and the iowa highway research board iowa dot project...

156
. . \. ! ' i ' ' ! ' D.Y. Lee T. Demirel August 1987 Final Report Beneficial Effects of Selected Additives on Asphalt Cement Mixes Submitted to the Highway Division, Iowa Department of Transportation, and the Iowa Highway Research Board lae · ring iowa state university Iowa DOT Project HR-278 ER! Project 1802 ISU-ERI-Ames-88070 /;ti Iowa Department of Transportation

Upload: others

Post on 16-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

. r---~

. \.

! '

i '

' ! '

D.Y. Lee T. Demirel August 1987

Final Report

Beneficial Effects of Selected Additives on Asphalt Cement Mixes

Submitted to the Highway Division, Iowa Department of Transportation, and the Iowa Highway Research Board

lae · ring resear~"?8~itute

iowa state university

Iowa DOT Project HR-278 ER! Project 1802

ISU-ERI-Ames-88070

/;ti Iowa Department ~l of Transportation

Page 2: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

D.Y. Lee T. Demirel August 1987

Final Report

Beneficial Ettects of Selected Additives on Asphalt Cement Mixes

Submitted to the Highway Division. Iowa Department of Transportation and the Iowa Highway Research Board Iowa DOT Project HR-278 ERi Project 1802 lSU-ERI-AMes-88070

Engineering Research Institute Iowa State University

Iowa Department ot Transportation

Page 3: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

iii

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION

2. PROGRAM OF STUDY

3. EFFECTS OF ADDITIVES ON THE PROPERTIES OF ASPHALT CEMENTS-PHASE I

Materials Procedures Results and Discussions 3.3.1. Rheological Properties 3.3.2. Tensile, Ductility and Elastic Properties 3.3.3. Chemical Properties 3.3.4. Temperature Susceptibility .3.3.S. Potential for Cracking and Rutting

4. EFFECTS OF ADDITIVES ON THE PROPERTIES OF ASPHALT CONCRETE

Page

xiii

1

2

5

5 .8 14 14 29 34 so 56

MIXTURES-PHASE II 61

4. L Materials 4.2. Procedures 4.3. Results and Discussion

4.3.1. Marshall Properties 4.3.2. Resilient Moduli 4.3.3. Tensile Strength 4.3.4. Moisture Damage

4.3.4.1. Marshall Immersion 4.3.4.2. Tensile-Strength 4.3.4.3. Resilient Modulus 4.3.4.4. Life Benefit-to-Cost Ratio

4.~.s. Fatigue Resistance 4.3.6. Rutting Resistance

S. STRUCTURAL AND PERFORMANCE EVALUATION-PHASE III

5.t. The Asphalt Institute Method 5.2. The University of Nottingham (Brown) Method

6. SUMMARY AND CONCLUSIONS

7, RECOMMENDATIONS

8. ACKNOWLEDGMENTS

9. REFERENCES

61 63 67 67 74 74 74 80 80 86 87 88 96

105

105 112

123

133

135

137

Page 4: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

iv

TABLE OF CONTENTS ('Cont'd.) Page

APPENDIX A: TENSILE STRENGTH TEST 143

APPENDIX B: ELASTIC RECOVERY TEST 145

APPENDIX C: DROPPING BALL TEST 147

APPENDIX D: NOMClGRAPH FOR PREDICTING ASPHALT STIFFNESS 149

APPENDIX E: NOMOGRAPH FOR PREDICTING CRACKING TEMPERATURE 151

APPENDIX F: SAMPLE COMPUTER PRINTOUT FROM DAMA 153

I

Page 5: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

v

LIST OF TABLES

Table 1. Sample identification~Phase I.

Table 2. Rheological properties.

Table 3. Tensile properties of binders.

Table 4. lJuctility and elastic properties.

Table 5. Temperature susceptibility.

Table 6. Low-temperature cracking properties.

Table 7. Mix identification~Phase II.

Table Sa. Mix properties, LS/AC-5. b. Mix properties, G/AC-5. c. Mix properties, LS/AC-20. d. Mix properties, G/AC-20.

Table 9a. Indirect tensile strength and resilient modulus, t.S/AC-5.

b. Indirect tensile strength and resilient modulus, G/Ac-s.

c. Indirect tensile strength and resilient modulus, LS/AC-20.

d. Indirect tensile strength and resilient modulus, G/AC-20.

Table 10. Results of fat'tgue analyses (microstrain).

Table 11. Results of DAMA structural analyses.

Table 12a. Summary of structul'al analyses by Brown method, LS/AC-5.

b. Summary of structural analyses by Brown method, G/AC-5 (Mixes 2, 4, and 6).

c. Summary of structural analyses by Brown method, LS/AC-20 (Mixes 7, 9, and 11).

d.. Summary of structural analyses by Brown method, G/AC-20 (Mixes 8, 10, and 12).

6

15 .

30

33

51

59

64

68 69 70 71

75

76

77

78

94

107

114

115

116

117

Table 13. Summary of effects of additives on binder properties. 124

Table 14. Summary of effects of additives on mixture properties. 125

Page 6: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

vii

LIST OF FIGURES

Fig. 1. Binder study flow chart.

Fig. 2. Dropping ball test, definitions of times.

Fig. 3. Definitions of toughness and tenacity.

Fig. 4. Penetration at 77° F (25° C).

Fig. 5. Penetration at 41° F (5° C).

Fig. 6. Ring-and-ball softening point.

Fig. 7. Viscosity at 140° F (60° C) and 275° F (135° C).

Fig. g, Viscosity at 77° F (25° C).

Fig. 9. Viscosity ratio at 77° F (25° C).

Fig. 10. Percent of retained penetration.

Fig. 11. Typical Class S, B, and W behavior of asphalt.

Fig. 12a. BTDC of Asphadur-modified AC-5. b. BTDC of lime-modified AC-5. c. BTDC of Styrelf-modified AC-5.

Fig. 13a. BTDC of Asphadur-modified AC-20. h. BTDC of lime-modified AC-20. c. BTDC of Styrelf-modified AC-20.

Fig. 14. Toughness.

Fig. 15. Tenacity.

Fig. 16. Results of dropping ball test.

Fig. 17a. HPLC chromatogram of AC-5 without additives. h. HPLC chromatogram of SBS in AC-20.

Fig. lR. Percent of LMS determined by HPLC.

Fig. 19. Fluorescence micrographs of Asphadur in AC-5.

Fig. 20. Fluorescence micrographs of Asphadur in AC-20.

Fig. 21. Theta/two-theta scan, AC-5 versus AC-20.

9

12

12

17

18

19

20

22

23

24

26

27 27 27

28 28 28

31

32

35

36 37

38

41

42

44

Page 7: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

viii

LIST OF FIGURES (Cont'd.)

Page

Fig. 22. 'rheta/two-theta scan, AC-5 with additives. 45

Fig. 23. Theta/two-theta scan, AC-5 with additives (vertical scale offsets). 46

Fig. '24 .• Two-theta scan, lime (5%) in AC•5. 48

Fig. 25. Two .. theta s·can, Asphadur (4%) i.n AC-5. 49

Fig. 26. Penetration index. 53

Fig. 27. Viscosity temperature susceptibility. 54

Fig. 211. Penetration-viscosity number (PVN) • 55 a. AC•5. b. AC-20.

Fig. '29. Low-temperature cracking prop!!rties. 58 . .

Fig. 30. Aggregate .r,iradations. 62

Fig. 31. Mixture evaluation flow chart. · 66

Fig. 3?.s. Marshall stability. 72 b. Marshall stiffness. 73

Fig. ~3. Indirect tensile strength <ITS). 79

Fig. 34. Moisture damage, Marshall immersion stability. 81

Fig. 35a. Moisture damage, ITS, and -resilient modulus, AC-5/LS. 82 I b. Moisture damage, ITS, and resil~ent modulus, ' ' AC-5/G. 83 I

c. Mobtute damage, ITS, and resilient modulus, AC-20/LS. 84

d. Moisture damage, ITS, and resilient modulus, AC-20/G. 85

Fig. 36a. Percent change of design life artd benefit-to-cost ratio, AC-5/LS. 89

b. Percent change of design life arid benefit-to-cost ratio, AC-5/G. 90

c. Percent change of design life and benefit-to-cost ratio, AC-20/LS. 91

d. Percent change of design life and benefit-to-cost ratfo, AC-20/G. 92

Page 8: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

ix

LIST OF FIGURES (Cont'd.)

Fig. 37. Fatigue strain. 95 a. AC-5. b. AC-20.

Fig. 38. Typical strain versus time curves, Mixes C9 and AH9. 97

Fig. 39. Effect of aggregate type on Smix versus Sbit curves, Mixes Cl and C2. 98

Fig. 40. Effect of AC grade on Smix versus Sbit curves, Mixes C3 and C9. 99

Fig. 41. Effect of AC content on Smix versus Sbit curves, Mixes KS, KlO, and Kl2. 100

Fig. 42. Effect of additives on Smix versus Sbit curves. 101

Fig. 43. Rut ~epth estimation by Shell procedure. 103

Fig. 44a. Structural analyses by DAMA procedure, Hl • 4 in., SGE • 4,500 psi.

b. Structural analyses by DAMA procedure, Hl. • 4 in., SGE • 12 ,000 psi. .

c. Structural analyses by DAMA procedure, Hf'• 8 in., SGE • 4,500 psi.

d .• Structural analyses by DAMA procedure, Hl • 8 in., SGE • 12,000 psi.

108

108

110

111

Fig. 45a. Structural analyses by Brown procedure, LS/AC-5. 118 b. Structural analyses by Brown procedure, LS/AC-20. 119 c. Structural analyses by Brown procedure, G/AC-5. 120 d. Structural analyses by Brown procedure, G/AC-20. 121

Page 9: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

· xi

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted

to metric (SI) units as follows.:

MULTIPLY

inches

feet

square inches

square yards

knots

pounds

kips

Pounds per cubic foot

pounds

kips

pounds per square inch

pounds per cubic inch

gallons IU. S. liquid)

Fahrenheit degrees

BY

2.54

0.3048

6.4516

0.83612736

0.5144444

0.45359237

0.45359237

16.018489

4.448222

4.448222

6.894757

2.7144712

3.785412

5/9

TO OBTAIN

centimeters

meters

square centimeters

square meters

meters per second

kilograms

metric tons .

kilograms per cubic meter

newtons

kilonewtons (kN)

kilopascals

kilopascals per centimeters

cubic decimeters

Celsius degrees of Kelvins*

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use tile following formula: C = (5/9)(F-32). To obtain Kelvin (K) readings, use: K • (5/9)(F-32) + 273.15.

Page 10: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

xiii

ARSTRACT

Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS)

block copolY111ers, styrene-butadiene rubber (SBR) latex, and hydrated

lime on two asphalt cements were evaluated. Physical and chemical tests

were perforn)ed on a total of 16 binder blends. Asphalt concrete mixes

were prepared and tested with these modified binders and two aggregates

(a crushed limestone and a gravel), each at three asphalt content

levels.

Properties evaluated on the modified binders (both original and

thin-film oven aged) included: viscosity at 25° C, 60° C and 135° C with

0 0 capillary tube and cone-plate viscometer, penetration at 5 C and 25 C,

0 softening point, force ductility, and elastic recovery at 10 c,

dropping ball test, tensile strength, and toughness and tenacity tests

at 25° c. From these the penetration index, the viscosity-temperature

susceptibility, the penetration-viscosity number, the critical

low-temperature, long loading-time stiffness, and the cracking

temperature were calculated. In addition, the binders were studied with

x-ray diffraction,. reflected fluorescence microscopy, and

high-performance liquid chromatography techniques.

Engineering properties evaluated on the 72 asphalt concrete mixes

containing additives included: Marshall stability and flow, Marshall

stiffness, voids properties, resilient modulus, indirect tensile

strength, permanent deformation (creep), and effects of moisture by

vacuum-saturation and Lottman treatments. Pavement sections of varied

asphalt concrete thicknesses and containing different additives were

compared to control mixes in terms of structural responses and pavement

lives for different subgrades.

Page 11: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

xiv

Although all of the additives tested improved at least one aspect of

the binder/mixture properties, no additive was found to improve all the

relevant binder/mixture properties at the same time. On the basis of

overall considerations, the optimum beneficial effects can be expected

when the additives are used in conjuncti6n with softer grade asphalts.

Page 12: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

1

1. INTRODUCTION

Because of the inherent properties of paving asphalts traditionally

produced as waste products and because of the inadequacy of current

specifications, asphalt paving mixtures~even those designed and

constructed with the best of current technology and knowledge~fre-

quently do not possess all of the desirable characteristics at the same

time. Wtth heavier truck loads and higher traffic volumes as well as

decreased resources for timely maintenance, asphalt pavements have

eXJ>erienced accelerated deterioration.

In an attempt to improve the performance of asphalts and to

increase the service life of asphalt pavements, additives have been

incorporated to change the characteristics of the asphalt or the asphalt

mixture. Some of these additives are hydrated lime, sulfur, anti-

oxidants, antistripping agents, carbon black, asbestos fiber, and a

variety of polymers (11,12,19,22,2.3,24,26,34,37,40,46,47, and 50).

' . Highway Research Project HR-278 was initiated in 1985 to study three of

the more promising additives (hydrated lime, Asphadur, and Styrelf) and

to identify their beneficial effects. A project progress report

summarizing the results of Phase I (Binder Evaluation) during the first

year was submitted in August 1986 (25). Phase II (Mixture Evaluation)

of the project was modified in October 1986 to include four more

polymerized asphalt cements (PACs). This Final Report describes all

work conducted and the findings resulting from HR-278.

Page 13: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

3

2. PROGRAM OF STUDY

Since most of the asphalt pavement problems that can be attributed

to binders are stripping, thermal cracking, rutting, and hardening of

the hinders, the study was mainly designed to evaluate the effects,

benefits, and mechanisms of additives on these properties.

The research was conducted in three phases. Phase I was the

evaluation of the effects of selected additives on the durability and

rheological properties of asphalt cement binders and their effects on

the rutting and low-temperature cracking susceptibility of the asphalt

pavements. Phase II was an evaluation of the effects of these additives

on asphalt concrete mixtures in terms of rutting, stripping, stability,

and low-temperature cracking potential. Phase II.I was the prediction of

performance with a pavement design and. analysis system, such as DAMA.

Page 14: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

3. EFFECTS OF ADDITIVES ON THE PROPERTIES OF ASPHALT Cl!:MENTS--PHASE I

3.1. Materials

Two asphalt cements, one from Bituminous Materials of Terre Haute,

Indiana, and the other from F.xxon of Baytown', Texas, were evaluated in

conjunction with three additives. Two of the additives (Asphadur and

lime) were added to the two asphalt cements at two levels of concen­

tration each; the third additive (SBS~styrene-butadiene-styrene) was

incorporated in the .these asphalts. by the supplier at one single

"optimum" concentration and were received and tested as modified

asphalts (Sty~elf). The factorial combination and sample identifi­

cations of the 16 binders are given in Table 1.

Styrelf was developed by the French Highway Department and was

introduced in the United States by Group Elf Aquitaine. Styrelf is a

unique combination of asphalt cement and the polymer SBS. It involves a

chemical reaction between the polymer and the asphalt. The reaction

starts from the small chain polymer and then increases in size while

linkinl! irreversibly to the bituminous matrix. The ouantity of polymer

and reactant have been selected to obtain optimum performance (10).

Usually 3% of the polymer is added. Chemical analysis shows that with

thi.s concentration the reactional places of the bitumen have been

blocked by a polymer-bitumen bond or a bitumen-bitumen bond. Therefore,

no further reaction, such as oxidation, can take place. Different tests

performed by the manufacturer have shown that the Styrelf will improve

the performance of the pavement.

Page 15: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

6

Table I. Saaple Identification - Phase I.

AC GRADE AC·S · AC·Z8

ADDITIVE CONTENT 0 L II 0 L H

ASPHAOUR I, . 2A .. 3A 1 .8A 9A A: PARTIALLY DISSOLVED 28 38 88 98 8: TOTALLY DISSOLVED. (4~) 1611 (4\) (6\)

HYDRA TEO LI NE . 4 ~ 10 11 ftlXIHG 6 NIN f 280 f (5\) (IOU (5\) (10\)

STY RELF 6 12

O : no additive I control l. l : low level. ' H : high level. A : 1lxlng 3 aln.@ 400 F. 8 : 1lxlng 3 •In. t 320 F follow~ by heating In oven f 320 F for 12 hrs.

Page 16: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

7

~ydrated lime has been used in pavements as an antistripping agent

for a long time. Recently, a number of studies have been carried out to

evaluate the performance of lime in asphalt pavements, not only as an

antistripping airent but also an an agent to improve the other qualities

of asphalt. 'l'be National Lime Association's bulletin (37) has presented

the beneficial effects of lime in asphalt pavements. In addition to

functioning as an antistripping agent, hydrated lime may also act as a

modifier in asphalt cement by reducing the rate of hardening.

Considering these properties, we selected lime for this study, and

its performance was evaluated when it was added only in the binder.

High-calcium hydrated .lime of the Snow-flake brand was used. This lime

met the ASTM specifications C207 (Type N) and C6 (Type N) and Federal

specifications SS-L-351 (Class M).

Asphadur is a grained, mixed polymer, known as polyolefin, and is

manufactured by Schiker and Company of Austria under the trade name of

Asphadur. This material was distributed in the United States by the

Minnesota Mining and Manufacturing Company of Minneapolis, Minn., under

the trade name "Stabilizing Addi.tive 59'l0" (48). The process of

preparing asphalt mix with the additive polyolefin was patented in the

United States by Paul Raberl of Austria in December 1974 (14). The Iowa

Department of Transportation, after using this additive in different

pavements across Iowa, stated that "this additive is capable of

improving the viscosity, stability, flow and strength characteristics of

asphalt cement concrete, making it less susceptible to rutting and

shoving" (17). Although Asphadur is generally added to the asphalt mix,

the research on Phase I was done by adding it in the binder.

Page 17: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

8

3. 2. Procedures (See ~.chart in Fig. 1.)

The samples with Asphadur were prepared with two different mixing

plans, as shown in Table 1. The samples tabelled "a" were mixed for 3

minutes at 400 • F to get partially dissolved Asphadur. The samples

labelled "b" were mixed for 3 minutes at 320° F and then followed by

heating in oven.~t 320° F for 12 hours to get totally dissolved

Asphadur. Hydrated lime was mixed for 6 minutes at 280° F and

transferred into the cans. In each case, 800 grams of asphalt cement

were taken and heated to mixing temperature. The additive was mixed in

with a motorized stirrer while constant temperature was maintained.

In order to evaluate heat stability and the effects .of hot plant

mixing on these modified binders, the 16 binders were treated by

following the thin film oven test ('l'FOT) procedure. The samples before

and after TFOT treatments were.identified as 0 and R samples,

respectively.

In order to determine rheological·properties, penetrations at 41° F

(~· C) and 77° F (25° C), the softening point (R & B), and viscosities'

at 77° F (25° C), 140° F (60° C) and 275° F (135° C) were determined on

both original and thin-film oven test residues of all binder blends.

From these results, the penetration index, the viscosity-temperature

susceptibility, the penetration viscosity number, the critical

low-temperature, long loading-time stiffness, and the cracking '

temperature were calculated.

I i

Page 18: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

HR-278 P.hase I Test Program·

Penetration @41 & n F

Rheological properties

·softening point

Viscosity i1. 140, 275

I

'----1 Correlations 1-----'

G\sphalt cement

prt>perties

Temperature susceptibility Classification

·Additives

Chemical Proll9rties

m.A

properties

Rutting

Stiffness

Fig. 1. Binder study flow chart.

pattern

"'

Page 19: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

10

Additional nonstan<lard physical tests that have been used to

characterize polymer-modified asphalts were also explored.

• Tensile strength: At the Elf Aquitaine Asphalt Laboratory,

Terre Haute,. Indiana, tensile stress at 68 ° F (20 ° C) and 800%

elongation (or at fracture) of all binders were determined, with

an Instron tensile tester, at the rate of pull of SO cm per min.

This procedure is basically ASTM D412 (Standard Method for

Rubber Properties in Tension), which is used routinely by the

rubber industry to evaluate tensile strength. The modified

procedure is given in Appendix A.

• Force ductility: The maximum force required to pull the

standard ductility specimen with cross-sectional area of 1 sq

cm, at rate of pull of S cm p~r min and at a temperature oj: ·

10° O (S0° F), was determined by attaching a load cell to one

end of the ductility mold (2).

• 'l!:lastic recovery: The procedure developed by the Elf Mineraloel

Laboratories in Germany (23) was used to measure elastic

recovery of all binders (Appendix B). A standard ductility

spec:l.men is stretched to 20 cm at 10° C (so·• F) and held for

five minutes. The specimen is then cut in the middle with a

pair of scissors and allowed to stand undisturbed. .After one

hour, the combined length of the. two sections is determined.

The percent recovery is defined as follows:

20 - L ' % recovery •

20 x 100

where L • length after one hour.

Page 20: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

11

• Dropping ball test: A very simple procedure for characterizing

viscoelastic materials under constant stress conditions was

developed in the Elf Aquitaine research labs in Solaize, France

(23) (Appendix C). Exactly 8.0 grams of asphalt are poured into

a machined metal cup and a ball of specified size and weight is

embedded to a predetermined depth. The apparatus is inverted so

that the ball is free to fall. The time required for the

embedded portion of the ball to reach the point tangent to the

surface of the cup is defined as tl. The time required for the

ball to drop from that tangent plane to a point 30.0 cm below is

defined as t2 (Fig. 2). Time tl is closely.related to the

viscosity of the asphalt or its initial tensile strength. Time

t2 depends somewhat on viscosity, but it is primarily affected

by the tensile strength or elastic flow of the asphalt as it is

stretched by the weight of the steel ball. The ratio t2/tl

provides a rough relationship of a material's elasticity or

tensile stength after elongation to its original viscosity. The

test was run at ambient temperatures.

• Toughness and tenacity: Another constant strain method for

monitoring tensile strength of modified binders is the toughness

and tenacity test (40). A metallic hemispherical head is

embed<ied in hot molten asphalt to a depth of 7/1.6 in. The head

and the asphalt are cooled . . to 25 C (77° F). The head is then

pulled from the asphalt at the rate of 20 in. per min, and a

load-deformation curve is plotted. Toughness and tenacity are

Page 21: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

VI

!!l

12

~ .·

l+J SL (+)

~ .....

~ 0 0 "' .., ...

II . {+J . .

TIME t = 0 TIME t = t 1 TIME t = t 1 + t 2

Fig. 2. Dropping ball test, definition of times.

50 ..._

40 -

TOUGHNESS • A + B TENACITY • B TOUGHNESS • 41.8 IN. LBS. TENACITY• 27.8 IN. LBS.

• 30 ...

~ ~

20 ...

10 ....

I A I i8 I . . .

' 0 I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 EXTENSION, IN.

Fig. 3. Definitions of toughness and tenacity.

16

Page 22: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

13

defined by the areas under the force-deformation curve (Fig. 3).

The areas under the curve were measured by a planimeter.

Tenacity is the wor~ performed tn pulling the binder material

away from the tension head to its maximum extension. Toughness

is the total work performed in pulling the tension head out of

the sample as well as stretching the material while it is still

attached to the head.

While chemical characterization of asphalt and polymer-modified

asphalts is difficult, since no two asphalts are chemically identical

and no conventional chemical methods are readily adaptable to the

modified asphalts, three special techniques have been found to show

potential in identifying effects of these additives:·x-ray diffraction,

reflected microscopy, and high-pressure liquid chromatography (RPLC).

• High-pressure liquid chromatography (HPLC): Samples of all

binder blends were sent to Montana State University for

determination of molecular.size-distribution (MSD) by

high-pressure liquid chromatography (RPLC) with a Waters

Associates instrument and ultrastyragel columns (18).

• Reflected fluorescence microscopy: The homogeneity of

dispersion for microstructure) of the additives in asphalt was

observed by using an Olympus light microscope (Model BHM) with

reflected fluorescence attachment under blue excitation (8).

Page 23: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

14

• X-ray Diffraction: This technique was used to determine any

change in the strocture and composition of asphalt, especially

any chemical change, because of the additives (.53). The technique

uses an x-ray beam deflec'ted from the surface of the material

with a certain wavelength and at a certain angle. The wave­

length of this deflected ray depends on the spacings between

the planes (d) and angle of incidence ($). The following

relationship governs in this case.

n:\ • 2d sin e

where ;\ • wavelength

Samples l, 2b, 4, 6, 7, Sb, 10 and 12 were selected as

representative samples for the x-ray diffraction. Two different

types of scans, i.e. 6/26 scan and 26 scan with e = 5,0 and 10•,

were used for the above samples (1).

3.3. Results and Discussion

3.3.1. Rheological Properties

For all the samples tested, the penetration values at 25° C and

5° C, are given in Table 2. Asphalt cement AC-5 and AC-20 were used in

samples labelled 1-6 and 7-12 respectively. The results, listed in

Table 2, are for both original and thin film oven test residue samples.

Page 24: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

15

Table Z. Rheological properties.

BATER I Al SAKPLE VIS, 60 VIS, 135 P1,Z5 Pa,5 S.P VIS,25 No. poise stokes c poise

I I

AC-5 1-0 459 1.1 IU 10 39 2.38E+05 AC-S+4l ASPHAOUR 2b-O 1149 3.4 115 z 44 6,38E+OS AC-5+6\ ASPHAOUR lb-0 11500 9.5 98 12 49 l.33E+06 AC-5+5\ ll"E •-o 1100 1.5 Ill 8 42 2.40£+05 STYRELF IN AC-5 6-0 908 3.8 135 12 44 2.93£+05

AC-20 1-0 2215 3.4 55 2 50 2.38£+06 AC-2BHl ASPHAOUR 8b-O 50000 12.0 35 5 56 S.96E+06 AC-20+6' ASPHAOUR 9b-O 10000 16.0 20 4 58 8.48£+06 AC-ZOtS\ LIKE 10-0 4100 4.4 44 4 Sl 2.79E+06 STYRELF IN AC-20 IZ-0 2812 6.Z 35 z 53 3.38£+06

AC-5 1-R 868 z.s 90 3 43 5.02£+05 AC-5+4\ ASPHAOUR 2b-R c 8.8 35 I 61 8.53E+06 AC-5+6\ ASPHAOUR 3b-R c c 19 6 59 l.l0Et07 AC-5+5\ LIME 4-R c c 33 5 57 6.56£+06 STYRELF IN AC-5 6-R 8935 8.2 36 4 59 7.39£+06

AC-20 7~R 4264 9.0 35 0 63 t.53E+07 AC-20+41 ASPHAOUR 8b-R c c 12 l 66 2.49£+07 AC-20+6\ ASPHADUR 9b-R c c II I. 11 2. SOE+07 AC-ZO+S\ LIKE 10-R c c 13 2 67 2.88E+07 STYRELF IN AC-20 IZ-R 11914 18.1 u I 66 3.97£+07

a : partially dissolved. b : totally dissolved. c : could not be deter1lned due to high viscosity and/or nonh0110genelty. VIS, 60 : viscosity @ 60 C. VIS, 135 : viscosity @ 13.5 c. P1, ZS : penetration @ 25 C, 100 g, 5 sec. Pl, 5 : penetration @ 5 C, 100 g, 5 sec. S.P : R & 8 softening point. 0 : original. R : thin fll1 oven test residue. VIS, ZS : viscosity @ 25 C and shear rate of 5 x E-Z/sec.

Page 25: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

16

Note that samples 2a, 3a, 5, Sa, 9a and 11, for both original and thin

film oven test residues, may give erroneous results because of

nonhomogeneity. For all other samples, a general decrease in penetra-

tion values is clear. The point to be considered is that samples 3b and

9b (with the higher percentage of Asphadur) and samples 6 and 12 (SBS)

have lower penetration at 25° C but have higher penetration at 5° C than

the nontreated asphalt. The penetration values are also represented as

bar diagrams in Figs. 4 and 5.

Tab.le 2 also lists the values of ring and ball softening point.s for . . all the samples. The samples with additives have higher softening

points than the base binder in all the cases. Also the softening point

increases with the increase in percentage of additives (Fig. 6) .•

Viscosities at 60° C and 135° C were determined by capillary tubes.

Because of the nonhomogeneity of some sa~ples, a Brookefield viscometer

was used to estimate the viscosities at the above-mentioned

temperatures. The viscosities are listed in Table 2 and plotted in Fig.

7. Because most of the entries for thin film oven test residue are

missing, only the results of the original samples will be discussed

here. The samples with additives show a substantial increase in

viscosit1.es at both temperatures with the exception of sample 2a-O at

~0° C and sample 4-0 at 135° C. This discrepancy may be due to the

nonhomogeneity of the samples. Also the samples with Asphadur show a

hi~her viscosity than the samples with lime and SBS.

Page 26: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I 0

' .. f l.

17

Penetration @ 25 ° C AC-5 170...---------------------...;_;._ ____________________ __,

110 J'7-rl

150 140 130 120 110 100 10 10 70 IO 50 40 30 20 10 o..i::...~~..;:i......J~"'P~:l.-..L.t;...(.µ...;~~.t:..-'..q.:~.:s...-1:~~~

. .••. 2b 3b 4

~P~ lder!l~ca~on

Penetration @ 25° C AC-20

IO...-------~------------------------------------~

so

llO

20

10

7 lb lb 10 .12

"7jpl• ld•ntlflcotlon 0 cs:sl R

Fig. 4. Penetration at 77° F (25° C).

Page 27: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial
Page 28: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

19

70 AC-5 + additives

AC-20 + additive.s 70

80

u

~

f 40

30

20

10

7 So Sb 9o 9b 10 11 12

WJi'ple ldentiflcotion 0 ISSI R

Fig. 6. Ring-and-ball softening point.

Page 29: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

.. • .!!';" o.,. a.c .o ,. .. ~" l~ ~c >

9

8

7

6

5

4

3

2

11

10

1-0

1-0

Fig. 7.

2b-O

2b-O

20

3b-O

3b-O

Somple ldentlflcotlon

60°C

4-0 6-0

135°C

4-0 6-0

Viscosity at 140° F (60° C) and 275° F (135° C) (AC-5).

Page 30: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

21

Viscosities at 25° c, which were determined with a cone-plate

viscometer, .are listed in Table 2 and plotted in Fig. 8. The

'viscosities were determined for a shear rate of 5 x 10-2 sec-l The

samples with additives showed higher viscosities than the base asphalt,

especially for Asphadur-modified binders.

The effect of heat, as determined by viscosity and penetration at

?.5° C, on the thin film oven test residues, are shown in Figs. 9 and 10,

respectively. The hardening of modified asphalts in terms of retained

. penetration varied from 19% to 30% for AC-5 and ranged from 30% to 55%

for AC-?.O. These values were considerably lower than the reported 54%

to 78% penetration retention for SBS-modified asphalts (24). The

drastic hardening of modified asphalts is also reflected in increases.in

viscosity. Modified AC-5 asphalts were more sensitive to thin film oven

heating than those of modified AC-20 asphalts. The only data on

viscosity ratios at 60° C for modified binders were those of Styrelf;

the viscosity ratio was 9.8 for ~BS modified AC-5 .and 4.2 for SBS

modified AC-20. These were much higher than the reported values of 1.7

to 2.Q (?.4). The asphalt cements without additives had a viscosity

ratio at 60° C of 1.9 for both AC-5 and AC-20. The normally specified

maximum ratio (e.g. ASTM D3~81) is 3 to 5.

Viscosities at 60° !'! and 135° C, penetrations at 25° C and 5° C,

and softening points were used to determine the penetration index (PI),

viscosity-temperature susceptibility (VTS), and penetration-viscosity

number (PVN) at 60° C and 135° c. The effects of add:l.tives on

temperature susceptibility will be discussed later.

Page 31: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

II

e

7

8 I • li 5

j§ i.! 4

• " 3

2

35

10

22

Viscosity@ 25 C Olfglnol

1-0 2b-O 3b-O 4-0 5-0 6-0 7-0 8b-O 9b-O 10-0 11-0 12-0

Sample ldentlftectlon

Viscosity·~ 25 C 1'FOT Mll:fdu•

1-R 21>-R 311-R 4-R 15-R 11-11 7-11 Bb-R lb-R 10-R 11-R 12-R

Semple ldontlftcot!on

Fig. 8. 0 0 Viscosity at 77 F (25 C).

Page 32: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

23

VISCOSITY RATIO AT 25 C AC-5

:io~~~~~~~~~~~~~~~~~~~~~~~~--,

28

28

24

22

20

18

16

14

12

10

8

8

4

2 -i,-.,-.,-,,...,.,

o...t....:;...:;,,c...::.J....L-'..<:;,.L.-<::.J....LL.J.;...i:::..~-1:,,c...o;..::....:.i.,.....r::...::...o;..::..4..l......r::...:...;..::.LJ

ASPHALT IDENTIFICATION

VISCOSITY RATIO AT 25 C AC~20

:io~~~~~~~~~~~~~~~~~~~~~~~~--.

28

28

24

22

20

18

18

14

12

10

a 6 _i-,,.--r..,...,,..,

4

2

o..L.<~.L.<:..l-..t...:;...:;.L.<:..i_..L~.-C-U..-L.L.<;,4-~-t..L..<;..::....:.i.,.....r:..L..c,.t...LI

ASPHALT IDENTIFICATION

Fig. 9. Viscosity ratio at 77° F (25° C).

Page 33: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

"'l ,... OQ . ..... 0

"' "' '1

" ~ rt

0

"' '1

"' rt

"' ,... l:l

"' "" .., "' l:l .. rt '1

"' rt ,... 0 l:l

Retained Penetration, n

Ill 0

0

....

-0 ... 0

Ir {' Asphadur,

~

4%:::'\J

l 3!10.._~ Asphadur, • ~ :1 .: ::'I g -;, .: 0

Lime, !>'I; '~ 0 :s

:: ~ ~"'~\" "-'-\ ~

... 0

6%

N""I"-'-' ~t:.vre.i.r '-'-'-.I

UI 0

~~

... 0

f; I

IV 0

~

I

I

I

I

Retained Penetration, X

0

"' ...

0 ... 0

Ii' 1 Asphadur,

...

UI

6%

·~~~~

"'

~ .... 0 g ...

0

f; I

U1

-I 0

I N

"'"

Page 34: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

25

Data on original samples were plotted on the BITUMEN TEST DATA

cHAtlT (BTDC) for compadson and classifcation. Rased on BTDC, Heukelom

(8) defined three classes of asphalts: Class S (comprising straight-run

residual ancl. cracked asphalts), Class B (blown asphalts). and Class W

(waxy asphalts). For Class s, both penetration and viscosities fell on

the same straight line, but for Classes B and W, there was a departure

from this simple relationship (Fig. 11). Also, Heukelom showed that the

slope of the line :f.n the chart indicates temperature susceptibility.

The penetration index can also be obtained by this chart.

Samples 2b, '.'b, 4, and 6 were plotted with Sample 1 (Figs. 12a,.

l2b, and 12c) and Samples Sb, 9b, 10, and 12 were plotted with Sample 7

(Figs. 13a, 13b, and 13c). Samples 1 (AC-5) and 7 (AC-20) are

classified as Class W asphalts. Although it showed an increase in

viscosity, Sample 2b with 4% Asphadur totally dissolved in AC-5 is also

a Class W asphalt, but Sample 3b with 6% Asphadur totally dissolved in

AC-5 indicates a Class B asphalt. Sample 4 (5% lime in AC-5) also falls

in the category of Class B asphalts. Sample 6 (SBS in AC-5), however,

int!icates a Clas!'! W asphalt, because it exhibits a waxy nature.·

For AC-20, the same additives were used in the same quantity but

the results were not· the same. At low Asphadur conten.t (Sample Sb) the

binder behaved as Class B; but at high Asphadur content (Sample 9b), the

hinder behaved as Class w. In Sample 10 (5% lime in AC-20) the binder

changed from Class W to Class S. Sample 12 (SBS in AC-20) behaved in

the same manner as Sample 6 and fell in the Class W asphalts.

Page 35: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

1~· .. - ... ~ .. i !

i I I

i ~I §

I '~ I !

ill ~= ,. I:! !•

i i

I

·~· !

i ' ' .l i ' ;:

'! i

I ... ' ... I I ' I ... ' ... ~-:: I• . : . ' I ... -=- '11 : ~ I

I -; I !J : ~" I I " ~ . l ,-. : ' : ill!

I 6 ~ ' " . i : !

I 6 ": i ! I !: j

I b I I ! l• I b ' ! !

I I 'l· I 'i I I I!

'' i ,. ! I I i i I I ! l "' ' I ' I

' I l i I ' i

' i i ' .. -i i ! ! i I !

' I !

! ! 0

' .. i i ! i / ..

' :_, / i '!' L,, ! i. ' & i !

i I ' i '

~

I I ' -~ .. - •

26

-g ......... - . ·- . -Ji '

I I

'

/

·: /

... ;: ,,

" /

I ! I ! I

'

I

'

" I

' " ~

'

'

....

I

__ , ... . - - -' I /l

i i !A I ! I I/! I '

Al i I ,;. I , iii ct I

' ! ' I !

I I ' I I ' ' I ! I i ' I

! i i I I ' ! ! ! I ' !

i ' '· . ' ~ .. 9.! f / ... ,,,

I

I , I

I • ::! I , ::! ! ,, YI

I i j

.· '

I

I ' '

i I

'I I

I II I 11 I '

i

'

! I

' .

j

I

!!

!!

!!

II

a

" .. "

Page 36: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

27

-•o 0 40 80 120 160 200 140 T••p•ratur•, •c

Fig. 12a. BTDC of Asphadur-modified AC-5.

_f __ _

10•

10•

10'

10

-·· 0 40 80 120 160 100 240 tempereture, •c

Fig. 12b. BTDC of lime-modified AC-5.

Fig. 12c. BTDC of Styrelf-modified Ac..:s.

Page 37: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

28

Tempel'ature, •c

Fig. 13a. BTDC of A~phadur-modified AC-20.

-•o 0 •o Teoperature, •c

Fig. 13b. BTDC of lime-modified AC-20.

-40 0 40 120 160 200 240

FIG. 13c. BTDC of Styrelf-modified AC-20.

Page 38: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

29

These classifications indicate that the asphalt matrix changed

notably with the additives, and in most of the cases the temperature

susceptibility of the asphalt was improved. The data also indicated

that the changes in temperature susceptibility depended not only on the

type and amount of additives but also on the base asphalt.

':\.1.2. Tensile, Ductility and Elastic Properties

Previous work on rubber- and neoprene-modified asphalts (22,23,24,

and 40) indicated that tensile properties provide useful data on the

degree to which polymers benefit asphalts. Toughness, tenacity, tensile

stress, and elongation of modified asphalts were determined and the

results are given in Ta.ble 1 and shown in Figs. 14 and 15.

Both Asphadur and SBS increased toughness and tenacity of the

asphalts, while lime, as expected, had no effects. However, only SBS in

AC-20 met the suggested specifications for polymer'"1llodified asphalts of

minimum values of 75 in.-lbs toughness and 50 in.-lbs tenacity. Except

for the toughness of AC-5 binders, the thin· film oven heating decreased

the toughness and the tenacity of binders.

While both Asphadur and SBS increased tensile stresses of asphalts

at !lll01. elongation, only SBS in AC-20 met the recommended stress of 4.3

psi. Furthermore, the. improvements diminished upon thin film oven test

heating.

• Results of force ductility and .elastic recovery of samples at 10 C

are given in Table 4. Asphadur increased ductile force for both

asphalts but did nothing to improve t;!lastic recovery; SBS, however,

reduced the ductile force but increased the percent elastic recovery

significantly, Hydrated lime had no significant .effects on either

Page 39: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

30

Table 3. Tensile properties of binders.

"ATERIAL SA•PLE l TOUGHNESS l TENACITY I TENSILE STRESS ' ' Mo. In-lb ' In-lb :stress, psi l I efong, i I

AC-5 1-0 I 11.3 4.0 o.ooo 800 I

AC-5+41 ASPHAOUR Zb-0 I Zl.4 6.1 o.ooo 800 I

AC-5+61 ASPHAOUR 3b-O I 24.8 6.3 0.142 800 I

AC-5+51 ll"E 4-0 ' 12.1 3.Z 8.000 800 I

STYRElf IN AC-5 6-0 I 32.9 28.9 1.565 800 I I I

AC-20 7-0 , I 73.6 11.9 0.853 800 . I

AC-Z0+41 ASPHAOUR 8b·O ' 70.6 15.1 2.418 6. I

AC-20+61 ASPHADUR 9b·O ' 100.4 4.9 o.ooo 207 I

AC-20+5\ ll•E 10-0 ' 73.4 12.6 o.853 800 I

STYRELF IN AC-20 12-0. I 227.5 163.8 13.227 800 I

AC-5 l~R 22.5 5.9 0.000 . 800 AC-5+41 ASPHAOUR Zb-R 59.9 0.9 o.ooo 189 AC-.5+6' ASPHAOUR 3b-R 65.6 3.4 8.616 4 AC-5+51 l UE 4-R 79.6 4.3 1.138 800 STYRElf IN AC-5 . 6-R o.o o.o 0.853 772

AC-20 7-R 68.9 o.o o.ooo 267 AC-20+41 ASPHAOUR 8b-R 32.6 o.o o.ooo 10 AC-20+61 ASPHADUR 9b-R 25.9 o.o 0.000 14 AC-20+5\ ll•E 10-R 27.6 o.s o.ooo 190 STYRElf IN AC.-20 12-R 78.8 o.o o.ooo 714

a: partially dissolved. b: totally.dissolved. 0 : original, R : thin fil• oven test residue.

Page 40: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

260....-~~~~~~~~~~~~~~~~~~~~~-.

240

220

200

180

AC-5 + additives

,e I 110 · .s ,; t40

j 120 .. :;) 100 ~

,e I .s

t ~

80

60'

40 ~ l'.:z+2I V/ r cl 20 . V/fl V/;/1 lf,·A ~ 4 0 lz72! rzpi

1-0 2a-o 2b-O lo-0 lb-o 4-0 5-0 6-0

280.,--~~~~~~~~~~~~~~~~-i

240

220

200

180

180

140

120

100

80

60

40

AC-20 + additives

2

: V4Lf V/+/f v44 t%( 4 V/(/1 V/(11 Vfl v44 7-0 80-0 8b-O 9o-O 90-0 10-0 11 -:-0 12-0

l 1 !

1 ! 1

2so....-~~~~~~~~~~~~~~~~~~~~--,

240

220

200

rso ISO

f40

120

100

so so

AC-5 + additives

~w~~~~~~ .1 ,_,. 2o-R 2b-lt 34-ft .JD-ft _,. 5-R 8-R

2so..-~~~~~~~~~~~~~~~~~~~~~~~~~

240

220

200

180

180

..... 120

100

10

80

40

AC-20 + additives

2: V/+4 ·WA V/fA V/+/.f vpt WA U72' WA 7-R ao-R lib-R 9a-R 9b-R '0-R , , -R 12-R

Semple Identification . Sample ld•tstlflcotlon

a. ORIGINAL BINDER BLENDS. b. THIN FILM OVEN RESIDUES. Fig. 14. Toughness.

"' ....

Page 41: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

30 30

28 211

26 AC-5 + additives 26 J AC-5 + additives

24 24

22 22

20 20

~ 18 ,e

18 I .s te .s 16 ~ 14 i- 14 u "ii ~ • 12 c 12 ~ ~

10 10

a a a 8

4 .. 2 2

0 0 1-0· 20-0 20-0 30-0 3b-o 4-0 s-o 6-0 1-R 2o-R 2b-R 3o-R 3b-R 4-R S-R 6-R

170 30 160 281 I "' 150 AC-20 + additives AC-20 + additives N

2• 140

24 130

120 22

110 20 ,e ... I 100 T 18

.s .s .. €

90 80 i 14

• 70 c c 12 ~ 60 ~

10 50 40

e

30 6

20 .. 10 2

0 0 7-0 8a-O Sb-0 9o-O 9b-0 10-0 11-0 12-0 7-R 80-R 8b-R Sa-R 9b-R 10-R 11-R 12-R

Sample Identification Sompl• ld«1nt1ffcotlon

a. ORIGINAL BLENDS. b. THIN FILM OVEN RESIDUES. Fig. 15. Tenacity.

Page 42: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

33

Table 4. Ouctllfty and elastic properties.

NATERIAl SA"PlE DROPPING BALL :FORCE OUCT. : ELA. RECOV. Mo. t2/tl lbs. I

AC-5 1-0 0.221 1.45 o.oo AC-5+41 ASPHADUR 2b·O 0.113 3.45 c AC-5+61 ASPHAOUR 3b-O 0.069 2.91 c AC-5+51 LIU 4-0 0.034 1.50 2.50 STYRELF IN AC-5 6-0 0.923 1.27 61.25

AC-20 7-0 0.046 17.45 c AC-20+41 ASPHAOUR 8b-O 0.047 18.90 c AC-20+61 ASPHAOUR 9b·O 0.062 29.30 c AC-20+51 ll"E 10-0 0.047 15.64 c STYRElf IN AC-20 12-0 0.615 10.00 65.00

AC-5 1-R 0.248 3.64 5.00 AC-SUI ASPHADUR 2b-R d 11.82 c AC-5+61 ASPHAOUR 3b-R 0.021 13.27 c AC-5+51 Ll"E . 4-R 0.048 8.10 . c STYRELF IN AC-5 6-R 0.334 13.64 c

AC-20 7-R d 27 .10 c AC-20+41 ASPHADUR 8b·R 0.040 23.64 c AC-20+61 ASPHAOUR 9b-R 0.351 26.91 c AC-20+51 LINE 10-R d 32.73 c STYRELF IN AC-20 12-R d 38.00. c

a : partially dissolved. b: totally dissolved. c : the s1111Ples were broken before reaching 20 cm. d : no flow. 0 : original. R : thin fll• oven test residue.

Page 43: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

34

property. Another measure of the elastic property of modified binders

is the ratio t2/t1 obtained from the simple dropping ball test (Table 4,

Fig. 16). The only significant improvement resulted from Styrelf.

However, the benefits of Styrelf seemed to have diminished after thin

film oven heating.

3.3.'.I. Chemical Properties

High pres.sure liquid chromatography (HPLC) is a technique whereby

the molecules in an asphalt are separated according to relative size, as

in sieve analysis. Although it permits the largeat molecules to pass

packed columns more quickly, it successively retards the passage 6f

smaller ones. The area under the chromatogram is divided into three

portions by selected elution times as the large molecular size (LMS),

medium molecular size (MMS), and small ~olecular size (SMS). The

dividing elution times·were selected to maximize the differences among

asphalts with respect to LMS which is found to correlate with cracking

of asphalt i:>avements (11!). Figure 17a shows the chromatogram f.or sample

J.-0 <AC-5). Figure 17b shows the chromatograms of AC-20 (7-0) and AC-20

modified by SBS <12-0). Potentially this technique could be used to

determine the percent of polymer in.polymer-modified asphalts as shown

by the shaded area at short retention time. Figure 18 presents the

i:>ercent LMS for the 16 binder blends, original versus TFOT residues.

llata indicate that the two grades of asphalt were very similar in

their molecular size distributions and that additives had little effects

on i:>ercent LMS, with maximum increase of about 1% for Styrelf. However,

I

I I

I

I I

Page 44: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

.. ..

a.SI

a.a

a.7

a.a

' a.5

.. -

...

0.4

a.:s

a.2

a.1

0.1

0.5

0.4

- 0.3

a.2

a.1

35

AC-5 + additives

2b 31:1

AC-20 + additives

7 llb 9b 1a 12

So'"pl• ldentlflcotlon IZ2J 0 cs:::sJ R

Fig. 16. Results of dropping ball tests.

Page 45: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

"LMS "1.MS . - NI NI "' "' - - NI NI "' "' 0 IJI 0 IJI 0 IJI . 0 ::~ IJI Q IJI 0 IJI 0 IJI 0 IJI

~~~- .. · .. ' .', . ' : f; I -I

"' "<I t" """" "" '""' 0 .... OQ

I NI . :~ _A;>J?~a~~: 1 1 ~ ~ 77777777/A .. ,.... co . "' : f · A.sphad:iir-, · 4 % I N .. 77777771 II' '1 n

~~ .. ::I ...

0 } ff Asphadur, 6% I II' -9 Asph~dur, 6% 17.777·777]- I "' 0 7T co "' ~ t

El~ .,. &!f, Asphadur~ _6~_ 7777/A I Li .. n II' ... :u~ .. ~

0 :J ....

::I () -J-7 T.;m,o a;~ ) ) )' > , , > > > :; > , • I • .. .,. .,. '<

~ :,;+7T.imP. lo~>>',,,,,,;;,,. I IJI .... C"l .

;:; -f-3 C~•?v-c.1 f= ~ ~ ~ ~1, > >,,:; >, > >' I "'

Page 46: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

39

the increases in percent LMS because of thin film oven treatment, which

simulates hot plant mixing, were large. Excluding samples 2a, 3a, Sa

and 9a because the dispersion was nonhomogeneous, the increases in

percent LMS as percent of LMS in original asphalts varied from 62% for

Asphadur <6%) in AC-20 to 119% for lime (10%) in AC-5. The increases in

L~~ for AC-5 and AC-20 without additives were 34% and 91%, respectively.

rhe net increases in percent LMS because of thin film oven treatment

ranged from 5.0% for Sample 1 (AC-5) to 16.9% for Sample 5 (10% lime in

AC-5). 'l'bese increases were unusually large compared to the normally

expected increase of 2% to 5% based on data ·from asphalts extracted from

pavements without additives.

On the basis of limited performance data, the maximum percent LMS

recommended for climatic zone for Iowa was estimated to be about 26%

(18). According to this criterion, the only satisfactory binder was

AC-5 without additives. Rinders with Asphadur and hydrated lime would

be considered marginal and those with Styrelf would be critical with

respect to cracking.

However, thE>se.remarks must be viewed with caution because of the

problems of solubility of lime and Asphadur in THF (tetrahydrofuran)

solvent used for the mobile phase in HPLC and because of the

nonhomogeneous dispersion of some of the binder blends. Furthermore,

the recommended criterion was based on asphalts in pavements without

additives. It is likely that separate HPLC techniques and/or criterion

must be developed for asphalt pavements with additives.

Page 47: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

40

The reflected microscopy technique was explored as a possible means

to better understand the polymer dispersion and the structure of the

polymer-in-asphalt system and ultimately to provide information on the

optimize.tion of polvmer modification.

Pure asphalt (AC-5) does not produce observ:able fluorescence under ·

'lilue excitation. Likewise, aaphalts with lime additions (Samples 4, 5,

10, and 11) showed no fluorescence. While .samples 6 and 12 contained 3%

to 5% SBS polymer, the reflected fluorescence micrographs indicated no

fluorescence particles. This result indicates that SBS is not in a·

physical dispersion but rather forms a new cross-linked homogeneous

reaction product because of the blending techniques and secondary

additives used in the manufacturing process.

Of interest are the' eight blends containing Asphadur (polyolefins).

Figure 19 shows typical micrographs of 4% and 6% Asphadur in AC-5.

Continued heating, either during blend preparation (2b and 3b) or thin

film oven treatment (?.a-R and 2b-R), appeared to have reduced the

particle size and increased the uniformity of size distribution (2b-O,

2b-R and 3b-O). Higher polymer content is reflected in the higher

particle density (3a-O and 3b-O}. Figure 20 shows the micrographs of

Asphadur in AC-:10. The same observations made for samples 2a and 2b

(Asphadur in AC-5) can be ·made here. However, undissolved large

Asphadur particles are more evident f.or. high viscoSity AC-20 (Samples Sa

and 9a). The significance qf particle size and size distribution and

the halos surrounding larger particles in partially dissolved samples

f8a and 9a) need further study.

Page 48: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

2a - O

2a - R

3a - O

41

AC-5

ASPHADUR, 4 %

ASPHADUR, 4%

ASPHADUR, 6%

2b - 0

2b - R

3b - 0

Fig. 19. Flourescent rnicrographs of Asphadur in AC-5.

Page 49: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

42

AC-20

8a - O ASPHADUR, 4% 8b - 0

9a - O ASPHADUR, 6% 9b - 0

Fig. 20. Flourescent micrographs of Asphadur in AC-20.

Page 50: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

43

Eight samples from the original (0 series) were selected for x-ray

diffraction study. The standard procedure is a 9/29 scan for the

analysis of the materials. But because of some preferred orientation of

asphalt molecules, using only a 9/26 scan may not show the complete

picture; therefore, a 29 scan was also done for all the samples.

In a 9/29 scan, both 9 and 29 vary; and whenever the Bragg equation

is satisfied, it gives a diffraction peak. The Bragg equation is

An = 2d sin

where :\ = wavelength

d = interplaner spacing

9 • angle of incidence.

In a 29 scan, 9 is fixed and 29 varies. If there is any preferred

orientation of molecules, the diffraction peak appears when the Bragg

equation is satisfied·, and the orientation can be calculated (1).

Results obtained with 9/26 scans are presented in Figures 21-23.

Figure 21, which compares the two asphalts AC-5 and AC-20 used in this

study, indicates that molecules of both asphalts are arranged in the

• horizontal direction with an average separation of 4.7 A. Both peaks

• have a breadth of about 9.8 A at half maximum intensity, which indicates

the same size of minute clusters of molecules. The main difference

between the two asphalts is in the height of the shoulder to the left of

the peak. This shoulder is due to low-angle scattering of x-rays and is

a measure of the size and abundance of dispersed particles of

asphaltenes dispersed in resinous and oily fractions of asphalts (53).

Page 51: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

=r~O~I~FF~A~AC::.....,!.V~~~~~~....;......~~.....-~~~~.--..,_..-.-.~~~ ~ a fii•

t I s ~

£i 0 fj ;; u.

ON "8 "'. !

UllQ ... . :z:;;i. ::> •• 8fii ~ Ill .. 2·

~

i::· !;/ ... •• .. .... Ill 0

: .,

vi)

·~, ... ,~........ . . t\tal......~. . . . ' . ...... ~ ··~"'~

:.vOQ"?50 i'.oo. 1b:50 1~.00 1S.ii02[00 2•.50 2L:ii0 3\.50 i!i.oo 31i.50 .L.oo aw-.ll:ooti[iio tih.oo 5L.oo aS.ao ob.5o7o.oo -- 25.22312.8188.418 8.321 5.004 4.227 3.630 3.181 2.838 2.582 2.338 2.149 1.902 1.857 1.142 1.841 l.fi52 l.•74 1.405 1.343

nm - TllElA -- d SPACING

Fig. 21. Theta/two-theta scan. AC-5 versus AC-20.

.... ....

Page 52: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

" ~. OIFFAAC V rJ a Iii .; f.J·

= m .. '!

£i 1:1 ri

fJ -... o~ -0 *o ~ ••

Ulftl I- • z• 5~ ulii

!i Ill ~· .. -~·

1:1 -· .. -... Iii g "ii~Oili'.50 · 7'.oo 1L.so 1too 1S.so 2\.00 2•.w~iiii 31.50 ali.oo ili.50 J.oo Ji.50 •L.oo tit50 iili.oo tiL.50 u§.oo llll.5o 1&.00

-- 25.22312.8188.418 8.321 5.084 4.227 3.830 3.184 2.838 2.fi82 2.3'111 2.149 1.8112 1.857 1.742 I.Bl! 1.552 1.474 1.405 l.l4l nm - HIElA -- d SPACING

Fig. 22. Theta/two-theta scan, AC-5 with ,additives.

,,. \JI

Page 53: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

" M DIFFAAC V Ill a Iii ..; lil•' II! I!! :!.

~· ':I

i\i ;:

C)~ ... o

*" 0 ... ~

mm !Z.; fl~·· ~ 18 ~-:!. I:: et c:-·1 t-o ~ tu·

g <ii1.-oo--,3'.r5-o-1,-'.0_0_1TL-.50·-,~.-.o-o-1'S-.50--,2\r.-oo-2rt-50-2~L-.o·o--3"'\-.50--,3fi~.o0 311.tiO •tao 6.tiO .L.o~:6ii. 5L~oo 5L.ti0 ef.OOlili.so 10.00

Z!>.22312.8188.418 8.321 5.ll04 4.227 3.830 3.184 2.838 2.582 2.3311 2.148 1.092 1.857 1.142 I.BU 1.652 1.4U l.405 1.lll ltlO - 'TllET A -- d. !lPAC ING

Fig. 23. Theta/two-theta scan, AC-5 with additives ve~tical scale offsets).

c:::----~-

""" ""

-

Page 54: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

47

According to Williford (53), the higher the shoulder the better

the asphalt. Effects of additives, for example, lime, Asphadur,

and SBS, on AC-5 are compared in Figs. ?.2 and 23. As can be seen from

Fig. 2?., the most significant effect is demonstrated by Styrelf in

raising the low-angle scattering shoulder. The reduced intensity of the

sample containing lime is probably due to absorption of the copper

radiation by calcium. The crystalline peaks observed with this sample

correspond to lime crystals and indicate that the lime did not

chemically react with the component of asphalt. The sample containing

.. Asphadur also produced a sharp crysta Uine peak ( d-spacing of 4 .1. A).

Since a diffraction pattern of Asphadur alone could not be obtained at

the present time, it is not yet possible to state whether this peak

corresponds to Asphadur or to a reaction product.

The 2e scans performed indicated that major alignment of molecules

• with about 4.7 A separation occurred in the horizontal direction. When e

angle was fixed at 5, 10, and 15 degrees, the peaks were flattened out,

peak intensities were reduced, and noncrystalline peak positions were

shifted. These results support the hypothesis that a horizontal

orientation is preferred. Figures 24 and 25 show 26 scans for samples

containing lime and Asphadur. The reduction of intensities and

broadening of the peaks of not only the asphalt matrix but also of the

crystalline peaks suggest that even the crystals of Asphadur and lime

are also oriented in the matrix, possibly by attaching themselves to

asphalt molecules. This may explain the observations made in viscosity

stu1Ues.

Page 55: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I -·'.,. ., .

48

~--:--::;::[~·' -,...-1--T.= l..'.

i • ' /

---;r----r. . -·--·

. .

I

I

Page 56: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

49

_,_ __ . ...... ··- ·-· --

·.·

-"' ,

: ~· : l ' ! i ; ~

I ·'' ! ., '

I '

·. ' ,.::;.:-~-· ·-!f-,.;.;..-+.--'

' '

I' !~ ,,

I . ,..._ i· ' ; ~

• •

"' I

'.;;! ;l

• "' "'

Page 57: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

50

From the above discussion, we can conclude that the introduction of

the additives did change the structure and behavior of the asphalt.

Increasing low-angle sc".lttering and pref erred orientation of the

particles are .to be noted. We expect that identification of additives

and their effects on asphalts can be rapidly and.economically determined

by x-ray diffraction techniques based on low,-angle scattering

intensities arid the shape of the amorphous peaks.

In the future, we suggest that mor.e comprehensive studies be

undertaken using e scans and especially diffraction ;l.n transmiss'ion mode

(1) for a complete understanding of molecular make-up of asphalts and

the effects of additives as related to their engineering p~rformance.

3.1.4. Temperature Susceptibility

Asphalt cements of high-temperature susceptibility may contribute

to rutting at high pavement temperatures and cracking at low pavement

temperatures. One of. the often-quoted benefits of polymer additives is

the reduction of teinperature susceptibility of paving asphalts.

Temperature susceptibility of an asphalt can. be evaluated by using

the Shell Bitumen Test Data Chart (B'l'DC) (15), the Penetration Index

<PI) (52), the Pen-Vis Number (PVN) based on viscosity at 60° C or

viscosity .at 135°. C (33), the viscosity-temperature susceptibility

(VTS), and the Asphalt CJ.ass Nlllllber (CN) (4). The basic rheological

data as plotted on .'BTDC are shown in Figs. 12 and 13; and the derived

PI, PVN, VI'S and CN of the binder blends studied are given in Table 5.

The CN sho\is the difference between measured and predicted

penetration at 25 ° c. A small negative or positive CN value indicates a

Class S (straight run with a straight line, temperature-viscosity-

Page 58: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

51

Table 5. Te111erature susceptfbl I lty.

MATERIAL SAMPLE CM Pl• VTS PVM,60 PVM, 135 No.

AC·S 1-0 9.28 -1.336 3.618 -0.832 -1.012 AC-5+4\ ASPHAOUR . 2b-0 s.az -0.613 3.420 -0.387 -0.327 AC-5+6\ ASPHAOUR 3b-O -25.97 0.347 3.499 1.829 1.080 AC-5+5\ LIME 4-0 -22.45 -0.939 4.318 0.281 -1.475 STYRElf IM AC-5 6-0 10.50 -0.286 3.211 -0.375 0.011

AC-20 1-0 6.46 ·1.105 3.675 -0.854 -l.073 AC-20+4\ ASPHAOUR 811-0 -36.10 -0.601 3.827 1.415 0.152 AC-20+61 ASPHADUR 9b-O 30.24 -l.247 3.089 -0.830 -0.047 AC-20+5\ LIME 10-0 0.75 -1.354 3.708 -0.578 -0.935 STYRELF IN AC-20 12-0 26.63 -1.245 3.292 -1.244 . -0.695

AC:S l·R 13.56 -1. 748 3.546 ·1.084 . -1.034 AC-5+4\ ASPHAOUR 2b-R ·285.19 0.390 c c -0.249 AC-5+61 ASPHAOUR 3b-R c -l .239 c c c AC·S+51 LIME 4-R c -0.516 c c c STYRElf IN AC-5 6-R -1.ss -0.033 3.514 -0 •. 135 -0.304

r AC·ZG 1-R 22.11 o.su 3.178 . -0.860 -0.222 AC-20+41 ASPHAOUR 8b-R c -0.695 c c c AC-20+61 ASPHAOUR 9b-R c -0.078 c c c AC-20+51 LIKE 18-R c -0.493 c c c STYRElf IN AC-20 12-R -12.12 -0.454 3.011 -l .116 -0.227

a: partially dissolved. b : totally dissolved. c : could not be deter1fned due to absence of viscosity data. CM : c.lass nullber. Pl• : 1easured penetration Index. VTS : Vlscoslty-te1111erature susceptibility. PVN,60 : Penetration-viscosity nllllber f 60 C. PVN,135 ·: Penetration-viscosity nullber f 135 c. O : orlglnal. R : thin fll1 oven test resld.ue.

Page 59: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

52

penetration plot) asphalt. High positive CN values indicate Class W

·(waxy) asphalts, and high negative CN values indicate Class B (blown)

asphalts. Either case reflects substantially high-and low-temperature

susceptibility. On the basis of CN, Asphadur (except 6% in AC-20) and

lime deer.eased the temperature susceptibility; and SBS increased the

temperature susceptibility, especially in AC-20.

According to the PI, all additives decreased the temperature

susceptibility of ,AC-5, but increased the temperature susceptibility of

AC-20, except Asph;1dur at 4% (Fig. 26). In general, temperature

susceptibility (VTS) at a high-temperature range (60° C to 135° C)

seemed to be decreased because of polymer modification but increased

because of hydrated lime (Fig. 27) •.

On the basis of the PVN, data indicated decreases in te~perai:ure

susceptibility because of additives. The exceptions were the. effects.of

lime on AC-5, based on PVN from viscosity at 135° C and the. effect of

SBS on AC-20, based on PVN from viscosity at 60° C. Both of these ·

estimates showed increases in temperature susceptibility (Fig; 28).

When all the indices were considered, all the additives appeared to

decrease the temperature susceptibility of the asphalts studied,

especially for AC-5 and at higher temperature ranges 7 .Temperature

susceptibility of asphalts can be reduced by (a) increasing viscosity at

high temperatm:es, (b) decreasing viscos:i.ty at low temperatures, and (c)

increasing viscosity at high temperatures substantially more than the

viscosity increase at low temperatures. The apparent decrease in

temperature susceptibility of polymer-modified asphalts in this study

resulted from a combination of mechanisms.

Page 60: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

"'1 ..... °" . N

"' . "' g ro ... rt

"' ... ..... 0 ::i ..... g, ro ><

b

I I I I ... -- ... . . . . ,._UN ...

!i Ill D 3

! "1 IL IF ~ I s 0 n D !t D :J

!1

'I' 0

Penetration Index

111111111 I f>~Pf>Pf>f>PP PPPP -u:a• .... •c.•t-tN-o-Nu.a.

Asphadur, 4~ l "-" , .. ,:," "'\.:

~ I

U1

"""j Asphadur, 6%

L"-"-"-"-

~,1:1~~'~

I

I

I I ~ ~ • i.a j-l

t1 r.; I

N 0

• .,. I 0

.. .,. I 0

0 I 0

II> I 0

I

Penetration lnde•

I I I I I I e I I . I I ~ ~ I p 0 0 p p 0 p p i.> . m :., i.a ~ ~ .. "' .. II> ~ 0

10-.'""""""'""""""" "'-'-~~ ln

"'

Page 61: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

.vr.; vrs

O .- Ni lll 0 _. Ni CA • 0 (,. ... in ~· iJI CA (,. .fl. 0 (,. _. iw .N Le «A i.w + i.a

-~""~W I -~~"~~~ . "1 I . . AC-20 '\.. '\.: · I ~ 0 ' ' ' '- ' ,, "-:.. 0 . N ..... . ~ f 0-.".; Asphadur, 4% f < ~~~::---:: ~~ I ,., g 0 ,,,,,,,,,,,~. 0

"' ,... UI rt 0 '< 3

~ l. ~"""'-~ ~""'""'".~· k\\\..""'""'-""'-""'-~"""1 I ~ s - "' "' 'g· II" er Asphadur, 6% ~ cr1 >t :J I CU· !!; 0 '-'-'-'-'-'-'-"-'-'-'-'-~ 0 rt :!I " n >t D ID !!;

0 ., ~

" l X~~--~i~~--~ I ! ~ .... !-' .... 4

. f~~-~t:~~l-f,~ I i

Page 62: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I - -• N

1 0

PVN080C

I I I I I p p p p. p p p ~ • a • N a N • •

55

---N • a. ~· ..

~

' '

I I :" I p - - ..

pm 0 1:SS C

b 6 "' ii :.., • I I I I I p p p p p t11•t.1N""O

p p - "

r ~ 0 0 r .I,()

3 < " • • - . . - ' ~ f f 'f Asphadur, 6% ,.... s 0 b ~ g "" "' ~ 0 . ~

<:I - - ~ 'I' 'I' g 0 0 =

>­... .... "' . . . . 0

NJ N Styrelf ~ I if J. ~ '\\ Styrelf ~ I ~ b I ~,,,,,,~ o I ~'''''''''~ ";! I

= 0 .... , PVN O 80 C pm O 1:Sll C ';;:

1b666 C>OOO ---- !.!.·!.,6666 0000 - t ... e.a.•NoN•c.c. ... N•GtillN Gtt..N ... t.t.•NoN•c.a. .. N ~

"" j i " AC-5 J I j J ~ AC-5 ~ I . 0 I "'''''-J 0 I ~ ............ ,,~ <X)

N . ~

N N1 f<.o ... " 0 I I N 0 0 I

r ~ ~ . . ~

i l: Asphadur, 6% l: ! I · ~ I J 0 ',,,,,,, ... ,,,, 0

t I ~~~e I t 0 1 l,, 0

I I Styrelf

Page 63: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

56

Haas (13) recently suggested a minimum PVN to avoid low-temperature

cracking. If we use his suggestion and assume a minimum design

• • • temperature of -23 C (-10 F).for Iowa, the required minimum PVN would

be -0.5 and 1.4, respectively. On the basis of these criteria, asphalts

AC-5 and AC-20, used in ~his study without additives, would be

considered susceptible to low-temperature cracking; and AC-5 with either

Asphadur or SBS would be crack resistant.

3.3.5. Potential~ Cracking and Rutting . .

Other factors being equal, increases in viscosity at the 60 C· td

1.35 ° C range will benefit the rutting resistance of asphalt pavements •.

On the basis of substantial increases in viscosity at 60° C and 135° C

(Table 2) and.a decrease in temperature susceptibility (Table 5), we may

infer that both Asphadur and SBS should improve the rutting resistance

of asphalts.

Reduced temperature susceptibility, for exam.ple, increases in PVN

(Table 5), would lead one to expect imprdved low-temperature cracking

resistance of polymer-modified asphalts. Low-temperature asphalt

stiffness has been correlated with pavement cracking associated with

nonload conditions. The effects of additives on low-temperature

behavior of asphalts can be evaluated either by estimating the

temperature at which asphalt reaches a certain critical or limiting I '

stiffness or by comparing the stiffness of asphalts at low temperatures

(long loading times) (3).

Table 6 presents the results of estimated low-temperature cracking

properties of bf.nders involving two asphalts with three additives. The

I I. I

I

!

Page 64: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

57

properties include cracking temperature (CT), temperature corresponding

to asphalt thermal cracking stress of 72.5 psi (5 x 10 Pa), based on

penetrations at 5° C and 25° c, temperature of equivalent asphalt

stiffness of 20,00Q psi at 10,000 sec loading time (TES), estimated

• • stiffness at -23 C and 10,000 sec loading time, and stiffness at -29 C

and 20,000 sec loading time. Tue following can be observed:

• Softer grade AC-5 had a lower cracking temperature and reached a

critical stiffness of 20,000 psi at a lower temperature than

harder asphalt AC-?.O (Fig. 29).

• Harder asphalt AC-20 benefitted more from additives than softer

asphalt AC-5. Lowered cracking temperatures occurred in AC-20

in every case, but in AC-5 lime and Asphadur increased the

predicted cracking temperature (Fig. 29).

• On the basis of temperatures predicted to reach critical

stiffness of 20,000 psi (TES), only Asphadur at 6% and Styrelf

showed beneficial effects on AC-5.

• Stiffness at low temperatures and long loading times increased

in every case when additives were used. However, on the basis of

critical cracking stiffness of 20,000 psi criterion, only

• Asphadur and lime in AC-20 will be expected to crack at -29 C

('-20° F).

Data in Table 6 and the above observations must be viewed with

caution because the limiting stiffness criteria for asphalt cements may

or may not be satisfactory for additive-modified asphalts.

Page 65: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Temperature, C T emperoture, C

I ! I I I I I I I I UI u .., .. UI • u .., ... 0 0 0 0 0 0 0 0 0 0 0

"h I

·v~ -12 "1 ... OQ • N

"' • :~ !::::.'-~' I ..,

' Asphadur, 4% er

~ f1 rt

"' .!l a

"' !lJ 8i !::::.~'' Asphadur, 6% )I "' '1 er I v /////////;/////////hi VI

"' !//////// 00 rt r:: iL. 1"I ..

"' El n '1

"' n

- .I I'\ ":\ ) ' T.lmo_ <;,. ~ • aa n Ir 0

~ " .. 'd '1 0 'd - .I I),'-').:> T.imP.:. 10% ~. Ill

"' .. '1 rt ... "' tll .

.. J .. ~;:;..:,;;~ OI

-~

Page 66: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

59

Table 6. lov-tesperature cracking properties.

MATERIAL SAHPLE CT,C TES,20ksl S,-23,IOKs S,-29,ZOKs Mo. c ksl ksl

AC·5 l·O ·34.00 ·38.00 o.508 1.890 AC-5+41 ASPHAoua 211-0 -20.00 ·38.00 0.798 2.900 AC·5+6l ASPHAOUR 311-0 ·41.00 ·43.00 0.725 1.450 AC·5t51 LIHE 4·0 ·32.00 ·38.00 0.725 2.900 STYRELF IN AC·5 6·0 ·38.00 ·42.00 0.435 1.450

AC-20 7·0 ·ZI .00 -za.oo 0.435 1.450 AC·Z0+41 ASPHAOUR 8b·O ·33.00 ·26.00 10.200 ZI .800 AC·20+6l ASPHAOUR 911-0 ·33.00 ·19.00 43.500 72.500 AC·Z0+5l LIHE 10·0 ·28.00 -26.00 5.800 13.100 SllRElf IN AC-20 12·0 -22.00 ·24.00 17.400 36.600

AC·5 l·R -24.00 ·31.00 4.350 11.600 AC·5+4l ASPHAOUR 211-R c ·31.00 17 .400 29.000 AC·5+61 ASPHAOUR 3b·R ·45.00 ·18.00 43.500 72.500 AC-5+5l LIKE 4·R -34.00 -27 .oo 10.200 21.800 SllRElf IN AC·5 6·R ·30.00 ·29.00 5.800 10.200

AC-20 7·R c ·33.00 4.350 8.700 AC·20+4l ASPHAOUR 811-R c ·16.00 43.500 102.000 AC·20+6l ASPHAOUR 911-R c ·17.00 145.000 174.000 AC·20+5l LIKE IO~R c ·18.00 43.500 72.500 STYRElf IH AC·ZO 12·R c ·56.00 29.000 58.000

a 1 patlally dlssoolved. b : totally dissolved. c : outside llllllOgraph range, but higher than ·20 C. CT,C : cracking te1111erature In C. TES,20ksl,C : te111erature of equivalent stiffness f 20 ksl. S,·23,lOks : stiffness @ ·23 C, 10,000 sec. S,·29,ZOks : stiffness t ·29 c, 20,000 sec. 0 : original. R : thin fll1 oven test residue.

Page 67: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

61

4. EFFECTS OF ADDITIVES ON THE PROPERTIES OF ASPHALT CONCRETE MIXTURES--PHASE II

4.1. Materials

Seven series of asphalt concrete mixtures were prepared with the

two asphalt cements studied in Phase I (AC-5 and AC-20) and in

con.1unction with five a-'ditives and two aggregates (limestone and

gravel). In addition to the additives and polymer-modified asphalt used

in Phase I of the study (Asphadur, hydrated lime, and Styrelf), two

additional types of polymer-modified asphalts (PACs) were included.

these were PAC-5 and PAC-20 from Koch Asphalt Company of St. Paul,

Minnesota, and PAC-5 and PAC-20 from Jebro Inc. of Sioux City, Iowa.

These PACs were identified by the suppliers as neoprene-modified

asphalts and styrene-butadiene-rubber latex-modified asphalts,

respectively~ Both PACs were prepared at respective plants and

containing about 2% to 3% solids. As described in the previous chapter,

Styrelf binders as received .and used in this study were SBS-modified

AC-5 and AC-20 asphalts. Asphadur and lime were added to the mixes

during mixing. The limestone aggregate (LS) consisted of 60% 3/4-in.

crushed limestone and 40% sand, both from Hardin County, Iowa •. The

gravel aggregate (G) consisted of 55% 1/2-in. natural gravel, 30%

11'--in. crushe<l gravel, and 15!!: sand, all fom Sac County, Iowa. The

gradations of the aggregate blends are shown in Fig. 30.

Page 68: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

100

90

80

70

CJ z 60 gj 1t ... 50 z w l.)

~ 40 ll.

30

20

10

0

. . . . . .

. . . .

' . . . ' I I . . ' ' . . . . .. . . I .. . . ' " I .. ' . .

' . .. .. . ., . " . " .. . . , . ' . . . .. ..

0 .. z& .00 0 • 5p zo,. NoBO 40

.t\._1MtS. S.YMBOI.. f10(NTrf1£S ·s1»"1.W1Ct1"

PAAtllCE ANO CCJilPAlt8t£ Sl('v[ S1?£"i ~------------

, .,

20

GRADATION CHART - - - - - - - - -SIEVE SIZES RAISED TO 0.45 POWER

. . , . . . ~ SERIES . . ,

- , LS SERIES ,,

, . J ,

.

. , -. .

. , . , . I . . . . .

-. . . . . . . . .

IO ' "··· Iii"'· "l:Dt. ..... ....

SIEVE SIZES

14en•t<Cot1on of ~rod01•°""

---<>-----LS SERIES --e--G SERIES .· 1 - -· ·--------------

Fig. 30. Aggregate 'gradations.

. . KlO

I 90

I 80

I 70

,, CJ 60 ii!:

"' "' t 1, 50 1-

z

~ 40.., ... 30

20

10

0 . ...

'"···

E:=l L:J

"' ,,,

Page 69: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

63

4.2. Procedures

Seven series of 72 batches of mixes were prepared and tested,

including 12 control mixes containing no additives (Table 7). For each

aggregate-binder combination, three mixes were made at 1% binder content

increments bracketing the optimum asphalt content estimate.d ·by the

Marshall method of mix design. The additives were introduced into the

mixtures with methods as close to field conditions as possible.

Mixes of 50 lbs each were mixed in a heated twin-shaft pug-mill

mixer. Mixing procedures for controls (mixes Cl to Cl2), mixes

containing Styrelf (mixes Sl to Sl2), mixes containing neoprene-modified

PAC-5 (mixes Kl to K6), mixes containing SBR-modified PAC-5, and mixes

containing hydrated lime (mixes LLl to LL12 and LHl to LHll) were as

follows: Place aggregates at 125 +/- 10° F in pug-mi11 mixer and dry

mix for 10 sec. Add. 'binder at 275 +/- 10° F, mix for 30 sec and

discharge. Hydrated lime, at 1% (LL series) and 2% (LH series) by

weight of aggregate> was added to the heated aggregates before the

addition of asphalt for the wet-mixing cycles. The same mixing

procedure was followed for mixes containing PAC-20 (mixes J7 to Jl2 and

K7 to Kl2) except that aggregates were heated to 340° F and binders were

added at ?.90° F. For the AH series, asphalt cements at 400 ° F were

added to aggregates at 450° F. After the wet-mixing of 20 sec,

Asphadur, at 6% by weight of asphalt, was then added to the mixture; and

mixing'continued for an additional 30 sec to complete the mixing cycle.

Page 70: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

64

Table 7. "Ix identification - Phase II. ,j'

AC GRADE I AC-5 AC-20 I

• I

SERIES AC CONTENT .. OPT-I OPT OPHI OPT-I I OPT OPT+! I I I I I I

AGG. TYPE I LS · G LS G LS G LS G I LS G LS G I I I I I I

c CONTROL I 2 3 4 5 6 7 8 . I 9 10 II 12 I I I I I

Alt ASPHAOUR-61 I I 3 5 I 7 I 9 ll I I I I I I I I I .

LL LIHE-ll I z 3 4 5 6 I 1 8 I 9 10 II 12 I I I

LH LlftE-2\ I 3 s 1 I 9 11 I I I I I I

s STYRELF (SBS) I 2 3 4 s 6 1 8 I 9 10 II 12 I I I I

!( llEOPREME 2 3: 4 5 6 I 7 8 I 9 10 11 12 I I I I

J SBR 2 3 4 5 6 ., 1 8 9 10 11 12 I

Total number of batches : 72.

Page 71: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

65

Eighteen Marshall specimens were prepared from each batch.

Compaction was accomplished by a mechanical Marshall compactor with 50 0

blows per side at a mix temperature of 275 F for all mixes except for 0

mixes J7 to J12 and K7 to Kl2, which were compacted at 290 F and mixes

0 AHl to AH12, which were compacted at 375 F.

The following tests were performed on the mixtures and the

compacted specimens, as shown in Fig. 31:

• Sample height and bulk specific gravity (ASTM D 2726)

• Theoretical maximum specific gravity (ASTM D 2041)

• Marshall stability and flow, air and .VMA (ASTM D 1559)

• Marsha.11 stability and flow after sp.ecimens immersed in water • 0

at 140 F for 24 hrs (45, 49)

• Indirect (splitting) tensile strength at 77° F and a loading

rate of 2 in. per minute (21)

e .Indirect tensile resilient modulus at 77° F and a frequency of

0.31. hz. measured with a Retsina Mark IV resilient modulus

device (41)

• Shell uniaxial compression creep test at 104° F (40° C) at a

stress level of 14.5 psi (0.1 MPa) for a loading time of

?. hrs <51)

• Indirect tensile strength and resilient modulus after vacuum:-

saturation (4?.,45) and after an accelerated Lottman condition-

ing procedure (27,?.R).

Page 72: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Mix & compact 18 specimens

Rice max. heoretical

sp. gr.

Bulk sp. gr.

*Shell

66

Marshall @60C (1,2,3)

R@_25C

Indirect tensile

Vacuum Saturation

3

R@25C

0.1 sec (4·5) .

strength !--+-' @25C

Indirect tensile ·

strength

(10·12)

Marshall 3 Immersion

@60C

(16·18)

Lott man treatment~__..

(6·9)

Indirect tensile

strength

AC MOO AS

HR-278 Phase II Test Program

Fig. 31. Mixture evaluation flow chart.

Page 73: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

67

4.3. Results and Discussion

4.3.1. Marshall Properties

Marshall properties (stability, flow, voids, and bulk specific

,i:ravity) of the 1?. mixes are given in Table a. Marshall stability

results are shown in Fig. 32(a\ and the results of Marshall stiffness or

Marshall quotient, defined as ratio between stability and flow, are

shown in Fig. 32(b). As expected, stability values of mixes containing

AC-20 were higher than corresponding mixes containing AC-5, and

stability values of mixes made with limestone aggregate (LS) were higher

than corresponding mixes made with gravel (G). With the exception of

Series J (SBR modified AC-5) with gravel aggregate, all other mixes at

optimum asphalt content of about 6% would have met design criteria for

heavy traffic in terms of stability (1500 lbs +) and flow (ll-16). There

were significant increases in stability because of the addition of

Asphadur (AR) and Styrelf (S) as compared to control mixes (C), slight

increases in stability for neoprene mixes (K), and no significant

differences because of other additives. One of the reasons for

focreased stability for AH and S mixes was that polymers added to AC-5

or AC-20 base asphalts resulted in a higher viscosity binder. However,

PAC-5 and PAC-?.0 binders used in K and J mixes were polymer-modified

binders in the AC-5 and AC-20 viscosity ranges.

It is significant that Asphadur and Styrelf increased the stability

of AC-5 mixes to that of AC-20 mixes without additives. This makes it

possible to use softer AC-5 with these additives for both

low-temperature cracking resistance and high-temperature stability

requirements.

Page 74: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

68

Table 8a. Klx properties, lS/AC-5.

---------------------------------------------------------DOOO-------------------------~-------------------------I I

Serles : I I

AC i by litl YnA

of Nlxl (J) air m

"arshall Karshsll-llllll!rslon RKS Glib I stab. flow stiffness stab. flow

I (lb) (.01 In.) (lb) (.01 In.) ---------1-------------------1---------------------------1-------------------------------------------G---·------

I opt-I I 5.213 I 16.97 6.84 2.270 I 2058 8.8 233.1 2293 .9.9 1.114 C I opt I 6.103 I 16.46 4.12 2.306 I 1708 11.s 148.5 2128 10.8 1.246

I opt+I I 6.977 I 16.68 2.23 2.314 I 1858 12.2 152.7 2392 13.Z 1.287 ••••W••••l•••••-•••l•••••••••i-•••••••••••••••-••••••-•••l•·--••••••••-••-••••--•~••••••••••-••-•••••••-•••~----

1 opt-I I 5.213 I 16.16 6.73 2.293 I 3367 9.7 348.Z 4930 10.6 1.464 AH I opt I 6.103 I 16.93 5.57 2.293 I 3825 8.5 450.0 6443 9.6 t.684

I opt+I I 6.977 I 16.61 3.19 2.324 I 2675 14.3 187.7 3020 15.2 t.129 ---------1---------1---------1---------------------------1-----~----------------~-------------------------------

I opt-I I 5.164 I 14.39 3.22 Z.340 I 2158 12.2 177.3 2347 10.6 1.087 LL : opt I 6.047 I 14.95 1.10 2.346 I 2117 11.1 181.4 2837 10.2 1.340

I opt+I I 6.91Z I 16.04 0.83 Z.338 I 1567 14.5 108.0 1877 11.7 1.198 ---------1---------1----~----1---------------------------1------------------------------------------------------

l opt-I I s.116 I 14.48 2.99 2.336 I 2658 10.3 251.3 2841 1e.1 1.071 lH I opt I 5.991 I 15.03 1.47 Z.343 I 1875 12.7 148,0 2595 11.8 1.384

I opt+I I 6.849 I 16.20 0.72 2.332 I 1392 15.7 88.8 1670 14.S 1.200 -------~-1---------1---·-----1--------------~------------1------------------------------------------------------

1 opt-I I 5.213 I 16.04 6.76 Z.296 I 2875 9.8 Z9Z.5 3243 9.7 1.128 S I opt I 6.103 I 16. 92 5.61 Z.342 I 2050 15. 7 130.8 2650 13. 7 1.293

I opt+I I 6,977 I 16.Z6 Z.71 Z.333 I 1775 15.8 112.1 ZZ22 14.0 1.252 ---------1--~------t---------1---------------------------1-----------------------------------·------------------

I opt-I I 5.213 I 17.Z7 . 6.90 2.262 : 1667 a.a 188.7 2407 10.3 1.444 K I opt 1 6.103 I 15.79 3.07 Z.324 I 2083 13.5 154.3 Z883 15.0 1.384

: opt+I I 6.977 I 17.64 3.04 2.296 I 1400 .11.Z 125.3 1708 15.0 1.220 ---------i---------i---------1---------------------------1------------------------------------------------------

1 opt-I I 5.213 I 17.18 ~.56 2.265 I 1617 8.2 197.9 2020 7.4 1.249 J I opt I 6.103 I 16.31 5.44 2.310 I 214Z 11.3 189.0

: opt+I I 6.977 I 17.68 4.88 Z.294 I .1333 11.0 121.2 2225 11.8 1.669

-- : Oata not available. R"S : "arshall stability ratio.

Page 75: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

69

Table 8b. Hix properties, G/AC-5.

AC S l I Marshall Karshall-l11111erslon RNS Serles I by rl! VffA air i

m Glllb I stab. flow stiffness stab. flow

I I of Mlxl (1) I (lb) (,01 In.) (lb) (.01 In.)

---------:-------------------:-------------·--·--~-------:----~~---·~--------------------------------~----------: opt-I I 5.213 I 20.18 9.ZO 2.250 I 1517 9.0 168.5 1102 11.6 0.727

c I opt I 6.103 I 19.68 6.51 2.Z86 I 1750 9.0 194.4 1215 9.8 0.694 I opt+! I 6.977 I 19.65 4.34 2.308 I 1333 8.3 160.t 1488 9.9 1.116

•••••••••t••••••-~•t•-•••••~-1-----~--m•••••--•••-••-·-~•1••--•-•-••~•••••-••--••••-•-••••••-•••-••-•-•••••••-••

I opt-I l 5.164 I 16.36 5.77 2.357 I 1583 !0.7 148.4 1808 10.2 1.142 LL : opt I 6.047 I 19.51 7.21 2.289 I 1450 9.0 161.l 1613 8.2 1.112

I opt+I l 6.912 I 18.86 4.34 2.329 l 1583 9.7 163.7 1395 9.7 o.aa1 --------- l----.. ----1---------1------.. --.. ----..... -.................. - .. l-.... -.... ----..... -................. _ ................. _ .. ___ ..............................................

• opt-I I 5.213 I 19.66 9.42 2.265 I 1775 8.5 208.8 1597 10.z 0.900 ' I

s I opt I 6.103 I 19.01 6.55 2.305 : 1475 8.3 177. I 1633 13.7 1.107 I I I opt+l ' 6.977 l 19.19 4.61 2.321 I 1392 14.3 97.1 1118 10.8 0.846 I I I

---------:~-------~:----.. --~-:-----------.. ~---~----------:·-·~----0---------~---------·----------------------~--l opt-I I . 5.213 I 18.80 6.94 2.289 l 1833 10.3 177.5 2225 13.l 1.214

K I opt I . 6.103 I 18.25 4.14 2.326 I 1783 11.0 162.! 1988 14.7 t.115 I .opt+! I 6.977 I 18.87 2.71 2.330 I 1550 14.D ll0.7 2037 14.7 1.314

---------;-~------~1---------1•--•-a-•--~----------~-----;o--••••-~-~-------•--•••--••--•-•••••-••••--•--•-••-•• I opt-I I 5.213 I 19.49 9.25 2.270 l 1325 15.0 88.3 1240 10.4 0.936 I I

J • opt I 6.103 : 18.13 5.55 2.330 I 1325 9.5 139.5 1735 12.2 1.309 I I I opt+ I I 6.977 l 19.19 4.62 2.321 I 1233 10.5 117 .5 1658 10.8 1.344 I I I

Page 76: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

70

Table 8c. ntx properties, LS/AC-20.

• AC \ I ' "arshall Marshall-l11111erslon RMS I I I

Serles I by )ftl VNA air.\ Glib I stab. flow stiffness stab. flow I I

of Mix: m IU I (lb) (. 01 In.) (lb) (. 0 I In.) I ........................ 1 .. --....................................... 1 ..................................................................... , ............................................ - ............... .,. .............................................. _ ..................

I opt-I I S.213 : 16.79 6.33 2.275 I 2550 9.3 273 •. 3 3693 11.6. 1.448 I I

c I opt I 6.103 I 17.26 4.83 2.284 : 2483 12.0 206.9 2650 11.8 1.067 I I I I OPt+i I 6.977 : 16.57 2.00 2.325 : 1975 18.2 108. 7 3153 ~0.5 1.596 I I

....................... 1-----·---t---------1---------------------------1---~-------·------------------------------------------I opt-I I 5.213 : 15.50 4.83 Z.311 I 3783 12.7 298.6 8380 12.7 2.215 I I I

AH I opt I 6.103 I 16.89 4.38 2.294 : 5067 12.5 405.4 6130 ti .o 1.210 I I I opt ti I 6.977 I 16.83 2.29 2.317 : 3633 16.2 224.7 7892 10.8 2.172 I I I

---------t---------:---------l-.. --------·------------·--·t------------------~-------------·------~-·------------I opt-I I 5.JU l 15.58 4.41 2.307 : 3092 11.0 281.I 2990 10.9 0.967 I ' tL I opt I 6.047 : 14.62 3.38 2.334 : 4284 15.5 276.4 2902 12.5 0.677 I I I opt+ I I 6.912 : 16.15 1.06 2.335 : 4522 14.3 315.5 2777 14.0 0.614 I I

---------1---------t-----~---1-------- ... ------------------1-----~--~-------·--------------------------~----------I opt-I ' 5.116 : 14.47 3.32 2.337 : 2783 13.8 201.3 3193 10.7 l.147 I I

Lff f opt I 5.991 I 15.18 Z.09 2.339 : 3125 14.0 223.2 3292 13 .• 0 l .053 I I I I opt+! I 6.849 I 16.00 1.02 2.337 I 1825 20.3 89.8 2888 15.5 1.582 I I

.................... 1------·--1-----..... -.. , ............................................................. 1---.;. .................................... _ ............................ ____ .......................................... I opt-! I 5.213 : 16.01 5.53 Z.297 I 3717 11. 7 318.5 4208 11.8 1.132 I I

s I opt I 6.103 : 16.55 4.05 2.304 : 3238 15.2 213.5 1463 12.5 0.452 I I I opt+I I 6.971 I 16. 79 2.25 2.319 I 2467 19.5 126.5 3227 16.8 1.308 I I I

-~----·--:---------1---------1---------------------------1-------------------------------------~----------------I opt-I I 5.213 : 15.65 4.45 2.306 : 2683 16.8 159.4 3053 12.8 1.138 I I

K i opt i 6.103 : 15.49 2.29 2.331 I 2242 19.5 115.0 2600 17.5 1.160 I I I opt+ I I 6.977 : 17.06 1.81 2.311 I 1658 21.7 76.5 2363 15.6 1.425 I I

--·--·---:---------1---------1---------------------------1------------------------------------------------------I opt-I I 5.213 : 17 .39 6.97 2.259 : 2217 9.5 233.3 2925 9.5 1.320 I ' J I opt I 6.103 I 16.49 3.85 Z.310 I 2650 13.0 203.8 I I I I opt+ I I 6.977 : 11 .45 2.86 2.300 I 1883 12.7 148.6 3213 14.7 1. 706 I I

Page 77: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Table 8d. Hix properties, G/AC-20.

l Serles l

AC t l by vtl VHA air $

of ftfxl (II (%)

71

Narshall Marshall-lllllllerslon RHS Gab I stab. flow stiffness stab. flov

l (lb) (.Ol In.) {lb) (.Ol fn.) ---------t·--•--••••-•-•••--•l••••&••-••-----•••••••----•l••n--•--a••-••--~•-•••-••--••••••--•-•••-•---••-••••••

l opt-I I 5.213 I 19.17 7.96 2.279 I 2167 9.8 220.4 1878 13.4 0.867 c I opt l 6.103 I 19.65 6.48 2.287 l 1700 11.z ISZ.Z 1850 10.8 1.088

l opt+l I 6.977 l 19.20 3.92 2.321 I 1792 12.3 145.3 2367 13.5 1.321 ---------1---------t---------1---~-----------------------1-------------------------------~-----~----------------

I opt-I I 5.164 I 19.18 8.18 2.277 l 2475 11.3 218.4 ll I opt I 6.047 I 18.65 5.54 Z.314 I 2283 IZ.3 185.2

l opt+! l 6.912 I 19.03 3.96 2.324 I 2567 12.0 213.9 •••••••••l•••••-•••t••-••••••t•-•w-•••••••••--•-•••-•-••-(•~----------------•a•--•••------------------------~---

1 opt-I I 5.213 l 19.49 8.74 2.270 l 2525 10.2 248.3 2277 11.Z 0.902 S l opt l 6.103 l 19.40 6.57 2.294 l 1925 IZ.O 160.4 2170 12.7 1.127

I opt+I l 6.917 l 18.34 3.24 2.346 l 2567 14.3 179.l 2565 12.0 0.999 ---------t---------1---------1·--~~--------~------------0 (---------------------------------~--------------------

l opt-I I S.213 I 18.42 7.80 2.300 I 2358 14.Z 166.4 2377 15.0 1.608 K I opt I 6.103 I 18.32 5.55 2.324 l 2250 12.2 184.9 2467 ll.l l.096

I opt+! I 6.971 l 18.36 3.44 2.345 I 2183 18.S 118.0 2638 18.0 1.208 ---·~----:----·~---1•••-•a---l••-~a•~--~-~~~-------~----•l-d•••••••--·~---a•••-•••••••••-••••-••-•••••••••-•w•••

l opt-I I 5.213 l 18.55 8.81 2.296 l 2025 10.3 196.0 2583 13.8 1.276 J I opt I 6.103 I 19.73 8.04 2.284 I 1950 11.3 172.1 2338 15.2 1.199

l opt+! l 6.977 I 18.62 4.64 2.338 I 1758 16.5 106.6 2260 17.9 1.285

Page 78: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

MARSHALL STABILITY _.,. ... •

... •

•-;;

~1 ...

~ 2

~ ~ ... l7:?L-W,?,I

~a~~~~ c u. s K J

IZ2I opt-1 d"";. ~ opt+1

MARSHALL STABILITY N:.-4/UI

·:1 ~ l

"

u i~I~~ l~ J "'

0

c ... u.

t22J opt-1

LH

MIXES IS:5l ...

s

IZ'::ZI opt+1

• J

... •

" •

~1 ... 3 2

...

"' 0

c

• 4

~1 . 2

2

0

c

Fig. 32a. Marshall stability.

-~

MARSHALL STABILITY ,.,__ .. /G

u. • K J

IZ.2J opt-1 ~ f??.lJ opt+t

MARSHALL STABILITY .... N:.-'JD/1.$

..,

... u. LH s K

tz:ZJ (1$>t-1 d""!t ~ ept+1

·-,..--~

Page 79: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

'B ~

I

MARSHALL STIFFNESS ... ~~~~~~~~~·~'~~-~~=---~~~~~~~~~ -.... ,.. ... ... 150

100 .. o VA\.. vm • v~ v&·'* •

c u.

1Z2l ept-1

• ..... = ... • ~-1

MARSHALL STIFFNESS LS/AC-2:0

J

... ~~~~~~~~~~~~~~~~~~--,

... ""' ,.. ... ... '"' 100 -VA-.. 'l:?ol

.. o V1)Ji:%1 l'A)l0 Vl)W Vl)W r.1y

c '" u.

fZZl opt-1

"' •oo:s = .. · s

~ oi>t+t

K J

I

I

MARSHALL STIFFNESS ... ~~~~~~~~---'~~,,...~·~~~~~~~~ -.,,, ,.. ... -1SO

100 .. o VA\)£

c u.

!ZZI -·

• """" J'S:sJopt

• ~ opt:+1

MARSHALL STIFFNESS

'

... ~~~~~~~~U~/_,,._.~~~~~~~~~~

...

.,,,

...

... -. .. 100 .. •

c "' !ZZJ opt-I

u. U<

woo:s =opt

s

~··1

• J

Fig. 32b. Marshall stiffness.

" <..>

Page 80: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

74

Marshall st;l.ffness or Marshall quotient has been used in the United

lCingdom and South Africa as a criterion in mix design and has been

correlated to rut depth. For example, in South Africa, a minimum value

of Marshall stiffness at 140° F (60° C) 'of 1 to 2. kN/mm (5700 to 11400

lbs/in.) has been suggested to control excessive permanent deformation

or rutting (6, 30). Marshall stiffness, stability in pounds divided by

flow in 0.01 in., of the mixes are shown in Fig. 32(b). No significant

additive effects can be ob9erved except large increases in stiffness

because of Asphadur. All mixes exceeded the minimum stiffness value

needed to prevent excessive rutting.

4.1.2. Re!ililient Modulus

The results of the resilient modulus tests are given in Table 9.

No significant additive effects are seen except large increases are due

to Asphadur (AR) and somewhat low values are observed in mixes

containing SBR (J). Their effects as manifested in moisture damage and

structural capacity will be discussed in the following sections.

4.3.~. Tensile Strengths

Indirect tensile strength results are given in Table 9 and plotted

in Fig. 33. Asphadur increased tensile strength significantly; SBS

increased the strength slightly; and SBR decreased the strength

somewhat. The effects of other additives were not obvious.

4.1.4. Moisture Damage

~esistance to and effects of additives on moisture-induced damage

of asphalt concrete mixtures were evaluated by using Marshall immersion

Page 81: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

75

Tallie !a. Indirect tensile strength end mlllent modulus, LS/AC·5 •

............... -......................... _ .. _ ............................................................................. _ ................................................................................................................ .. ' ' . ' INDIRECT TENSILE Sll1EN6Tff

Rlxes I \ Sat. llolst Pi ITSB ITSAY RV I TSAl I (psi I (psi) (psi)

RL : I RR8 i (p•I)

RESILIENT llODULUS ('100000) !RAV ftRY KRAL MRl (psi) (psi)

... -------l--·-·-···-.. - ........ , .. - ........................................... _ ......................................... , ........................................................................................... .. oPl·I I 92.24 2.804 I 132.Z 112.4 1.303 : 116.3 0.879 I 3.16 4.54 1.436 : 2.19 o.m

C Ollt I 13.41 1.308 i llZ.I 149.6 1.334 i 105.9 G.944 i 2.ll 2.52 1.065 i I.SS G.656 011t+I i 108.46 1.192 I 96.l 188.6 1.IZ8 I 184.l 1.983 i 1.63 Z.32 1.423 I 1.14 0.699 _ .... ---1------.............. , ....... - ............................................... ,_ .. ,. ............................ , .. ___ ., __ ................................... , ................................... .. Ollt·I I 18.11 2.281 I 276.1 224.6 0.813 I 192.1 U95 I lo.90 1.45 0.683 I S.35 0.191

Alt Ollt. I 19.52 1.939 I 258.8 266.8 l.031 I 218.3 1.045 I 16.31 13.85 o.eso I 10.01 D.614 opt+I I 65.9! Mt! I 199.8 164.l 1.824 I 181.3 0.931 I 6.3! 4.25 o.m I U6 0.864

_,. ................... -1-------......... ____ , __ .. ___ ......................................... , .............. _ ................... :------·-··----........................ :-----·---................. .. 01>t·I I 58.91 0.801 I 151.1 111.0 0.135 I 161.l 1.071 I 3,30 1.12 0.520 I l.73 l.130

u Ollt I llS.16 8.830 I 140.7 131.4 o.m I 151.0 1.013 I Z.59 2.11 l.046 I 2.40 o.m Ollt+I I 156.!0 a.m I 109.B 94.l 0.862 I 14.6 8.619 I 1.58 1.37 0.861 I 1.09 0.690

----1-·---... -: .. --.... - ........................................ , ________ .... 1 ... ----·--·--·----.................. 1-----------··~ .. --0llt· I I 95.55 1.222 I 142.1 m.o 1.216 I ISG.4 1.059 I 4.08 4.15 l.Ol6 I l.50 o.m

lK oPt I Ill.ii 8.111 I 128.6 llS.I 1.048 I 125.Z o.m I 2.11 2.28 0.842 I 2.81 1.136 Ollt+I I 156.81 0.483 I 94.1 IOU I.Ill I 81.l Mll I 1.23 1.19 0.966 I 1.03 e.m -----:··------:---------··· ............. :--·-----........ , ...... -............... ----------·---:·--------··· .......... .. Ollt-1 I 11.03 2.266 I 145.1 195.3 1.345 i 147.1 1.011 I 3.54 l.19 1.0TI I 2.03 0.173

s Ollt . 1 55,40 o,m 1 111.4 m.a 1.130 : m.s 1.m 1 2.u 2.I! o.m 1 2.01 0.112 Ollt+I I 66.13 o.m I 118.8 121.5 1.023 I 147.0 1.m I l.59 1.92 t.208 I 1.48 o.m

........ =="="'"'l"'""'"''"',,,;,,,.,,,====:=-·""""'"''""'"'"'"""'"'"' .. "'"''"'""'"'''"'"'"'1""'""'"'"'"'"'""'"'"'""'""""~=;"'====""'"'"'"'"'"'"'"'°"'"""'"'=""'""'"""'1="'"""""'"'"'"'"'""'"'""''"''""' 011t·I I 103.23 3,159 I 139.9 121.2 0.909 I 110.2 0.188 I 2.62 1.50 e.m I 1.16 o.m

K Ollt I 101.23 1.m : 106.9 111.2 1.0'6 I 111.5 1.043 I l.21 1.26 1.041 I 1.28 ·1.1sa 011tt1 I 101.11 t.420 I 95.1 115.1 1.112 I 88.3 G.929 I 1.59 1.16 1.m : 1.01 0.639

·-·-.. --.. :---· .. -·---.. --:--.................................... - ........... 1 ........ _ ........ _ ........ _ .. : .. --............................................... : .................................. .. 011t·I : 13.45 2.116 I 91.6 au Q.912 I 94.2 0.965 I 2.10 9.91 o.m I 1.25 0.595

J Ollt I 63.49 1.m I 81,8 100.l 1.142 I 92.8 1.058 I 1.13 1.33 I.Ill I I.II 0.!82 011t+I I 15.72 1.621 I 82.6 77.l 9.936 I 79.1 8.946 I 1.24 1.47 l.181 I 0.7S a.m

l Sat. : t Saturation. Holst P : Moisture plckuPo i vt,, ITSB 1 lndlrett tensl le strength btforo treatment. ITSAY 1 Indirect t .. olle strength after '"'""" saturation. ITSAl 1 Indirect tensile strength after Lott.an treat .. nt. RV 1 Ratio, IT5AY/ITS8. RI. : Ratio, ITSAL/ITSB. 11118 : Resilient-••• before treata2ftt. MRAV : Resl llent -I•• after '"'""" .. turatlan. llflAL 1 Resilient -l•• after lottun treatHnt. llflY I Ratio, Hm/llfl8. llflL 1 Ratio, KRAL/MAB.

Page 82: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

76

Table 911. Indirect tensile str .. gth and reslll,.t IOdulvs, 6/AC·5,

' ' ' ' IMO I RECT !ENS I LE STRENGTll I \ Sat. lloltt Pl ITSB ITSA Y RV ITSAL

I (psi) (psi l (psi) RL

I I RR8 I lpsll

RESILIEllT llOOULUS ('I 00000) RRAV HRY ftRAL RRL (psi) (psi)

__ .. __ ... _ ,_ ................. -~-----:---.............................. - ......................... - ............. --1-----·-----------...................................................... .. oPt-1 I f8.Z3 3.995 I 97.6 118.4 1.m I 6'.7 0.1U I Z.tl 2.25 1.105 I 1.18 0.815

C opt I 100.ll Z.B67 I $8.S 128.3 1.450 I 10,.4 1.134 I 1.94 2.11 t.123 I 2.11 1.120 opttl I 103.64 1.'54 I 92.5 91.9 1.05B I 103.6 t.IZO I 2.15 Z.Zl 1,056 I I.IS 0.535

-------i·--·-·-·-·-··----1-·-----·---................................ t-----·----------1·----.. --..................................... 1--·-.......................... .. opt·l I 54.40 1.343 I 119.1 138.0 t.159 I 110.s o.928 I Z.'6 2.29 . 0.861 I 1.56 0.586

LL oPt I B5.49 2.661 I 112,4 105.1 0.934 I 8B.O o. 782 I 5.15 t .1B 0.346 I 1.41 0.285 opt+l I 11.19 1.446 I 95.5 93.0 o.m I Bl.O G.911 I 1.25 1,09 O.Bl2 I 1.11 O.BBB

.......... ~ .. :.. ...... , ..................................... J ··~-................................................ I ....... _ ...... - ................ 1 ....................................................... 1-................................... .. oPt·I I 19.39 3.616 I 113.8 136, 1 1.311 I 92. l 0.893 I 2.07 Z.31 1.145 l 1.26 0.609

5 oPt I 82.16 2.352 I 126.1 124.3 G.981 I 126.S 9.998 l 1.49 1.39 o.m I 1.34 o.m oPt+I I 63.69 1,251 I 125.6 151,l 1.205 I 121.3 a.966 l 0.76 8.91 l.2BO I O.B2 1.081

---.. ---:--.... - .... -----l-.......... _ ............ _ ...................... , .............. - .................. , ................................... ------·J-..................... _____ _ oPt·I I 95.12 2.B15 I 131.8 m.e 1.204 I 125.1 0.90B I 2.62 1.98 8.981 l l.lB UBI

K oPt I 105.68 1,880 I 124.9 282.7 1.623 I 125.3 1.003 I 1.10 2.22 1.308 I 1.52 0.893 oPt+l I 133.60 1.568 I 181.3 m.7 1.1$2 I 122.s 1.132 I 1.19 1.53 1.2B6 I 1.01 0.845

-~-................ 1--------·----... -1----·------------·--·-·--:·---.. .;. .......... - .... :--.. ----···--·-------1--............................... .. oPt·l I BU! 3.450 I 66.6 68.8 1.034 I 48.6 o. 130 I 1.00 O.B9 O.BB1 I 8.49 0.486

J oPt I 6!.11 1.648 I 13.2 81.6 1.115 I 69.Z 0.945 I 1.13 I.Bl 0.846 l 0.82 o.m oPt+l I B2,91 1.655 l 11.1 B!.5 1.010 I 85.0 1.102 I 0.11 1.66 0.92B I O.ll 1.007

Page 83: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

77

Table 9<. Indirect tensile strength and resl llent IOdul..,, LS/AC·!O.

I I INDIRECT TENSILE STREMGlff I RESILIENT llDOULUS ('100000) llxes I I Sat. llolst P I ITSB ITSAV RY ITSAL AL I RAB KRAV !RV ftAAL ftRL

I I (pslJ (psll (psi) I (psi) (psi) (psi) ----t .. -·-------··-· l·· .............. _ ............. _ ............ ____ .... _ ................... 1 .... --............................... _ ..................................... _ .... _ ... ..

Ol>t-1 I 81.88 z.m I m.z 219.J 0.961 I 156.6 0.538 I lo.67 8.49 0.796 I S.44 0.510 c ""t 1 as.s1 1.10& 1 m.s zaz.2 1.m 1 166.a o.m 1 11.as 9.S9 e.845 : 6.65 o.586

opt+l I 54.71 8.471 I m.1 ZZ6.I G.955 I 2!6.3 0.956 I S.55 3.99 0.719 I 4.82 0.868 ·-·-----1-.................. - .... ---1----.. ------.. --................. 1---·------· .. ·---1-................................................ _ .. , .................................. ..

opt·I I 11.'1 1.495 I m.a 388.7 I.Oil I 341.! o.m I 11.30 14.93 G.863 : 9.81 1.571 Alt Giit I 88.01 1.614 I m.1 144.8 t.867: m.o 0.187 I IMO 24.00 1.206: 11.98 0.602

Ollt+I : 82.10 0.808 I 385.8 m.z 1.095 I 427.6 1.108 I 18.60 11.25 0.605 I II.SO 0.618 ---... --1-.. ------···---l·--............. _ .... ____ .......... , ...... ____ ............ 1-·-·-.. --................ _ ........... _ .. 1-----------·-· .... --

opt·I I !4.21 1.825 I 155.6 389.l l.'14 I m.a 1.646 I 13.00 10.10 0.771 I 8.53 0.656 LL opt I 11,72 9.748 I m.l ZlS.4 1.m I 294.1 t.335 I 8.85 6.45 0.129 I '·'' 0.784

opt+I I 117.36 1.481 I %61.7 m.6 1.011 I Z95.4 1.129 I 1.50 5.43 e.m I 7.42 G.98! ___ , .. _________ .. ,_ ..................... -----l .. ----.. - .... , ................................................. _ .. , .................................. .. opt-I I 59.11 8.039 I m.s llt.6 1.ZIZ I Ill.I o.626 f 8.66 8.59 o.m I 7.57 0.874

LK opt I 72.13 G.649 I 215.4 108.9 1.259 I 321.0 1.388 I a.38 I.SO 0.894 I 8.84 1.055 opt+I 1 is.as e.m 1 188.9 m.c 1.m 1 m.a 1.m 1 1.21 1.60 a.110 1 6.81 o.m

-·---:-·-···---·-:--·-······-··-··-.. f·-· .. ---· .......... : ........................ "'. .... _ ................... J .................................... ..

opt•I I 10.41 1.m 1 210.7 . 328.9 1.215 I 151.9 0.561 I 8.85 9.51 I.OJI I Z.08 o.m s opt I 83.98 1.479 I 254.2 303.5 1.194 I 186.0 8.llZ I 6.16 . 8.87 1.uo I 2.91 o.m

opt+I I 112.88 I.Ole I 253.9 348,Z 1.lll I Z49.0 0.981 I 4.23 9.50 2.246 I 5.17 1.364 ---1-----1·················-·······l·--·············l···························I-·········-·····

Ollt-1 I 19.06 1.527 I 225.5 221.1 9.983 I 182.1 0.807 I 4.94 4.00 0.810 I 3.69 o.m l opt 1 13.00 a.nz: m.a m.1 o.m 1 1aa.s 1.085: z.11 z.45 o.m: l.39 1.m

opt+! I 114.78 f.818 I 165.6 UM U09 I 155.0 8.936 I 1.44 1.39 0.96$ I 1.3! D.965 ---·-t·----.... --·t .......... "!'..._ ............ _ .............. ,-............................... , ..................................................... 1 ...................... _ .. ___ _

Ollt·I I 84.78 z.m I 154.0 154.5 t.004 I 130.6 0.848 I l.4Z 3.87 l.ll2 I 1.76 0.Sl5 J Ol>I I IS.79 J.433 I 167.6 182.9 1.091 I 151.8 8.942 I 3.69 l.60 0.916 i 2.40 0.650

opt+I I IZl.18 1.550 I 146.2 184.8 1.264 I 149.0 1.019 I 2.76 !.44 1.246 I 2.22 0.804

Page 84: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

78

Table 9d. Indirect tensile strength end rtstllent llDdulus, 6/At-20.

I IMDIRECT THSILE STRENGTH I RESlllENT llOOULUS ('190000) Nixes : ' Sat. ltolst Pl ITSB ITSAY RY ITSAL RL : MRB NRAY NRY llRAL !RL

I I (psi) (psi) (psi) I (psi) (psi) (psi)

-----1- -1----·--------------·-----······-·-·--··-1----··-·····-----·············---------·-•pt-I : 82.4, 2.813 I m.7 W.8 1.214 I IZO.S o.m : 6.26 9.16 1.m : 6.84 1.09!

t opt I 91.15 2.161 I 199.3 165.4 0.6!0 I IU.9 0.526 I 5.38 7.78 1.446 i 5.41 J.006 oPt+I 1 1u9 1.339 1 220.a 288.5 1.m : 180.s o.818 : 6.so a.12 1.182 : 5.06 o.744

..... ~------.. l-------··---.. --.. t-·--------..................... - ........... 1--------------· 1---· ............................................... 1-----·----------opt• I I 9U9 3.395 I 229.2 203.J 0.893 I 115.6 0.506 I 11.90 9.61 0.808 I 5.18 0.431

LL oPt I ll.17 1.847 I 2'4.l 162.3 0.992 I W.6 o.9U I 9.38 7.59 8.809 i 7.56 0.806 opt+I : 101.os 1.815 : m.1 m.o 1.m : 10.4 o.148 : 8.65 6.Z6 o.m : 4.lZ o.m

................ --, ··---------·-----1-·-.. ·---·--· ............................ 1----·----................ 1-·---------·----------.. ---1 ·--.... -~ ..................... .. opt-I I 80.9' 3.107 I 231.8 m.a 1.m I 156.9 UH I 6.51 6,43 0.988 : 4.14 0.728

s oPI I 75.94 z.m I 316.2 109.S 0.979 I 169.4 1.m I J.82 l.31 0.935 : 4.15 0.531 oPt+I I 90.00 1.244 I 300.S 345.2 1.10 I m.1 o. 146 I 6.80 6,46 1.m : 4.06 o.671

........... ---·l·---·------.. l··----·---............ - .... ~ ...... _l ... - ..... - .......... _ .... _,_ ........................... --............. 1 ..................................... .. opt·I I 73,71 Z.490 I 111.1 24G.I 1.398 I 146.2 8.851 I 4,61 1.84 1.256 I 3.42 o.m

K opt I Jl.48 1.106 I 222.3 219.9 t.989 : 178.Z 0.802 I 6.34 5.17 o.815 : 3.78 0.59' oPt+I I 12.36 1.062 I 194.0 211.1 1.091 : 195.9 I.Oii I l.89 2.88 0.148 I Z.93 o.m

.............. _ .... 1--............................. , .. _________ ,, __ .......................... , ---··-~--.......... , .................................... ___ ........... 1----··------------opt-1 1 6s.Jl 2.m 1 149.3 153.l 1.021 : m.1 o.m : 3.44 z.n e.m : 1.18 o.m

J oPI : 62.24 2.179 I 146.9 189.6 1.zz9 : 135.1 0.920 I 2.38 2.56 1.076 : 2.03 0.853 opt+I I 51.39 1.140 I m.z 128.2 1.935 : 14o.t . I.OZ! I Z.33 1.94 0.833 : 1.9! 0.814 -··-··----·--·----·------·--·-·-·-·---·-------.. -----------.. -...... -........................................... _ .. _ ......................... ,._ ............ ..

Page 85: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

INDIRECT TENSILE STRENGTH AC-5 G SERIES

<DO~~~~~~-'-''-=--"-;:.;;_~~~~~~~

350

300

1. 250

! 200

! 150

100

50

0 c LL s K J

1221 apt-1 MIXES

£S:S1 opt ~ opt+1

INDIRECT TENSILE STRENGTH Al'::-5 LS SERIES

<DO-.-~~~~~~~~~~~~~~~~~~~~~,

350 ...

I 250

200

150

100

50

O c AH LL LH s K J

llZJ opt~1 MIXES

IS:sJ opt ~ opt+ 1

l

I

i i

INDIRECT TENSILE STRENGTH AC-20 G $ERIES

400,.-~~~~~~~-=--'--.:.....::::..-.-~~~~~--,

350

300

250

200 _L_ t/'.M

150

100

50

· O V/f\.. '11'"/4 V/f\. '\ ~ ~

c LL • • J

1ZZ1 opt-1 MIXES

ts:SI opt IZ!lJ opt+1

INDIRECT TENSILE STRENGTH AC-20 LS SERIES

400.,-~~-...r-~~~~~~~~~~~--,

350

300

250

200

150

100

so

O [!T\IZI [/l')M [/!)"

c AH LL LH s K J

IZ2l opt-1 MIXES

[SS! opt ~ opt+ 1

Fig. 33. Indirect tensile strength.

-.t

Page 86: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

80

(24 hrs. at 140° F), retained tensile strength ratio and retained

resilient modulus ratio after vacuum saturation and after

Lottman-accelerated moisture conditioning (vacuum saturation followed by

freezing and warm water soaking). (See Fig. 31.) The Lottman

wet-to-dry tensile strength ratios :were used in conjunction with the

ACMODAS <Asphalt Concrete Moisture Damage Analysis System) computer

program developed by Lottman·and Leonard (28) to predict changes in

fatigue life. because of additives and to predict field life

benefit-to-cost ratios for .different additives.

· 4. '.'I. 4. 1. Marshall Immersion

Marshall immersion stability results are given in Table 8, and the

retained stability expressed as ratios are shown in Fig. 34. The only

asphalt-aggregate combination with additives that showed improved

stability ratios was gravel with AC-5; here the mixes without additives

(control) would have a problem meeting the usual criterion of minimum

. ratio of n.85.

4.3.4.2. Tensile Strength

Indirect tensile strengths after vacuum-saturation and after

Lottman-accelerated conditioning are given in Table 9. Also given were

percent resistance pick-up by weight and degree of saturation of

vacuum-saturated samples. The degree of saturation, expressed as

percent, was calculated by dividing the volume of moisture pick-up by

the volume of air content. The retained tensile strengths, expressed as

ratios, are shown in Fig. 35.

Page 87: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

0

~ 5 ~

I

• i 5 !

I

MOISTURE DAMAGE, MARSHALL STABIIJTY 1.4 ___ ,,.

... ... 1.1

... o.e 0.7 ... ... o.• .... ... 0.1

o~ c u. $

fZ2l opt-t ~ • J

~ op:+t

• i

I I

MOISTURE DAMAGE, MARSHALL STABIIJTY t.4 ~,.

u ... 1.1

... ... ll7 ... ... ... ... ... ..,

0 c u. •

fZ2l _, ~

• , l!!Zill .... ,

MOISTURE DAMAGE, MARSHALL STABIIJTY ~· AC-20/LS

MOISTURE DAMAGE, MARSHALL STABIIJTY

•.7 T----r~:J" ____ _:A<-ll~~{l.S~--------==~-'·· -... 2.2

2

...

... u

1.2

... 0.6

o.4 .! /l'.. VA

0.2

0 c .. u.

1221 o,t-1

Ui

MIXES =op•

• i

I I

, .. u 1.2

LI

u ... 0.7

o.• ... ... o .• -rA-.~ ... 0.1

0 lt'l'}m t&,W L1)WI IA)l $ • J c AH

~ opt+1 fZ2l opt-I

Fig. 34. Moisture damage, Marshall immersion stability.

u. Ui

d"';..

~

• • J

~ opt+1

co ....

Page 88: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I

I I

••• 1..a 1.a t.1

... u 0.7 ... ... 0.4

u

KOISTIJlUI DAKAGB. ITS

u '.l l\ If'.' I\ j«A !\ jZ4 o.: !\ lf'J " If' I\ lf'J " ~

, .. ... 1..a 1.2

1.1

... ... 0.7

OA

ILi

a.• 11.1

11.2

O.t

0

c ....

cs::J IOOC/SAf

u. Ill s -liZJumMI "'

KOIS'l'OU DA1WIS. lllrSIUBMT KODVWS .VO-SJl,8,-1 .......- .

c .... cs::JvllC/SAl

u. Ut -· IZil LmlWI

s •

1~4

t.0

..a 1.1

·I ... ... .. ., ... ... 0.4

D.11

0.1

0

1.a I.I

1

11.t ... 0.7

.,,. OJI

·o.4 u

"(la

0.1

0

. KOISftlBI IWIAGB, rrs -...... ~----J ·---- .

- .~ rq

c .... IL Ill S -IS:Jwt;fSM l2ZJ l.OllllMI

MOIS'l'tl1Ul lWWIB, iUISIUllNT _KODUWS

c "' IL

cs::JVllC/SAT

AC-e/l.S. ~----

UI,

UlllEi 12Z!l..01'11MM

g K -~

-1..a. -1.2

t.1

....

.... 0.7 ... ... IL4

u 0.2

0.1

KOIBTUU JWU:GB, 1'1'B ·

0 I' V' ,....., P"' '' V 4 '' IZ' f\ JZA ,, J( 4 [''>rt='

I.I

IA

1.a

1.2

1.1

1 ... .... 0.7

II.II

DAI M

OJI ... 0.1

0

c ....

cs::JVN:/IM

u. Ut s -~- M

KOISTUall DAllAGB, BBSJIDN'l KODUWS

c .... IL'

cs::J VllC/W

-!LS.-•

ut -­~UlnWN

s K

Fig. 35a. Moisture damage, ITS, aud resilient modulus, AC-5/LS.

(lD N

Page 89: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

... u ... •••

~ o.• ~ ... I o., 11 ... ...

o.• o.• .. 0.1

llOIS'l'llBB DAllAGB, l'I'$ AC-&/0. MixtS 2

0 h VJ h 'f'.d1 h 'Y11 h 'Y11 "' y...n

~

I

• u.

ts:) VAC/SAT

• ..... liZil """""

K

llOIS'l'llBB DA»AGB, ·BllSIUJINT JlODULUS

1.2 __..,,_ ..

•••

0.1

o.a .., ... ... ... o.• ... 0.1

0 t. 'f«d " +ud " +ui " T"'' " V'' • u.

· ts:JVN:/W

s .... liZil ..,,...

K

llOIS'l'llBB DAllAGB, ITS

1.7 .---------:::..::0

':.: .. :."""'==-=·-------~ • •• ... ... u .. ••• ... ... 0.1 ... ... ... ... ... ... o " V"' " V'A' " VJ " ¥V " ¥V • u.

l.'S:J WC/W

• ..... liZil """""

K

llOIS'l'llBB DAllAGB, BllSIUJINT llODULUS N:-6/G. YX£S •

1A ..,---------------------,

u ... 1.1~

... ... 0.7 ... ... ... ... ... 0.1

0 h 'fd'.l h 'fd'.l h 'fd'.l t>. 'fd'.l .., 'f?'.I • u.

rs::J VAC/SAT

s .... liZil """""

llOIS'l'llBB D.UWIB, ITS

N.>-e/O. ams • ul .. 1.1 ~hi

... ... 0.7 ... ... ... ... .. •••

O 1'\ fU,f '' lf/.t "· JHd (), JUd !'\. f//d

• u.

ts:J VN:/BIJ

• ..... liZil-

llOIS'l'llBB DAllAGll. illllllLDINT llODUWS

'

•~ I r;:-, Kl I ... 1.1

... ... 0.7 ... ... ... ... .. 0.1

0 .., VJ .., 'f?'.I .., 'fl.?1 .., 'f#l .., 'P'.l • . u.

rs.::J V/C~T

s .... liZil"""""

K

Fig. 35 b Moisture damage, ITS, and resilient modulus, AC-5/G.

00

"'

Page 90: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I

! I

VOIS'l'llllB D.&JIAGB. rrs I~ ,...~~~~~~·~= ..... :..::'°~VIS..:::~"""'==~7~~~~~~~---.

... 1.1

... ... u

••• ·~ ... ... u 0.1

0 I\ f't'd I\ 19.'d I\ fXA [\ JZd [\ fZA !'\ f"' f\ f'' c ...

rs:J VM/SAT

1L U1 S ..... =l.OITIWI •

VOIS'l'llllB D.&JIAGB. BBSILIBNT VODULUS

1.2 11:-'ID_/Ui.. Mlm 7

I.I

... ... 0.7 ... ... ... ... G.2

0.1

'

• " i«' " I«' " i«' " i«' " rr' " i«' " i«' c "' 1L

cs:Jv~/SAT

"' .... i;z:;i '°"""'

s • '

VOISTUllB D.&JIAGll. rrs

1A.--~~~·~~ ..... ~'"~VIS.__c_ ..... ___ •~~--~~~~

I~ ... ..,

... ... 0.7 ... ... ... ... G.2

0.1

• " j:?'J " fi2 " C AH

IS:] VliC/SAT

fi2 " fi2 " fi2 " fi2 " fi2 u. "' • .... =-

• ,

VOISTUllB D.&JIAGB. JlllSILlBNT VODULUS

,.. 1.• u 1.2 ..,

... ... 0.7

...

... ... ... ... ~h~~~"~"~"~"~"fi'J

c "' u.

lS:) VIC/SAT

Iii .... ="""""

s • '

1.4 ,----

1~

1.2

1.1

... ... 0.7 ... .. . ... ... ... 0.1

VOISTUllB D.&JIAGB. rrs -- ,._ ..

• " fi2 " If'.! " fi2 " fi2 " fi2 " fi2 " fi2 c "'

ts:) Vl&/t/AT

U. UI S ..... =-•

' VOIS'l'llllB D.&JIAGB. JlllSILlBNT VODULUS 2.4 AC-20,Aa. lil:Cl:S 11

... 2

,.. u

... 1.2

... ... .... ...

'

• l:..T£:J h. lf'.I h.1£1 h. w h. w h. w h w c ... 1L

rs::J VIC/SAT

Iii .... i;z:;i """""'

$ • '

Fig. 35c. Moisture damage, ITS, and resilient modulus, AC-20/LS.

00 ..,.

Page 91: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I

~

I

llOISTUllB D.UUGB, ITS N:-20/0. MIGS 10

l.S ~--------'"-'-----------, ... ... ... ... .., .. ... ... ... ... 0.1

o I'> W " 'fd'J ti VJ " ltYJ " VJ c

IS:J""""'1

u. • .... llZI"""""

llOISTUllB D.uwJB, BBSIUllNT llODUWS ID-20/0. MDl£S 10 ... ,..---------'"-'------------, ...

l.S

1.2

1.1

... ... 0.7 ... ... ... ... ... ... • " W I'> VJ t:. TffA t:. VJ " vo

c

ts:J VJi;/SAT

u. • ..... 122'.J .......

llOISTUllB D.UUGB, ITS

•.• ,.-------'-::...="::..10."""'"""'"-•-,,....,,.----..., u ... I.I

I· ... ... 0.7 ... ... ... ... ... 0.1

• " 'f4'.I " 'f4'.I " 'f'.11 " 'f'.11 " 'f'.11 c u.

IS:J VN>/fAT

• .... llZI"""""

llOISTllllB O.UUGB. BBSIUllNT llODUWS ID-'111/0. YllCEI •

1.6 ..---------~'---------~ 1.4

l.S

1.2

••• ... ... 0.7 ... ... ... ... ... 0.1

• " 'f'.11 " 'f'.11 t:, 'f'.11 t:, 'f/Ll t:, V1 c u.

IS:J VN;/SAT

• ..... (iZJUJTIIWI

llOISTUllB D.UUGB, rrs

1_. i.c-20/0. Yl(£I 1a

u . .. 1.1

.. . . .. 0.7 ... ... .. . ... ... o.: I\ w " "f.f'.I I\ 'f#1 I\ 'f#1 " 'f'.11

c u.

~V/IC/811.T

• .... 122'.J-

llOISTUllB D.uwJB, BBSILlllNT llODUWS l.J N:-20/0. ..m 12 .

... •••

... ... 0.7 ... ... . .. ... ... . .. • " "UI " 'U1 " 'U1 " "f.f'.I I\ 'f4'.I c u.

ts:J VN;/SAT

• .... llZIUJTIIWI

Fig. 35d. Moisture damage, ITS, and resil:tent modulus, AC-20/G.

00

"'

Page 92: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

86

With a few exceptions, the tensile stength ratios after Lottman

treatment were lower than those after simple vacuum saturation. The

retained ratios ranged from about 0.50 to 1.4. The moisture pick-up

raUos ranged from 0.4%. to 4.0%. All except two mixes had percent

saturation exceeding the recommended 551'; (49). In several samples the

degree of saturation was greater thanthe theoretical 100% because of

fl) small moisture pick-up values, (Z) small air content values, and (3)

the different number of specimens examined· for (1) and (2). The

moisture pick-up values were based on an average of 3 to 6 specimens,

but the air content values were determined for an average of 15 to 18

·specimens. '!'he following observations <:an be made.

• AC-5/Limestone: Lime, SJIS, and SBR seemed to have improved the

moisture resistance determined by the Lottman procedure; but no

additives showed improvements based on vacuum-saturation

treatment.

• AC-5/Gravel: No significant effect.

• AC-?0/Limestone: Lime, SBS and SBR reduced moisture damage

while Asphadur and neoprene showed improvement only by the

Lottman procedure.

• AC-20/Gravel: Whereas SBS and neoprene showed beneficial

effects, lime and SBR made little difference in retained tensile

strength ratios.

4.3.4.3. Resilient Modulus

Resilient modulus data for mixes before and after moisture

treatments are given in Table 'l and shdwn in Fig. 35, ln the majority

of the mixes, the resilient modulus ratios were parallel to and were

Page 93: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

87

lower than those of tensile strength ratios. In other words, they were

most sensitive to moisture .. induced damage. Again, as in the tensile

strength ratios, Lettman conditioning resulted in lower retained ratios;

and no additives showed consistent improvements for all

asphalt-aggregate combinations and with all binder contents, although

AC-20/limestone mb:es seemed to have benefitted by the additives more

often than other mixes. Contrary to previous beliefs, gravel mixes did

not show more moisture susceptibility than corresponding limestone

mixes, and hydrated lime did not improve moisture resistance in all

cases.

4.~.4.4. Life Benefit-to-Cost Ratio ---Dry and wet accelerated-conditioned indirect tensile strength data

were used to calculate the field dry-wet lives and the percent changes

from all-dry ~esi11t1 life because of moisture damage. The subroutine LCO ·

of the ACMOnAS program was used for all control (C) mixtures. From dry

and wet stren11:ths of treated mixes and the predicted field dry-wet life

of corresponding control mixes, field dry-wet lives and the percent

changes· from the all•dry design life of additive-treated mixtures were

calculated with the subroutine LBC. By using the same LBC subroutine,

the field life benefit-to-cost ratios were calculated for scenarios

where the costs of the additive-treated mixes were 5%, 10% and 20%

higher than the corresponding control mixes (cost ratios of

additive-treated mixtures of 1.os, 1.10 and t.20). The pavement and

environmental data assumed were:

Regional factor: 1 (severe)

Field a11-ifry des:l.gn life: 16 years

Page 94: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

88

Percent allowable reduction of all-dry design life: 10

Field dry stage time: 4 years

The percent changes from all-dry design life and the life

benefit-to-cost ratios for additives cost ratios of 1.05, 1.10 and l.20

were plotted in Fig. 36a (LS/AC-5), 36b (G/AC-5), 36c (LS/AC-20) and 36d

fG/AC-~O). The only consistent trend that can be deduced from the

analysis is the decreased benefit-to-cost ratio as the cost of additive

is increased. '!'he effects of additives in terms of changing the design

life and benefit-to-cost ratio with respect to moisture-induced damage

depend on the asphalt-aggregate combination as well as asphalt content.

While limestone (LS)/AC-20 mixes·seemed to have benefitted by all

additives, no significant differences can be seen for mixes containing

AC-5. Neoprene (K) and SBR (J) improved the moisture resistance of

AC-20 mixes but not AC-5 mixes.

At an additive cost ratio of 1.05, 63% of the 60 mixes containing

additives had life benefit-to-cost ratios of greater than one. At an

additive cost ratio of J. .20, only 37% of the mixes had benefit-to-cost

ratios greater than one. Ranking of the additives based on percent of

mixes containing the respective additives with a life benefit-to-cost

ratio exceeding one is as follows: high lime (LH), 83%; SBR (J), 75%;

Asphadur <AH), 67%; SBS <S) and neoprene (K), 58%; low lime content

(LL), 50%.

4.3.5. Fatigue Resistance

Fatigue resistance of asphalt concrete mixes can be determined

experimentally by repeated flexure, direct tension, or diametral tensile

tests, either at controlled-strain or controlled-stress mode; However,

I

Page 95: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

~

I f

Percent CbaDC• _of Delip Uf• .. LS/NHl. ..... 1

.. 10

I I\ >J " ,, I\ ,, O K\: i I '('(I

I -•o • ....

.... -40 I t I\ i'\J I I ,....-7-,.--·

C1 ... U.1 lH1 ., l(l " -We --to-Cod Ratio

1.2 I ..;.c-e. .... •

1.1 ~ -

I J •

... ... I : ~ ... ... ... ...

.. : ml>.~1'4 !>.~ t...l!;I'il b"tt>I t...t;r"I ... U.I lffl •• Kl JI ..... is:J 1.00 '2J t.10 ~ t.20

Percent Chtmti• of Deatcn We

.. .,.--------=Pl.~ ...... =="-="'"'::::.~·------~ .. .. .. .. "' II

10

• 0 I\ I)..) f\, I'\) " ·.'\'f I\ >J " i>J " i'>J " ,>J .. .... IJ.I ... .. .....

We lleJlortt -to.co.t Ratio LS/AC-I, .._a

I~ ~

1.2

I.I

0.9 . .. D.7 ... ... ... ... ... 0.1

.. ...

0 " ~ " ip;.1.;51 " tyi:3I " tyi:3I " tyi:3I t>. tyi:3I "" IJ.I uu .. .. ... .... is:J 1.00 ~1.10 ~1.20

Perc:ont Chtmti• of llulcn We .. ,-- ··-~- ....,~~-~---~

·i ~~ I .. _, ~~ I ~' d I-': . ~ '

. ...:i.l.b....Sl.~·-, t_·~ Q ~ I . ,,

-10~ ,·... '

~<i ' _,.1 l:::::i ' . _. J.._, __ ---,---- ··--r----·r~ ---- ,....---·-.,.. J

m ~ ~ ~ • • • .... Ufe lleJlertt-to·-Coet Ratio

ts/AC-I. ..... u 1-·-· --· ---·-----------100

1.14 ~ 1'° I 1 ~

=~-i ~km,"- ~ l ,., + ,., . ~ k ... +.··.~, ~- ~, ~ r. ... iv.~~ t~ ~"t · ul~ ~~~ ... -tli . H.~ r·~ tli"t-N ~~ ... + <t." t·fH tJ I ",;

1 •':-.: l YJt'::x I {I !'- "- '

... 1 ti~11~f*~ ~-!" ~ ~' ' ~ ti 0.1 -!'ll-t ~ '{ l.J' t::»J ' \(.' ' .

0 ~.J ' :i._ ' 'µ._ . !..;; k " ' ' ... IJ.I ... .. .. .. .... cs:J 1.o& ~ t.to [§11.20

Fig. 36a. Percent change of design life and benefit-to-cost ratio, AC-5/LS.

Page 96: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Percent Ch&DC• of Dnto Life P011::eu.t Chant• of Beaten Ute PercoDt Clllm&• of D""'-" Lite .,----___ _,,,0/10-6. ..... 2

~ -~]--~~_,-_-~-~I ~ R_ ,~- ----_ --· ---,

, -• ;,:.-. - ,'-. ' 10 J--;, _ · '! ~- ~-0j I !I ·.·, ',·.i .1 .... ,"\ ·,"· ,, .

~~ --·~ l .. ~'i ~~: I ... ' ' i .f ,, ' . ' I

f : ·---~~i ~\~-~---~-,- : i}:] - -~-~:(i b~~~ t<,~·41 :: '· "'- l ' " ' ., i ''·>... '; ' ... ' "

-to _,, ', "-.i ·\ ... ' .. :- o ·- -- --~- , ., to t , .. ~ ..... ,. "'"\] -I _,, -,: ... ; L~ -•, 1·~ _,, , •

• _,. ;._;~ I ::: J K< <~_ ·: • ',, '\,.::-J i - i t.. '2'" 'i ' 4 -t• '' . ·. -a , ~ '· , .... _' '

·<· ' ~"

~~ ~~>.~~ ., "" ' ~ ''

~' ·..: --~-, ~'

<~

.. -,, ..J -10 ..t , ,..... • .. 'i ! 2

-1• ---..--- .L ,.. .._,, 'f J -.--·-· _,. -,----- -"' ~ I u.a a a .12 - -· ---.----·--r-··-- -r ,_ - ::-..

o..£::..._~l__t,~>.L.e...,:~_i:,.~J_J:>.....::~

... ... •••

..

o.t -f,_"'-f#l'

I : I • I ~

... OJI ... ... ... ...

IDD ~ u.4 M M * .... Ufe -etlt-to Coat Batto Ufe -etlt·to-CHt Batte

·1··::-. ~ . c·-w r-;: ~~ v, f.;.t,; ' k ., -. '_ -~ - ,,_ -~ ~-:r~/ "'~ ~--~ •, " ~ ~ :i l. 1, ,._ , ,.. , -~---:I'_·~-~ '\j l_ '- '. -~ ~- ';: ·,

..

...

... 0.7

... OJI

...

...

... "'-Y.-11'-."-1

0.1

... .. .... .. We -otlt-to-CHt Batto

..

"' -~o

0 I\ It.{J..-S:J I\ LfJ,,'>N I\ if{ A>>' D 14.j .+.'->" 0 I\ ~-,;., '\j

~ ~~-~~ P __ -· ;~~ t-- ~,"'~-~­. ~t-~.:"l !--.~~~rm,_ -~ v~.'1 "' .~ " ,. - , ., l <bt\l ll~-- - , .

I o u u;·+>.J I\ k('*-'W " 14"&>'1 " 1«"'+>-·J U2 ..

cs::I 1•5 rcZ;a' 1.IQ

"' .... ~t.20·

... UA .. =· ... t!ZJ 1.10

.. ... UA ..... r;s.;i .... ts:J 1.00

Fig. 36b. Percent change of design life and benefit-to-cost ratio, AC-5/G.

.. li2J 1.10

.. .... 1::§,)1.20

..

Page 97: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Percent ~ af Deolp Life Percoat Clum&• of Deolp We Percent Clum&• of Doolp Ute

·gr·'.' .·~.s:i r:r1zrK_~-~11~~ ·=r-~...,----· l ·:r-·-----~~" --1 -to . ·~ l~\,~.~·:;.~ ;' :. i k. '.:j I • . ''.-~ ·.'~.; · 1

-~~ r~J ~<·1 t>~l ~~::J i

1. : 1. ~~ ~:, i .. ~>-. 1

~ t-.. ''< t ·:j ""-'I , ,. J K .-i t .~<:i. - f-\:·1 ~>-~ . : ..... ~ . ~':.,:~ . -.~ I .. I ~ "'i I I " . ·1· . ~ 'l ~<'- " I .. ~ ~' ' ,, I I·' J i ... 1-::-. · • -~,j l._ ----1 ' .. ,', ~- r~ .. 1 * K. ,~ .k-,_~ .. k:J I .. " '·, ~-~-J ·- .. -j I l -40 .;'>. I "" ': - k . .... I 0 " ~- ' I

• . ~<.·.~·· . [:::_,1 t .. ';:~ ! -·· ,, . •

f. ~---:J ~'- -; ·1 .... ., . I .. -IO ' b:· -~.1 ... '

-t0 ~~·---,-·-·· -·r-o···----:~--r·-0-l:: -.,---,---r--.-·- -,---,--J t: .C....::>Lt..,:>Jc..A...;:.:J_Jt....:::,;Lt:..~.r...:>.LI>-.:.J ~ - ~ - c ~ n ~ - ~ - • a ~ w - ~ ~ ~ m m - - -

Life llel1eftt'to-c.t BaUa Life Bauetlt·to·Cotlt BaUa We Bauetlt·to·Colt Bat!<!

'° -----~ ... ~~------~ ~ '....._ .... ....

--· ·-----'°"~_!>,'.':"!~ - -·----· - ~1-1 : Tj ·-------

·" :'.._ . : •

W/N;-'JO.Mt.-1 __________ ---, , .. .,.

----- ! :~ ~ I , .. ;

...

'" ' ~ t • "":i-- ....

:: '. -~-~ ' ·. i ~- ~ l:~~ I '::..; ;-f'. 'i "i" ,, l • u 1 ... .,. ·<:. f~ ,, .• , ~-m ... _ & -. t'·t-~, t "f ' · . I • t "/ ~ !'.J:' <l !., ,- ~. . -~ I'\, " I

I ... }r: ~ ~~·-¥~ r-· 1'~.· ~ .. ·~ ~ .. ~ ~ ~1· . 'f;,:; ~ 'f .. ~ :-. ' ., "!""'·' ~t'i;:.!o.~ ' . U ;.' \f '" d · ' if. ·~ I .'I

I ... "' I , ..

.•.• 1''VA-~ 1

OJI ... ..1·,

0.7

~ t: -~ ~ '.f-: ~ :<-:, t . .'j t_ .>ii:\ l. ..• ... . . . , ... i.f-1\., ,r-'t'i tj ~'fl ... ~. ri~ :I,:. ' . n~ t-.q";; f>l?,J.'~ H',J.~-~ I, _4'.1 '-:'i?;~ i '(/)...~ · ~' .. •, ·

0

t\lf'))I f\ , - 4 03

1 .~'*-~ b V~·~ " ~-s ~ +-.: · ,. r~1·-,.:1 r .l"' ., .n 0 ............,-- I 17 IC1

i',Y.'.l-~ J>fll'Si f'\F,l,.'i !'-.tr•.L·"il f\.t;J.~SI t-..t;J,,' 0 4 •

JM1 u.7 lH7 ... ... .... .. .. .. .... """" ....

ts:]t.oo ~t.10 ~t.20 l'C)1.00 l'J::'.".J t.10 ~ 1.20 CS:--11JJI

Fig. 36c. Percent change of design life and benefit-to-cost ratio, AC-20/LS.

U.1t ""' ... Ktt "' -fZi'.'J 1.10 ~ t.20

Page 98: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Percent Ch&DC• of Dulp We Percent Cban&• of Detdp. We Percent Cban:p of Dnlp. We O/M:-20. ..._ • _ 0111:-». ..... 111 o/,,,;,...a .._ 1a

_,: ~~\~ ~\i t'\' ' -~, ·: i:-. -_---,_---.~~--~~~-;~-~-- : ~ --- ···--··--·---.----~-~ ,',,"i , .,1 ~-..; , ~-, ~~lS-,~~-:--l ~s::fl I ,.,.,. t· ,,, .J~ "'"'l ~ ''1 ~~,] l_~, -·· '~:: l~,-~ '.<'i '~~'--J l ! ',::i . ~--

§ -20 -~·'1 -~~ ~."! I "-'·."-· .,,,, ' ~j 0 \'!- - ...

~' "~ I '>'~~ ', ~ i \ -20 ; ~~ ·,~~- ~ '~. ' ~ '-' ·--~-, '1 ' • -- !

"' , ! ,~ ~ . _.. , . '· 1 k, ·-~ L "" I . , k"'-' l - ~~ ··,) "·· '• . '• <'-! i--:-,_ '·, !\_'· '·'~ -20 ·::: 1· '· '-" ::::;,_-,,:..] I\'- '::1 ; ' " ~ "·, I . "J 1· " ' '• '-'

~"-~·-·' . 1-oo '-~'..J ~-.. _·-~·· f·,'-·~' I · . i '·"- ~ ·,:_ •. '<1 .! • '' ! ··. '"• I j ~' ,. . '

-ao i ' ' ' ' j '·, ; ... "'-' I

l ~~ . '-- ---- --- I - i ~~: ~ ! -- ·. .

j ! • I !

-.0 ,.--- ,--- ..,.- l' .--J -10 l.·-·r-· -·-··· ·· -·-1--·· ··- ---·, ·-- - --· -1-· .. ---~ -40 - r· ---T--·---~·r-··--,--·--_,J ~ ~ • • a - - - ~ ~ = ~ m m m

1.7~ ... ~ ... •.• 1 ... ... •••

I ... .. ~'

M

:rtt~ 0.1 ·,. '~ 0 . <.

u.o

ts::lt.00

- - .... We BODeftt-to -Ooot llaUo We Beneftt-to-coot llaUo Life BODeftl.-·to·Coll\ llatto

O/NJ-'11...._12 8/ID-20. ... • O/llJ....20. ... 10 ------· -------·-··--, ... r-·--------------------r'l '•!1

:~ r----------"N,~

..

.,r.t./. - ·1-~ -.,, ,. , .. '~~ -~ ~,[> ~ ,;~:{~ • ...... '!<-~ l'-: 11: :-f-: ·'.'l : •¥'.:f:'-1 k,~_'<R2'! ' / .. " , -·~ j...--. r~:~ I 'f;f'i i'j0>-J .. ..... ...

,.. i

1.7< j ... ... ... -l :~ j 1.1 J

:: ~ :f~. 0.0 '·· ~ ., 0.4 '- /: ..:-~ cu . /' - ,_. 'i G.2 :· . ,. '~ 0.1 ,.._ ,,';;: . .

U.10

··:·":~ '·

~;', <.:'j "' ;, . -~

~. '(; ~

~< :~· ·. . ;. ;~ l'- ,.: ~' '-; l'• < .. · ... , ·:,i l '-' . !'\.. , . "· '~--J : , ·. D V{" ·," ... . .. ... -

• ••

... ...

• ..C>...14'.J..::»L U.'2

l2Z.J 1.10 t'.SSl 1.20 !'D•.OO 12:2 1.10 CSS11.20 lS:] 1.00

Fig. 36d. Percent change of design and benefit-to-cost ratio, AC-20/G.

... . .. ..... ~ 1.10 C§J 1.20 -

"'

"' "'

Page 99: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

93

fatigue experiments are extremely time-consuming and expensive and

require a minimum of 42 specimens per mix (a minimum of 7 specimens per

each of 3 stress levels at each of 2 temperatures). As an alternative,

three indirect methods were used to compare the fatigue properties of

the mixes studied. They were based on the fatigue life and allowable

tensile strain relationships of existing fatigue data. The fatigue

relationships used were:

• The Shell France method (5) is based on 150 fatigue curves for

both constant stress and constant strain tests. Fatigue life is

a function of the stiffness of the mix, the penetration index,

and the .percent by volume of bitumen. The stiffness of the mix

is determined from the volume percent of bitumen, the volume

percent of aggregate, and the stiffness of bitumen that is

obtained.from van der Poel nomograph (52) on the basis of the

penetration index and softening point of the bitumen,

temperature, and loading time.

• The Brown (University of Nottingham) method (7) is based on 50

fatigue curves conducted at 10 ° C in controlled-stress tests.

The fatigue life depends on the softening point and the volume

percent of bitumen.

• The Maupin method (32) is based on relationships between

constant-strai~ fatigue tests and indirect tensile strength.

The relative fatigue resistance of different mixes were compared on

the basis of calculated allowable tensile strains for a fatigue life of

one million cycles. The results of fatigue analyses are given in Table

10 and shown tn Fig. 37.

Page 100: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

94

Table 10. Results of fatigue analyses, 1icrostraln.

·-----------------------------------------------------"Ix I SHELL-SN SHELL-SS "AUPIN BROWN I

------------------------------------------------------LS/AC-5 c 131,94 62.25 389.91 131.14

AH 117.94 80.79 479.99 148. 72 LL 152.36 72.56 422 •• 4 155.91 LH I 155.50 73.79 410.68 143.24 I

s . I 156.32 11.11 413.43 143.43 I

K 233 .• 70 102.23 382.10 169.38 J 130 •. 40 58.45 345.43 125.39

G/AC-5 c 188.37 82.21 347.os 139,55

LL 152.36 72.56 390.34 155.91 s 197.86 88.55 408.37 155.64 K 310.46 130.86 406.33 181.37 J 191.34 83.66 304.57 144.43

LS/AC-20 c 208.45 94.50 418.82 180.81

AH 116.10 55.98 503·61 204.17 LL 100.33 49.69 468.09 173.08 LH 126.87 62.19 476.28 190.40 s 133.03 64.ZO 478.76 194.23 K 194.12 88.45 446.58 185.79 J I 204.61 92.U 442.79 183.ZO

G/AC-ZO c 249. 75 110.11 459.64 187.35

LL 152.99 72.58 481.40 190.58 s I 156. 13 73.54 492.29 . 197.05 I

K I 221.10 97 .15 468.81 182.02 I

.J ~ ' 225.18 97.46 427.80 174.22

------------------------------------------------------

Page 101: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

MC Cll""'-M . -~

! i § • § § § 0 i 0

. . . . . n n

I§ I§ z • F

"' . ,,. ("')

~· .. I U'I

i ..

~ ! !

~ F ll :ii

! I ~- s: I . i ~ • J.

~ ~ .. J L J L ,.,, ... ..

• ...., ..... . ~ '.: ... ·-... nww .. "' ~ "' .. ! ... .., 1" i § I § § § ... 0 i 0 = . . . . .

.

n· n

I§ I§

! F

er . ,,. ~I .. ("')

I

"' 0 I ..

= ! !

ti

i F

! I QI '" 1. I ~ • ~

lz::zzi .

~ ~· .. f L I L

Page 102: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

96

Strain yalil,es determined by the Shell nomograph that is based on

the controll~d-11tress mode and by the Brown (Nottingham) nomograph are

comparable•· Strains.determined by the Shell ce>nstant'-strain fatigue "'

curves, wei:'.e lower, and those calculated from the Maupin expressio!ls were'.

consistently higher.

No 'sigrilficant effects resulted':be\:ause of additives, except that

Asphadur (AH) and neoprene (K) seemed• to have increased the fatigue

resist~pce f.~r AC;.,5 mixes; and Asphadur, lime (LL !ind LH), .and ,Styrelf

rs) decreased t!>e fatigue resistance for AC-20 mixes based on Shell' ' ' '

methods. Also, higher allowable strains'were obtained for AC-20 mixes

by the Maupin and .,Brown methods, but lower strains were obtained for

AC-20 mixes by Shell nomographs, especially for contolled-strain

fatigue. Types of. aggregates made little difference in fatigue

resistance.

4. ".\ .6, J(ut~Urtg Resistance

The effect of additives on the resistance to permanent deformation · . . ' ' ..

or rutting·of the asphalt concrete mixes studied.were evaluated by the

Shell procedure (43) by using the .results of uniaxial creep tests. The

creep ·:test11 were performed at 40 ° 'c and at a stress level of 14'. 5 psi

(100 kPa) fo.r 2 hrs after conditioning or prel9ading of l .• 45. psi (10

kPa) for 2·min. Typical strain-time creep curves ~re shown in Fig. 38.

The results of creep.tests for each mix were plotted in terms of the

stiffness of the mix (Smix) versus the stiffness of the bitumen_ (Sbit)

curves. The effects of aggregate type (LS vs G), asphalt grade (AC-5 vs

AC-?O), asphalt content, and type of additives on the creep curves are

shown in Figures iq, 40, 41, and 42 respectively.

Page 103: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

~ .... ~

Ji . -2 .10

z .... ;;2 I;;

TEMP: 40° C (104° F) STRESS: 105 Pa (14.5 psi)

-

101

-

102

TIME, sec 103

---~ -

MIX CODE AH 90 C 9A

104

Fig. 38. Typical strain versus tble curves, mixes C9 and AH9,

105

'° .....

Page 104: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

----·

~

"' 0.. ~

>< ~

0

107 ~ • • • ~

• •

106

Smix vs. Sbit, EFFECT OF AGGREGATE TYPE

.

--- - -- -. . .. .

fl!IX Cl p-s}o C2 G) A

. . • I • • ... I . . • I .. • _ ... I . ·-··-·-· -10°

·-

101

Sbit (Pi!.}

Fig. 39. Effect of aggregate type on Smix versus Shit curve11, Mixes Cl and C2.

102

"' "'

Page 105: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I-

i.. Smix vs. Sb it, EFFECT OF AC GRADE

I I I I I······' 61 I I I I I '.-' ! e ' ' I I e '_ 2 w J ~ w

Sbit (Pa)

Fig. 40. Effect. of AC grade on Smix versus Shit curves, Mixes C3 and C9;

Page 106: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

~107

~

)( ·~

Ji

io6

,_ " • • . • .

Smix vs. Sbit, EFF'ECTOF AC CONTACT

a s -:Q =Q: Q . --- -

'

MIX K8 tPT-1) O KIO . OPT) . 4 Kl2 OPT + l)o

. • I • • • I ·-

. •I*·•-• . . . 101 -

102

Sbit (Pa)

Fig. 41. Effect of AC content on Smix versus Sbit curves, Mixes K8, KlO, and Kl2•

2 $=

-

.... 8

. . . . - . 103

Page 107: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

~

"' e:.107

x ~

~

Smix vs Sbit, EFFECT OF ADDITIVES

::::;f:;:::;;;g;~~~<>-<J>.~~~~~=o~:=~~~~~~~~~~~:::. -...,..=====<CP():,....,...~'P.': ·~ u A e I A c .. ·e; , I, ' • .. • • • • • . Q! c C • MIX AH30

10 101 102

Sbit (Pa) io3

Fig. 42. Effect of additives on Smix versus Sbit curves.

104

C3A . J3D

K3V. LH3<> LL3e S3•

... Q ...

Page 108: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

102

To compare rutting resistance of various mixes, we calculated rut

depths or permanent deformations occurring in the asphalt concrete

layer. To make these calculations, we ·followed the Shell procedure for

a standard pavement structure of asphalt concrete with a surface course

130 mm thick (subdivided into three layers of 40, 40 and 50 mm) on top

of a subgrade of CBR of 2.5 (E3 • 25 mPa). The design life was 20

years. The traffic wss assumed to be 100 (18 kip SAL) per lane per day

with a growth of 3~. The mean monthly air temperatures (MMAT) for Iowa

were used and resulted in effective mean annual air temperatures

(MAATeff) of 19° C (66° F) for AC-5 and 20° C (68° F) for AC-20.

T)1e estimated rut depths occurring in the 130 mm (5 in.) asphalt

concrete layer and calculated from creep data based on .the Shell

procedure are shown in Fig. 43. As we expected, raising the binder

content and udng softer binders resulted in larger rui: depths. There

was little difference in the type of aggregates used. Asphadur appeared

to be the most effective additive in reducing rutting or permanent

deformation in the mix. Other additives had no significant effects.

With additives such as Asphadur, and perhaps hydrated lime, the rut

· depths of softer grade AC-5 mixes can be reduced to those of AC-20

without additives. These results seemed to confirm data provided by

Marshall stiffness.

I I

Page 109: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I

I ~

I

I ~

•·-··--····

BUT DBPTll DTDIATJON

14 OJ'MHI,

ti

Ill

u 10

• • 7

• • ' I :a

0 t>Ki,1:,)l '>J<11 '''<t"!'V ''KJQ>V l>K14':N

c u. • IC J

llllCES IS:J•-· m::a ... [SS! •• ,

BUT J>BPTB BSTDL\TION O/<IC-IO ,, ....-~~~~~~~__;~~~~~~~~~--.

11

1ll

t1

10

• -· 7

• • I

:a -1

I\ tfJ."\j I\ W)'~I h ~Si !\. l(J,~ -f\ I I:~ 0 · 1 I

-C u. $ K J

lllC£$ IS:)apM

IZa• ~···

I ( ~

I

I ~

BUT DBPTB DTDIATION ,. ~.- -

1ll

1:1

u :10

• • 7

• • 4

ll

ll

o l"Vt$ 1 1V# 1 1Yl'>t ''11"': 1 •Y.&l 'Vf>' l'f'1>' 'f>' c - - u. !JI • IC "

UllG -IS:Jopt-1 m'.l ept ~ .,t+-1

BIJT DBPTll ·BS'l'JW.TJON Ul/M-20_

14 ~-~~~~~~~~..;;._~-'--~~~~..,.-~.....,

ti

1:1

11

to

• • 7

• I

' ' 2

o • !11 p , , v r- l •,.•.a. , , ,., , .... 1 cvr,, , ,, r r , ¥ r ' yr , c AliG Mtb- u. IH s K " WES.

lS:JG!ll-1 IZZJ 4IPI tS9 .j,t+1

Fig. 43. Rut depth estimat-ion by Shell procedure.

.... 0 w

Page 110: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

105

5. STRUCTURAL AND PERFORMANCE EVALUATION-PHASE III

In addition to evaluating the.effects of additives on the

properties of the asphalt cements (Phase I) and on the properties of

asphalt concrete mixtures (Phase II), the effects of additives on

structural and performance characteristics of the mixtures containing

the additives as surface courses in pavements were evaluated. In the

final analysis, it is the effect of these additives on the mixtures as a

structural layer in the pavement that ultimately determines the benefits

and usefulness of the additives.

Two pavement design and analysis methods, both based on

elas.tic-layered theories, were used: the Asphalt Institute method (44)

and the University of Nottingham (Brown) method (7).

5.1. !!.!! Asphalt Institute Method

The computer program DAMA (Chevron) was used to compute pavement

lives for the 24 mixes at optimum binder contents in full-depth asphalt

pavements of 4 and II in. on subgrades of CBR of 3% (subgrade modulus of

4,500 psi) and II~ (subgrade modulus of 12,000 psi). A mean annual air

temperature (MAAT) of 60° F, appropriate for Iowa conditions, was used.

The traffic was assumed to be 1,000 equivalent 18 kips SAL per month.

It was also assumed that the pavements were opened to traffic in July..

'rile resilient moduli of the mixes determined in Phase II were used in

the analyses. A .total of 96 computer runs were performed.

Page 111: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

106

The results of computer analyses are tabulated in Table n. A

sample of the computer i>rintout for Mix :g3 (Styrelf at the optimum

binder content with AC-5 and limestone) of 4 in. and subgrade modulus of

4500 psi (CBR of 8) is given in Appendix F.

The results presented in Table 11 are given in terms of surfac.e

deflection (Dz), tensile strain in the asphalt la,yer (Et), compressive

strain :l.n the subgrade (Ee), nuniber of standard loads to cause fatigue

failure (!If), and number of standard loads to cause rutting failure

(~r). '\'he strain and deflection values are the averages of their

respective monthly values at the critical response point (at the center

of one tire of the dual-tire system of an 18 kip single axle load) over

a 12-month period.

To show the additive effects, we compared these five responses to

the respective responses of the corresponding control mixes and

expressed as ratios. Figure 44 shows these ratios at optimum binder

contents (Mixes 3, 4, 9 an 10).

While increased asphalt concrete thickness and subgrade modulus

reduced the strains and deflections and increased the numbers of loads

to fallure, the relative effects of the additives did not change. For

the same asphalt, H.mestone mixes performed better than the gravel

mixes; for the same aggregate, AC-20 mi*es performed better than the

AC-5 mixes. Asphaour improved the structural capacities of all mixes.

Hydrated lime increased the structural capacities of gravel mixes, while

SBR (J) decreased the structural capacities of all mixes. Styrelf (SBS)

and neoprene (K) improved the behavior ~f gravel mixes with AC-20, but

had little effect on the other mixes as·compared to the responses of

control mixes with no additives.

Page 112: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

Table II. Results of OAKA structural analyses.

HI : 4 In.

107

I OZ,/IOOOln. i ET ,1lcrostraln i EC,1lcrostraln I Mf ,xE06 i Mr ,xE06 -~~~!~~!.1 ••• ~=~------!~----1---~=~------!~ ____ 1 ___ ~:~------~~----1---~=~------~~----1---~=~------!~----ftlxes 3 I I I I

c I 55.ao 25.80 I 736 485 1 1160 1100 1 0.064 0.26• I 0.001 0.005 AH I 34.20 16.70 I 193 U8 I 558 383 I 0;350 0.917 I 0.149 0.882

t~ I ~::~' ~~:~: ' 702 :~t I 1687 rn~~ I ~:~~l ~:u~ I ~:~~1 ~:u~ S I 55. 78 25.89 ! tn 486 I l~l~ 1103 I 0 122 0.502 I 0.001 0.004 K 11 64.62 29. 73 •1 1094 672 1

1 2514 1soo 1

1 0:059 0.305 ! 0.001 0.001

J 64.87 29.85 1104 676 2534 1509 0.012 Q.064 : 0.001 0.001 ---------1------------------1------------------1------------------1------------------1------------------

Kl~~s 4

j ~~:n U:i~ I t~1 ii~ I rn~~ 1 ~~i I ~::~I ::ni i ::::1 :::~~ s •1 .61.80 28.49 11 911 s6s I 2251 1368 1 0.014 0.065 I 0.001 0.002 K I 60.16 24.79 I 904 576 I • 2114 1293 I 0.057 0.263 I 0.001 0.002 J 66.88 30. 75 I 1195 719 2125 1603 0.015 Q,080 I 0.001 0.001

---------1------------------!------------------1------------------1------------------1------------------Klxes 9 I j · I I 1 C I 37.73 18.21 I 253 189 I 700 473 I 0.349 0.993 I 0.056 0.352

AH I 32.40 15 .• 80 I 166 128 I 492 340 I 1.045 2.623 I 0.259 1.478 LL I 40.38 19.35 I 304 223 I 819 547 I 0.415 1.260 I 0.028 0.188 LH I 40.90 19.58 I 315 230 I 843 563 I 1.097 3.370 I 0.025 0.167

~ :I ~~:~~ g:1: ! in i~~ l IU~ l~~i l ~:~n ~:~~~ I ~:~Af ~:~'~ J 48.93 22,99 I 514 356 1285 830 0,147 0,534 I 0,002 0,032 _________ 1 __________________ 1 __________________ 1 __________________ 1 __________________ :------------------

Mixes 10 f ! ! ! l c : 45.80 21. 10 : 429 303 i 1100 119 I 0.010 0.241 : 0.003 0.058

LL : 39. 72 19.06 I 291 214 I 789 528 I 2.181 0.651 : 0.033 0.220 s I 41.66 19.91 I 331 241 I 881 586 I 0.106 0.332 I 0.021 0.141 K • 43.98 20.90 I 383 275 I 999 658 I 0.118 0.391 I 0.012 0.085 J l 55,68 25,85 : 133 484 I 1753 1097 t 0.012 0.046 t 0.001 0,005

HI : 8 In.

l DZ,/lOOOtn. I ET ,1lcrostraln i EC,alcrostraln ! Nf ,xE06 ! Mr ,xE06 SGE,ksl 1 4.5 12 ' 4.5 12 4.5 12 . 4.5 12 4.5 12 _________ 1 __________________ 1 __________________ 1 _________ "--------1------------------1 _________________ _

Hfxes 3 ! I I I c I 33.60 16.90 I 313 229 I 709 484 I 0.851 2.536 0.052 0.328 AH I 19.30 9.50 69 57 : 189 UI 8.996 17.270 17.770 67.090 LL ! 32.87 16.54 ! 297 219 I 675 465 I 0.395 1.148 0.064 0.393 LH I 32.29 16.23 I 284 211 I 649 448 I 5.699 16.270 0.076 0.456 s I 33.u 16.941 314 230 I 110 4861 1.616 4.820 0.052 0.325

~ I :1:~1 ~~:~~ I ·~~: i~l 1 rn~: ~:~ I ~:tn ~:~~: ~:~~i ~:~i~ _________ 1 __________________ 1 __________________ 1------------------1------------------1··----------------

Hl~s 4 ! I I 1 ·I C I 35. 70 18.00 I 362 26 I 806 544 I 0.259 0.825 I 0.030 0.203

LL I 26. 76 13.40 I 174 136 I 422 303 I 0.760 1.832 I 4 •. 943 2.405 S I 38.60 19.48 I 434 405 I 950 627 I 0.156 0.542 i 0.015 0.112 K I 37.19 18.77 I 399 283 I 880 587 I 0.681 2.211 I O.OZI 0.148 .J I 43.13 21,88 · 557 374 1186 757 0, 149 0,5% 0.002 0.051 ---·-----!------------------1------------------1------------------1------------------1------------------

N I x~s 9 j 21.31 16 89 I 93 76 I 244 180 I 8.014 16 540 I 5.677 22.600

AH I 18.20 . 9:01 I 58 49 I t65 123 I 288

•• 8570! s2: 160 I 33.340 123.800

LL I 22.91 11.42 I 114 92 I 291 214 I , 19.090 •. 2.566 10. 780 LH I 23.24 11.59 I 118 95 i 302 215 i 22.900 50.070 ! 2.197 9.341 S I 25.39 15.38 I 151 120 I 373 270 I 4.110 9.537 I 0.851 3.926

~ 1 u:~~ it~~ 1 ~~~ fM 1 ~~t ~:: 1 ~:i~~ tin 1 t~~~ tni _________ I __________________ I __________________ 1_ _________________ 1_ _________________ 1 ____ " ____________ _

Nixes 10 I I I I I c I 26.40 13.30 ! 16s 132 1 410 z94 ! 1.212 3.031 !

LL I 22.50 11.21 I 108 88 , 279 205 I 4.721 10.110 I S I 23.71 11.82 j 125 100 j 316 231 I 2.163 4.791 i K I 25.17 12.59 I 148 117 I 366 265 I 2.254 5.200 I

J I 33.56 16,88 I 312 229 : 706 483 I 0.149 0.442 I

0.564 3.122 I. 772 9.288 0.053

Z.708 12.930 7.667 4.252· 0.332

Page 113: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

•; •·IJ $ 11ii1 8 iii iii .ei:e::i:ei::-::.:c:;

' B B ' • • ; [ 8 ;[ .. ' I<

~I , J I> ' •• is gl' ii ~ ' lf lt .

"l

) ....

00 .e::i:-c.:;; .. i:i::: .eeetttttt-zcc:; • .!>-.!>-

B Ill • B •

• ; [ B ; [ ::i: "' I < '. ... rt B I a ' I l

'1 •I • 'i gl • ii II c: " I r ' .!>- rt if if c:

.... '1 ::s Ill . ..... .

Ill "' ::s ~Ill

' ' .. ·= ' .. c:tt-Cti:0: .. 1:1:1:1: I:<!~ - . . n Ill ~ B .!>-Ill

• B • • '-" er a ; [ 0'< • B 0 ' '. Ot::I B .. ' .. ]~ '·I Ii ii gl' ii • .... l[ H "' •1 '1

0 I " ~ "'" c: '1 ....... ;;;;:;;111-i•••ts oeee:tttti:~~cc:;:;:~; ~ •

I B i

B • • ; [

~ l! r .. 'if

B .. .. •I • 'i gl • ' i

If • h !

801

Page 114: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

109

11 Ji • ., • 1B i ! • I• 11 ' 'I Q

I! a 1 t ' 5 • Q . <II

!!!!!:!:t::·::;::;2:;• . ' . ' . . '

k :I

~ "" <II

" 0 k

H H "" • .... ' ~~ i I '16 i ! , I•

"" Q <; i ' •• .Q :.-8 i ! ' Q 1l ' • ....

g N • • ......

g <II :_ R

' ' .. . , !! ! :! - :i 2 =': • ' . ' . ' . '

. '

.... r..:i me s:I "' m

• .... • m s:I I k ....

l '' 11 :I ti ........

" i !I ' i! :I H . ,a k ....... "I ' • •1 "' ::= .. Q t !I 1 " • ·1 • ~

! g .....

• ::i:i::-::;:::;22;• :~:::~0=1••~••·~·-· "° ....

"" I ' ! • il ~l ~I ' ~I i. '16 L

I , I• .. .. '

.. Q

1! ' Q i! • • • g

g

!:!:t:i-::i;:::::;• l!ll!!!!!llRlltAll" - -

Page 115: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

~ .?cctece:e.::ci:t''~

~ ~ .

• ii B , ; [ ,. B .. ' I l

•I ' ii al. ii if

' ti >rj ....

CQ ·•••••••t•liiiilii .?cctcce:::-::cc:;' • ,,. ,,.

~ ()

~ ' • •

l J d B 1·. = "' B I l ' I l .... rt •I • ii 91 • . i t'! H c: • Ir () lf ClO l"t I! i c: i;-~ . .... •

"' "' = .

C> "' l"J~ .:ttt-i::;i; .. tlt!:l: .. t:

II Ol I fl)

~ . I ,,. "' • ~ ..,, r:I' ; i \: t 0'< • B ' ,. '. 0 B I l • I• t::O

!~ •I ' . s 91 • . s I, • '1 • i• i ... •l t'!

0 () fl)

"" c: t'! ·-· .. ···~··•=#~;~·= .?ec::c:ecc.::cc:;;c;; fl)

• ~

~ ' •

i I B ;[ ,. B .. • ll •I • is 91 • ji

H ' ff

011

Page 116: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

111

Ii 111 • if • 10 i f1 • I• •• • • • Q

i! Q I! • ! • Q ' Q

'~''''':;·:1;212224• • QI ... .g QI (J

H H 0 ... "' . • .... if '10 i ! ' I• ~~ 1 I • • i Q

1! ' Q > I ~o

l :1 • 0 g >.O

• • ... . I Q N I I ......

~ n 22::1·:1:1·:i:1·122:i· >. .... ~

OS t.!l I ~ <I.I I . I I .... • I I 'I OS C::

1~1 .......

ii ::I ... 00

i 'I • i' g H : 10 • I• ... .. '

.. Q ....... j !! Q r <I.I =

~j • • Q • I g ..,, .... ....

,:!!::t:t::••· .. -··· .. ••• :t :: • • • ~ • • • • • ~ • . 00 ....

11! r..

H • i 'I • 10 i ! , I• H

' .. Q

j! ' Q >I l; • • • Q

Q

:!:!!!:!:!:i·12;12;2;;• !lll!!f!!!!!llSll•~IS 0

-

Page 117: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

112

5.?.. The University~ Nottingham (Brown) Method

In this method design charts were developed (based on the computer

program BISAR for the analysis of multilayer elastic pavement system)

for a three-layer pavement system consisting of an asphalt surface

course With a fixed base course of 200 .mm (8 in.) placed on a subgrade

of varied subgrade modulus (CBR). The surface course is characterized

by the stiffness modulus of the mix. The Poisson's ratio of the asphalt

layer and that of the subgrade was assumed to be 0.4, and the Poisson's

ratio of the base was assum.ed to be o.3. The elastic modulus of the

base layer was assumed to be twice that of the subgrade.

Critical subgrade strains and critical asph~lt tensile strains were

determined for all the mixes for each of four pavement sections.

Pavement lives in terms of numbers of standard 40 kN wheel loads. (18

kips SAL) to cause fatigue failure (Nf) and rutting failure (Nr) were

computed for the mixes used as surface courses of 100 mm (4 in.) and 200

m (~ in.) on su~grade of 20 MPa ~CBR of ?.) and 70 MPa (CBR of 7) with a

constant granular base of ?.00 mm (8 in.). The stiffness modulus of the

mix was calculated from the stiffness of the binder (van der Poel

nomograph), binder content by volume, and the volume percent of

aggregate. A loading time of 0.02/sec: (corresponding to a traffic

speed of 50/100 km/hr) and a temperature of 13° C (corresponding to MAAT

of 10° C or 50° F for Iowa) were used in the determination of binder

stiffness.

Page 118: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

113

~able 12 gives the results of the structural analyses by the Brown

(Nottingham) method in terms of numbers of standard loads required to

cause fatigue failure (Nf) and rutting failure (Nr). As shown by the

results of DA}!A analyses, pavement 1ives increased with increasing

thickness and subgrade modulus. Similarly, higher pavement lives were

obtained for AC,-?.0 than AC-5 mixes, and higher lives were obtained for

limestone than gravel mixes.

~e relative pavement lives for the four combinations of asphalt

grades and aggregate types at optimum binder contents (Mixes 3, 4, 9 and

10) are shown in Fig. 45. Significant improvements were observed in

fatigue resistance when Asphadur, hydrated lime and Styrelf (SBS) were

added to the asphalts. These additives also provided moderate

improvements in rutting resistance. Neoprene. ('K) and SBR (J), in

general, ·reduced both fatigue and rutting resistance. as compared to the

· control mixes. Asphac!ur, lime, and to some extent Styrelf increased the

pavement lives of AC-5 mixes to equal or exceed those of corresponding

AC-20 mixes without additives.

Page 119: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

114

Table 12a. Su1111ary of structural analyses by Brown 1ethod, lS/AC-5.

-----------------------------------------------------------------------------------E3 I 20 KPa 70 KPa I

---~---t-~-----------------------------------1------------------------------------~ H,1111 I 100 200 100 200 I

--~----:--------~---------:------------------:--~---------------:----------~-------xE06 I Mr Mf I Mr Nf I Mr Nf I Nr Nf I I I I I

.... :.. ......... l ................................................ , ................................................. f-------------·-........... I .......... :.. ............................... I c-.1 I 0.04 0.08 I 1.70 0.36 I 0.70 O.Z9 I 13.10 2.69 I

AHa-1 I 0.06 o.sz I 3.08 3.32 I 0.81 0.58 I 16.90 7.84 I

AHb-1 I 0.24 1.58 I 11.10 57.70 I 2.50 6.19 I 74.90 132.00 I

ll-1 I 0.21 o.ez I 13.10 23.30 : 2.05 3.11 I 58.10 54.50 I I

LH-1 I 0.21 0.59 I 12.70 13.90 I 2.&1 2.10 I 55.30 30.90 I

S-1 I 0.08 0.19 I 4.08 3.86 I 1.10 0.74 I 22.10 9.98 I

K-1 I 0.01 0.03 I 0.37 0.39 I 0,31 0.22 I 3.85 1.87 I

J-1 I 0.03 o.u I 1.10 o.o I 0.53 0.15 : 9.6i l.23 ·-----.-1-------'.'"·---------1--------........................ t--------·---------1 .. -----:--·--------·

C-3 I 0.06 o .17 I 2.05 Z.81 I 0~70 0.60 I IS.SO 8.84 ,. AHa-3 I o.os 0.11 I 2.05 4.98 I 0.73 0.93 .. l 13 .10 IS.BO AHb-3 I o.ZI 2.04 I 13.10 103.00 : Z.05 9.7Z I 56.70 278.00 ll-3 I 0.18 0.87 : 8.31 44. 90 l I.SS 5.ZI I 45.80 116.00 I

LH-3 I 0.17 0.72 I 8.31 26.30 : I .SS 3.46 I 49.10 75.60 I

5-3. I 0.06 O.S3 I 3.08 6.79 I 0.81 0.60 I 16.90 15.90 K-3 I o.oz 0.07 : 0.70 .z.zz : 0.39 O.S4 : 6.31 9.25 J-3 : 0.04 0.01 I l.4S I.SS I 0.61 0.37 I 10 .• 40 5.06

-------1·-----~-----------l------------------,------------------1------------·-----C-5 I 0.06 . o.zo : Z.09 S.39 : 0.70 0.98 I u.zo 17.30

Affa-5 I 0.06 0.38 : 2.22 10.40 : 0.73 1.66 : 16.30 42.00 AHb-S I 0.22 4.03 I 13.10 298.00 : z.os 23.40 : . 64.20 919.00 Ll-S I 0.12 0.60 I 4.89 48.20 I 1.48 s.so : 32.90 144.00 LH-S I 0.12 0.6S I 4. 77 30.20 I 1.46 3.67 I 32.20 79.90 S-5 I 0.07 0.'1 I 3.U 22.30 I I.OZ 2.54 : 22.10 64.10 I

K-5 I 0.01 0.04 I 0.32 0.86 I 0.29 0.41 I 3.64 S.98 I

J-5 I 0.02 0.07 I 0.98 1.66 I o.so 0.39 I 9.47 4.82 ---------·----------·-----------------------·--------------------------------------

l

Page 120: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

115

Table lZb. SUllllilry of structural analyses by Bro•n method, G/AC-5.

E3 I 20 "Pa 70 "'• _.,. _____ t----·----------------......................... ______ , .................................................................................. .. H,a I 100 200 100 zoo

-------t------------------t------------------t------------------f------------------xE06 I Hr Mf I Mr Hf I Mr Hf I Mr Nf

........ ..:--1-------.......................... t ............................................. , ........................................ t -----------------C-2 I 0.02 0.8' : o.57 o.ss I 0.37 0.52 I 4.89 6.10 I

lL-2 I 0.09 o.27 I 4.33 6.78 I 1.30 1.15 I 29.70 17 .60 I

S-2 I 0.04 0.01 I 1.30 1.27 I 0.55 0.35 I 9.19 4.03 I

K-2. I 0.01 0.02 I O.Zl 0.34 I 0.22 0.19 I Z.50 1.86 I

J-2 I a.oz 0.02 I 0.55 0.31 I 0.34 0.16 I 4.83 1.35 I

-------1------:------·------:------------------:------------------1------------------C-4 I o.oz 0.06 I 0.70 0.94 I 0.39 0.29 I 5.54 3;68 ' LL-4 I 0.04 o." : I. 70 3.86 : 0.70 0.69 : 13.10 IJ.90 I

S-4 I 0.04 0.12 : 1.42 3.04 : 0.57 0.61 I 9.61 IZ.50 I

K-4 I 0.01 0.03 I 0.31 0.57 I o.zz 0.29 I Z. 71 3.68 I

J-4 I 0.02 0.06 I 0.11 1.12 I 0.40 0.32 I 5.69 4.32 I

. -------1-----------.. ------1------------------1---------------"':·· I-----------.................. C-6 I 0.02 0.05 I 0.70 1.54 I 0.39 0.43 I 5.54 6.84 I

ll-6 I 0.06 0.29 : 2.01 9.21 : 0.70 1.48 : 15.50 34.ZO I

S-6 ' 0.04 0.13 I 1.36 5.87 I 0.57 0.95 I 9.19 24.10 ' K-6 I 0.01 0.031 0.21 o. 71 I 0.22 0.36 I 2 •. 50 5.27 I

J-6 I o.oz. 0.04 I 0.56 0.90 I 0.35 o.39 I 4.89 5.35 I

-----------------------------------------------------------------------------------

Page 121: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

116

Table IZc. Sut11111ry of structural analyses by Brown 1ethod, LS/AC-ZO.

__ .., _______ .., ________ .. _______ ................................................................................................................................. ... El I ZO HPa I 70 ftPa I ' -------1-------------------------------------1---~---------------------~-----------

H,• I 100 ' zoo ' 100 I zoo I I I

-------1.------------------1 ·-----------------1----... -------------1------------------xE06 I Nr Hf I Nr Nf I Mr Nf I Hr Nf I ' I

-------, .. ;.. ............ ~---------- t--·---------------1-----------.. -----"".1-----............................... c~1 I 0.06 0.3Z I 2.Z6 1.0 I 0.73 1.44 I 16.00 31.60

Affa· 7 I 0.34 8.29 I 18.40 658.00 I · 3.02 42.20 I 95.90 1570.00 AHb-7 I 0.33 10. 30 I 18. 40 930\00 I 2.98 5Z.IO I 95.90 zz90.oo

LL-7 I 0.34 6.70 : 18.40 300.00 I 3.oz 23.00 I 95.90 678.00 LH-7 I 0.36 6.84 I 23.90 408.00 I 3.56 Zl.30 I 111.00 872.08 I 5-7 I 0.25 3.76 I · 15.50 241.00 I 2.63 19.00 : 81.ZO 631.00 ' I K-7 I 0.06 o.35 I 2.15 9.22 I 0.71 1.52 I 15. 70 36:30 J-7 I 0.04 0.11 I 1.36 3.31 I . 0.56 0.69 : 9.33 13.00

-------1--------·--------·;; :------------------1 :-------------............ , ................ ~----------C-9 I 0.06 0.31 I 2.os 1s.10 I 0.70 2.1~ I 13.10 54.20

Affa-9 I 0.22 7.01 I 13.10 759.00 I 2.05 49. 70 I 65.80. 2320.00 . Affb-9 f 0,21 7.17 I 13.18 813.00 l. Z.OS 60.60 I 62.60 2950.00 LL-9 I 0.37 7.63 I 26.80 474.00 I 3.85 29.90 I 114.00 1040.00. LH-9 I 0.34 9.27 I 18.40 868,00 I 3.08 51.00 I 9B.6o. 1900.00 5·9 I O.Z2 S.IZ I 13.10 454.00 I 2.05 31.70 I 65.80 1480.00 K·9 I 0.06 0.54 I 2.22 19.00 I 0.73 2.64 I 16.30 85.80

. J-9 I 0.04 0.30 I 1. 70 2.68 I O. 70 2.01 I 13.10 50.30 -------1------------------1------------------l~------~----------1----·-------------

c-11 I 0.06 0.67 I Z.77 48.40 I 0.81 4.92 I 18.40 185.00 Affa-11 I 0.22 11.60 I 13.10 1730.00 I 2.05 89.20 I 65.80 6480.00 AHb·ll I 0.21 IZ.ZO I 13.10 2170.00 I Z.05 96.90 I 61.00 8160.00

LL-11 I 0.31 11.90 I 16.90 1470.00 I Z.77 69.10 I 85.70 4660.00 LH·ll I 0.25 9.93 I IS.SO 1140.00 I 2.63 63.20 I 81.20 3440.00 5-11 I O.Zl 7.66 I 13.10 950.00 I 2.05 51.50 I 61.00 3290.00 K-11 I 0.04 0.19 I t.34 11.60 I 0.54 1.89 I 9.19 61.ZO J·ll I 0,04 0.18 I t.30 10.ZO I 0.55 1.77 I 9.19 49.40 ·

Page 122: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

117

Table 12d. SU11111ry of structural analyses by Bro~n 1ethod, G/AC-20.

-----------------------------------------------------------------------------------£3 I 20 KPa I 70 KPa

-------1-------------------------------------1-------------------------------------"·· I 100 zoo 100 I 209

-------:------------------:------------------:------------------:------------------xE06 I Mr Mf I Mr Mf I Mr Mf I Mr Mf

-------1------------------l------------------1------------------1------------------C-8 I 0.03 0.10 I 1.10 4.28 I o.S3 0.74 I 9.61 15.40

ll-8. I 0.13 I.OS I 5.54 61.40 I I.SI 6.27 I 36.60 169.00 S-8 I 0.12 I.OZ I 4.89 63.60 I 1.48 6.73 I 32.90 182.00 K-8 I 0.02 0.08 I 0.81 1.88 I 0.41 0.47 I 6.31 7.67 J~8 I O.OZ 0.07 I o. 94 1.14 I 0.47 0.42 I 8.31 S.62

-------:------------------1------------------1------------------t------------------c-10 I 0.02 0.13 I I.OZ 5.80 I 0.50 I.OZ I 9.61 Zl.10

LL-10 I 0.16 Z.13 I 7.2Z 199.00 I I.SS 13.90 I 40.90 S91.00 S·IO I O.IZ 1.69 I 4.89 142.00 I 1.48 13.10 I 32.90 480.00 K·IO I O.OZ 0.11 I 0.87 • 3.88 I 0.44 0.79 I 7.ZZ IS.80 J·IO I o.oz 0.04 I 0.56 1.ZI I 0.37 0.50 I 4,89 7.92 -------t------------------l------------------t------------------1----~-------------C-IZ I 0.03 0.18 I 1.10 13.40 I 0.53 1.75 I 9.61 59.50

ll-12 I 0.13 2.80 I 5.54 324.00 I I.SS ZZ.00 l 36.60 1070.00 5-IZ I 0.15 3.80 l 6.31 58Z.OO I l.5S 33.40 l 40.90 1900.00 K-12. I 0.02 0.11 I 0.70 S.56 I 0.40 1.07 I 6.31 30.00 J·IZ 1 · o.oz 0.13 I 0.94 6.08 I 0.47 1.08 I 8.31 Z5.00

Page 123: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I l ~

I I ~

... ~ • ... ... ::; , ... :l ... j uj 1.2 i 1.1 .,

1 ... ... .., ... ... ... ...

Reoulta of Brown Jnai,.ea

... I\ 1v J I\ in rsr d ....f'? =VA o.! . tsiV rsf.J " IV c ....

110 ... .. .. 70 .. .. .. .. ..

-ts:J ..

LL

"""" IZ1'.J ..

IH s

Reaulta of Brown Jnai,.oa LS/AC-6;. .... J. 20 lliPa. 200mlft

K '

•: lp afJ U?1 q?1 Oi'J csf'l P I I c - - LL "' • • ' .....

ts:J"' IZ1'.J NI

I I ~

I I ~

Reoutta of Br0WJ1 Anol)'llO• LI/AC-I. .._ J. 70 Wq, 100rnrn

10 -;---·~~~~·~'--~~~~~~--~~~~~,

• • 7

• • 4

• • ••

o t> IV t> fV " lf4 t> in t> fV t> in KVJ " 171 c - ... LL Ut • .....

ts::!"' IZ1'.J ..

Reoulta of Brown Anai,.H -lS/AC-9. ... 3. 7o- .... 200mll'I ... . -... ... ... ....

110 . .. . .. ... .. so .. 20

• '

• b IV rs:yJ 1>. I?'' 1>. trJ " l?'J b r1 rs=f7J rq.-.1 c .... ....

ts:J"'

u.

"""" l(ZJ·111 "' • K J

Fig. 4Sa. Structural analyses by Brown procedure, LS/AC-5.

-----·~ ----

..... ..... "'

Page 124: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I ~

I I ~

Reault. of BrDW1l Anal3w•• ·: r -~"!'~!·~-·~.--·-·1

~l I

• • •

0 I VJ ref .t a-f d IYf'.I rqn rs1>'.I ('0 f?

-... ,.. ---... ...

c - - ~ ~ • • • -~... IZ2'.J~

Reault. of Brown Ana13w•• Ui/AC-20 • .... '· 20 .... 20Dmm -----

',,. ~-~ ~ ./. . ~ ~ ~. ~ ~ ·~ ~~ ~

-,

... ~ p ~ ~ 0 I r J~ ~-Jl-~ =fa r , I

c - - ~ ~ • • • ..... IS:J ... IZ2'.J NI

I I ~

1 p ~

Reault. of BrOW1l Anal79ea Ll/AC-20. ...... 10.-~. t00mm. _____ _

•• 0 hp IS'f"d CS"f'A I\ 1:0 D f'"d rqr; ....y.> =f? CAHa~U..LHI K -IS:J "' IZ?:J NI

Re1ult.. of BrD1111 Ana17911 LS/AC-20 • ... '· 70 UPa. 2flOrMl

..:~~ - ~ .

~ ~ ?.

o.aj ft~ w ::L 0.: rtj"'J rs·f:J K}'J !S"f'd rtj"'J n pl

c - - ~ ~ • • • -IS:J"' IZ2'.JNI

Fig. 4Sb. Structural analyses by Brown procedure, LS/AC-20.

.... .... "'

Page 125: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I I ~

I I ~

.... .... .... O.tl

0.1 .... .... o.t11 .... .... .... .... ....

Jlnulta or lll'OWJl .lnal111o•

... : t... 'f'./Zl I\ W I\ VJ I\ W t-. W1 • u. • K ..,..

ts::J "' liZJ NI

Belllllu ot llroWJl .&nal111o• .. -·--- ~ -- -- -- - -------

... •

... • , ..

... o '"· Tu A l\ T«.t r, T4·'.. f\ T,,. .. , r·. T// 4

• u.

ts::] ..

• ..... IZZJM

K

I I ~

I I ~

Be•ulta ot Bro1nl .lnal111o•

0.1

...

...

...

...

... 0.1

• I\ w d I\ Tff4' I\ T9 4' " T/./d " T//d

•• ••• .. ti

10

• I

7

I

• • • •

c II. s K • ..... ts::] "' liZJ ..

Belllllta or llrnn .lnabsu l/liD-I. ....... 701Fa; .......

o I\ T// 1 f' T//J I\ T·H D T« • " T« I c u.

IS:l ..

s UDCES

l<ZJNt

Fig. 45c. .Structural analyses by Brown procedure, G/AC-5.

,_.

"' 0

Page 126: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

l& .a -

1! 1 I il~~~~ ill .. I- """"'...,,..,.,

'

L...,.--,.-,-,--,...,..~ ... - 0 - --.. ,.. .... ""

1-·-·--1

I • I

121

if1i .a -

1 ! I ....,,..,"""'""~"""""'~~~.. 1. 111 . . ~ i !! ~~~~~\:::· ill "I ~ .... ~*

I '

L-r-,~T-r-r·--,--..,......-,--.--'I

(~) SHO"">AM G'f'0'1

Page 127: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

123

6. SUMMARY AND CONCLUSIONS

The effects of three additives (Asphadur, SBS, and hydrated lime)

on two grades of asphalt cements were evaluated in Phase I of the study.

Thirteen physical and chemical tests were performed on a total of 16

binder blends, both before and after thin film oven tests. From these

tests, six additional index properties were calculated.

In Phase II the effects of five additives (Asphadur, hydrated lime,

SBS, neoprene, and SBR) on mixture properties were evaluated in

conjunction with the two asphalt cements studied in Phase I and with two

aggregates (limestone and gravel). Eight engineering tests were

·performed on more than 1300 specimens from a total of 72 mixtures.

nata from Phases I and II were used to perform 3114 structural

analyses for eight hypothetical pavement sections by using the DAMA

computer program and the Brown (Nottingham) procedures.

nata analysis and interpretation were difficult because an enormous

amount of data were obtained, and because the effects derived from one

test on one binder or mixture sometimes contradicted those derived from

another test. To help show the meaning of the data, we prepared Tables

· 1:l and 14, somewhat subjectively, to summarize the effects of additives

on the important binder properties and mixture properties, respectively.

Changes due to additives that led to bet.tar stability; strength, rutting

resistance,· fatigue i:-esistance, durability, low-.temperature cracking

resistance, resistance to moisture-induced damages and structural

capacity in a pavement system were considered improvements.

Page 128: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

124

Tat> le 13. Sumary of effects of additives on binaer properties.

---------~---------------------------------------------------------Property AC Grade AL AH LL s -------------------------------------------------------------------Retained Penetration

Viscosity at 60 C ++ ++ + +

Vlcoslty Ratio, 25 c AC-5 AC-20 ++ ++

PI AC-5 + + + + AC-20 +

VTS AC-5 0 0 + AC-20 + 0 +

PVN AC-'5 + + 0 + AC-20 + + + +

Tensile Strength, O 0 0 0 ++ R 0 + + +

Toughness, 0 0 0 0 ++ R AC•5 + + + +

AC-20 +

Tenacl ty, 0 0 0 0 ++ R AC-5

AC-20 0 0 0

Force Ductility, 0 + + 0 R + + +

Elastic Recovery, O ++ R 0 0 0 0

Dropping Ball (t2/t1), 0 ++ R 0 0 +

HPLC, %LMS, 0 0 0 0 0 R

Cracktng Temperature AC-5 0 + + AC-20 · + + + +

Temp. EqUIV. Stiffness AC-5 0 + 0 + AC-20 0 0

------------------------------------------------------------------++ Improves significantly AL Asphadur, 4% + Improves sl lght I y AH Asphadur. 6% 0 no effects LL hydrated l lme. 5%

worsens slightly s SBS worsens signlf lcantlY 0 ortglnal

R TFOT residUe

Page 129: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

125

T.Wle l4. Sumarv ot ett~cts of addjt1v,s on mixture PrOPtrtieo.

Property

Marshal I .Stab1I1 ty

Tenst It Strength

"olsture Resistance

AC

5 5 20 20

s s 20 20

AGG

G LS G LS

G LS G LS

AH

++ .. .. ++

Addtt1ve

LL

0 0

++

+ +

LH

+

0

s 0

+ +

++ 0

K

0 0 + 0

+ 0 0

J

0 0 0 0

.... -------.. ---------------------------·------------·------------------· Marshall 111111ersion 5 G + + ++ ..

5 LS 0 0 0 + + 20 G + 0 0 + 20 LS ++ 0 0 0 0 ----------...........................................................................................................................

Tenst le strength• 5 G 010 +I• +10 -10 <vac-sat/Lottman> s LS -10 -/+ 0/0 01+ 010 -/+

20 G 010 +/+ +I+ O/+ 20 LS O/+ 01++ +I++ +10 01+ +I+ .................................................................................................................................................

Res1 I lent modUIUS 5 G -10 0/0 +10 -10 <vac-sat/Lottman> s LS -10 01+ ·/+ •/+ 0/0 0/0

20 G -1- -1- ·I· -10 20 LS 0/0 01+ O/+ ++10 01+ +10 -------------------------------------------------...............................................

B/C ratio s G 0 0 0 0 s LS 0 0 + 0 0 20 G + + 20 LS + ++ ++ 0 ..

Fat19.1e Resistance ............................. ,.. .................................................................................................................... Shtl 1-straln 5 + 0 0 0 + 0 Shel 1 .. sireeS 5 + 0 0 0 + 0 !!!.!.!Ptn 5 0 0 0 0 Browri s + 0 0 0 0

Shel 1-otrat• 20 0 0 Shtl 1-etreas 20 0 0 Maupln 20 0 0 0 0 0 0 Brown 20 0 0 0 0 0 0 .......................................................................................................................................................

Rutt 1 ng Ree i stance 5 LS + + 0 0 0 s G 0 0 0 0 20 LS ++ 0 0 0 0 20 G 0 0 0 . ......................................................................................................................................................

DAMA Anal vst's 5 s 20 20

LS G LS G

++

++

Brown <Nottln9hanU Analvsls

Rutting cNr>

FatHJJe <Nf>

++ + 0

s 5 20 20

s 5 20 20

LS G LS G

LS G LS G

++

++

Improves slgnlftcalttly ll!IPtOVff slightly no effects lo'Ol'ftftS SJ lght!V worsene slgnlfieantly

0

0 ++

+

+

++ ++ ++

AH LL LH s l J

0

0

+

+

++

0 0

+

+ +

+ + ++ ++

Aophalt, 6'

0

0

hydrated I lme. hydrated 11111it, SBS neoprerie SBR

0

0

I' 2\

Page 130: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

126

The following conclusions, first wit'h respect to binder properties

and then with respect to mixture properties and finally with respect to

overall evaluation, were drawn from examining the data and these two

tables. It must be emphasized that the conclusions on the beneficial

effects are applicable only to the materials and material combinations

tested. Because of the enormous variety of polymers available and the

fact that each may behave differently in a different asphalt, no claim

will be made that these conclusions will be applicable to other

at!ditives or the same additives in combination with different asphalts

and aggregates.

Additive Effects ori Binder Properties

ASPl'IADUR

Although adding Asphadur (3 min. at 400° F) and hydrated lime at

high concentrations (10'-'.) were more appropriate fo.r conditions in the

field with aggregates, they resulted in ndnhomogeneous, partially

dissolved/dispersed asphalt binders when they were added to asphalts.

Therefore, data on these samples (Samples 2a, 3a, 5, 8a, 9a and 11) were

often erroneous and misleading. Their berleficial effects can only be

evaluated in Phase II when asphalt concrete mixes with aggregates are

examined. Ba.sed on tests of nearly homogeneous modified binders, the

following conclusions are drawn.

• Asphadur significant'ly increased the viscosity of asphalt at

high temperatures. This leads to the expectation of improved

resistance to rutting.

Page 131: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

127

Asphadur increased penet~ation at 5° C somewhat but decreased

penetration at 25° c. This is reflected by the decreased

(improved) temperature susceptibility as measured by VTS, PI,

and pVN,

Asphadur seemed to have improved the low-temperature cracking

resistance of asphalts as measured by the calculated cracking

temperatures and critical stiffnesses at low temperature and

long loading time.

• Asphadur d.:l.ssolves better in AC-5 than in AC-10.

• Asphadur, added to asphalts, did not result in significant

improvements in toughness, tenacity, and tensile properties.

• Large increases in percent LMS based on RPLC data on TFOT

residues may suggest increased susceptibility to cracking.

• The optimum beneficial effects of adding Asphadur are expected

when Asphadur is used in conjunction with softer grade asphalts.

RYD'RA'l'ED LIME

Although it has been suggested that hydrated lime reduces the

hard.ening rate of asphalt and thereby increases durability or useful

life of pavements ('19), the major beneficial effect of hydrated lime is

in improving the moisture susceptibility of asphalt mixes by serving as

an antistripping agent (37,49). This effect can be verified only when

aggregate is introduced in the asphalt concrete mixes. The relative

benefits of adding aggregate as compared with other additives will be

discussed later. The effect of lime on asphalt binder without .aggregate

will be based on low-concentration blends (5% lime) because of the lack

of homogeneity in high-concentration blends (10% lime).

Page 132: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

128

• Increases in viscosity at high temperatures (60 ° C to 1;15 • C)

because of lime suggest improved:resistance to rutting.

• Temperature susceptiblity, low..,.t~mperature cracking r!l.sistance,

toughness, tenacity, tensile and elastic properties of 1tsphalt

are not signficantly affected by lime.

• Although there was little increase in percent LMS based on RPLC

data on original asphalts, there were significant incr!)ases in

percent LMS in TFOT residues. I~ current correlations between

percen.t LMS and pavement cracking hold for asphalts with

additives are assumed, these increases may signal increased

susceptibility to cracking.

STYR'F.LF ( s:Bs)

• Styrelf appears to be a uniform, homogeneous, polymerized

asphalt formulation rather than a dispersion.

• Styrelf increased viscosity of base asphalt at high temperatures

(~0° C and 135° C); thus it is e~pected to increase rutting

resistance of asphalt pavement.

• ·By most measures, Styrelf reduce~ the temperature susceptibility

of base asphalts. However, its effect on cracking temperature

was inconclusive.

• Although there were improvements in the elastic properties of

asphalt because of Styrelf moclif:ication, not all of the benefits

were retained when exposed to :thin film oven agit1g•

Page 133: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

129 ,

• There wer.e si~ificant improvements on toughness, tenacity and

tensile pr.opert:l.es because of Styrelf modification. However,

some of these improvements were drastically reduced due to thin

film oven aging.

• The increase in percent LMS based on HPLC because of Styrelf was

small. However, additional increases in percent LMS after thin

film oven aging were significant.

• Resistance to heating and aging of asphalts containing Styrelf

should be carefully examined.

Additive Effects on Mixture Properties '~

M!PHADUR

• Asphadur significantly increased the Marshall stability,

Manhall stiffness, and tensile strength values of all mixes.

• The effects of Asphadur on moisture resi,stance were mixed and

not significant.

• Asphadur increased the fati~e resistance of AC-5 mixes but

showed no improvements on the fatigue behavior of AC-20

mixtures.

• Asphadur improved the rutting resistance of the mixes on the

basis of results of creep tests. This is consistent with the

observation of increased PVN, pigh-temperature viscosity, and

increased Marshall stiffness.

• Asphadur improved the structural capacities of mixtures compared

to the control mixes.

Page 134: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

130

HYDRA'l'ED LIME

• Lime treatments increased the moisture resistance of most. mixes

as determined by the Lottman pro~edure. The effects on moisture

resistance measured by warm water immersion and vacuum-

saturation treatments were not all clear. Lime treatments

improved the benefit-to-cost rati·os for AC-20/limestone mixes.

• Lime treatments improved the Marshall stability for limestone

mixes and tensile strength for Ac:...5 mixes.

• Lime used at low levels had little effect on fatigue and rutting

resistance; there were some improvements in rutting resista~ce

when lime was used at high levels.

• Lime treatments resulted in improved structural capacities,

especially for gravel· mixes and by Brown analyses.

SJIS (Styrelf)

• SBS improved ~~rshall stability', .l'...arshall stiffness, and tensile

strength of most mixes.

• SBS had little effect on mixture resistance to moisture,

fatigue, and rutting.

• SBS-modified asphalts improved .structural capacity of mixtures,

especially when they were based on the Brown (Nottingham)

method.·

N'F.OPRENE (K)

• There were little differences between neoprene-modified asphalts

and control mixes in terms of stability and tensile strength. I I '

Page 135: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

131

• In the majority of the mixes, neoprene improved the moisture

resistance and the associated henefit-to-cost ratios.

o Neoprene improved the fatigue resistance of soft grade AC-5

mixes.

• Neoprene had mixed effects on structural capacity.

SBR (J)

• SBR-modified asphalts had little effect on stabilities of

mixes but reduced the tensile strengths.

• SBR improved the moisture resistance, especially measured by

Marshall immersion, the tensile strength ratio and the benefit­

t:o-cost ratio.

• Compared to the control mixes, there were little other

beneficial effects.

OV1':11ALL CONCLUSIONS

t. Each additive showed some degree of improvement in at least

one of the desired. properties. However, no additive tested showed

consistent improvement in every binder as well as mixture property.

2. Improvements in binder properties may or may not be reflected

in mixture or structural performance •

. 1. Sof.t grade AC-5 seemed to have benefitted more from additives

than Ar.-20.

4. Heat stability of the polymer modifications may be a concern

as reflected in penetration retention, viscosity ratio, and large

increases in percent LMS by HPLC analyses.

Page 136: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

132

5. It is difficult and perhaps inappropriate to compare, or. rank

the additives tested because many polymers are asphalt specific,,

Although Asphadur and 1

SBS were added to AC-5 and AC-20 grade asphalts

and made the modified aE!Phalts at least one grade more viscous, SBR- and

neoprene-modified asphalts were supplied in the AC-5 and AC-20 viscosity

ranges with different base asphalts.

Page 137: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

133

7. RECOMMR~IDATIONS

1. There is sufficient evidence, both from this study and studies

conducted elsewhere (especially in Japan and Europe), to indicate that

polymer additives have enormous potential in improving some aspects of

asphalt properties. It is reconnnended that research on asphalt

additives be continued, including laboratory evaluation of new additives

and field tests of promising additives.

2. Structural, distress, and performance analysis should be an

integral part of mix design and additive or new material evaluation.

The approach taken in this research or similar methodology presented by

Monismith et al. (::19.) is reconnnended.

3, Softer asphalt AC-5 seemed to have benefitted most from the

additives studied. Modified softer asphalts can combine the normally

expected better low-temperature cracking resistance and thus the

improved temperature susceptibility with increased stability and rutting

resistance for high temperature and traffic conditions for improved

overall performance. Field trials of polymer-modified soft grade

asphalts are reconnnended.

4. It is reconnnended that the PVN (penetration-viscosity number)

be considered in studying or specifying modified asphalts to assure

low-temperature cracking resistance .and that Marshall stiffness be

considered (in lieu of more time-consuming creep tests) in evaluating

mixes containing additives to assure resistance to rutting.

Page 138: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

134

5. Because none of the additives studied showed consistent

improvements in every aspect of binder and mix properties, one must

first decide what specific improvement is desired before choosing an

additive.

6. Spe.c:i.fications for polymer-modified asphalts must be

performance based. To ensure the enhanced performance properties of

the;~· new materials, additional tests for heat stability, tensile, and

elastic properties should be considered·. However, to encourage the.

development of competing materials, the specifications should be g.eneric

and not based on one part.icular product.

Page 139: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

135

8. ACKNOWLEDGMENTS

This research was sponsored by the Highway Division of the Iowa

Department of Transportat~on (DOT) under Research Project HR-278. This

study, under the same title, was also supported by and ~esignated as

Pro.1ect 1R02 of the Engineering Research Institute, Iowa State

University.

The support of this research by the Iowa Highway Research Board and

the Iowa DOT is gratefully acknowledged. The authors wish to extend

sincere appreciation to the engineers of the Iowa DOT, especially Bernie

Brown, Vernon Marks, and Rod Monroe, for their support, cooperation, and

counsel. The authors would also like to thank Joan Pribanic for the

HPLC tests, Marvin Exline for the tensile stress tests, and Tim

O'Connell for toughness and tenacity tests.

The following individuals contributed, in various capacities, to

this investigation: Jerry Franklin, Barbara Hanson, Sang Soo Kim, Kiet

T. Ly, Thulan Ly, Jay McGinness, Shelley Melcher, Glenn Oren, Due Tran,

"Eric T.Tner, and Zia Zafir.

Page 140: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

137

Cl. REFF.RENCES

1. Alexander, L. E. 1969. X-ray Diffraction Methods in Polymer Sc:l.ence. New York: John Wiley .& Sons, Inc. -

2. Anderson, D. I., and M. L. Wiley. 1976. Force ductility - an asnhalt performance indicator. Proceedings of the Association 0£° Asphalt Pavinsi; Technologists 45:25-41. - -

'!'he Asphalt Institute. 1981. Design techniques to minimize low temoerature asphalt pavement transverse cracking.-Research Report No. q1-t. College Park, Md.

4. Bell, c. A. 1'183. Use of Shell bitumen test da.ta chart in evaluation and classification of asphalts. Proceedings of the Association of Asphalt Paving Technologists 52:1-31. -~-

5. Bonnaure, F. P., A. Gravois, and J. Udron. 1980. A new method for predicting the fatigue life of bituminous mixtures. Proceedings of the Association of Asphalt Paving Technologists 49:499.

6. Brien, n. 1977. A design method for gap-graded asphalt mixes.

7.

Shell Bitumen Review 56:9.

Brown, s. F. 1980. An introduction to the analytical design of bituminous pavements. Department of Civil Engineering, University of Nottingham, U.K.

8. Brule, B., M. Druon, and Y. Brion. 1984. The micromorphology and mechanical properties of an SBS bituminous binder: the influence of preparation and aging. (in French) Bulletin, Laboratoire Central des Pents !! Chaussees, 132-65.

Cl. Chollar, B. R., J. G. Boone, W• E. Cuff, and E. F. Bailey. 1985. · Chemical and physical characterization of binder materials. Public Roads 49(1):7-].2.

1.0. Elf Aquitaine Group. 19R.5. Brochure for Styrelf. St. Louis, Mo.

11. Ep11s, J. l9R6. Asphalt pavement modif:f.ers. Civil Engineering 56(4):<;7-59.

12. Haas, R., E. Thompson, F. Meyer, and G. R. Tessier. 1983. The role of additives in asphalt paving technology. Proceedings ~ ~ Association ~ Asphalt Paving Technologists 52: 324-344,

13. Raas, R., F. Meyer, G. Assaf, and fl, Lee. 1987. A comprehensive study of cold climate airport pavement cracking. Paper presented at the Annual Meeting of the Association of Asphalt Paving Technologists, Reno, Nev.

Page 141: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

138

14. Haberl, P. 1<!74. Process for prep~+ing a mixture containing a binder material and polyolefin. U.S. Patent 3,853,800.

15. Reukelom, w,. 1973. An improved method of characterizing asphaltic bitumens with the aid of their mechanical properties. Proceedings of the Association of Asphalt Paving Technologists 42:67~94. -- . -

16. Hills, J. F. 1974. Predicting the fractures of asphalt mixes by thermal stresses. Journal of the Institute of Petroleum Technology, IP 74-014:1-11.--

17. Iowa Department of Transportation. 1<!85. Supplemental Specifications 986. Asphadur Modifief Asphalt Cement Concrete. Ames, Ia.

1R. Jennings, P. w., and J. A. s. Pribanic. 1985. The expanded Montana asphalt quality study using high pressure liquid chroma­tography. Research Report FHWA/MT-85/001. Montana Department of Highways, .Helena, Mont.

J.9. Jew, 1'., and R. T. Woodhams. 1986. Polyethylene-modified bitumens for paving applications. Proceedings of the Association of Asphalt Paving Technologists 55: .541. -- --

20. Kandhal, P. S. · 197!1. Low temperature shrinkage cracking of pavements in Pennsylvania. Proceedings of the Association of Asphalt Paving Technologists 47 :73-1147 --

21. Kennedy. T. w. 1<!77. Characterization of asphalt pavement materials using the int!irect tensiie test. Proceedings of the Association of Asphalt Paving Technoiogists 46:132.

22. l{ing, <;; JI!, , an overview. edited by s.

and H. W. King. 1986. Polymer modified asphalts -In Solutions for Pavement Rehabilitation Problems,

P. LaRue, 240-254, New York: ASCE.

23. King, G. N., H. w. Muncy, and J. B. Prudhomme. 1984. Test methods for specification of polymerized asphalts. Paper presented at the ?.1st annual Laramie Asphalt R.esearch meeting, Laramie, Wyo.

24. King, G• N., H. w. Muncy, and J. B. Prudhomme. l<lR5. The improved rheological properties of polymer modified asphalts. Paper presented at the Annual Meeting ofMterican Society of Testing Materials, Nashville, Tenn.

?..5. Lee, D. Y., l)emirel, T. and Zafir, z .• 1986. Beneficial effects of selected additives on asphalt cement:· mixes. Progress Report for Iowa Department of Transportation Project HR-278, Ames, Ia.

26. Little, 1), N., J. w. Button, Y. Kim, and J. Ahmed. 1987. Mechanistic evaluation of selected asphalt additives. Paper presented at the Annual Meeting of the Association of Asphalt Paving Technologists, Reno, Nev.

I I

Page 142: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

139

11. Lottman, R. P. 1083. Procedures for predicting laboratory retained strength cut-off and additive benefit-cost ratios of moisture damaged asphalt concrete. Transportation Research Record C111 :lli4-140,

28. Lottman, R. P., and J, K. Leonard. 1984. Instruction Manual for ACMODAS, University of Idaho, Moscow, Ida.

Monismitb, c. L., F. N. Finn, and J• A. Epps. 1986. asphalt concrete pavement design and rehabilitation. for Pavement Rehabilitation Problems, edited by s. p, New York: ASCE.

Update of In Solutions Lahue, 51,

10. · Marais, c. p, 1974. bituminous surfaces.

Tentative mix design criteria for gap-graded Transportation Research Record 515:132.

11. Marks, v. J., and c. L. Huisman. 1985. Reducing the adverse effects of transverse cracking. Final Report for Iowa Department of Transportation Project RR-217, Antes, Ia.

1'2. Maupin, G. w. 1976. Simple procedure for fatigue characterization of bituminous concrete. Report No. FRWA/Rn-76/102. Federal Highway Administration, Washington, D.C.

~~. McLeod, N. w. 1976. Asphalt cements: Pen-vis Number and its application to moduli of stiffness. Journal of Testing and Evaluation 4(4):275-282. - -

34. Muncy, R. w., G. N. King, and J, B. Prudhomme. 1'186. Polymer modification: Binder's effects on mix properties. Proceedings of the Association of Asphalt Paving Technologists 55:519.

35, Nadkarni, v. M., A. v. Shenoy, and J, Mathew. 1985. Thermo­mechanical behavior of modified asphalts. Journal of Industrial and Engineering Chemistry, Product Research and Development 24:

. 4'if-4F!4. - .

36.

17.

National Cooperative of hf.ghway practice: 11avement durability. Washington, D.C.

Highway Research Program. 1979. Synthesis Relationship of asphalt cement properties to Transportation Research Board Report No. 59.,

National Lime Association. 1984. paving mixtures. Bulletin 325.

Use of hydrated lime in asphalt Arlington, Va.

111, Pfeiffer, J. Ph., and P. M. van Doormat. 1936. The rheological . properties· of asphaltic bitumen. Journal of Institute of Petroleum Technology 22:414.

io, Plancher, H., E. L. Green, and J, c. Petersen. 1976. Reduction of oxidative hardening of asphalts by treatment with hydrated lime. Proceedings of the Association of Asphalt Paving Technologists 45: 1-24.

Page 143: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

140

40. Reinke, G., and T. O'Connell. 1985. Use of toughness and tenac:l,ty test in the analysis of polymer modi·fied binders. Pa.per presented at the 12th annual A!MA convention, :New Orleans, La•

41. Schmidt, R. J. 1972. A practical.method for measuring the resilient modulus of asphalt treated mixes. Highway Research Record 404:22.

42. Schmidt, R. J., and P. D. Graf. 1972. The resilient modulus of asphalt treated mixes. Asaociation ~ Asphalt Paving Techno.logists

effect of water on the Proceedings of the

41:118. --

43. Shell International Petroleum Company Limited. 1978• Shell pavement <les:lgn manual. London: Shell International Company Limited. ·

44. Shook, J. F., F. N. 'Finn, M. w. Witczak, and c. L. Monismith. 1Cl82. Thickness design of asphalt pavements...,;the Asphalt Institute method. In the Proceedings of !!!!!. ~ International Conference on the Struc.tural Design of Asphalt Pavements, 17-44. 't'heUniversity of Michigan, lii'n Arbor, Mich.

45. Stuart, K. D. 1986. Evaluation procedures used to predict moisture damage in asphalt mixtures. Report No. FHWA/RD-86/090. Federal Highway Administration, Washington, D.C.

41i. Terrel, R. L., and J. L. Walter. ·1986. Modified asphalt paving materials - the European experience. Proceedings of the Association of Asphalt Paving Technologists 55:482:-" --

47. Te'l[as Transportation Institute, Matrecon Inc. and Western Research Institute •. 1<185. Investigation of asphalt additives. Interim Report. College Station, Texas.

41!. Minnesota Mining and Manufacturing Co. 1983. Stabilizing Additive ~CICIO. 1.lrochure. St. Paul, Minn.

49. Tunnicliff, D. G., and R. E. Root;· 1984. Use of antistripping additives in asphalt concrete mixtures. NCHRP Report 274. · Transportation Research Board, Wa~hf.ngton, D.C.

50. Vacha, A •. lCl86. New wave of modifiers aids asphalt performance. Roads an<I Bridges 24<5):32-36.

51. van de Loo, p. J. 1978. The creep test: a key tool in the prediction of pavement rutting. Proceedings ~ !!!!!. Association of Asphalt Paving Technologists 47:522-554.

I

Page 144: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

141

'i2. Van <I.er Poel, c. 1954. A general system describing the visco­elastic properties of bitumens and its relationship to routine test data. ·Journal .2!, Applied Chemistry 4:221-236. ·

5~. Wi11iford, c. L. 1943. Texas A & M Bulletin 73.

X-ray studies of paving asphalts. College Station, Tex.

Zafir, z. of asphalt Ames, Ia.

1987. Effects of selected additives on the properties cements. Master's Thesis, Iowa State University,

Zearley, L. J., and R. Shelquist. 1978. A laboratory evaluation of asphaltic concrete containing Asphadur. Iowa Department of ~ransportation, Ames, Ia.

Page 145: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

143

APPENDIX A: TENSILE STRENGTH TEST

The tensile strength tests conducted were modifications on ASTM standard

test methods for rubber properties in tension D412-80.

Apparatus--Instron table·model universal testing instrument.

Temperature Cabinet--Righ temperature cabinet including temperature

controller, prol)e and attachment for liquid carbon dioxide or liquid

nitrogen coolant.

toad Cell-Metric 5 kg capacity, 0.500 g. lowest range.

Chart Recorder...-Strip chart recorder standard with instrument.

Sample Size--3 cm x 0.3 cm x 0.3 cm sampies are cast in rubber molds.

Testing Conditions-Specimen is stretched to 800% elongation at +20° C

at rates of ~00 mm/min. The temperature should be specified, depending

upon the end use of the material.

EXAMPLES :

MATERIAL TEMPERATURE LOAD RANGE

Asphalt Cement 20° c 5

Emulsion Residue 4• <seal Coat) c 10 - 20

Emulsion Residue • (Mixing Grade) -10 c o.s PAC-20 20 • c 5

t>AC-10 20 • c 5

Page 146: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

145

APP.l!NJlIX B: ELASTIC RECOVERY BY MEANS OF DUCTILOMETER

PROCEDUR!!-The hrass plate, mold, and. briquet specimen are prepared in

accordance to the ASTM Test Method for Ductility of Bituminous

Materials, D113-79. After the ductilometer and specimen are conditioned

• • at 10 C (50 F) for 85 to 95 minutes, the specimen is elongated to 20

cm at a rate of pull of 5 cm/min. After elongation, the ductilometer is

stoppe.t and the sample is held in the stretched position for 5 minutes.

At this time, the sample is cut in half with a pair of scissors or other

suitable cutting device. The sample is left undisturbed for one hour,

when the half sample specimen is retracted until the two broken ends

touch •. The new pointer reading is recorded in cm.

INTERPRETATION OF RESULTS - The percent elongation recovery is

calculated as follows:

10 - L l'.: Recovery • --- x 100

20

where L • Final reading in cm.

Page 147: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

147

APPENDIX C: DROPPING BALL TEST PROCEDURE

PROCEDURE-The sample to be tested is heated slowly, With frequent

stirrin~, to approximately 149° C 000° F). Approximately 8.0 + 0.1 g.

of the sample is poured into the dropping ball container, avoiding

inclusion of air bubbles. The container is covered with the ball

centering guide and the ball is placed on the guide. The assembly is

cooled for 30 minutes at ambient room temperature.

After ~n minutes, the timer is started as the assembly is placed

uoside down on its support, a ring stand with a flat notched plate 30 cm

above the base. (The plate is notched. to hold the assembly while

alloWing the ball to drop freely.) When the top of the ball is tangent

to the edge of the centering guide, the time is recorded at Tl. When

the ball hits the base of the support, the total time, T, is recorded. 1

INTF.RPRETATION OF RESULTS-T2 is obtained by subtracting Tl, the initil.al

time, from T, the total time. (Tl is the time from start to tangent, T2

is the time from that point to when the ball strikes the base and T is

the total time.) Since Tl is primarily dependent upon the viscosity of

the material and T2 is a measure of the material's tensile strength

~fter being stretched the ratio of T2/Tl is a measure of the elasticity

of the sa.mple. A large ratio, therefore, indicates more elastomeric

character.

Page 148: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

.. ·•.

i • •. i : ·1!i, fl ..... ~ '!.·' •.

.. .. (~.

• i i l

!

. •

. ,

I I l

..

.. 0.

•. .. ..

Page 149: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

151

APPENDIX E: · NOMOGRAPH FOR PREDICTING CRACKING TEMPERATURE AFTER HILLS (18),

u 300 'to N

~ 200 , , , z 150 I

Q -30 , , ~

I I ,

Q: 100 I

I .... , YJ , I

z I I , I

~ I I

-25 I , ,

I I

~ I I

I , <( I I , I

J: , • a. 40 I I

I en ,

I I I <( I I

I , , I , , I I I I

20 I

2 3 4 6 8 10 15 20 30 40 ASPHALT PENETRATION AT 5°C

Page 150: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

153

APPENDIX F: SAMPLE COMPUTER PRINTOUT FROM DAMA

Page 151: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

DDDDDDDD AAAAA - MMM DDDDDDDDD AAAAAAA - MMMM DD DOD AAA AAA MMMMMMMMMM. DD ODD AAA AAA MM MM-MM· DD DD AAA AAA MM MMM MM DD DD AA AA MM MM DD DD AAAAAAAAAAA MM MM DD DD AAAAAAAAAAA MM MM DD DOD AA AA MM MM DDODDDODD AA AA MM MM DDDDDDDD AA AA MM MM

THIS PROGRAM HAS BEEN DEVELOPED SOLELY FOR

THE ASPHALT INSTITUTE COLLEGE PARK. MARYLAND

B.V PROF. M. W .. WITCZAK AND OAEKVDD'-HWANG.

AAAAA 222222 AAAAAAA 22222222

AAA AAA 222 222 AAA. AAA 22 AA AA 222 AA AA 2222 AAAAAAAAAAA 2222 AAAAAAAAAAA 2222 AA AA 22 AA AA 2222222222 AA AA 2222222222

THE SOLUTION USES •CHEVRON N-LAVER• PROGRAM AS THE ANALYTICAL STRESS-STRAIN-DISPLACEMENT MODEL.

... ..,. ,,..

Page 152: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

$3 H1•4 in. $.G.E••500 pai

SECTION ANO.MATERIAL PROPERTIES

LAYER -·· ' 2

LAYER -··

lllTERIAL

A. C. ...... POISSON'S RAtlO

0.35 0.45

CURING CONDITIONS

•TERIAL

A. C.

CURE TIME'. (MQNTtt$}

o.o

TRAFFIC CONDITION

THICKNESS (IN)

4.00

MONTH OPENED TO TA:Af-fJC

JULY

MONTHS CURED BEFORE OPENING

0

NUMSER Of REPETJTIOHS PER MONTH 1000

JAN.

•5.0

FEB.

38.0

ENVIRONMENTAL CONDITIONS (MEAN MONTHLY AJA TEMPERATUKES. otu. f)

MARCH APRIL

43.0 45.0

... .... -· 10-0

...LY AUG.

78.0 81.0

SEP.

78.0

OCT.

73.0

LOAD CDNfJGURATlDN ANO cOMPuT-ATlDNAL POINTS

LOAD PER TIRE TIRE PRESSURE RA01US Of LOAD LOAD SPACING

COMPUTATIOHAL POINT 1 COMPUTAJIONAL POINT 2 COMPUJATlDNAL POINT 3

4500. LBS 70. f>SI

•.52 IN 13.5 IN

X • Q.O IN ( CENTER OF ONE TIRE ) X ~ 4.52 JN (RIM Of ONl TIRE) X • 6.75 "JN (MIDPOINT OF TWO TIRES!

NOV.

58.0

DEC.

s.a.o

.... "' "'

Page 153: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

I L

MODULI CONDITIONS

ASPHALT STABILIZED LAYERS

LAVER NUMBER MATERIAL

A. <;.

TEMPERA·TURE/MDDUl:cUS (DEG. F / PSI)

POINT 1 2. 3

TEMPERATURE 40. 50. 55.

MODULUS El 873200. 660800. 554600.

SUBGRADE LAVER

LA)'ER NUMBER· MATERIAL .JAN. f.EB.

-<,· ·~,.

sliBGR. 2 450(>:' 116·zs·:- ·

4 5 6 7

60. 65. 70. 75.

448400. 377600. 306800. 236000.

SUBGRADE MODULUS BY MONTH(PSI)

MARCH A.PRIL MAY JUNE JULY

18750'. 2'700: 3150". 3600. ·4050.

8 9 10 11 12

80. 85. 90. 95. 99.

188800. 155760. 122720. 101480. 77880.

AUG. SEP. OCT. NOV. DEC.

4500 .. 4.500. .,/4500--. 4f?OO. .4.500. .... ·.:,, a-

Page 154: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

DAMAGE MODELS

fATlGIJE DAMAGE

RUTTING DAMAGE

NF • (FO) • {fl) • (IO••M) • (ET)••(-f2) • (MOO)••(-F3)

WHERE

NF IS LOAD REPETITIONS TO FAILURE FO IS DISTRESS TO PERFORMANCE FACTOR IO••M IS MIX FACTOR {M• F4*{VB/(VB+VV)-F5)

. . .. ' VV IS VOLUME OF VOID IN ASPHALT (PERCENT) . VB IS VOLUME OF BITUMEN IN ASPHALT {PERCENT)

ET IS TENSILE STRAIN IN ASPHALT-LAYER MOD IS MODULUS OF ASPHALT Fl, F2 AND F3 ARE COEFFICIENTS OF LAB FATIGUE EQUATION

GIVEN BV NF• Fl • ET .. (-F2) • MOD••(-F3)

PARAMETERS OF LAYER I

FO • .1840E 02 Fl •.4325£-02 F2 •.3291E 01 F3 •.8540E OD

F4 •.4840E 01 FS •.6900E OD VB s 15.2 vv • 3.6

••••• FINAL FATIGUE EQUATION NF •.2953E OO•{ET) .. (-.3291E 01)•MOD .. {-.8540E 00)

NF • 00 • EV••{-01)

WHERE

NF IS LOAD REPETITIONS TO FAILURE DO AND DI ARE COEFFICIENTS OF RUTTING MODEL EC IS VERTICAL COMPRESSIVE STRAIN

DO • . I 365E coa DI • .4477E 01

..... "' ...,

Page 155: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

--· _,, ...... ~, ,,... .... ~

----

IO]N L t f I 1 t 2 2 1 2 t • • 3 t 3 3 4 4 4 5 5 5

• 6

t

• 1 t 2 t t 2 t t 2

PVT. TEMP

92 92

95

•• 92 92

86 86

68 68

63 63

6 7

-.:.1 1

t 53 1 . 53-~ 2

8 1 44 8 1 44 8 2 9 t so 9 1 50 9 •

to 1 53 10 1 53· to 2 11 1 66 1 t 1 66

" 2 12 1 82 12 1 82 12 2

NDOULU-5-(PSI l 1·1-2661. t1266f~

4050. 9616&. 96168.

4500. t 1266-1. 1-t2661.

4500. 146311. 1463'1-1.

4500. 326519. 326519.

4500. 394175 . 39-4175.

4500. 593559-. 59355!1>

4500. 764922. 764922.

ff625. 645071. 645071.

t8750. 593559. 593559.

2-100. 360364. 360364.

3tso-. 169845·. l69845.

3600.

• ••• • MONTHLY STRUCTl.IRAL RESPONSE ANO OAMAGf •••·••

TYPES OF STRUCTURAi:. RESPONSE-S ·

OZ VERTICAL DEFORM.lTlON- AT THE TOP Of LAYER- (IN) ET TENSl-LE STRAIN AT THE BOTTOM Of LAYER (IN/JN) EC COMPRfSS-IVE ST·RAJ:N AT THE TOP Of LA'tERf-fN'/JN)

STRUCTURAL RESPONSES RESP -- - - --- - - - - - - - -- -- - __ .,.. ___ --- - - - - - - - - - - - - - -- - -- - - - -TYPE H - H --: · H· -oz o. 732£-01 o-. 751£-0t o. 74-4£-0l Et O. t23E-02- O. f·:r.!E-02 0. tt-9£-02 EC 0.282£-02 0.226E-02 O_.t98£-'02 DZ 0.695E-01 0. 709£-01 0.699£-0·t ET 0·.129£-02' O. 127£-02 0. 123£-02 Ec-0.29t£-02 0.2·24£-02 0.191£-02 oz 0.673£·-01 0.689£-01 0.681£-0t f·T 0. 118£-02 O. 1 t7E-02 0, 1 t-3£-02 EC 0.269E-02 0.212£-02 0.183E-02 DZ 0.637£-01 0.656£-0t 0.651£-01 ET 0.101£-02 O. tO!E-02- 0·.98-tE-03 EC 0.234£-02 O. t92E-02 0.170£-02 DZ 0·.533£-01 0.553£-01 0.552£-01 ET 0.607£-03 0.616£-03 0.604£-03 EC O. 150£-02 0. 134E-02 0.124£-02 oz 0.510£-01 0.529£-01 0.529£-0-f ET 0.534£-03 0.544£-03 0.534£-03 EC 0·.134£.-02 .o .. 1·22E-O:! 0. t1-4E-02: DZ 0.46tE-01 0.478£-0f 0.479£·-01 E'f<0.,403£.-03 0~41.1£--03 0.404£-03,. EC O.tOGE-07 0.986E-Oa0.930E-03 DZ 0.211£-01 0.219E-Ot 0.2f8E-Ot ET o·.25tE-03 0.254£-03 0.249£-03 EC- 0.613£-03 0.544£-03 0.502£-03 DZ 0.151£-01 0.156£-0-1 0.155£-01 ET 0.234E-03 0.234£-03 0.228E-03 EC 0.545£-03 0.450E-03 0.400£-03 oz 0.673E-Ot 0.695£-0t 0.699£-01 ET 0.464£-03 0.476£-03 0.-468£-03 EC 0. 129£-02 0.123E'-02- 0.118£-02 DZ 0.683E-01 0.708£-01 0.708£-01 ET 0.635£-03 0.649£•03 0.637£-03 EC 0.164£-02 0.152£-02 0. 143£-02 OZ 0\735£-01 0.76-IE-01-''0.7S.7£.,.-01 Cl o.100E--02 0.101£-02 o._988E--O:J, EC 0.:..!39E·0-2 0.205£-02 O.J86E:..02-

MONTHLY DAMAGE'S

H-- H- H-

0.01855 0.01819' 0.01648 2.83665- 1.05083 0.5754"1

O.Ot880 0.01791 0·.01'5-99 3-.26531 L00205 0.49095

0.01603 0.01555 0.014-0-1 2~26603 o. 78088 0.4f00f

0.01209 0.01204 0.01098 1.22115 0.500-1'-t 0.28946

0.00448 0.00472 0.00442 o. 1"6607 o.1oo9a 0.01153

&.00-34-7 o.00368 0-.0034& 0.10203 0.0664t ' 0.04854

0~00193, 0.00208 0.00196' o.03466 0-.02544 , 0.01964

0.00051 0.00053 0.00049 o.00304 0.00111 0-.00124

0.00035 0.00035 0.00032 0.00179 o,00076 0.00045

0:00309 0.00335 0.00319 0.08462 0.06911 0.056-74

o.00567 o.00608 o.-OOS73 0.24995 -0.17664 . -o. 13401

0.01343 -0-.01'378 0:0121& 1 .33686 0.-67339 0.43490

·••••• DAMA-GE .SUM FOR 12 -MOHTHS

LAYER 0.098402 0.09825'4 0.089604

LAYER 2 t 1 .668159 4. 448·379 2. 532855

'1:'.·

..... "' 00

Page 156: and the Iowa Highway Research Board Iowa DOT Project HR-278publications.iowa.gov/16017/1/IADOT_hr278_Beneficial_Effects_Sele… · D.Y. Lee T. Demirel August 1987 Final Report Beneficial

•••••••••• DESIGN LIFIE OF PAVEMENT **********

LAYER

2

DAMAGE TYPE

FATIGUE

. RUTTING

CU MULA TI VIE DAMAGE

1.000

2.837

ANALYSIS 1 ... NS-1 FAILURE REPETITION ANALYSIS

LAYER MAT'L THICK

A. C. 4.00

SR

1.00

TOTAL TAE

DESIGN REPETITIONS BY MS-1

. 12943E 04

REPETITION RATIO (OAMA) ( NF RUTTING/NF FATIGUE )

LAVER 1 0.008

REPETITION RATIO (MS-1) ( NF DAMA CRITICAL/NF BY MS-1

0.773

lAE(l)

4.00

4.00

ANALYSIS 2 ... MS-1 THICKNESS ANALYSIS(lNCli)

REQUIRED TA(MS-1)

3.71

ACTUAL TAE(DAMA)

4.00

DIFFERENCE (TA-TAE)

co.29

CRITICAL POSITION

DESIGN LIFE( YEARS)

10.2

0.1

DESIGN REPETITIONS

O. 1219E 06

O. IOOOE 04

**********LAYER 2 CONTROLS DESIGN LIFE

.... V1

"'