anderson acceleration for tiamat - icerm · alex toth tiamat overview anderson acceleration...

45
Anderson for Tiamat Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration for Tiamat A. Toth 1 , C.T. Kelley 1 , R. Pawlowski 2 1 North Carolina State University 2 Sandia National Laboratories ICERM Workshop on Numerical Methods for Large-Scale Nonlinear Problems and Their Applications September 3, 2015 1 / 45

Upload: halien

Post on 04-Oct-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Anderson Acceleration for Tiamat

A. Toth1, C.T. Kelley1, R. Pawlowski2

1North Carolina State University

2Sandia National Laboratories

ICERM Workshop on Numerical Methods for Large-ScaleNonlinear Problems and Their Applications

September 3, 2015

1 / 45

Page 2: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Outline of Topics

1 Tiamat Overview

2 Anderson Acceleration Integration

3 Numerical TestsSingle Fuel RodSingle Assembly

4 Conclusions

2 / 45

Page 3: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Tiamat

Tiamat is a tool being developed in CASL forpellet-cladding interaction (PCI) analysis

PCI is controlled by the complex interplay ofthe mechanical, thermal and chemicalbehavior of a fuel rod during operation

Tiamat couples the single rod fuelperformance code Bison-CASL with othertools in VERA which provide a whole corerepresentation of fission density and coolantconditions in order to compute quantities ofinterest for identifying PCI failure.

3 / 45

Page 4: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

VERA Code Suite

4 / 45

Page 5: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Components of Tiamat

5 / 45

Page 6: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Bison-CASL

Fuel performance code which modelsthe thermo-mechanical behaviorbehavior of a single fuel rod

Built on INL MOOSE framework, usesfinite element geometric representationand JFNK to solve the governingsystems of PDEs

Used to compute key figures of merit(ex. max hoop stress) for identifyingfuel rods requiring further detailed PCIcalculations

Figure: Bison-CASL fuelrod hoop stress

6 / 45

Page 7: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

COBRA-TF (CTF)

Subchannel thermal hydraulics code maintained byPenn State University

Utilizes a two-fluid, three-field representation oftwo-phase flow. Solves equations for:

Continuous vapor (mass, momentum andenergy)

Continuous liquid (mass, momentum andenergy)

Entrained liquid drops (mass and momentum)

Non-condensable gas mixture (mass)

Only parallel to the assembly level

7 / 45

Page 8: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

MPACT

Primary neutronics code in VERA, co-developed by ORNL andUniversity of Michigan

Includes several methods for solving the neutron transportequation, workhorse method is 2D/1D solver with coarse-meshfinite-difference acceleration

Utilizes the subgroup method and embedded self-shieldingmethod for cross section evaluation

8 / 45

Page 9: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Data Transfer Kit (DTK)

Software designed to provide parallel services for scalablemesh/geometry searching and data transfer developed at ORNL

Determines mapping for moving data between source and targetarrays using the rendezvous algorithm

9 / 45

Page 10: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

PIKE

New Trilinos package for black box multiphysics coupling

Provides interfaces for:

single-physics model evaluatorsdata transfersobserversparallel distribution managementlocal/global status tests

Currently only includes Picard-based solvers

10 / 45

Page 11: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Solution Process

1 Estimate hot full-power(HFP) state with CTF andMPACT

2 Model transition from coldzero-power (CZP) to hotzero-power (HZP) inBison-CASL

3 Model transition from HZPto HFP in Bison-CASL

4 Model reactor state at HFPconditions for one or moretime step

Figure: Bison-CASL ramp to HFP

11 / 45

Page 12: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Data Transfers

In the coupled HFP solve phase, Tiamat utilizes 5 data transfers

Bison to MPACT: Fuel temperatures (Tf ,B → Tf ,M)MPACT to Bison-CASL: Fission heat generation (qM → qB)Bison-CASL to CTF: Heat flux (q′′B → q′′C)CTF to Bison-CASL: Clad surface temperatures (Tc,C → Tc,B)CTF to MPACT: Coolant temperature and densities(Tw,C → Tw,M, ρw,C → ρw,M)

12 / 45

Page 13: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Picard Iteration - Block Gauss-Seidel Map

Algorithm 1: Gauss-Seidel Nonlinear Solve for Tiamat

Given q0M,T

0c,C,T

0w,C, ρ

0w,C,T

0f ,B, q

′′B,0.

for k = 0, 1, . . . until converged doTransfer Bison-CASL to MPACT, Tk

f ,B → Tkf ,M

Transfer CTF to MPACT, Tkw,C → Tk

w,M and ρkw,C → ρk

w,M

Using Tkf ,M, Tk

w,M, and ρkw,M, solve MPACT and obtain qk+1

M

Transfer MPACT to Bison-CASL, qk+1M → qk+1

BTransfer CTF to Bison-CASL, Tk

c,C → Tkc,B

Using Tkc,B and qk+1

B , solve Bison-CASL and obtain Tk+1f ,B and

q′′B,k+1

Transfer Bison-CASL to CTF, q′′B,k+1 → q′′C,k+1

Using q′′C,k+1, solve CTF and obtain Tk+1c,C ,Tk+1

w,C , and ρk+1w,C

end

13 / 45

Page 14: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Block Gauss-Seidel Map with Damping

Algorithm 2: Damped Gauss-Seidel Nonlinear Solve for TiamatGiven q0

M,T0c,C,T

0w,C, ρ

0w,C,T

0f ,B, q

′′B,0.

for k = 0, 1, . . . until converged doTransfer Bison-CASL to MPACT, Tk

f ,B → Tkf ,M

Transfer CTF to MPACT, Tkw,C → Tk

w,M and ρkw,C → ρk

w,M

Using Tkf ,M, Tk

w,M, and ρkw,M, solve MPACT and obtain qk+1

M

Transfer MPACT to Bison-CASL, qk+1M → qk+1

Bif k > 1 then

Damp the transferred power, qk+1B = (1− ω)qk

B + ωqk+1B

endTransfer CTF to Bison-CASL, Tk

c,C → Tkc,B

Using Tkc,B and qk+1

B , solve Bison-CASL and obtain Tk+1f ,B and q′′B,k+1

Transfer Bison-CASL to CTF, q′′B,k+1 → q′′C,k+1

Using q′′C,k+1, solve CTF and obtain Tk+1c,C ,Tk+1

w,C , and ρk+1w,C

end

14 / 45

Page 15: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Tiamat Communication Layers

Issue: Applications live in independent processor space, sosignificant idle time for sequential solves

15 / 45

Page 16: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Picard Iteration - Block Jacobi Map

Algorithm 3: Jacobi Nonlinear Solve for Tiamat

Given q0M,T

0c,C,T

0w,C, ρ

0w,C,T

0f ,B, q

′′B,0.

for k = 0, 1, . . . until converged doTransfer Bison-CASL to MPACT, Tk

f ,B → Tkf ,M

Transfer CTF to MPACT, Tkw,C → Tk

w,M and ρkw,C → ρk

w,M

Transfer MPACT to Bison-CASL, qkM → qk

BTransfer CTF to Bison-CASL, Tk

c,C → Tkc,B

Transfer Bison-CASL to CTF, q′′B,k → q′′C,kUsing Tk

f ,M, Tkw,M, and ρk

w,M, solve MPACT and obtain qk+1M

Using Tkc,B and qk

B, solve Bison-CASL and obtain Tk+1f ,B and

q′′B,k+1

Using q′′C,k, solve CTF and obtain Tk+1c,C ,Tk+1

w,C , and ρk+1w,C

end

16 / 45

Page 17: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Convergence criteria

Global convergence of the coupled system is determined by the followingcriteria

Successful local convergence of each of the applications

Bison-CASL: the change in the maximum fuel temperature acrosseach of the fuel rods is less than some tolerance εT

CTF: the change in the maximum clad temperature and maximumcoolant temperature is less than εT

MPACT: the relative change (in the l2 norm) in the power distributionis less than a tolerance εP, and the change in the dominanteigenvalue keff is less than a tolerance εk

17 / 45

Page 18: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Advantages/Drawbacks of Picard Iteration

AdvantagesSimple to implementFew requirements forapplication codes

DrawbacksRelatively slow convergencePoor robustness 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

16

18

20

Damping factor

Ite

ratio

ns

80% Power

100% Power

120% Power

Figure: Picard iteration dependenceon damping

18 / 45

Page 19: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Can We Do Better?

Would like to utilize a method which converges more quickly thanPicard, or is at least less sensitive to ad hoc damping factors

Newton isn’t an option as the residual evaluation is too expensivefor JFNK (Roger’s talk), and we can’t get derivatives from theapplications

Anderson acceleration is an ideal candidate, as it requires nomore information to implement than Picard and only one functionevaluation per iteration.

19 / 45

Page 20: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Anderson Acceleration Algorithm

Algorithm 4: Anderson accelerationGiven initial iterate u0, storage depth parameter m ∈ N, andmixing parameter βSet u1 = (1− β)u0 + βG(u0)for k = 1, 2, . . . until converged do

Set mk = min{m, k}Determine α(k) which solves:

minα∈Rmk+1

∥∥∥∥∥∥mk∑j=0

αjF(uk−mk+j)

∥∥∥∥∥∥ ,such that

∑mkj=0 αj = 1, where F(u) = G(u)− u

Set uk+1 = (1− β)∑mk

j=0 α(k)j uk−mk+j + β

∑mkj=0 α

(k)j G(uk−mk+j)

end

20 / 45

Page 21: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Implementation

What do we choose for u? How do we define G?

Let u be comprised of some subset of the transferred dataDerive G from Picard iteration, i.e. take specified input u,perform one Picard iteration, and define the correspondingoutput as G.In order to leverage existing data transfer objects, we letapply Anderson acceleration by intercepting and overwritingtransfer target arrays

21 / 45

Page 22: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Block Gauss-Seidel Map

Given Tf ,M,Tw,M, ρw,M,Tc,B

1 Using Tf ,M, Tw,M, and ρw,M, solve MPACT and obtain q̂M

2 Transfer MPACT to Bison-CASL, q̂M → q̂B

3 Using Tc,B and q̂B, solve Bison-CASL and obtain T̂f ,B and q̂′′B4 Transfer Bison-CASL to MPACT, T̂f ,B → T̂f ,M

5 Transfer Bison-CASL to CTF, q̂′′B → q̂′′C6 Using q̂′′C, solve CTF and obtain T̂c,C,T̂w,C, and ρ̂w,C

7 Transfer CTF to MPACT, T̂w,C → T̂w,M and ρ̂w,C → ρ̂w,M

8 Transfer CTF to Bison-CASL, T̂c,C → T̂c,B

22 / 45

Page 23: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Block Gauss-Seidel Map

Define:

GGS

Tf ,MTw,Mρw,MTc,B

=

T̂f ,M

T̂w,Mρ̂w,M

T̂c,B

23 / 45

Page 24: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Block Jacobi Map

Given Tf ,M,Tw,M, ρw,M,Tc,B, qB, q′′C1 Using Tf ,M, Tw,M, and ρw,M, solve MPACT and obtain q̂M

2 Using Tc,B and qB, solve Bison-CASL and obtain T̂f ,B and q̂′′B3 Using q′′C, solve CTF and obtain T̂c,C,T̂w,C, and ρ̂w,C

4 Transfer Bison-CASL to MPACT, T̂f ,B → T̂f ,M

5 Transfer CTF to MPACT, T̂w,C → T̂w,M and ρ̂w,C → ρ̂w,M

6 Transfer MPACT to Bison-CASL, q̂M → q̂B

7 Transfer CTF to Bison-CASL, T̂c,C → T̂c,B

8 Transfer Bison-CASL to CTF, q̂′′B → q̂′′C

24 / 45

Page 25: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Block Jacobi Map

Define:

GJAC

Tf ,MTw,Mρw,MTc,BqBq′′C

=

T̂f ,M

T̂w,Mρ̂w,M

T̂c,B(1− ω)qB + ωq̂B

q̂′′C

25 / 45

Page 26: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Scaling of Variables

Issue: The different fields comprising u may exist on vastly differentscales, and large magnitude fields may dominate the least-squaresproblem in Anderson acceleration

We introduce scaled variables v = Mu, where M is a diagonal scalingmatrix, and instead of u = G(u) apply Anderson to the scaled fixed-pointproblem

v = MG(M−1v) ≡ H(v)

For temperature and density unknowns we let Mi,i = (u0)i. For powerunknowns, we scale by the the initial average power in the fuel rod. Heatflux unknowns are scaled by the global average initial heat flux.

26 / 45

Page 27: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Single Fuel Rod

First consider simulation of a single fuel rod at HFP

Tests run with 12 processors, 10 allocated to MPACT, 1 forBison-CASL, 1 for CTF

We use convergence tolerancesεP = 1e− 4, εT = 0.1◦C, εk = 1e− 5

8-group test cross sections are used in MPACT

27 / 45

Page 28: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Sensitivity to Damping/Storage Depth

0.2 0.4 0.6 0.8 1300

350

400

450

500

550

600

Damping Factor

Solu

tion T

ime (

s)

Picard

Anderson−1

Anderson−2

Anderson−3

Figure: Run times for Gauss-Seidel map, varying storage depthparameter and damping level

28 / 45

Page 29: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Convergence of the Fixed-Point Residual

0 2 4 6 8 1010

−5

10−4

10−3

10−2

10−1

100

Iteration

Re

lative

fix

ed

−p

oin

t re

dis

ua

l

Gauss−Seidel map, damping = 0.5

Picard

Anderson−1

Anderson−2

Anderson−3

0 5 10 15 20 25 3010

−5

10−4

10−3

10−2

10−1

100

IterationR

ela

tive

fix

ed

−p

oin

t re

dis

ua

l

Jacobi map, damping = 0.5

Picard

Anderson−1

Anderson−2

Anderson−3

29 / 45

Page 30: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Agreement With Picard Solution

0 100 200 300 400−5

−4

−3

−2

−1

0

1

2

3

4x 10

−4

Height (cm)

Re

lative

diffe

ren

ce

Fuel Temperature

Gauss−Seidel

Jacobi

0 100 200 300 400−1.5

−1

−0.5

0

0.5

1

1.5x 10

−4

Height (cm)

Re

lative

diffe

ren

ce

Clad Temperature

Gauss−Seidel

Jacobi

Figure: Relative difference of Anderson-2 solutions from Picard solutions

30 / 45

Page 31: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Agreement With Picard Solution

0 100 200 300 400−2.5

−2

−1.5

−1

−0.5

0

0.5

1x 10

−3

Height (cm)

Re

lative

diffe

ren

ce

Fission Rate

Gauss−Seidel

Jacobi

0 100 200 300 400−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1x 10

−3

Height (cm)

Re

lative

diffe

ren

ce

Heat Flux

Gauss−Seidel

Jacobi

Figure: Relative difference of Anderson-2 solutions from Picard solutions

31 / 45

Page 32: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Sensitivity to Power Variation - GS Map

0.2 0.4 0.6 0.8 1300

350

400

450

500

550

600

Damping Factor

Solu

tion T

ime (

s)

80% Power

Picard

Anderson−2

0.2 0.4 0.6 0.8 1300

350

400

450

500

550

600

Damping Factor

Solu

tion T

ime (

s)

100% Power

Picard

Anderson−2

0.2 0.4 0.6 0.8 1300

350

400

450

500

550

600

Damping Factor

Solu

tion T

ime (

s)

120% Power

Picard

Anderson−2

32 / 45

Page 33: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Sensitivity to Power Variation - Jacobi Map

0.2 0.4 0.6 0.8 1300

350

400

450

500

550

600

650

700

750

Damping Factor

Solu

tion T

ime (

s)

80% Power

100% Power

120% Power

Figure: Anderson-2 run times

At each power level, Picard only converges in fewer than 30 iterations atone tested damping level (Anderson iterations take between 10-20)

33 / 45

Page 34: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Scaled vs Unscaled Fixed-Point Problem

0 0.2 0.4 0.6 0.8 10

5

10

15

Mixing parameter

Ite

ratio

ns

Gauss−Seidel Map

Scaled

Unscaled

(a) Block Gauss-Seidel map

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

Mixing parameter

Ite

ratio

ns

Jacobi Map

Scaled

Unscaled

(b) Block Jacobi map

Figure: Iteration counts from applying Anderson-2 to the unscaledproblem u = G(u) and the scaled problem v = MG(M−1v)

34 / 45

Page 35: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

CASL Progression Problem P6a

Progression problem P6asimulates a single 17x17 PWRassembly at HFP

Tests run with 64 processors, 32allocated to MPACT, 31 toBison-CASL, 1 for CTF

We use convergence tolerancesεP = 1e− 4, εT = 1◦C, εk = 1e− 5

Except when noted otherwise,results use 8-group test crosssections in MPACT

Figure: 17x17 lattice, fuel in blue,guide tubes in white, instrument

tube in yellow

35 / 45

Page 36: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Single Assembly Results

Iteration Count Time(s)Picard (Gauss-Siedel) 8 6111

Anderson-2 (Gauss-Seidel) 6 5237Picard (Jacobi) 17 5675

Anderson-2 (Jacobi) 12 4919

Table: Single assembly test results, damping factor 0.5

36 / 45

Page 37: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Application timing breakdown

Bison-CASL CTF MPACTPicard (Gauss-Siedel) 145 131 180

Anderson-2 (Gauss-Seidel) 155 126 193Picard (Jacobi) 148 127 172

Anderson-2 (Jacobi) 149 137 190

Table: Average application solve times

As a result of good balance in the solve times, each Jacobiiteration takes on average approximately 40% of the solve time ofa Gauss-Seidel iteration

37 / 45

Page 38: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Agreement With Picard Solution

0 50 100 150 200 250 300 350−1.5

−1

−0.5

0

0.5

1

1.5x 10

−4

Height (cm)

Re

lative

diffe

ren

ce

Assembly Averaged Fuel Temperature

Gauss−Seidel

Jacobi

0 50 100 150 200 250 300 350−2

−1.5

−1

−0.5

0

0.5

1

1.5

2x 10

−5

Height (cm)

Re

lative

diffe

ren

ce

Assembly Averaged Clad Temperature

Gauss−Seidel

Jacobi

Figure: Relative difference of assembly averaged Anderson-2 solutionsfrom Picard solutions

38 / 45

Page 39: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Agreement With Picard Solution

0 50 100 150 200 250 300 350

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10−4

Height (cm)

Re

lative

diffe

ren

ce

Assembly Averaged Fission Rate

Gauss−Seidel

Jacobi

0 50 100 150 200 250 300 350

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10−4

Height (cm)

Re

lative

diffe

ren

ce

Assembly Averaged Heat Flux

Gauss−Seidel

Jacobi

Figure: Relative difference of assembly averaged Anderson-2 solutionsfrom Picard solutions

39 / 45

Page 40: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Anderson-2 Mixing Parameter Variation

Mixing Parameter Iteration Count Time(s)0.25 11 71720.5 6 5237

0.75 8 61751.0 7 6029

Table: Results for Anderson-2 with Gauss-Seidel map,varying mixing parameter

40 / 45

Page 41: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Varying Cross Section Libraries

Iteration Count Time(s) keffPicard (8-group) 8 6111 1.165224

Anderson-2 (8-group) 6 5237 1.165224Picard (47-group) 8 13930 1.164680

Anderson-2 (47-group) 7 13190 1.164681

Table: Comparison of Picard and Anderson-2 for Gauss-Seidel map,varying cross section libraries

41 / 45

Page 42: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Varying Cross Section Libraries

Bison-CASL CTF MPACTPicard (8-group) 145 131 180

Anderson-2 (8-group) 155 126 193Picard (47-group) 147 139 961

Anderson-2 (47-group) 166 118 1042

Table: Average application solve times

With higher fidelity cross sections, MPACT takes roughly 75% ofthe Gauss-Seidel iteration time, so little gain from solvingapplications concurrently

42 / 45

Page 43: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Conclusions

Anderson acceleration displays improved robustness overPicard iteration in that its performance is generally lesssensitive to variation in parameters that need to be tuned forPicardIn general, Anderson at worst converges as quickly as Picardwith optimally chosen damping, generally provides marginalimprovementAnderson with block Jacobi map can outperformGauss-Seidel map, but good balance in application solvetimes is criticalScaling of the unknowns has been seen to be important inrelated calculations, and this merits further investigation inthis context

43 / 45

Page 44: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Acknowledgements

This research was supported by the Consortium for AdvancedSimulation of Light Water Reactors (http://www.casl.gov), anEnergy Innovation Hub (http://www.energy.gov/hubs) for Modelingand Simulation of Nuclear Reactors under U.S. Department ofEnergy Contract No. DE-AC05-00OR22725

This research used resources of the Oak Ridge LeadershipComputing Facility at the Oak Ridge National Laboratory, which issupported by the Office of Science of the U.S. Department ofEnergy under Contract No. DE-AC05-00OR22725.

44 / 45

Page 45: Anderson Acceleration for Tiamat - ICERM · Alex Toth Tiamat Overview Anderson Acceleration Integration Numerical Tests Single Fuel Rod Single Assembly Conclusions Anderson Acceleration

Andersonfor Tiamat

Alex Toth

Tiamat Overview

AndersonAccelerationIntegration

Numerical TestsSingle Fuel Rod

Single Assembly

Conclusions

Questions?Comments?Suggestions?

45 / 45