andré gagalowicz projet mirages inria - rocquencourt - domaine de voluceau 78153 le chesnay cedex

48
André Gagalowicz Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex E-Mail : [email protected] Tél : 01 39 63 54 08 TOWARDS VIRTUAL TRY-ON TECHNOLOGY

Upload: callia

Post on 05-Feb-2016

25 views

Category:

Documents


0 download

DESCRIPTION

TOWARDS VIRTUAL TRY-ON TECHNOLOGY. André Gagalowicz Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex E-Mail : [email protected] Tél : 01 39 63 54 08. TABLE OF CONTENTS. I. INTRODUCTION II. CONTEXT II.1. Input II.2. Output - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

André Gagalowicz Projet MIRAGES

INRIA - Rocquencourt - Domaine de Voluceau78153 Le Chesnay Cedex

E-Mail : [email protected]él : 01 39 63 54 08

TOWARDS VIRTUAL TRY-ON TECHNOLOGY

Page 2: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

TABLE OF CONTENTSI. INTRODUCTIONII. CONTEXT

II.1. InputII.2. Output

III. SIMULATION PROCESSIII.1. Numerical model for textile materialIII.2. Scene creationIII.3. Evolution of the system over time

IV. RESULTSV. CONCLUSION

Page 3: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

I. INTRODUCTION

Aim : Commercial software in order to buy garments through internet

Presentation restricted to the case of WOVEN textiles

Limitation to a planar surface approach

Page 4: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

APPLICATION: VIRTUAL TRY-ON(+ VIRTUAL PROTOTYPING)

FUNDING: Big Contract from ANR RNTL (french government) for 3 years started

in April 2007

Partners:- TEMAT INDUSTRIES (3D scanner SYMCAD)- LA REDOUTE (biggest French garment distributor)- Nadina Corrado (Fashion designer)- ENSITM (French Institute specialist of the mechanics of textile)- INRIA (MIRAGES project; specialist in garment simulation)

Target: produce a first prototype

Page 5: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Textiles have a

NONLINEARBehaviour

HYSTERETIC

Page 6: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

TENSION

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18

warpweft

F

Page 7: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

SHEAR

-8

-6

-4

-2

0

2

4

6

8

-10 -8 -6 -4 -2 0 2 4 6 8 10

warpweft

F

Page 8: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

BENDING

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

warpweft

M

K

Page 9: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

II.1 InputII. CONTEXT

Page 10: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.1 Numerical model for textile material

a) Classical mass/spring model (finite elements)

Page 11: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

II.2 Output

Evolution of the system over time

- 3D data

- images

II. CONTEXT

Page 12: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.1 Numerical model for textile materials

III.2 Creation of the scene

III.3 Evolution of the system over time

III. SIMULATION PROCESS

Page 13: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.1 Numerical Model for Textile Material (continued)

b) Improved mass/spring model• Warp/Weft structure is preserved

• Mixture of bipolar springs (tension and shear) and quadripolar (angular) springs

Page 14: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.1 Numerical model for textile material (continued)

c) 2D pattern Meshing

Industrial representation of 2D patterns

Page 15: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.2 Creation of the scene

III.2.1. Scene description

Page 16: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.2.2. Garment Confection

a) 2D patterns positioned AUTOMATICALLY around the numerical mannequin

b) Sewing of 2D patterns

c) Gravity is added

Page 17: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III-2-2 a: Automatic prepositioning of the garment

CRUCIAL for the application and VERY DIFFICULT

Our solution solves the problem GEOMETRICALLYThe 3D garment appears sewn around the body and with a

very small amount of spring deformations (.001 mm of average deformation)

The simulator is only used for the final tuning (tremendous reduction of the computing time)

Page 18: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

How is it done ? THE 3D MANNEQUIN

Hypothesis :

• The body is standing

• The body has his legs and arms put apart symmetrically

Page 19: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

LABELLING OF THE 2D PATTERN CONTROL POINTS

Example of information which must exist on the 2D pattern :In green, sewing lines

In red, measurement lines

Blue dots : 2D pattern control points

Page 20: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

MAPPING OF THE 2D PATTERNS CONTROL POINTS ON THE BODY OF THE MANNEQUIN

Flat prepositioning of the 2D pattern :• 1st step : projection of the 3D points of the body (corresponding to the control points of the 2D patterns) on the YoZ plane of the mannequin• 2nd step : mapping of the 2D pattern mesh on the YoZ plane

Page 21: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.2.2. b 2D pattern sewing

2D patterns are sewn along sewing edges

Remark : Ambiguïty of the sewing information on the pattern !

Page 22: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.2.3. Blowing of the Garment around the body

Page 23: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.3. Evolution of the system over time

III.3.1. Integration of the law of dynamics

III.3.2. Control of the nonlinearity, the viscosity model and of the hysteresis

III.3.3. Spatial coherence maintenance

Page 24: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.3.1 Integration of the law of dynamics

• Fondamental law of dynamics

Fext = m. A + c v

• Implicit integration method (Baraff)• viscosity parameters measured from real textile

Page 25: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.3.2 Control of the nonlinearity and of the hysteresis

• Nonlinear and hysteretical springs control the KES of textile

• Validation by simulating Kawabata tests

Page 26: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

RESULTS ON THE CONTROL OF THE KES

INSURE THAT OUR MECHANICAL MODEL MIMICS PRECISELY REAL WARP/WEFT TEXTILE

DOES NOT CONTROL COMPRESSION

Page 27: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

TENSION FITTING

0

100

200

300

400

500

600

0 0.02 0.04 0.06 0.08 0.1 0.12

Virtual measurePhysic measure

F

Page 28: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

SHEAR FITTING

Real measure

Virtual measure

F

-10 -8 -6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

Page 29: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

BENDING FITTING

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

-250 -200 -150 -100 -50 0 50 100 150 200 250

M reelM mesure

M

K

Page 30: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

EXPERIMENTAL DETERMINATION OF DAMPING PARAMETERS in THE EQUATION OF DYNAMICS: cV

AIM: obtain a total phisical control of the equation of

dynamics

Page 31: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Damping model (Rayleigh)

F = ( M + K) V• M : mass matrix

• K : stiffness matrix

and have never been computed precisely before.

Page 32: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Rayleigh’s damping model applied for fabric model

3 spring types => 3 stiffness matrices K.K = Kbnd + Ksh + Ktns

Bending Shearing Tensile

Rayleigh's Model => Fdamp=( M+bnd Kbnd+sh Ksh+tns Ktns) V

Page 33: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Identification of Rayleigh’s model parameters(1)

Page 34: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Identification of Rayleigh’s model parameters(2)

Page 35: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Real fall down

Page 36: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Global Minimization

Ferror=MA-MG-Fsprings-Fdamp

Minimizing ||Ferror || by differentiatingLinear system : A ( bnd sh tns)T =b

Numerically A is ill-conditioned => the solution is not stable

Use of an iterative minimization algorithm

Page 37: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

RESULT: Comparison between the real and the virtual FREE-FALL in the VISCOUS part of

the trajectory

Page 38: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

III.3.3 Spatial coherence maintenance

• Detection of collisions

• Response to collisions

(done implicitly by the integration scheme)

Page 39: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Detection of Collisions• Optimisation through the use of bounding boxes

• Use of buckets

Page 40: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Response to Collisions: collision avoided IMPLICITELY (BARAFF method)

Page 41: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

Implementation

• SGI 02 Unix Workstation• C++• Tcl scripts for the scene configuration and kinematics

Page 42: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

IV. RESULTS

Page 43: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

V. CONCLUSIONNumerous soft objects have the same behaviour as textilesExample : Muscular tissues,…

Extension to the volumetric case is STRAIGHTFORWARD but requires HEAVY computations actually

Page 44: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

SOME SIMULATION RESULTS

Page 45: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

CONTINUED

Page 46: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

BUCKLING MODELING

Page 47: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

STUDY OF BUCKLING(REAL)

Page 48: André Gagalowicz  Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex

STUDY OF BUCKLING(SIMULATED)