃimpmax๏ฟฝ

2.

In conclusion: ๐‘ฃimpmax = ๏ฟฝ(๐‘ฃb + ๐‘ฃE)2 + 2๐บ๐‘š๐ธ๐‘…๐ธ

= 72.8 km/s.

1.2

Total 9.0

Page 4: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

Marking scheme

1.1

Top view: Triangle MCB: |CM| = 195 km, โˆ MCB = 230ยฐ โˆ’ 180ยฐ = 50ยฐ, and โˆ MBC = 75ยฐ, so โˆ CMB = 180ยฐ โˆ’ 75ยฐ โˆ’ 50ยฐ = 55ยฐ. Then |CB| = |CM| sin(โˆ CMB)

sin(โˆ MBC)= 165.4 km.

Triangle DCB: |CB| = 165.4 km, โˆ DCB = 215ยฐ โˆ’ 180ยฐ = 35ยฐ,and โˆ DBC = 75ยฐ, so โˆ CDB = 180ยฐ โˆ’ 75ยฐ โˆ’ 35ยฐ = 70ยฐ. Then |CD| = |CB| sin(โˆ DBC)

sin(โˆ CDB)= 170.0 km.

Triangle ECB: |CB| = 165.4 km, โˆ ECB = 221ยฐ โˆ’ 180ยฐ = 41ยฐ, and โˆ EBC = 75ยฐ, so โˆ CEB = 180ยฐ โˆ’ 75ยฐ โˆ’ 41ยฐ = 64ยฐ. Then |CE| = |CB| sin(โˆ EBC)

sin(โˆ CEB)= 177.7 km.

Triangle ECD:โˆ ECD = 41ยฐ โˆ’ 35ยฐ = 6ยฐ. Horisontal distance travelled by Maribo:|DE| = |DC| sin(โˆ ECD)

sin(โˆ CED)= 19.77 km

Side view: Triangle CFD: |FD| = |CD| tan(โˆ FCD) = 59.20 km Triangle CGE: |GE| = |CE| tan(โˆ GCE) = 46.62 km Thus vertical distance travelled by Maribo: |FD| โˆ’ |GE| = 12.57 km. Total distance travelled by Maribo from frame 155 to 161: |FG| = ๏ฟฝ|DE|2 + (|FD| โˆ’ |GE|)2 = 23.43 km. The speed of Maribo is ๐‘ฃ = 23.43 km

2.28 sโˆ’1.46 s= 28.6 km/s

Marking: State ๐‘ฃ = ฮ”๐‘ 

ฮ”๐‘ก : 0.2 points

Correct drawing of all three triangles +0.4 points, Calculation of |๐‘ซ๐‘ฌ| +0.4 point Calculation of |๐…๐ƒ| โˆ’ |๐†๐„| and speed +0.3 points. (-0.2 points for trivial trigonometric errors -0.1 points for more than 0.5 km/s deviation from correct result)

1.3

Page 1 of 4

Page 5: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

1.2a

Newton's second law: ๐‘šM

d๐‘ฃd๐‘ก

= โˆ’๐‘˜๐œŒatm๐œ‹๐‘…M2 ๐‘ฃ2 yields 1๐‘ฃ2

d๐‘ฃ = โˆ’๐‘˜๐œŒatmฯ€๐‘…M2

๐‘šM d๐‘ก.

Solving by integration ๐‘ก = ๐‘šM๐‘˜๐œŒatm๐œ‹๐‘…M

2 ๏ฟฝ 10.9โˆ’ 1๏ฟฝ 1

๐‘ฃM= 0.90 s.

Marking: Newton's second law: ๐‘šM

d๐‘ฃd๐‘ก

= โˆ’๐‘˜๐œŒatm๐œ‹๐‘…M2 ๐‘ฃ2 (0.2 points)

Solving by integration ๐‘ก = ๐‘šM๐‘˜๐œŒatm๐œ‹๐‘…M

2 ๏ฟฝ 10.9โˆ’ 1๏ฟฝ 1

๐‘ฃM= 0.90 s.

(+0.3 points for correct equation for t, +0.2 points for correct value) Alternative solution: Marking: Newton's second law: ๐‘šM

d๐‘ฃd๐‘ก

= โˆ’๐‘˜๐œŒatm๐œ‹๐‘…M2 ๐‘ฃ2 (0.2 points) Approximately constant acceleration from 1.46 s to 2.28 s gives ๐‘ก = 0.79 s. (+0.3 points for correct equation for t, +0.2 points for correct value)

0.7

1.2b

๐ธkin๐ธmelt

=12 ๐‘ฃM

2

๐‘sm(๐‘‡smโˆ’๐‘‡0) + ๐ฟsm = 4.2ร—108

2.1ร—106= 2.1 ร— 102 โ‰ซ 1.

Marking: 0.1 point for each energy term; (-0.1 if ๐ฟ๐‘ ๐‘š dropped without argument)

0.3

1.3a

[๐‘ฅ] = [๐‘ก]๐›ผ[๐œŒsm]๐›ฝ[๐‘sm]๐›พ [๐‘˜sm]๐›ฟ = [s]๐›ผ[kg mโˆ’3]๐›ฝ[m2 sโˆ’2Kโˆ’1]๐›พ [kg m sโˆ’3Kโˆ’1]๐›ฟ, so [m] = [kg]๐›ฝ+๐›ฟ[m]โˆ’3๐›ฝ+2๐›พ+๐›ฟ[s]๐›ผโˆ’2๐›พโˆ’3๐›ฟ[K]โˆ’๐›พโˆ’๐›ฟ. Thus ๐›ฝ + ๐›ฟ = 0, โˆ’3๐›ฝ + 2๐›พ + ๐›ฟ = 1, ๐›ผ โˆ’ 2๐›พ โˆ’ 3๐›ฟ = 0, and โˆ’๐›พ โˆ’ ๐›ฟ = 0.

From which (๐›ผ,๐›ฝ, ๐›พ, ๐›ฟ) = ๏ฟฝ+ 12

,โˆ’12

,โˆ’12

, + 12๏ฟฝ and ๐‘ฅ(๐‘ก) โ‰ˆ ๏ฟฝ ๐‘˜sm๐‘ก

๐œŒsm๐‘sm.

Marking: 0.1 points for each dimensional equation +0.2 points for solving equations correctly.

0.6

1.3b ๐‘ฅ(5 s) = 1.6 mm ๐‘ฅ/๐‘…M = 1.6 mm/130 mm = 0.012. Marking: Calculation of x: 0.3 points, calculation of ๐‘ฅ/๐‘…M +0.1 points.

0.4

Page 2 of 4

Page 6: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

1.4a

Rb-Sr decay scheme: Rb3787 โ†’ Sr 38

87 + eโˆ’10 + ๏ฟฝฬ…๏ฟฝe

Marking: Correct scheme with both electron and antineutrino (neutrino also accepted) 0.3 points. (Missing electron or other error concerning electron: no points awarded for this question. Missing neutrino: -0.1 points)

0.3

1.4b

๐‘87Rb(๐‘ก) = ๐‘87Rb(0)eโˆ’๐œ†๐‘ก and Rbโ†’Sr: ๐‘87Sr(๐‘ก) = ๐‘87Sr(0) + [๐‘87Rb(0) โˆ’๐‘87Rb(๐‘ก)] Thus ๐‘87Sr(๐‘ก) = ๐‘87Sr(0) + (e๐œ†๐‘ก โˆ’ 1)๐‘87Rb(๐‘ก), and dividing by ๐‘86Sr we obtain ๐‘87Sr(๐‘ก)๐‘86Sr

= ๐‘87Sr(0)๐‘86Sr

+ (e๐œ†๐‘ก โˆ’ 1) ๐‘87Rb(๐‘ก)๐‘86Sr

Marking: ๐‘87Rb(๐‘ก) = ๐‘87Rb(0)eโˆ’๐œ†๐‘ก (0.2 points) Rbโ†’Sr: ๐‘87Sr(๐‘ก) = ๐‘87Sr(0) + [๐‘87Rb(0) โˆ’ ๐‘87Rb(๐‘ก)] (+0.2 points) Obtain ๐‘87Sr(๐‘ก)๐‘86Sr

= ๐‘87Sr(0)๐‘86Sr

+ (e๐œ†๐‘ก โˆ’ 1) ๐‘87Rb(๐‘ก)๐‘86Sr

(+0.3 points) (Wrong slope: -0.2 points, wrong intersection: -0.1)

0.7

1.4c

Slope: e๐œ†๐‘ก โˆ’ 1 = ๐‘Ž = 0.712โˆ’0.7000.25

= 0.050 and ๐‘‡ยฝ = ln(2)๐œ†

= 4.9 ร— 1010 year. So ๐œ๐‘€ = ln(1 + ๐‘Ž) 1

๐œ†= ln(1+๐‘Ž)

ln(2)๐‘‡ยฝ = 3.4 ร— 109 year .

Marking: Slope (3.4 ยฑ ๐ŸŽ.๐Ÿ ร— 109 year) 0.1 point, calculation of ๐œ๐‘€ +0.3 points.

0.4

1.5

Kepler's 3rd law on comet Encke and Earth, with the orbital semi-major axis of Encke

given by ๐‘Ž = 12

(๐‘Žmin + ๐‘Žmax). Thus ๐‘กEncke = ๏ฟฝ ๐‘Ž๐‘ŽE๏ฟฝ32 ๐‘กE = 3.30 year = 1.04 ร— 108 s.

Marking: Correct expression for a: 0.2 points, apply Keplers third law correctly: +0.2 points, calculation of orbital period +0.2 points.

0.6

1.6a

For Earth around its rotation axis: Angular velocity ๐œ”E = 2๐œ‹24 h

= 7.27 ร— 10โˆ’5 sโˆ’1.

Moment of inertia ๐ผE = 0.83 25๐‘šE๐‘…E2 = 8.07 ร— 1037 kg m2.

Angular momentum ๐ฟE = ๐ผE๐œ”E = 5.87 ร— 1033 kg m2sโˆ’1. Astroid ๐‘šast = 4๐œ‹

3๐‘…ast3 ๐œŒast = 1.57 ร— 1015 kg and angular momentum ๐ฟast =

๐‘šast๐‘ฃast๐‘…E = 2.51 ร— 1026 kg m2sโˆ’1. ๐ฟast is perpendicular to ๐ฟE, so by conservation angular momentum: tan (ฮ”๐œƒ) = ๐ฟast/๐ฟE = 4.27 ร— 10โˆ’8. The axis tilt ฮ”๐œƒ = 4.27 ร— 10โˆ’8 rad (so the north pole move ๐‘…E ฮ”๐œƒ = 0.27 m). Marking: Conservation of angular momentum with๐ฟE = ๐ผE๐œ”E and ๐ฟast =๐‘šast๐‘ฃast:0.3 point,. Realize geometry: +0.2 points, Calculation: +0.2 points.

0.7

Page 3 of 4

Page 7: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Maribo Meteorite T1

1.6b

At vertical impact ฮ”๐ฟE = 0 so ฮ”(๐ผE๐œ”E) = 0. Thus ฮ”๐œ”E = โˆ’๐œ”E(ฮ”๐ผE)/๐ผE, and since ฮ”๐ผE/๐ผE = ๐‘šast๐‘…E2/๐ผE = 7.9 ร— 10โˆ’10 we obtain ฮ”๐œ”E = โˆ’5.76 ร— 10โˆ’14 sโˆ’1. The change in rotation period is ฮ”๐‘‡E = 2๐œ‹ ๏ฟฝ 1

๐œ”E+ฮ”๐œ”Eโˆ’ 1

๐œ”E๏ฟฝ โ‰ˆ โˆ’2๐œ‹ ฮ”๐œ”E

๐œ”E2 = 6.84 ร— 10โˆ’5 s.

Marking: Conservation of angular momentum ฮ”(๐ผE๐œ”E) = 0: 0.4 points, expression for ฮ”๐‘‡E: +0.2 points, calculation: +0.1 points. (Low precision: -0.1 points, wrong ๐ผ๐ธ + ๐ผ๐‘Ž๐‘ ๐‘ก: -0.2 points)

0.7

1.6c

At tangential impact ๐ฟast is parallel to ๐ฟE so ๐ฟE + ๐ฟast = ( ๐ผE + ฮ”๐ผE)(๐œ”E + ฮ”๐œ”E) and thus ฮ”๐‘‡E = 2๐œ‹ ๏ฟฝ 1

๐œ”E+ฮ”๐œ”Eโˆ’ 1

๐œ”E๏ฟฝ = 2๐œ‹ ๏ฟฝ ๐ผE+ฮ”๐ผE

๐ฟE+๐ฟastโˆ’ 1

๐œ”E๏ฟฝ = โˆ’3.62 ร— 10โˆ’3 s.

Marking: Conservation of angular momentum ๐ฟE + ๐ฟast = ( ๐ผE + ฮ”๐ผE)(๐œ”E + ฮ”๐œ”E) 0.4 points, solving for ฮ”๐‘‡E and calculating value: 0.3 points. [Both impact directions will be accepted] (Low precision: -0.1 points).

0.7

1.7

Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth orbit radius) from the Sun,

๐‘ฃb = ๏ฟฝ2๐บ๐‘š๐‘†๐‘Ž๐ธ

= 42.1 km/s.

(II) The orbital velocity of the Earth, ๐‘ฃE = 2๐œ‹๐‘Ž๐ธ1 year

= 29.8 km/s. (III) Gravitational attraction from the Earth and kinetic energy seen from the Earth: 1

2(๐‘ฃb + ๐‘ฃE)2 = โˆ’๐บ๐‘š๐ธ

๐‘…๐ธ+ 1

2๏ฟฝ๐‘ฃimpmax๏ฟฝ2.

In conclusion: ๐‘ฃimpmax = ๏ฟฝ(๐‘ฃb + ๐‘ฃE)2 + 2๐บ๐‘š๐‘†๐‘Ž๐ธ

= 72.8 km/s.

Marking: ๐‘ฃb = ๏ฟฝ2๐บ๐‘š๐‘†๐‘Ž๐ธ

= 42.1 km/s: 0.6 points, ๐‘ฃE = 2๐œ‹๐‘Ž๐ธ1 year

= 29.8 km/s : 0.4 points, 12

(๐‘ฃb + ๐‘ฃE)2 = โˆ’๐บ๐‘š๐ธ๐‘…๐ธ

+ 12๏ฟฝ๐‘ฃimpmax๏ฟฝ2: 0.6 points.

(Alternatively using energy conservation of asteroid with static Sun and Earth, to find speed of asteroid at ๐‘Ž๐ธ and then adding ๐‘ฃ๐ธ : 1.5 points).

1.6

Total 9.0

Page 4 of 4

Page 8: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

Page 1 of 2

Solutions

2.1

Volume: ๐‘‰ = 43๐œ‹๐‘…3 = 4.19 ร— 10โˆ’24 m3. Mass of ions: ๐‘€ = ๐‘‰ ๐œŒAg = 4.39 ร— 10โˆ’20 kg

no. of ions: ๐‘ = ๐‘๐ด๐‘€๐‘€Ag

= 2.45 ร— 105. Charge density ๐œŒ = ๐‘’๐‘๐‘‰

= 9.38 ร— 109 C mโˆ’3

Electron concentration ๐‘› = ๐‘๐‘‰

= 5.85 ร— 1028 mโˆ’3, charge ๐‘„ = ๐‘’๐‘ = 3.93 ร— 10โˆ’14 C, and mass ๐‘š0 = ๐‘š๐‘’๐‘ = 2.23 ร— 10โˆ’25 kg.

0.7

2.2

For a sphere with radius ๐‘… and constant charge density, Gauss's law yields directly 4๐œ‹๐‘Ÿ2๐œ€0๐‘ฌ+ = 4

3๐œ‹๐‘Ÿ3๐œŒ ๐’†๐‘Ÿ , for ๐‘Ÿ < ๐‘… with ๐’†๐‘Ÿ being the unit radial vector pointing away

from the center of the sphere. Thus, ๐‘ฌ+ = ๐œŒ3๐œ€0

๐’“. Likewise, inside a small sphere of radi-

us ๐‘…1 and charge density โˆ’๐œŒ centered at ๐’™p the field is ๐‘ฌโˆ’ = โˆ’๐œŒ3๐œ€0

(๐’“ โˆ’ ๐’™p). Adding the two charge configurations gives the setup we want and inside the charge-free region ๏ฟฝ๐’“ โˆ’ ๐’™p๏ฟฝ < ๐‘…1 the field is ๐‘ฌ = ๐‘ฌ+ + ๐‘ฌโˆ’ = ๐œŒ

3๐œ€0๐’™p with the pre-factor ๐ด = 1

3.

1.0

2.3

With ๐’™p = ๐‘ฅp ๐’†๐‘ฅ and ๐‘ฅp โ‰ช ๐‘… we have from above ๐‘ฌind = ๐œŒ3๐œ€0

๐‘ฅp ๐’†๐‘ฅ inside the particle. The number of electrons that produced ๐‘ฌind is negligibly smaller than the number of electrons inside the particle, so ๐‘ญ = ๐‘„๐‘ฌind = (โˆ’๐‘’๐‘) ๐œŒ

3๐œ€0๐‘ฅp ๐’†๐‘ฅ = โˆ’ 4๐œ‹

9๐œ€0๐‘…3๐‘’2๐‘›2 ๐’™๐‘.

The work done by ๐‘ญext on the electrons is ๐‘Šel = โˆ’โˆซ ๐น(๐‘ฅโ€ฒ) d๐‘ฅโ€ฒ =๐‘ฅp0

12

๏ฟฝ4๐œ‹9๐œ€0

๐‘…3๐‘’2๐‘›2๏ฟฝ ๐‘ฅp2.

0.9

2.4 The E-field is zero inside the particle, so ๐‘ฌ0 + ๐‘ฌind = 0, so ๐‘ฅp = 3๐œ€0

๐œŒ๐ธ0 = 3๐œ€0

๐‘’๐‘›๐ธ0.

Charge displaced through the ๐‘ฆ๐‘ง-plane: โˆ’ฮ”๐‘„ = โˆ’๐œŒ ๐œ‹๐‘…2๐‘ฅp = โˆ’๐œ‹๐‘…2 ๐‘›๐‘’ ๐‘ฅp. 0.5

2.5a The electric energy ๐‘Šel of a capacitor with capacitance ๐ถ holding a charge ยฑฮ”๐‘„ is ๐‘Šel = ฮ”๐‘„2

2๐ถ , so from (3c) and (4b) we obtain ๐ถ = 9

4๐œ€0๐œ‹๐‘… = 6.26 ร— 10โˆ’19 F.

0.5

2.5b Combining (4b) and (5a) leads ๐‘‰0 = ฮ”๐‘„๐ถ

= 43๐‘… ๐ธ0. 0.3

2.6a ๐‘Škin = 12๐‘š๐‘’๐‘ฃ2๐‘ = 1

2๐‘š๐‘’๐‘ฃ2 ๏ฟฝ

43๐œ‹๐‘…3 ๐‘›๏ฟฝ. The area ๐œ‹๐‘…2 leads to ๐ผ = โˆ’๐‘’ ๐‘›๐‘ฃ ๐œ‹๐‘…2. 0.5

2.6b From (6a) and ๐‘Škin = 12๐ฟ ๐ผ2 we obtain ๐ฟ = 4 ๐‘š๐‘’

3๐œ‹๐‘…๐‘›๐‘’2= 2.57 ร— 10โˆ’14 H. 0.5

2.7a ๐œ”p2 = (๐ฟ๐ถ)โˆ’1 = ๐‘›๐‘’2(3๐œ€0๐‘š๐‘’)โˆ’1. 0.5

2.7b ๐œ”p = 7.88 ร— 1015 rad/s, ๐œ†p = 2๐œ‹๐‘/๐œ”p = 239 nm. 0.3

Page 9: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

Page 2 of 2

2.8a โŸจ๐‘ƒheatโŸฉ = 1๐œ๐‘Škin = 1

2๐œ๐‘š๐‘’โŸจ๐‘ฃ2โŸฉ ๏ฟฝ

43๐œ‹๐‘…3 ๐‘›๏ฟฝ. โŸจ๐ผ2โŸฉ = (๐‘’๐‘› ๐œ‹๐‘…2)2 โŸจ๐‘ฃ2โŸฉ = ๏ฟฝ3๐‘„

4๐‘…๏ฟฝ2โŸจ๐‘ฃ2โŸฉ . 1.0

2.8b ๐‘…heat = โŸจ๐‘ƒheatโŸฉโŸจ๐ผ2โŸฉ

leads to ๐‘…heat = ๐‘Škin๐œ๐ผ2

= 2๐‘š๐‘’3๐œ‹๐‘›๐‘’2๐‘…๐œ

= 2.46 ฮฉ. 0.8

2.9a [๐‘ƒscat] = J sโˆ’1, [๐‘„ ๐‘ฅ0] = C m, ๏ฟฝ๐œ”p๏ฟฝ = sโˆ’1, [๐‘] = m sโˆ’1, [๐œ€0] = C2(J m)โˆ’1. Note that

๏ฟฝ๐‘„2๐‘ฅ02

๐œ€0๏ฟฝ = J m3 so ๏ฟฝ๐‘„

2๐‘ฅ02

๐œ€0

๐œ”p4

๐‘3๏ฟฝ = J sโˆ’1. Thus (๐›ผ,๐›ฝ, ๐›พ, ๐›ฟ) = (2,4,-3,-1) and ๐‘ƒscat = ๐‘„2๐‘ฅ02๐œ”p

4

12๐œ‹๐œ€0๐‘3.

0.7

2.9b ๐‘…scat = โŸจ๐‘ƒscatโŸฉโŸจ๐ผ2โŸฉ and โŸจ๐‘ฃ2โŸฉ = 1

2๐œ”p2๐‘ฅ02 yields ๐‘…scat = ๐‘„2๐‘ฅ02๐œ”p

4

12๐œ‹๐œ€0๐‘316๐‘…2

9๐‘„2โŸจ๐‘ฃ2โŸฉ= 8๐œ”0

2๐‘…2

27๐œ‹๐œ€0๐‘3= 2.45 ฮฉ. 0.9

2.10a

At resonance the reactance of an LCR-circuit is zero: ๐‘๐ฟ + ๐‘๐ถ = 0. The voltage-current relation then becomes: โŸจ๐‘‰2โŸฉ = ๐‘๐‘…2โŸจ๐ผ2โŸฉ = (๐‘…heat + ๐‘…scat)2โŸจ๐ผ2โŸฉ. From (2.5b) we have โŸจ๐‘‰2โŸฉ = 1

2๐‘‰02 = 8

9๐‘…2๐ธ02, such that โŸจ๐ผ2โŸฉ = 8๐‘…2๐ธ02

9(๐‘…heat+๐‘…scat)2.

This leads to โŸจ๐‘ƒheatโŸฉ = ๐‘…heatโŸจ๐ผ2โŸฉ = 8๐‘…heat๐‘…2

9(๐‘…heat+๐‘…scat)2๐ธ02 and โŸจ๐‘ƒscatโŸฉ = ๐‘…scat

๐‘…heatโŸจ๐‘ƒheatโŸฉ.

1.2

2.10b ๐ธ0 = ๏ฟฝ2๐‘†/(๐œ€0๐‘) = 27.4 kV/m. โŸจ๐‘ƒheatโŸฉ = 6.82 nW. โŸจ๐‘ƒscatโŸฉ = 6.81 nW. 0.3

2.11 Time per oscillation ๐‘กp = 2๐œ‹/๐œ”p. Emitted energy per time = โŸจ๐‘ƒscatโŸฉ. Energy per photon

๐ธp = โ„๐œ”p. Numbers of oscillation per photon ๐‘osc = โ„๐œ”p

๐‘กpโŸจ๐‘ƒscatโŸฉ= โ„๐œ”p

2

2๐œ‹โŸจ๐‘ƒscatโŸฉ= 1.53 ร— 105. 0.6

2.12a

Total number of nanoparticles: ๐‘np = โ„Ž2๐‘Ž ๐‘›np = 7.3 ร— 1011. Total power into steam from Joule heating: ๐‘ƒst = ๐‘np๐‘ƒheat = 4.98 kW. In terms of heating up a mass of steam per second ๐œ‡st: ๐‘ƒst = ๐œ‡st๐ฟtot, with ๐ฟtot = ๐‘wa(๐‘‡100 โˆ’ ๐‘‡wa) + ๐ฟwa + ๐‘st(๐‘‡st โˆ’ ๐‘‡100) = 2.62 ร— 106 J kgโˆ’1. Thus ๐œ‡st = ๐‘ƒst

๐ฟtot= 1.90 ร— 10โˆ’3 kg sโˆ’1.

0.6

2.12b ๐‘ƒtot = โ„Ž2๐‘† = 0.01m2 ร— 1 MW mโˆ’2 = 10.0 kW, and thus ๐œ‚ = ๐‘ƒst๐‘ƒtot

= 4.98 kW10.0 kW

= 0.498. 0.2

Total 12.0

Page 10: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

Marking scheme

General issues

โ€ข Number of significant digits: 3, no punishment if 2 or 4, punishment -0.05 if 1 or >4. โ€ข Rounding: no punishment (for example, students result 2.34, correct result 2.47): no punishment if

there is small (+/-1) difference in the second from the left significant digit, provided that the formula is correct.

โ€ข Wrong sign: depends on the assignment (no punishment for charge or current, but punishment for the wrong energy: -0.1 pt)

โ€ข Cumulative mistakes: o we punish only one time, except for the case when the result is physically wrong (for example,

efficiency > 100%) or the dimensions are wrong (m=s^2 ~30-50%), โ€ข Calculations: o If the pre-factor in the formula is wrong, but the value according to this formula is calculated

correct, the student receives points for the value, o if the formula is incorrect (dimensions), no points for the value. โ€ข Forgotten units: o no punishment, if there are no units on the answer sheet, but there are units on the draft papers, o punishment deduct half the points for this point, if there are no units anywhere. โ€ข Wrong fomula: o wrong dimensions (m=s^2): deduct 50% of the value. o wrong pre-factor: -0.1 โ€ข We round up the points for each section to higher value in steps of 0.1 (eg. 12.05 -> 12.1).

2.1

0.1

0.1

0.1

0.1

0.1

No punishment for the sign

0.1

0.1 โ€ข Correct 0.1, โ€ข punishment for wrong value or no units -0.05 โ€ข round up to the higher value

Page 1 of 4

Page 11: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

2.2

Check derivation in the papers Electric field in side a homogeneous sphere: 0.5 (just Gauss law 0.2) Principle of superposition:0.4 Vector calculations:0.2 Correct A: 0.1

1.2

2.3

F=Q Eind: 0.4 pt If F = ยฝ Q Eind: 0.2 pt Correct calculation: +0.1 pt

0.5

If integral: 0.4 If maxforce times distance: 0.2 Calculation of expression +0.1

0.5

punishment for the wrong sign 0.1 only for the negative work, not force 2.4 ๐‘ฅ๐‘ = 3๐œ€0๐ธ0

๐‘’๐‘›

Mentioned that electric field in equilibrium is 0: 0.1 pt 0.3

No punishment for sign

0.3

2.5 a

Formula for the energy of the capacitor W=q^2/2C: 0.2 Try to estimate as a flat capacitor: 0.3 Just applying the formula for the capacitance of a single sphere: 0 Dimensional analysis: 0

0.6

a

0.1

b

Estimation of the voltage as 2ER: 0.2 pt

0.4

Page 2 of 4

Page 12: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

2.6 a

Punishment for forgetting N: -0.2 pt

0.4

a

No punishment for the sign 0.3

b

Energy of the inductor: 0.2 Dimensional analysis: 0

0.4

b

0.1

2.7 a

LC-circuit frequency: 0.3 Dimensional analysis 0.2 Alternative ways

0.5

b

No punishment for Hz 0.1

b

Correct formula 0.2 No punishment for m

0.3

2.8 a

โŸจ๐‘ƒโ„Ž๐‘’๐‘Ž๐‘กโŸฉ =

โŸจ๐‘Š๐‘˜๐‘–๐‘›โŸฉ๐œ

=1

2๐œ๐‘š๐‘’ โ€ฆ.

Formula for power as mean kinetic energy divided over tau: 0.4 If calculated in the assumption of constant acceleration: -0.2

0.5

a

0.5

b

Formula P=R<I^2>: 0.3

0.8

b

0.2

Page 3 of 4

Page 13: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

Plasmonic Steam Generator T2

2.9

If they made <v^2> correct 0.4 pt If <v^2>=x0^2 omega^2: -0.2 P=I^2Rsc gives 0.3 pt

0.8

0.2

2.10 a

0.9 (0.3)

a

If at least one correct 0.9 If bulk expression with L and C: deduce 0.1 pt Vector diagram or differential equation: 0.3 Drawing equivalent RLC circuit: 0.2 If the student connect resistances in parallel: 0

0.3 (0.9)

b

0.1

b 0.1

b

0.1

2.11

Correct formula 0.4

0.6

If effficiency is calculated through the powers in single particle: 0

0.2

Page 4 of 4

Page 14: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 1 of 4

Solutions

3.1 The pressure is given by the hydrostatic pressure ๐‘(๐‘ฅ, ๐‘ง) = ๐œŒice๐‘”(๐ป(๐‘ฅ) โˆ’ ๐‘ง), which is zero at the surface. 0.3

3.2a

The outward force on a vertical slice at a distance ๐‘ฅ from the middle and of a given width โˆ†๐‘ฆ is obtained by integrating up the pressure times the area:

๐น(๐‘ฅ) = โˆ†๐‘ฆ๏ฟฝ ๐œŒice ๐‘” (๐ป(๐‘ฅ) โˆ’ ๐‘ง) d๐‘ง ๐ป(๐‘ฅ)

0=

12

โˆ†๐‘ฆ ๐œŒice ๐‘” ๐ป(๐‘ฅ)2

which implies that โˆ†๐น = ๐น(๐‘ฅ) โˆ’ ๐น(๐‘ฅ + โˆ†๐‘ฅ) = โˆ’ d๐นd๐‘ฅโˆ†๐‘ฅ = โˆ’โˆ†๐‘ฆ ๐œŒice ๐‘” ๐ป(๐‘ฅ) d๐ป

d๐‘ฅโˆ†๐‘ฅ.

This finally shows that

๐‘†b =๐›ฅ๐นโˆ†๐‘ฅโˆ†๐‘ฆ

= โˆ’ ๐œŒice ๐‘” ๐ป(๐‘ฅ)d๐ปd๐‘ฅ

Notice the sign, which must be like this, since ๐‘†๐‘ was defined as positive and ๐ป(๐‘ฅ) is a decreasing function of ๐‘ฅ.

0.9

3.2b

To find the height profile, we solve the differential equation for ๐ป(๐‘ฅ):

โˆ’๐‘†b

๐œŒice ๐‘”= ๐ป(๐‘ฅ)

d๐ปd๐‘ฅ

=12

dd๐‘ฅ

๐ป(๐‘ฅ)2

with the boundary condition that ๐ป(๐ฟ) = 0. This gives the solution:

๐ป(๐‘ฅ) = ๏ฟฝ2๐‘†๐‘๐ฟ๐œŒice ๐‘”๏ฟฝ

1 โˆ’ ๐‘ฅ/๐ฟ

Which gives the maximum height ๐ปm = ๏ฟฝ 2๐‘†๐‘๐ฟ๐œŒice ๐‘”

.

Alternatively, dimensional analysis could be used in the following manner. First notice that โ„’ = [๐ปm] = ๏ฟฝ๐œŒice๐›ผ ๐‘”๐›ฝ๐œb

๐›พ๐ฟ๐›ฟ ๏ฟฝ. Using that ๏ฟฝ๐œŒ๐œŒice๏ฟฝ = โ„ณโ„’โˆ’3, [๐‘”] = โ„’ ๐’ฏโˆ’2, [๐œ๐‘] =โ„ณโ„’โˆ’1 ๐’ฏโˆ’2, demands that โ„’ = [๐ปm] = ๏ฟฝ๐œŒ๐‘–๐›ผ๐‘”๐›ฝ๐œ๐‘๐›พ๐ฟ๐›ฟ๏ฟฝ = โ„ณ๐›ผ+๐›พโ„’โˆ’3๐›ผ+๐›ฝโˆ’๐›พ+๐›ฟ ๐’ฏโˆ’2๐›ฝโˆ’2๐›พ, which again implies ๐›ผ + ๐›พ = 0, โˆ’3๐›ผ + ๐›ฝ โˆ’ ๐›พ + ๐›ฟ = 1, 2๐›ฝ + 2๐›พ = 0. These three equations are solved to give ๐›ผ = ๐›ฝ = โˆ’๐›พ = ๐›ฟ โˆ’ 1, which shows that

๐ปm โˆ ๏ฟฝ๐‘†b

๐œŒ๐œŒice๐‘”๏ฟฝ๐›พ

๐ฟ1โˆ’๐›พ

Since we were informed that ๐ปm โˆ โˆš๐ฟ , it follows that ๐›พ = 1/2. With the boundary condition ๐ป(๐ฟ) = 0, the solution then take the form

๐ป(๐‘ฅ) โˆ ๏ฟฝ๐‘†b

๐œŒice ๐‘”๏ฟฝ1/2

โˆš๐ฟ โˆ’ ๐‘ฅ

The proportionality constant of โˆš2 cannot be determined in this approach.

0.8

Page 15: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 2 of 4

3.2c

For the rectangular Greenland model, the area is equal to ๐ด = 10๐ฟ2 and the volume is found by integrating up the height profile found in problem 3.2b:

๐‘‰G,ice = (5๐ฟ)2โˆซ ๐ป(๐‘ฅ) d๐‘ฅ๐ฟ0 = 10๐ฟ โˆซ ๏ฟฝ ๐œb ๐ฟ

๐œŒice ๐‘”๏ฟฝ1/2

๏ฟฝ1 โˆ’ ๐‘ฅ/๐ฟ d๐‘ฅ๐ฟ0 = 10๐ปm๐ฟ2 โˆซ โˆš1 โˆ’ ๐‘ฅ๏ฟฝ d๐‘ฅ๏ฟฝ1

0

= 10๐ปm๐ฟ2 ๏ฟฝโˆ’23

(1 โˆ’ ๐‘ฅ๏ฟฝ)3/2๏ฟฝ0

1 = 20

3๐ปm๐ฟ2 โˆ ๐ฟ5/2,

where the last line follows from the fact that ๐ปm โˆ โˆš๐ฟ. Note that the integral need not be carried out to find the scaling with ๐ฟ. This implies that ๐‘‰G,ice โˆ ๐ด๐บ5/4 and the wanted exponent is ๐›พ = 5/4.

0.5

3.3

According to the assumption of constant accumulation c the total mass accumulation rate from an area of width โˆ†๐‘ฆ between the ice divide at ๐‘ฅ = 0 and some point at ๐‘ฅ > 0 must equal the total mass flux through the corresponding vertical cross section at ๐‘ฅ. That is: ๐œŒ๐‘๐‘ฅโˆ†๐‘ฆ = ๐œŒโˆ†๐‘ฆ๐ปm๐‘ฃ๐‘ฅ(๐‘ฅ), from which the velocity is isolated:

๐‘ฃ๐‘ฅ(๐‘ฅ) =๐‘๐‘ฅ๐ปm

0.6

3.4

From the given relation of incompressibility it follows that d๐‘ฃ๐‘งd๐‘ง

= โˆ’d๐‘ฃ๐‘ฅd๐‘ฅ

= โˆ’๐‘๐ปm

Solving this differential equation with the initial condition ๐‘ฃ๐‘ง(0) = 0, shows that: ๐‘ฃ๐‘ง(๐‘ง) = โˆ’

๐‘๐‘ง๐ปm

0.6

3.5

Solving the two differential equations d๐‘งd๐‘ก

= โˆ’๐‘๐‘ง๐ปm

and d๐‘ฅd๐‘ก

=๐‘๐‘ฅ๐ปm

with the initial conditions that ๐‘ง(0) = ๐ปm, and ๐‘ฅ(0) = ๐‘ฅ๐‘– gives ๐‘ง(๐‘ก) = ๐ปm eโˆ’๐‘๐‘ก/๐ปm and ๐‘ฅ(๐‘ก) = ๐‘ฅ๐‘– e๐‘๐‘ก/๐ปm

This shows that ๐‘ง = ๐ปm ๐‘ฅ๐‘– /๐‘ฅ, meaning that flow lines are hyperbolas in the ๐‘ฅ๐‘ง-plane. Rather than solving the differential equations, one can also use them to show that

dd๐‘ก

(๐‘ฅ๐‘ง) =d๐‘ฅd๐‘ก๐‘ง + ๐‘ฅ

d๐‘งd๐‘ก

=๐‘๐‘ฅ๐ปm

๐‘ง โˆ’ ๐‘ฅ๐‘๐‘ง๐ปm

= 0

which again implies that ๐‘ฅ๐‘ง = const. Fixing the constant by the initial conditions, again leads to the result that ๐‘ง = ๐ปm๐‘ฅ๐‘–/๐‘ฅ.

0.9

3.6 At the ice divide, ๐‘ฅ = 0, the flow will be completely vertical, and the ๐‘ก-dependence of ๐‘ง found in 3.5 can be inverted to find ๐œ(๐‘ง). One finds that ๐œ(๐‘ง) = ๐ปm

๐‘ln ๏ฟฝ๐ปm

๐‘ง๏ฟฝ. 1.0

Page 16: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 3 of 4

3.7a

The present interglacial period extends to a depth of 1492 m, corresponding to 11,700 year. Using the formula for ๐œ(๐‘ง)from problem 3.6, one finds the following accumulation rate for the interglacial:

๐‘ig =๐ปm

11,700 yearsln ๏ฟฝ

๐ปm๐ปm โˆ’ 1492 m

๏ฟฝ = 0.17 m/year.

The beginning of the ice age 120,000 years ago is identified as the drop in ๐›ฟ O 18 in figure 3.2b at a depth of 3040 m. Using the vertical flow velocity found in problem 3.4, on has d๐‘ง

๐‘ง= โˆ’ ๐‘

๐ปmd๐‘ก, which can be integrated down to a depth of 3040 m, using a

stepwise constant accumulation rate:

๐ปm ln ๏ฟฝ๐ปm

๐ปm โˆ’ 3040 m๏ฟฝ = โˆ’๐ปm๏ฟฝ

1๐‘ง

๐ปmโˆ’3040 m

๐ปmd๐‘ง

= ๏ฟฝ ๐‘ia d๐‘ก120,000 year

11,700 year+ ๏ฟฝ ๐‘ig d๐‘ก

11,700 year

0

= ๐‘ia(120,000 year-11,700 year)+๐‘ig11,700 year

Isolating form this equation leads to ๐‘ia = 0.12, i.e. far less precipitation than now.

0.8

3.7b Reading off from figure 3.2b: ๐›ฟ O

18 changes from โˆ’43,5 โ€ฐ to โˆ’34,5 โ€ฐ. Reading off from figure 3.2a, ๐‘‡ then changes from โˆ’40 โ„ƒ to โˆ’28 โ„ƒ. This gives โˆ†๐‘‡ โ‰ˆ 12 โ„ƒ.

0.2

3.8a

From the area ๐ดG one finds that ๐ฟ = ๏ฟฝ๐ดG/10 = 4.14 ร— 105 m. Inserting numbers in the volume formula found in 3.2c, one finds that:

๐‘‰G,ice =203๐ฟ5/2๏ฟฝ

2๐‘†b๐œŒice๐‘”

= 3.46 ร— 1015 m3

This ice volume must be converted to liquid water volume, by equating the total masses, i.e. ๐‘‰G,wa = ๐‘‰G,ice

๐œŒice๐œŒwa

= 3.17 ร— 1015 m3, which is finally converted to a sea level rise,

as โ„ŽG,rise = ๐‘‰G,wa๐ดo

= 8.78 m.

0.6

3.8b

From the area and aspect ratio of Antarctica and the volume to area scaling law found in problem 3.2c, it follows that

โ„ŽA,rise

โ„ŽG,rise=๐‘‰A,wa

๐‘‰G,wa=

25๏ฟฝ๐ฟA๐ฟG๏ฟฝ5/2

=25๏ฟฝ

52๐ดA๐ดG๏ฟฝ5/4

= ๏ฟฝ52๏ฟฝ1/4

๏ฟฝ๐ดA๐ดG๏ฟฝ5/4

which gives a sea level rise of โ„ŽA,rise = 127 m.

0.2

3.9

From solving problem 3.8a, the total volume of the ice is known. From this number, we first deduce a radius of the spherical model of the Greenlandic ice sheet:

๐‘…ice = ๏ฟฝ3 ๐‘‰G,ice

4๐œ‹๏ฟฝ1/3

= ๏ฟฝ3 ร— 3.46 ร— 1015

4๐œ‹๏ฟฝ1/3

m = 93.8 km

This is an order of magnitude larger than the average sea depth of roughly 3 km, and therefore it doesnโ€™t matter much if we locate the sphere at the mean Earth radius, rather

1.6

Page 17: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 4 of 4

Figure 3.S1 Geometry of the ice ball (white circle) with a test mass ๐‘š (small gray circle).

than sea level. The total mass of the ice is

๐‘€ice = ๐‘‰G,ice ๐œŒice = 3.17 ร— 1018 kg = 5.31 ร— 10โˆ’7๐‘šE

The total gravitational potential felt by a test mass ๐‘š at a certain height โ„Ž above the surface of the Earth, and at a polar angle ๐œƒ (cf. figure 3.S1), with respect to a rotated polar axis going straight through the ice sphere is found by adding that from the Earth with that from the ice:

๐‘ˆtot = โˆ’๐บ๐‘šE๐‘š๐‘…E + โ„Ž

โˆ’๐บ๐‘€ice๐‘š

๐‘Ÿ= โˆ’๐‘š๐‘”๐‘…๐ธ ๏ฟฝ

11 + โ„Ž/๐‘…๐ธ

+๐‘€๐‘–๐‘๐‘’/๐‘š๐ธ

๐‘Ÿ/๐‘…๐ธ๏ฟฝ

where ๐‘” = ๐บ๐‘š๐ธ/๐‘…๐ธ2. Since โ„Ž/๐‘…E โ‰ช 1 one may use the approximation given in the problem, (1 + x)โˆ’1 โ‰ˆ 1 โˆ’ ๐‘ฅ, |๐‘ฅ| โ‰ช 1, to approximate this by

๐‘ˆtot โ‰ˆ โˆ’๐‘š๐‘”๐‘…๐ธ ๏ฟฝ1 โˆ’โ„Ž๐‘…๐ธ

+๐‘€๐‘–๐‘๐‘’/๐‘š๐ธ

๐‘Ÿ/๐‘…๐ธ๏ฟฝ.

Isolating โ„Ž now shows that โ„Ž = โ„Ž0 + ๐‘€๐‘–๐‘๐‘’/๐‘š๐ธ๐‘Ÿ/๐‘…๐ธ

๐‘…๐ธ, where โ„Ž0 = ๐‘…๐ธ + ๐‘ˆtot/(๐‘š๐‘”). Using again that โ„Ž/๐‘…E โ‰ช 1, trigonometry shows that ๐‘Ÿ โ‰ˆ 2๐‘…E|sin(๐œƒ/2)|, and one has:

โ„Ž(๐œƒ) โˆ’ โ„Ž0 โ‰ˆ๐‘€ice/๐‘šE

2|sin(๐œƒ/2)|๐‘…๐ธ โ‰ˆ1.69 m

|sin(๐œƒ/2)|.

To find the magnitude of the effect in Copenhagen, the distance of 3500 km along the surface is used to find the angle ๐œƒCPH = (3.5 ร— 106 m)/๐‘…๐ธ โ‰ˆ 0.55, corresponding to โ„ŽCPH โˆ’ โ„Ž0 โ‰ˆ 6.2 m. Directly opposite to Greenland corresponds to ๐œƒ = ๐œ‹, which gives โ„ŽOPP โˆ’ โ„Ž0 โ‰ˆ 1.7 m. From the radius of the ice ball, one finds that ๐œƒGRL = ๐‘…๐‘–๐‘๐‘’/๐‘…๐ธ โ‰ˆ0.0147, which corresponds to โ„ŽGRL โˆ’ โ„Ž0 โ‰ˆ 229.8 m. Finally, the differences become โ„ŽGRL โˆ’ โ„ŽCPH โ‰ˆ 223.5 m, and โ„ŽCPH โˆ’ โ„ŽOPP โ‰ˆ 4.5 m, where โ„Ž0 has dropped out.

Total 9.0

Page 18: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 1 of 4

Marking scheme

3.1

๏ฟฝ(๏ฟฝ, ๏ฟฝ) = ๏ฟฝ๏ฟฝ๏ฟฝ( (๏ฟฝ) โˆ’ ๏ฟฝ)

Getting hydrostatic pressure right gives 0.3.

Deduct 0.2 for writing (๏ฟฝ) or ๏ฟฝ instead of (๏ฟฝ) โˆ’ ๏ฟฝ (wrong boundary condition)

Deduct 0.1 for writing ๏ฟฝ instead of (๏ฟฝ). 0.3

3.2a

๏ฟฝ = โˆ’๏ฟฝ๏ฟฝ๏ฟฝ

0.5 points are given for solving the problem by dimensional analysis, which misses an

overall pre-factor.

No deduction for the sign, since one could in principle have looked at negative ๏ฟฝ.

0.9

3.2b

(๏ฟฝ) = ๏ฟฝ2๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ1 โˆ’ ๏ฟฝ/๏ฟฝ

Setting up and solving the differential equation (integrating) gives 0.5.

Implementing the correct boundary conditions gives 0.3

No deductions /additions for absolute value around x.

Deduct 0.1 for missing factor of โˆš2 due to simple arithmetic error.

Deduct 0.2 for solving problem only by dimensional analysis (+boundary condition),

which also misses the factor of โˆš2 and leaves the pre-factor unknown.

Deduct 0.4 for applying wrong boundary condition at ๏ฟฝ = ๏ฟฝ.

Deduct 0.2 for expressing solution in terms of ๏ฟฝ, but not actually finding expression

for ๏ฟฝ in terms of the given parameters.

0.8

3.2c

๏ฟฝ = 5/4

Give 0.3 for getting the correct idea, involving an integral over the height profile times

the ground-area along y.

Give 0.2 for getting the scaling of ๏ฟฝ with ๏ฟฝ correct.

Deduct 0.1 for misunderstanding the definition of ๏ฟฝ, as in e.g. finding the scaling with ๏ฟฝ

rather than with .

0.5

Page 19: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 2 of 4

3.3

!"(๏ฟฝ) = #๏ฟฝ $

Setting up mass balance and solving the problem gives 0.6.

Dimensional analysis cannot be used here since ๏ฟฝ/ ๏ฟฝ is dimensionless.

Deduct 0.2 for getting the sign and/or pre-factor wrong.

0.6

3.4

!%(๏ฟฝ) = โˆ’ #๏ฟฝ $

Setting up the correct differential equation and solve it gives 0.6.

No deduction for using !"(๏ฟฝ) without having solved for this first (i.e. without solving

problem 3.3)

Deduct 0.2 for getting the sign and/or pre-factor wrong.

Deduct 0.2 for wrong implementation of the boundary condition, like keeping an

undetermined integration constant.

0.6

3.5

๏ฟฝ = $๏ฟฝ&/๏ฟฝ

Finding that ๏ฟฝ โˆ 1/๏ฟฝ gives 0.6. If done by solving differential equation, then give 0.4

for setting up the equation and 0.2 for integrating it.

Implementing the initial condition gives 0.3.

No deduction if they happen to write (๏ฟฝ) instead of ๏ฟฝ.

0.9

3.6

((๏ฟฝ) = $# ln+ $๏ฟฝ ,

Setting up the right equation, including the integral gives 0.4.

Integrating (solving) the equation gives 0.3.

Implying the correct physical boundary conditions gives 0.3.

1.0

Page 20: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 3 of 4

3.7a

#- = 0.17m/year c6 = 0.12m/year

Getting the correct value for #- gives 0.3.

Getting the correct value for #6 gives 0.5.

We will accept a range of significant digits between 2 and 4 without deduction.

If #6 is calculated by exactly the same method as #- (i.e. neglecting the influence of the

previous interglacial age) deduct 0.3 (i.e. then the nearly correct value (c6 =0.13m/year ) obtained this way will give a total of 0.2).

0.8

3.7b

โˆ†9 โ‰ˆ 12โ„ƒ

Given that the data are very noisy, give all 0.2 points for finding a number of โˆ†9 = 12โ„ƒ ยฑ 4โ„ƒ. Give only 0.1 for โˆ†9 = 12โ„ƒ ยฑ 8โ„ƒ, (and outside โˆ†9 = 12โ„ƒ ยฑ4โ„ƒ), unless it is supplemented by a qualified and valid discussion, which can then

allow giving 0.2.

No deduction for wrong sign on โˆ†9.

Deduct 0.1 for missing units on โˆ†9.

0.2

Page 21: Andrei Andryieuski, Andrei Lavrinenkoย ยท 2017. 3. 7.ย ยท Maximum impact speed ๐‘ฃimpmax arises from three contributions: (I) The velocity ๐‘ฃb of the body at distance ๐‘ŽE (Earth

The Greenlandic Ice Sheet T3

Page 4 of 4

3.8

โ„Ž?,@A๏ฟฝ = 8.78m

We subdivide the problem into four basic elements which are bound to enter the

solution in some way.

Give 0.1 for finding the correct value of ๏ฟฝ.

Give 0.2 for finding the correct values of ๏ฟฝ&BC.

Give 0.2 for converting ice volume to water volume, using the two different given

densities.

Give 0.1 for converting the water volume to a sea-level rise.

0.6

3.9

โ„ŽDEF โˆ’ โ„ŽGEE = 4.5 m

In grading this problem, we are searching for correct elements in three areas, and one

can earn up to 0.6 points from each of the following three categories:

1) Stating the relevant physical principles (fx. Involving gravitational potentials from

two bodies, sea level as equipotential surface, etc.) and putting them together in a

meaningful way.

2) Writing up the correct potentials, with the relevant lengths, masses, etc., and

expressing the ideas from pt.1 in correct mathematical form.

3) Actually solving the equations, making the appropriate expansions/approximations,

carrying out geometry/trigonometry.

1.8

Total 9.0