analytical and numerical methods for solving linear fuzzy ...1.6 fuzzy integral equations 20 chapter...

145
An-Najah National University Faculty of Graduate Studies Analytical and Numerical Methods for Solving Linear Fuzzy Volterra Integral Equation of the Second Kind By Jihan Tahsin Abdal-Rahim Hamaydi Supervisor Prof .Naji Qatanani This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Mathematics, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine. 2016

Upload: others

Post on 08-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

An-Najah National University

Faculty of Graduate Studies

Analytical and Numerical Methods for Solving Linear

Fuzzy Volterra Integral Equation of the Second Kind

By

Jihan Tahsin Abdal-Rahim Hamaydi

Supervisor

Prof .Naji Qatanani

This Thesis is Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Mathematics, Faculty of Graduate Studies,

An-Najah National University, Nablus, Palestine.

2016

Page 2: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second
Page 3: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

iii

Dedication

I dedicate this thesis to my beloved homeland, to my parents, to my dear

husband Sami, to my daughter Shatha, to my sons Hothayfa and yaman, to

my sisters specially Malaak and my brothers, to my friend Aminah Alqub ,

to my school and my students, to everyone who supports and encourages

me.

Page 4: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

iv

Acknowledgement

First I thank God to complete this thesis, and then extend my sincere thanks

to my supervisor Prof. Naji Qatanani who encouraged me all the time and

gifted me a lot of self- confidence, and I owe to his effort a great deal

because he helped me a lot to achieve my goal in this thesis. Also, l have

to thank my family who supported and encouraged me.

Finally, I would like to acknowledge my teachers at Al-Najah National

University- Mathematical Department.

Page 5: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second
Page 6: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

vi

Table of Contents

No. Contents Page

Declaration ii

Dedication iii

Acknowledgement

iv

List of Figures viii

List of Tables ix

Abstract

x

Introduction

1

Chapter One 4

Mathematical Preliminaries 4

1.1 Crisp and Fuzzy sets 4

1.2 Operations on fuzzy sets 6

1.3 Fuzzy numbers 8

1.4 Fuzzy function 13

1.5 Fuzzy linear systems 17

1.6 Fuzzy integral equations 20

Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral

Equation of the Second Kind 24

2.1 Fuzzy Laplace transformation method 24

2.2 Fuzzy Convolution 28

2.3 Fuzzy homotopy analysis method 33

2.4 Adomian decomposition method 45

2.5 Fuzzy differential transformation method 49

2.6 Fuzzy successive approximation method

65

Chapter Three 69

Numerical Methods for Solving Fuzzy Volterra Integral

Equation of the Second Kind 69

3.1 Taylor expansion method 69

3.2 Convergence analysis 76

Page 7: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

vii

3.3 Trapezoidal method 80

3.4 Variation iteration method 83

Chapter Four 88

Numerical Examples and Results 88

Conclusion 123

References 124

Appendix 132

ุจ ุงู„ู…ู„ุฎุต

Page 8: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

viii

List of Figures

Figure Title Page

1.1 The support, core, band width, and height of the

fuzzy set 5

1.2 The crisp number 6

1.3 The convex and non-convex fuzzy sets 8

1.4 Triangular and trapezoidal fuzzy numbers 11

4.1(๐‘Ž) The exact and approximate solutions in example

(4.1) ๐‘Ž๐‘ก ๐‘ฅ = 0.5 93

4.1(๐‘) The absolute error between the exact and

numerical solutions in example (4.1)๐‘Ž๐‘ก ๐‘ฅ = 0.5 94

4.2(๐‘Ž) The exact and approximate solutions in example

(4.2)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

100

4.2(๐‘) The absolute error between the exact and

numerical solutions in example (4.2)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

101

4.3(๐‘Ž) The exact and approximate solutions in example

(4.3)๐‘Ž๐‘ก ๐‘ฅ = 0.84 105

4.3(๐‘) The absolute error between the exact and

numerical solutions in example (4.3)๐‘Ž๐‘ก ๐‘ฅ = 0.84 105

4.4(๐‘Ž) The exact and approximate solutions in example

(4.4)๐‘Ž๐‘ก ๐‘ฅ = 0.23๐œ‹ 108

4.4(๐‘)

The absolute error between the exact and

numerical solutions in example (4.4)๐‘Ž๐‘ก ๐‘ฅ =0.23๐œ‹

108

4.5(๐‘Ž) The exact and approximate solutions in example

(4.5)๐‘Ž๐‘ก ๐‘ฅ = 0.5 114

4.5(๐‘) The absolute error between the exact and

numerical solutions in example (4.5)๐‘Ž๐‘ก ๐‘ฅ = 0.5 115

4.6(๐‘Ž) The exact and approximate solutions in example

(4.6)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

120

4.6(๐‘) The absolute error between the exact and

numerical solutions in example (4.6)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

120

Page 9: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

ix

List of Tables

Table Title Page

4.1 The exact and numerical solutions for ๐‘ข, and

the resulted error by algorithm (4.1)๐‘Ž๐‘ก ๐‘ฅ = 0.5 95

4.2 The exact and numerical solutions for ๐‘ข, and

the resulted error by algorithm (4.1)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

102

4.3

The exact and numerical solutions for ๐‘ข, and

the resulted error by algorithm (4.2)๐‘Ž๐‘ก ๐‘ฅ =0.84

106

4.4

The exact and numerical solutions for ๐‘ข, and

the resulted error by algorithm (4.2)๐‘Ž๐‘ก ๐‘ฅ =0.23๐œ‹

109

4.5 The exact and numerical solutions for ๐‘ข, and

the resulted error in example (4.3)๐‘Ž๐‘ก ๐‘ฅ = 0.5 116

4.6 The absolute error between the exact and

numerical solutions in example (4.3)๐‘Ž๐‘ก ๐‘ฅ =๐œ‹

8

121

Page 10: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

x

Analytical and Numerical Methods for Solving

Linear Fuzzy Volterra Integral Equation of the Second Kind

By

Jihan Tahsin Abdel Rahim Hamaydi

Supervised

Prof. Naji Qatanani

Abstract

Integral equations, in general, play a very important role in Engineering

and technology due to their wide range of applications. Fuzzy Volterra

integral equations in particular have many applications such as fuzzy

control, fuzzy finance and economic systems.

After introducing some definitions in fuzzy mathematics, we focus our

attention on the analytical and numerical methods for solving the fuzzy

Volterra integral equation of the second kind.

For the analytical solution of the fuzzy Volterra integral equation we have

presented the following methods:

The Fuzzy Laplace Transformation Method(FLTM), Fuzzy Homotopy

Analysis Method(FHAM), Fuzzy Adomian Decomposition Method

(FADM), Fuzzy Differential Transformation Method (FDTM), and the

Fuzzy Successive Approximation Method (FSAM).

For the numerical handling of the fuzzy Volterra Integral equation we have

implemented various techniques, namely: Taylor expansion method,

Trapezoidal method, and the variation iteration method.

Page 11: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

xi

To investigate the efficiency of these numerical techniques we have solved

some numerical examples.

Numerical results have shown to be in a close agreement with the

analytical ones.

Moreover, the variation iteration method is one of the most powerful

numerical techniques for solving Fuzzy Volterra integral equation of the

second kind in comparison with other numerical techniques.

Page 12: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

1

Introduction

Fuzzy integral equations of the second kind have attracted the attention of

many scientists and researchers in recent years, due to their importance in

applications, such as fuzzy control, fuzzy finance, approximate reasoning

and economic systems [5].

Prior to discussing fuzzy differential equations and integral equations and

their associated numerical algorithms, it is necessary to present an

appropriate brief introduction to preliminary topics, such as fuzzy numbers

and fuzzy calculus. The concept of fuzzy sets, was originally introduced by

Zadeh [48], led to the definition of fuzzy numbers and its implementation in

fuzzy control [17], and approximate reasoning problems [49].

The concept of integral of fuzzy functions was first introduced by Dubios

and Prade [21]. Alternative approaches were later suggested by Goetschel

and Voxman [30], Kaleva [33], Nanda [40] and others. One of the first

applications of fuzzy integration was given by Wu and Ma [18] who

investigated the fuzzy Fredholm integral equation of the second kind.

Liao [34] in 1992 employed the homotopy analysis method to solve non-

linear problems. In addition, the homotopy analysis method has been used

for solving fuzzy integral equations of the second kind. Babolian etal. [9]

have solved the fuzzy integral equation by the Adomian method. There are

also numerous numerical methods which have been focusing on the solution

of integral equations [23]. Amawi [6] has investigated some analytical and

Page 13: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

2

numerical methods for solving fuzzy Fredholm integral equation of the

second kind. Amawi and Qatanani [7] have employed the Taylor expansion

method, the Trapezoidal rule, the Adomian method and the homotopy

analysis method to solve various fuzzy Fredholm integral equations of the

second kind.

This thesis is organized as follows:

In chapter one, we introduce some basic concepts of fuzzy sets, crisp sets,

fuzzy numbers, and fuzzy integral equation.

In chapter two, we investigate some analytical methods to solve linear

fuzzy Volterra integral equation of the second kind, namely: Fuzzy Laplace

transformation method(FLTM), Fuzzy Homotopy analysis

method(FHAM), Fuzzy Adomian decomposition method(FADM), and

Fuzzy successive approximation method.

In chapter three, we employ some numerical methods to solve linear fuzzy

Volterra integral equation of the second kind, these include:

Fuzzy Taylor expansion method, Fuzzy Trapezoidal method, and Fuzzy

variational iteration method.

In chapter four, MAPLE software has been constructed to solve numerical

examples to demonstrate the efficiency of these numerical schemes

introduced in chapter three.

Page 14: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

3

Finally, we draw a comparison between analytical and numerical solutions

for some numerical examples.

Page 15: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

4

Chapter One

Mathematical Preliminaries

Basic Definitions and Operations.

1.1 Crisp and Fuzzy Sets

Definition )1.1( [14]: Characteristic function: Let ๐‘‹ be a set and A be a

subset of ๐‘‹ (๐ด โŠ† ๐‘‹). Then the characteristic function of the set ๐ด in ๐‘‹,

where ๐๐‘จ โˆถ ๐‘‹ โ†’ {0,1} is defined by:

1 if ๐‘ฅโˆˆA

๐๐‘จ(๐’™) =

0 if ๐‘ฅ โˆ‰ A

Definition )1.2( [48]: Fuzzy set: a Fuzzy set is a set whose element have

degrees of membership.

It is extension of the classical notion of set.

The value 0 is used to represent complete non-membership, the value 1 is

used to represent complete membership, and values in between are used to

represent intermediate degrees of membership.

Definition )1.3( [12]: The support of fuzzy set: The support of a fuzzy

set ๐ด is defined by :

๐‘†๐‘ข๐‘๐‘(๐ด) = {๐‘ฅ๐œ– ๐‘‹: ๐ด(๐‘ฅ) > 0}.

Page 16: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

5

A(x)

Core

1

0.5 ----------Band width------ Height

x

Support

๐น๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ (1.1)

๐ถ๐‘œ๐‘Ÿ๐‘’ ๐‘œ๐‘“๐ด = {๐‘ฅ: ๐ด(๐‘ฅ) = 1}

๐‘†๐‘ข๐‘๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘œ๐‘“ ๐ด = {๐‘ฅ: ๐ด(๐‘ฅ) > 0}

๐ต๐‘Ž๐‘›๐‘‘ ๐‘ค๐‘–๐‘‘๐‘กโ„Ž ๐‘œ๐‘“ ๐ด = {๐‘ฅ: ๐ด(๐‘ฅ) โ‰ฅ 0.5}

๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐ด = ๐‘ ๐‘ข๐‘๐‘ฅโˆˆ๐‘‹

๐ด(๐‘ฅ)

Definition)1.4( [25 ]: ๐œถ โ€“ cut: An ๐›ผ-level set of a fuzzy set ๐ด of ๐‘‹ is a

non-fuzzy set denoted by [๐ด] ๐›ผ and is defined by:

[๐ด]๐›ผ = { ๐‘ฅ โˆˆ ๐‘‹: ๐ด(๐‘ฅ) โ‰ฅ ๐›ผ , ๐‘–๐‘“๐›ผ > 0

๐‘๐‘™(๐‘ ๐‘ข๐‘๐‘(๐ด)) , ๐‘–๐‘“ ๐›ผ = 0

where ๐‘๐‘™ (๐‘ ๐‘ข๐‘๐‘(๐ด)) = ๐ถ๐‘™๐‘œ๐‘ ๐‘ข๐‘Ÿ๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘๐‘๐‘œ๐‘Ÿ๐‘ก ๐ด.

Definition )1.5 ( [ 25]: Crisp number: A crisp number a is represented by:

1 ๐‘–๐‘“ ๐‘ฅ = ๐‘Ž

๐ด(๐‘ฅ) =

0 ๐‘–๐‘“ ๐‘ฅ โ‰  ๐‘Ž

Page 17: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

6

a crisp interval [๐‘, ๐‘‘] is represented by a fuzzy set:

1 ๐‘–๐‘“ ๐‘ฅ โˆˆ [๐‘, ๐‘‘]

๐ต(๐‘ฅ) =

0 ๐‘–๐‘“ ๐‘ฅ โˆ‰ [๐‘, ๐‘‘]

๐ด(๐‘ฅ) ๐ต(๐‘ฅ) 1

a c d X

The crisp number ๐น๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ (1.2)

1.2 Operations on Fuzzy Sets

As in the case of ordinary sets, the operations on fuzzy sets play a control

role in the case of fuzzy sets, Zadeh [48] defined the following operations

for fuzzy sets as generalization of crisp sets and of crisp statements.

Definition (1.6): The intersection: the membership function of the

intersection of two fuzzy sets ๐ด and ๐ต is defined as:

(๐ด โˆฉ ๐ต) (๐‘ฅ) = ๐‘€๐‘–๐‘› {๐ด(๐‘ฅ), ๐ต(๐‘ฅ)}, โˆ€ ๐‘ฅ โˆˆ ๐‘‹.

or, in abbreviated form: (๐ด โˆฉ ๐ต) (๐‘ฅ) = ๐ด (๐‘ฅ) โ‹€ ๐ต(๐‘ฅ)

Page 18: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

7

Definition (1.7): The union: the membership function of the union of two

fuzzy sets ๐ด and B is defined as: (๐ด โˆช ๐ต) (๐‘ฅ) = ๐‘€๐‘Ž๐‘ฅ {๐ด(๐‘ฅ), ๐ต(๐‘ฅ)}, โˆ€๐‘ฅ โˆˆ

๐‘‹.

or, in abbreviated form: (๐ด โˆช ๐ต) (๐‘ฅ) = ๐ด (๐‘ฅ) โ‹ ๐ต(๐‘ฅ)

Definition (1.8): The complement: the membership function of

complement is defined as : ๐ด(๐‘ฅ)๐‘ = 1 โˆ’ ๐ด(๐‘ฅ), ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ฅ๐œ– ๐‘‹.

Definition (1.9): The containment: A fuzzy set ๐ด is contained in a fuzzy

set ๐ต (๐ด โŠ† ๐ต) if and only if ๐ด (๐‘ฅ) โ‰ค ๐ต(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹.

In symbols, ๐ด โŠ† ๐ต โŸบ ๐ด (๐‘ฅ) โ‰ค ๐ต(๐‘ฅ).

Definition (1.10): The equality: The two fuzzy sets ๐ด and ๐ต are equal if

and only if

๐ด (๐‘ฅ) = ๐ต(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹.

In symbols, ๐ด = ๐ต โŸบ ๐ด (๐‘ฅ) = ๐ต(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹.

Definition (1.11): The empty fuzzy set: A fuzzy set ๐ด is empty if and only

if its membership function ๐ด(๐‘ฅ) = 0, โˆ€๐‘ฅ โˆˆ ๐‘‹.

Some Properties of Fuzzy Sets

(A โˆช B)C = AC โˆฉ BC

De Morganโ€™s laws

(A โˆฉ B)C = AC โˆช BC

Page 19: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

8

๐ถ โˆฉ (A โˆช B) = ( ๐ถ โˆฉ A ) โˆช ( ๐ถ โˆฉ A ) Distributive laws

๐ถ โˆช (A โˆฉ B) = ( ๐ถ โˆช A ) โˆฉ ( ๐ถ โˆช A ) 1- Max{๐ด(๐‘ฅ), ๐ต(๐‘ฅ)}= Min {1 โˆ’ ๐ด(๐‘ฅ), 1 โˆ’ ๐ต(๐‘ฅ)} 1-Min{๐ด(๐‘ฅ), ๐ต(๐‘ฅ)}= Max {1 โˆ’ ๐ด(๐‘ฅ), 1 โˆ’ ๐ต(๐‘ฅ)}

1.3 Fuzzy Numbers

Definition (1.12) [48]: Normal fuzzy set: A fuzzy set ๐ด is called normal

if there exists ๐‘Ž๐‘› ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘ฅ โˆˆ ๐‘‹ ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐ด(๐‘ฅ) = 1, Otherwise ๐ด is

subnormal.

Definition (1.12) [4]: Convex fuzzy set: A fuzzy set ๐ด is convex if:

๐ด (๐œ†๐‘ฅ1 + (1 โˆ’ ๐œ†) ๐‘ฅ2 ) โ‰ฅ ๐‘š๐‘–๐‘› {๐ด (๐‘ฅ1), ๐ด (๐‘ฅ2)}, โˆ€ ๐‘ฅ1, ๐‘ฅ2๐œ– ๐‘‹ , ๐‘Ž๐‘›๐‘‘

๐œ† ๐œ– [0,1]. ๐ด is convex if all its ๐›ผ โˆ’ ๐‘๐‘ข๐‘ก๐‘  are convex.

๐ด (๐œ† ๐‘ฅ1 + (1 โˆ’ ๐œ†)๐‘ฅ2)

1 1

๐ด(๐‘ฅ1) ๐ด(๐‘ฅ2) ๐ด(๐‘ฅ1) ๐ด(๐‘ฅ2)

๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ1 ๐‘ฅ2

Convex fuzzy set non-Convex fuzzy set

๐น๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ (1.3)

Page 20: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

9

Definition (1.13) [47]: Upper semi continuous: A function f: ๐ธ โŸถ ๐‘… is

said to be upper semi continuous at ๐‘ฅ 0 โˆˆ ๐ธ if :

โˆ€ํœ€ > 0, โˆƒ๐›ฟ > 0 ๐‘ . ๐‘ก ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ0) + ํœ€, Where ๐‘ฅ โˆˆ ๐ธ โˆฉ ๐ต๐›ฟ(๐‘ฅ0).

Definition (1.14) [28]: Fuzzy number: A fuzzy number is a fuzzy set

๐ด: ๐‘… โ†’ [0, 1] such that:

(๐‘–) ๐ด is upper semi continuous,

(๐‘–๐‘–) ๐ด(๐‘ฅ) = 0 outside some interval [๐‘Ž, ๐‘‘],

(๐‘–๐‘–๐‘–) There are real numbers ๐‘, ๐‘: ๐‘Ž โ‰ค ๐‘ โ‰ค ๐‘ โ‰ค ๐‘‘, for which:

(1) ๐ด(๐‘ฅ) is monotonically increasing on [๐‘Ž, ๐‘],

(2) ๐ด(๐‘ฅ) is monotonically decreasing on [๐‘, ๐‘‘],

(3) ๐ด(๐‘ฅ) = 1, ๐‘ โ‰ค ๐‘ฅ โ‰ค ๐‘.

Definition (1.15) [50]: Convex normalized fuzzy set: A fuzzy number ๐ด

is a convex normalized if:

1. there exists exactly one ๐‘ฅ0 โˆˆ ๐‘…: ๐ด (๐‘ฅ0) = 1 (๐‘ฅ0 is called the mean

value of A)

2. ๐ด (๐‘ฅ) is piecewise continuous.

Definition (1.16) [50]: The cardinality: For finite fuzzy set ๐ด, the

cardinality of A is defined as :

Page 21: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

10

|๐‘จ| = โˆ‘๐‘จ(๐’™)

๐’™โˆˆ๐‘ฟ

โ€–๐‘จโ€– = |๐‘จ|

|๐‘ฟ| is called the relative cardinality of ๐ด .

Definition (1.17) [24]: Triangular fuzzy number: Triangular a fuzzy

number represented with three points as follows ๐ด = ( ๐‘Ž1, ๐‘Ž2, ๐‘Ž3 )

This representation is interpreted as membership functions and holds the

following conditions:

(๐‘–) ๐‘Ž1 to ๐‘Ž2 is increasing function.

(๐‘–๐‘–) ๐‘Ž2 to ๐‘Ž3is decreasing function.

(๐‘–๐‘–๐‘–)๐‘Ž1 โ‰ค ๐‘Ž2 โ‰ค ๐‘Ž3. 0 ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ < ๐‘Ž1

๐‘ฅ โˆ’ ๐‘Ž1

๐‘Ž2 โˆ’ ๐‘Ž1 ๐‘–๐‘“ ๐‘Ž1 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž2

๐ด(๐‘ฅ) =

๐‘Ž3 โˆ’ ๐‘ฅ

๐‘Ž3 โˆ’ ๐‘Ž2 ๐‘–๐‘“ ๐‘Ž2 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž3

0 ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ > ๐‘Ž3

Definition (1.18) [10]: Trapezoidal fuzzy number: We can define

trapezoidal fuzzy number ๐ด as ๐ด = ( ๐‘Ž1, ๐‘Ž2, ๐‘Ž3, ๐‘Ž4 )The membership of

this fuzzy number will be interpreted as follows:

0 ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ < ๐‘Ž1

๐‘ฅ โˆ’ ๐‘Ž2

๐‘Ž2 โˆ’ ๐‘Ž1 ๐‘–๐‘“ ๐‘Ž1 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž2

๐ด(๐‘ฅ) = 1 ๐‘–๐‘“ ๐‘Ž2 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž3

๐‘Ž4 โˆ’ ๐‘ฅ

๐‘Ž4 โˆ’ ๐‘Ž3 ๐‘–๐‘“ ๐‘Ž3 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž4

0 ๐‘“๐‘œ๐‘Ÿ ๐‘ฅ > ๐‘Ž4

Page 22: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

11

a1 a2 a3 a1 a2 a3 a4

Triangular fuzzy number Trapezoidal fuzzy number

๐น๐‘–๐‘”๐‘ข๐‘Ÿ๐‘’ (1.4)

Definition (๐Ÿ. ๐Ÿ๐Ÿ—): Fuzzy metric: Given two fuzzy sets ๐ด, ๐ต. we try to

find a fuzzy number d*(๐ด, ๐ต) that should satisfy the following:

(๐‘–) ๐‘‘โˆ—(๐ด, ๐ต) โ‰ฅ 0, ๐‘Ž๐‘›๐‘‘ ๐‘‘โˆ—(๐ด, ๐ต) โŸบ ๐ด = ๐ต

(๐‘–๐‘–) ๐‘‘โˆ—(๐ด, ๐ต) = ๐‘‘โˆ—(๐ต, ๐ด)

(๐‘–๐‘–๐‘–) ๐‘‘โˆ—(๐ด, ๐ถ) โ‰ค ๐‘‘โˆ—(๐ด, ๐ต) + ๐‘‘โˆ—(๐ต, ๐ถ), ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘’๐‘ก๐‘  ๐ด, ๐ต, ๐ถ

Definition (1.20) [2]: Parametric form of fuzzy number:

A fuzzy number ๐‘ฅ is a pair (๐‘ฅ, ๏ฟฝฬ…๏ฟฝ) of functions ๐‘ฅ (๐›ผ), ๏ฟฝฬ…๏ฟฝ( ๐›ผ); 0 โ‰ค ๐›ผ โ‰ค 1

which satisfies the following:

๐‘–. ๐‘ฅ(๐›ผ)is a bounded left-continuous non-decreasing function over [0, 1]

๐‘–๐‘–. ๐‘ฅ(๐›ผ)is a bounded left-continuous non-increasing function over [0, 1]

๐‘–๐‘–๐‘–. ๐‘ฅ (๐›ผ) โ‰ค ๐‘ฅ ฬ…(๐›ผ); 0 โ‰ค ๐›ผ โ‰ค 1

Page 23: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

12

A crisp number ๐›ผ is simply represented by ๐‘ฅ(๐›ผ) = ๏ฟฝฬ…๏ฟฝ(๐›ผ) = ๐›ผ,

0 โ‰ค ๐›ผ โ‰ค 1.

arithmetic operations of arbitrary fuzzy numbers ๐‘ฅ = (๐‘ฅ, ๏ฟฝฬ…๏ฟฝ), ๐‘ฆ = (๐‘ฆ, ๐‘ฆ),

and ๐œ† โˆˆ ๐‘…, can be defined as [43]:

1. ๐‘ฅ = ๐‘ฆ ๐‘–๐‘“๐‘“ ๐‘ฅ(๐›ผ) = ๐‘ฆ(๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘ฅ(๐›ผ) = ๐‘ฆ(๐›ผ),

2. ๐‘ฅ + ๐‘ฆ = [ ๐‘ฅ(๐›ผ) + ๐‘ฆ(๐›ผ), ๐‘ฅ(๐›ผ) + ๐‘ฆ(๐›ผ)],

3. ๐‘ฅ โˆ’ ๐‘ฆ = [๐‘ฅ(๐›ผ) โˆ’ ๐‘ฆ(๐›ผ), ๐‘ฅ(๐›ผ) โˆ’ ๐‘ฆ(๐›ผ)],

4. ๐œ†๐‘ฅ = {๐œ†๐‘ฅ(๐›ผ), ๐œ†๐‘ฅ(๐›ผ), ๐œ† โ‰ฅ 0

๐œ†๐‘ฅ(๐›ผ), ๐œ†๐‘ฅ(๐›ผ), ๐œ† < 0

Definition (1.21) [3]: The distance: For arbitrary fuzzy numbers ๐‘ฅ =

(๐‘ฅ, ๐‘ฅ)๐‘Ž๐‘›๐‘‘ ๐‘ฆ = (๐‘ฆ, ๐‘ฆ) we define the distance between ๐‘ฅ and ๐‘ฆ by

๐‘‘(๐‘ฅ, ๐‘ฆ) = sup0โ‰ค๐›ผโ‰ค1

{max [ |๐‘ฅ โˆ’ ๐‘ฆ| , |๐‘ฅ โˆ’ ๐‘ฆ| ]}

Let d: ๐ธ ร— ๐ธ โŸถ ๐‘…,๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘“๐‘ข๐‘ง๐‘ง๐‘ฆ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ.

The following are satisfied:

1. ๐‘‘(๐‘ฅ + ๐‘ง, ๐‘ฆ + ๐‘ง) = ๐‘‘(๐‘ฅ, ๐‘ฆ), โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ธ.

2. ๐‘‘(๐œ†๐‘ฅ, ๐œ†๐‘ฆ) = |๐œ†|๐‘‘(๐‘ฅ, ๐‘ฆ), ๐œ† โˆˆ ๐‘…, ๐‘ฅ, ๐‘ฆ โˆˆ ๐ธ.

3. ๐‘‘(๐‘ฅ + ๐‘ฆ, ๐‘ง + ๐‘ค) โ‰ค ๐‘‘(๐‘ฅ, ๐‘ง) + ๐‘‘(๐‘ฆ,๐‘ค), โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ค โˆˆ ๐ธ.

the function ๐‘‘ (๐‘ฅ , ๐‘ฆ) is a metric on ๐ธ.

Page 24: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

13

1.4 Fuzzy function

Definition (1.22) [42]: Fuzzy function: Let ๐‘‹ ๐‘Ž๐‘›๐‘‘ ๐‘Œ are universal sets and

๐‘“: ๐‘‹ โŸถ ๐‘Œ be a function. Let moreover ๐น(๐‘‹), ๐น(๐‘Œ) be respective universes

of fuzzy sets, identified with their membership functions, ๐‘–. ๐‘’ ๐น(๐‘‹) =

{๐ด: ๐‘‹ โ†’ [0,1]} and similarly ๐น(๐‘Œ). By extension principle, ๐‘“ induces a

function ๐‘“โˆ—: ๐น(๐‘‹) โŸถ ๐น(๐‘Œ) such that for all ๐ดโˆ ๐น(๐‘‹)

0 ๐‘–๐‘“ ๐‘“โˆ’1(๐‘ฆ) = โˆ… ๐‘“โˆ—(๐ด)(๐‘ฆ) =

๐‘ ๐‘ข๐‘{๐ด(๐‘ฅ): ๐‘ฅ โˆˆ ๐‘“โˆ’1(๐‘ฆ) } ๐‘–๐‘“ ๐‘“โˆ’1(๐‘ฆ) โ‰  โˆ…

Definition (1.23) [20]: Continuous fuzzy function

A function ๐‘“ โˆถ [๐‘Ž , ๐‘] โ†’ ๐ธ is said to be continuous fuzzy function if for

arbitrary fixed ๐‘ฅ0 โˆˆ [๐‘Ž , ๐‘] , ๐›ฟ > 0 such that:

|๐‘ฅ โˆ’ ๐‘ฅ0| < ๐›ฟ โŸน ๐‘‘(๐‘“(๐‘ฅ), ๐‘“(๐‘ฅ0)) < ํœ€

Definition (1.24) [46]: Differential of a fuzzy function:

Let ๐‘ข: (๐‘Ž, ๐‘) โŸถ ๐ธ be a fuzzy function and ๐‘ฅ0 โˆˆ (๐‘Ž, ๐‘). ๐‘ข is differentiable

at ๐‘ฅ0 if two forms were sustained as follows:

It exists an element ๐‘ขโ€ฒ(๐‘ฅ0) โˆˆ ๐ธ such that , for all โ„Ž > 0 sufficiently

near to 0, there are ๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0), ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)and the

limits :

Page 25: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

14

limโ„Žโ†’0+

๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0)

โ„Ž= lim

โ„Žโ†’0+

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0)

It exists an element ๐‘ขโ€ฒ(๐‘ฅ0) โˆˆ ๐ธ such that , for all h < 0 sufficiently

near to 0, there are ๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0), ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž) and the

limits :

limโ„Žโ†’0โˆ’

๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0)

โ„Ž= lim

โ„Žโ†’0โˆ’

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0)

Let ๐‘ข: (๐‘Ž, ๐‘) โ†’ ๐ธ be a fuzzy function and denote:

[๐‘ข(๐‘ฅ)]๐›ผ = [ ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)], โˆ€๐›ผ โˆˆ [0, 1] ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ (0,1)

If f is differentiable, then ๐‘ข(๐‘ฅ, ๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ)are differentiable functions

and

[๐‘ขโ€ฒ(๐‘ฅ)]๐›ผ = [ ๐‘ขโ€ฒ(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)]

Definition (1.25) [13]: Strongly generalized differentiable

Let ๐‘ข: (๐‘Ž, ๐‘) โ†’ ๐ธ and ๐‘ฅ0 โˆˆ (๐‘Ž, ๐‘) , We say that ๐‘ข is strongly generalized

differentiable at ๐‘ฅ0 if there exists an element ๐‘ขโ€ฒ(๐‘ฅ0) โˆˆ ๐ธ such that:

(i) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0), ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

and the limits (in the metric ๐‘‘)

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0)

โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0),

๐‘œ๐‘Ÿ

(ii) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 + โ„Ž), ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0)

and limits

Page 26: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

15

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 + โ„Ž)

โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘ฅ0 โˆ’ โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0)

โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0),

๐‘œ๐‘Ÿ

(iii) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘ฅ0), ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž) โˆ’

๐‘ข(๐‘ฅ0) and the limits

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 + โ„Ž)

โˆ’โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

โˆ’โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0),

๐‘œ๐‘Ÿ

(iv) โˆ€ โ„Ž > 0 Sufficientlysmall,โˆƒ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 + โ„Ž), ๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

and the limits

๐‘™๐‘–๐‘šโ„Žโ†’โ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 + โ„Ž)

โˆ’โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘ฅ0) โˆ’ ๐‘ข(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž= ๐‘ขโ€ฒ(๐‘ฅ0)

We will define the integral of a fuzzy function using the Riemann integral

concept.

Definition (1.26) [2]: Integral of a fuzzy function: Let ๐‘ข โˆถ [๐‘Ž, ๐‘] โ†’ ๐ธ.

for each partition ๐‘ = {๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›} of [a, b] and for arbitrary ๐œ‰ ๐‘– โˆถ

๐‘ฅ๐‘–โˆ’1 โ‰ค ๐œ‰ ๐‘– โ‰ค ๐‘ฅ๐‘– , 1 โ‰ค ๐‘– โ‰ค ๐‘›, ๐‘™๐‘’๐‘ก ๐œ† = max1โ‰ค๐‘–โ‰ค๐‘›

{|๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’1|} ๐‘Ž๐‘›๐‘‘

๐‘…๐‘ƒ = โˆ‘๐‘ข(

๐‘›

๐‘–=1

๐œ‰ ๐‘–)(๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘–โˆ’1)

the definite integral of ๐‘ข(๐‘ฅ) over [๐‘Ž, ๐‘] is:

โˆซ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ =

๐‘

๐‘Ž

lim๐œ†โ†’0

๐‘…๐‘ƒ

Page 27: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

16

provided that this limit exists in the metric ๐‘‘.

If the fuzzy function ๐‘ข(๐‘ฅ) is continuous in the metric ๐‘‘, its definite integral

exists, furthermore.

(โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐‘

๐‘Ž

) = โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐‘

๐‘Ž

(โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐‘

๐‘Ž

) = โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐‘

๐‘Ž

where (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)) is the parametric form of ๐‘ข(๐‘ฅ). It should be noted

that the fuzzy integral can be also defined using the Lebesgue- type

approach. However, if ๐‘ข (๐‘ฅ) is continuous, both approaches yield the same

value. Moreover, the representation of the fuzzy integral is more

convenient for numerical calculations.

Properties of the fuzzy integral [๐Ÿ๐Ÿ]

Let ๐น, ๐บ: ๐‘‹ โŸถ ๐ธ be integrable and ๐œ† โˆˆ ๐‘…, then the following are satisfied:

(1) โˆซ(๐น(๐‘ฅ) + ๐บ(๐‘ฅ)

๐‘‹

)๐‘‘๐‘ฅ = โˆซ๐น(๐‘ฅ)๐‘‘๐‘ฅ + โˆซ๐บ(๐‘ฅ)๐‘‘๐‘ฅ

๐‘‹๐‘‹

(2) โˆซ๐œ†๐น(๐‘ฅ)๐‘‘๐‘ฅ = ๐œ† โˆซ๐น(๐‘ฅ)๐‘‘๐‘ฅ

๐‘‹๐‘‹

(3) ๐‘‘(๐น, ๐บ) integrable

(4) ๐‘‘ (โˆซ๐น(๐‘ฅ)๐‘‘๐‘ฅ

๐‘‹

, โˆซ๐บ

๐‘‹

(๐‘ฅ)๐‘‘๐‘ฅ) โ‰ค โˆซ๐‘‘(๐น, ๐บ)๐‘‘๐‘ก

๐‘‹

Page 28: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

17

1.5 Fuzzy Linear Systems

Systems of simulations linear equations play major role in various areas

such as mathematics, statistics, and social sciences. Since in many

applications, at least some of the system's parameters and measurements

are represented by fuzzy rather than crisp numbers, therefore, it's important

to develop mathematical models and numerical procedures that would

appropriately treat general fuzzy linear systems and solve them.

The system of linear equations ๐‘‡๐‘‹ = ๐ถ where the coefficient matrix ๐‘‡ is

crisp, while ๐ถ is a fuzzy number vector, is called a fuzzy system of linear

equations (FSLE).

Definition (1.27) [1]: Fuzzy linear system: The ๐‘› ร— ๐‘› linear system of

equations

๐‘ก11 ๐‘ฅ1 + ๐‘ก12 ๐‘ฅ2 + โ‹ฏ+ ๐‘ก1๐‘›๐‘ฅ๐‘› = ๐‘1 ๐‘ก21 ๐‘ฅ1 + ๐‘ก22 ๐‘ฅ2 + โ‹ฏ+ ๐‘ก2๐‘› ๐‘ฅ๐‘› = ๐‘2 โ‹ฎ (1.1) ๐‘ก๐‘›1 ๐‘ฅ1 + ๐‘ก๐‘›2 ๐‘ฅ2 + โ‹ฏ+ ๐‘ก๐‘›๐‘› ๐‘ฅ๐‘› = ๐‘๐‘›

or, in matrix form:

๐‘‡๐‘‹ = ๐ถ (1.2)

where the coefficient matrix ๐‘‡ = ๐‘ก๐‘–๐‘— , 1 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘› is a crisp ๐‘› ร— ๐‘› matrix

and ๐‘๐‘– โˆˆ ๐ธ, 1 โ‰ค ๐‘– โ‰ค ๐‘› .This system is called a fuzzy linear system (FLS).

Page 29: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

18

Definition (1.28) [3]: Solution of fuzzy linear system:

A fuzzy vector ๐‘‹ = (๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›)๐‘ก, given by ๐‘ฅ๐‘– (๐›ผ) = [๐‘ฅ๐‘–(๐‘Ÿ) , ๐‘ฅ๐‘–(๐‘Ÿ)], is

called the solution of (1.1) if:

โˆ‘๐’•๐’Š๐’‹ ๐’™๐’‹

๐’

๐’‹=๐Ÿ

= โˆ‘๐’•๐’Š๐’‹ ๐’™๐’‹

๐’

๐’‹=๐Ÿ

= ๐’„๐’Š , โˆ‘๐’•๐’Š๐’‹ ๐’™๐’‹

๐’

๐’‹=๐Ÿ

= โˆ‘๐’•๐’Š๐’‹ ๐’™๐’‹

๐’

๐’‹=๐Ÿ

= ๐’„๐’Š,

we introduce the notations below [8]:

๐‘ฅ = (๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›, โˆ’๐‘ฅ1, โˆ’๐‘ฅ2, โ€ฆ ,โˆ’๐‘ฅ๐‘›)๐‘ก= (๐‘ฅ,โˆ’๐‘ฅ)

๐‘ก

(1.3)

๐‘ = (๐‘1, ๐‘2, โ€ฆ , ๐‘๐‘›, โˆ’๐‘1, โˆ’๐‘2, โ€ฆ ,โˆ’๐‘๐‘›)๐‘ก= (๐‘,โˆ’๐‘)

๐‘ก

๐‘ = (๐‘ง๐‘–๐‘—), 1 โ‰ค ๐‘–, ๐‘— โ‰ค 2๐‘›, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ง๐‘–๐‘— are determined as follows:

๐‘ก๐‘–๐‘— โ‰ฅ 0 โŸน ๐‘ง๐‘–๐‘— = ๐‘ก๐‘–๐‘— , ๐‘ง๐‘–+๐‘›,๐‘—+๐‘› = ๐‘ก๐‘–๐‘— ,

๐‘ก๐‘–๐‘— < 0 โŸน ๐‘ง๐‘–,๐‘—+ ๐‘› = โˆ’๐‘ก๐‘–๐‘— , ๐‘ง๐‘–+๐‘›,๐‘— = โˆ’๐‘ก๐‘–๐‘—

and any ๐‘ง๐‘–๐‘— which is not determined by (1.3) is zero. Using matrix notation

we have ๐‘๐‘‹ = ๐ถ (1.4)

the structure of Z implies that ๐‘ง๐‘–๐‘— โ‰ฅ 0 and that

๐‘ = [๐‘€ ๐‘Š๐‘Š ๐‘€

] (1.5)

where M contains the positive elements of ๐‘‡,๐‘Š contains the absolute value

of the negative elements of ๐‘‡ and ๐‘‡ = ๐‘€ โˆ’ ๐‘Š.

If matrix ๐‘‡ is nonsingular, then matrix ๐‘ may be singular.

Page 30: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

19

Theorem (1.2) [40]: If ๐‘โˆ’1exists it must have the same structure as ๐‘, ๐‘–. ๐‘’.

๐‘โˆ’1 = (๐ท ๐ธ๐ธ ๐ท

) (1.6)

assuming that ๐‘ is nonsingular we obtain:

๐‘‹ = ๐‘โˆ’1 ๐ถ (1.7)

Proof: see [40]

Theorem (1.3) [43]: The unique solution ๐‘‹ of equation (1.7) is a fuzzy

vector for arbitrary b if and only if ๐‘โˆ’1 is nonnegative, ๐‘–. ๐‘’.

(๐‘โˆ’1)๐‘–๐‘— โ‰ฅ 0, 1 โ‰ค ๐‘–, ๐‘— โ‰ค 2๐‘› (1.8)

Proof: see [43]

Definition (1.29) [2]: Strong fuzzy solution

Let ๐‘‹ = {(๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(๐›ผ)), 1 โ‰ค ๐‘– โ‰ค ๐‘›} denotes the unique solution

of (1.1). the fuzzy number vector ๐‘” = {(๐‘”๐‘–(๐›ผ), ๐‘”๐‘–(๐›ผ)) , 1 โ‰ค ๐‘– โ‰ค ๐‘›}

defined by:

๐‘”๐‘–(๐›ผ) = ๐‘š๐‘–๐‘›{๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(1)}

(1.9)

๐‘”๐‘–(๐›ผ) = max{๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(1)}

is called the fuzzy solution of ๐‘๐‘‹ = ๐ถ. Moreover if

Page 31: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

20

(๐‘ฅ๐‘–(๐›ผ), ๐‘ฅ๐‘–(๐›ผ)), 1 โ‰ค ๐‘– โ‰ค ๐‘›, are all of fuzzy numbers then we have ๐‘ฅ๐‘–(๐›ผ) =

๐‘”๐‘–(๐‘Ÿ), ๐‘ฅ๐‘–(๐›ผ) = ๐‘”๐‘–(๐›ผ), 1 โ‰ค ๐‘– โ‰ค ๐‘›, and ๐‘” is called a strong fuzzy solution.

Otherwise, ๐‘” is a week fuzzy solution.

necessary and sufficient conditions for the existence of a strong solution

can be described by the following theorem:

Theorem (1.4) [8]:

Let ๐‘ = [๐‘€ ๐‘Š๐‘Š ๐‘€

] be a nonsingular matrix. The system (1.4) has a strong

solution if and only if:

(๐‘€ + ๐‘Š)โˆ’1(๐‘ โˆ’ ๐‘) โ‰ค 0 (1.10)

Proof: see [8]

Theorem (1.5) [8]: The (๐น๐ฟ๐‘†) (1.1) has a unique strong solution if and

only if the following conditions hold:

1) The matrices ๐‘‡ = ๐‘€ โˆ’ ๐‘Š ๐‘Ž๐‘›๐‘‘ ๐‘€ + ๐‘Š ๐‘Žre both nonsingulars.

2) (๐‘€ + ๐‘Š)โˆ’1(๐‘ โˆ’ ๐‘) โ‰ค 0 .

1.6 Fuzzy integral equations

Definition (1.30): Integral equation: An integral equation is the equation

in which the unknown function appears under an integral sign.

In this section, the fuzzy integral equation of second kind is introduced.

the Fredholm integral equation of the second kind is given by [32]:

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘

๐‘Ž (1.11)

where ๐œ† > 0, ๐‘˜(๐‘ฅ, ๐‘ก)is an arbitrary kernal function over the square

Page 32: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

21

๐‘Ž โ‰ค ๐‘ก, ๐‘ฅ โ‰ค ๐‘ and ๐‘“(๐‘ฅ)is a function of ๐‘ฅ: ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘.

If the kernel function satisfies ๐‘˜( ๐‘ฅ, ๐‘ก ) = 0, t > ๐‘ฅ, we obtain the Volterra

integral equation:

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

๐‘Ž

(1.12)

if ๐‘“ (๐‘ฅ) is a fuzzy function, we have Volterra fuzzy integral of the second

kind.

Definition (1.30) [27]: General form of Volterra integral equation of

the second kind: The second kind fuzzy Volterra integral equation

system is in the form

๐‘ข๐‘–(๐‘ฅ) = ๐‘“๐‘–(๐‘ฅ) + โˆ‘ ๐œ†๐‘–๐‘— โˆซ ๐‘˜1๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก)๐‘‘๐‘ก ๐‘ฅ

๐‘Ž๐‘š๐‘—=1 (1.13)

๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘ฅ โ‰ค ๐‘ ๐‘Ž๐‘›๐‘‘ ๐œ†๐‘–๐‘— โ‰  0 (๐‘“๐‘œ๐‘Ÿ ๐‘–, ๐‘— = 1,2,3,โ€ฆ ,๐‘š) are real constants.

Moreover, in system (1.13), the fuzzy function ๐‘“๐‘–(๐‘ฅ) and kernel ๐‘˜_๐‘–๐‘— (๐‘ฅ, ๐‘ก)

are given and assumed to be sufficiently differentiable with respect to all

their arguments on the interval ๐‘Ž โ‰ค ๐‘ก, ๐‘ฅ โ‰ค ๐‘, and we assume that the kernel

function ๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก) โˆˆ ๐ฟ2([๐‘Ž, ๐‘] ร— [๐‘Ž, ๐‘]), and

๐‘ข(๐‘ฅ) = [๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š]๐‘กis the solution to be determined.

now,(๐‘“๐‘–(๐‘ฅ, ๐›ผ), ๐‘“๐‘–(๐‘ฅ, ๐›ผ))and (๐‘ข๐‘–(๐‘ฅ, ๐›ผ), ๐‘ข๐‘–(๐‘ฅ, ๐›ผ)), (0 โ‰ค ๐›ผ โ‰ค 1, ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘)

be parametric form of ๐‘“๐‘–(๐‘ฅ) and ๐‘ข๐‘–(๐‘ฅ), respectively. To simplify, we

assume that ๐œ†๐‘–๐‘— > 0(๐‘“๐‘œ๐‘Ÿ ๐‘–, ๐‘— = 1,2,โ€ฆ ,๐‘š).

In order to design a numerical scheme for solving (1.16), we write the

parametric form of the given fuzzy Volterra integral equations system as

follows:

Page 33: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

22

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘( ๐œ†๐‘–๐‘— โˆซ ๐‘”

๐‘–๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

๐‘š

๐‘—=1

๐‘– = 1,2,โ€ฆ ,๐‘š (1.14)

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘( ๐œ†๐‘–๐‘— โˆซ ๐‘”๐‘–๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก ๐‘ฅ

๐‘Ž

)

๐‘š

๐‘—=1

where

๐‘”๐‘–๐‘—(๐‘ก, ๐›ผ) =

๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ), ๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก) โ‰ฅ 0

๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ), ๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก) < 0

(1.15)

and

๐‘”๐‘–๐‘—(๐‘ก, ๐›ผ) =

๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ), ๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก) โ‰ฅ 0

๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ), ๐‘˜๐‘–๐‘—(๐‘ฅ, ๐‘ก) < 0

(1.16)

Fuzzy integro-differential equations

The linear fuzzy integro-differential equation is given by [38]:

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘กโ„Ž(๐‘ฅ)

๐‘Ž, ๐‘ข(๐‘ฅ0) = ๐‘ข0

(1.17)

where ๐œ† > 0, the kernel function ๐‘˜(๐‘ฅ, ๐‘ก) โˆˆ ๐ฟ2 [๐‘Ž, ๐‘], ๐‘Ž โ‰ค ๐‘ก, ๐‘ฅ โ‰ค ๐‘, and

๐‘“(๐‘ฅ)is a given function of ๐‘ฅ โˆˆ [๐‘Ž, ๐‘].If ๐‘ข is a fuzzy function, ๐‘“(๐‘ฅ)is a

given fuzzy function of ๐‘ฅ โˆˆ [๐‘Ž, ๐‘] and ๐‘ขโ€ฒ is the first fuzzy derivative of ๐‘ข.

This equation may be possessing fuzzy solution.

If the kernel function satisfies ๐‘˜( ๐‘ฅ, ๐‘ก ) = 0, โ„Ž(๐‘ฅ)is a variable, we obtain

the Voltera integro-differential equation:

Page 34: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

23

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘ฅ

๐‘Ž (1.18)

If โ„Ž(๐‘ฅ) = ๐‘ is a constant then the equation (1.20) is fuzzy Fredholm

integro-differential equation of the second kind is given by:

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก๐‘

๐‘Ž (1.19)

Let ๐‘ข(๐‘ฅ) = (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)) is a fuzzy solution of equation (1.17). using

definitions (1.17), ๐‘Ž๐‘›๐‘‘ (1.18) we have the equivalent system:

{

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ†โˆซ๐‘”

๐‘ฅ

๐‘Ž

(๐‘ก, ๐›ผ)๐‘‘๐‘ก, ๐‘ข(๐‘ฅ0) = ๐‘ข 0

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ†โˆซ๐‘”

๐‘ฅ

๐‘Ž

(๐‘ก, ๐›ผ)๐‘‘๐‘ก, ๐‘ข(๐‘ฅ0) = ๐‘ข0

(1.20)

for each 0โ‰ค ๐›ผ โ‰ค 1๐‘Ž๐‘›๐‘‘ ๐‘ , ๐‘ฅ โˆˆ [๐‘Ž, ๐‘], where

(๐‘” ๐‘ก, ๐›ผ) =

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0

and (1.21)

๐‘”(๐‘ก, ๐›ผ) =

๐‘˜(๐‘ , ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0

๐‘˜(๐‘ , ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0

this possesses a unique solution. (๐‘ข, ๐‘ข) โˆˆ ๐ต

which is a fuzzy function, ๐‘–. ๐‘’. ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐‘ฅ, (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)) is a fuzzy

number, therefore each solution of equation(1.17) is a solution of system

(1.20) and conversely.

Page 35: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

24

Chapter Two

Analytical Methods For Solving Fuzzy Volterra

Integral Equation of the second Kind

In this chapter we will investigate analytical solutions for the linear

Volterra fuzzy integral equation of the second kind , namely; fuzzy Laplace

transform method, homotopy analysis method, the Adomian decomposition

method and differential transformation method.

2.1 Fuzzy Laplace Transformation Method

In this section, we will introduce some basic definitions for the fuzzy

Laplace transform and fuzzy convolution, then solve fuzzy convolution

Volterra integral equation of the second kind by using fuzzy Laplace

transform method.

Theorem (2.1) [๐Ÿ๐Ÿ—]: Suppose that ๐‘ข(๐‘ฅ) is a fuzzy valued function

on[ ๐‘Ž,โˆž) represented by the parametric form (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)), for any

number ๐›ผ โˆˆ [0,1]. Assume that ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ) are Riemann-

Integrable on [๐‘Ž, ๐‘], ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ โ‰ฅ ๐‘Ž. Also we assume that

๐œ‘(๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐œ‘(๐›ผ) are positive functions, such that:

โˆซ ๐‘ข(๐‘ฅ, ๐›ผ)

๐‘

๐‘Ž

๐‘‘๐‘ฅ โ‰ค ๐œ‘(๐›ผ) ๐‘Ž๐‘›๐‘‘ โˆซ|๐‘ข(๐‘ฅ, ๐›ผ)|

๐‘

๐‘Ž

๐‘‘๐‘ฅ โ‰ค ๐œ‘(๐›ผ), ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ โ‰ฅ ๐‘Ž,

Page 36: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

25

Then ๐‘ข(๐‘ฅ) is improper fuzzy Riemann-Integrable on [ ๐‘Ž,โˆž) which is a

fuzzy number, we have:

โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ = (โˆซ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ,โˆซ ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐‘

๐‘Ž

๐‘

๐‘Ž

)

๐‘

๐‘Ž

Proposition (2.1) [๐Ÿ๐Ÿ“]: Let ๐‘ข(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ฃ(๐‘ฅ) are two fuzzy valued functions

and fuzzy Riemann-integrable on [ ๐‘Ž,โˆž ), then ๐‘ข(๐‘ฅ) + ๐‘ฃ(๐‘ฅ) is fuzzy

Riemann-integrable on[ ๐‘Ž,โˆž ).

Moreover, we have:

โˆซ(๐‘ข(๐‘ฅ) + ๐‘ฃ(๐‘ฅ))

โˆž

๐‘Ž

๐‘‘๐‘ฅ = โˆซ ๐‘ข(๐‘ฅ)

โˆž

๐‘Ž

๐‘‘๐‘ฅ + โˆซ ๐‘ฃ(๐‘ฅ)

โˆž

๐‘Ž

๐‘‘๐‘ฅ

Definition )2.1 ( [ 19 ]: Fuzzy Laplace transform:

Let ๐‘ข(๐‘ฅ) be a fuzzy valued function and ๐‘  is a real parameter, then the

fuzzy Laplace transform of the function ๐‘ข with respect to ๐‘ก denoted by

๐‘ˆ(๐‘ ) is defined by:

๐‘ˆ(๐‘ ) = ๐ฟ(๐‘ข(๐‘ฅ)) = โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅโˆž

0

= lim๐œโ†’โˆž

โˆซ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ,

๐œ

0

(2.1)

using theorem (2.1), we obtain:

๐‘ˆ(๐‘ ) = lim๐œโ†’โˆž

โˆซ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ

๐œ

0

, lim๐œโ†’โˆž

โˆซ๐‘’โˆ’๐‘ ๐‘ฅ ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ

๐œ

0

where the limits exist.

Page 37: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

26

the ๐›ผ โˆ’ ๐‘๐‘ข๐‘ก representation of ๐‘ˆ(๐‘ ) is given by:

๐‘ˆ(๐‘ , ๐›ผ) = ๐ฟ(๐‘ข(๐‘ฅ, ๐›ผ)) = [๐ฟ (๐‘ข(๐‘ฅ, ๐›ผ)) , ๐ฟ(๐‘ข(๐‘ฅ, ๐›ผ))],

where

๐ฟ (๐‘ข(๐‘ฅ, ๐›ผ)) = โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅโˆž

0

= lim๐œโ†’โˆž

โˆซ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐œ

0

, 0 โ‰ค ๐›ผ โ‰ค 1

๐ฟ(๐‘ข(๐‘ฅ, ๐›ผ)) = โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅโˆž

0

= lim๐œโ†’โˆž

โˆซ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘ฅ, ๐›ผ)๐‘‘๐‘ฅ

๐œ

0

, 0 โ‰ค ๐›ผ โ‰ค 1

Theorem(2.2)[๐Ÿ’๐Ÿ’]: Suppose that ๐‘ข(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ฃ(๐‘ฅ) are continuous fuzzy

valued functions, and suppose ๐‘1, ๐‘2 are constants, then:

๐ฟ{๐‘1 ๐‘ข(๐‘ฅ) + ๐‘2๐‘ฃ(๐‘ฅ)} = ๐‘1 ๐ฟ{๐‘ข(๐‘ฅ)} + ๐‘2 ๐ฟ{๐‘ฃ(๐‘ฅ)} = ๐‘1๐‘ˆ(๐‘ ) + ๐‘2๐‘‰(๐‘ )

Lemma(2.1) [๐Ÿ’๐Ÿ’]: Suppose that ๐‘ข(๐‘ฅ) be a fuzzy valued function

on [ 0,โˆž) and ๐‘ โˆˆ ๐‘…, then

๐ฟ{๐‘ ๐‘ข(๐‘ฅ)} = ๐‘ ๐ฟ{๐‘ข(๐‘ฅ)} = ๐‘๐‘ˆ(๐‘ )

Lemma(2.2) [๐Ÿ’๐Ÿ’]: Suppose that ๐‘ข(๐‘ฅ) is a continuous fuzzy valued

function and ๐‘ฃ(๐‘ฅ) โ‰ฅ 0 is a real valued function such that (๐‘ข(๐‘ฅ), ๐‘ฃ(๐‘ฅ))๐‘’โˆ’๐‘ ๐‘ฅ

is improper fuzzy Riemann-integrable on [ 0,โˆž ) then for fixed ๐›ผ โˆˆ [0,1],

we have

โˆซ(๐‘ข(๐‘ฅ, ๐›ผ)๐‘ฃ(๐‘ฅ, ๐›ผ))

โˆž

0

๐‘’โˆ’๐‘ ๐‘ฅ๐‘‘๐‘ฅ

= โˆซ ๐‘ข(๐‘ฅ, ๐›ผ)๐‘ฃ(๐‘ฅ, ๐›ผ)๐‘’โˆ’๐‘ ๐‘ฅ๐‘‘๐‘ฅ

โˆž

0

, โˆซ ๐‘ข(๐‘ฅ, ๐›ผ)๐‘ฃ(๐‘ฅ, ๐›ผ)๐‘’โˆ’๐‘ ๐‘ฅ๐‘‘๐‘ฅ

โˆž

0

Page 38: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

27

Theorem(2.3)[๐Ÿ’๐Ÿ’]: (First shifting theorem): Let ๐‘ข(๐‘ฅ) be a continuous

fuzzy valued function and ๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐‘ˆ(๐‘ ); ๐‘กโ„Ž๐‘’๐‘›:

๐ฟ{๐‘’๐‘Ž๐‘ฅ๐‘ข(๐‘ฅ)} = ๐‘ˆ(๐‘  โˆ’ ๐‘Ž), ๐‘  โˆ’ ๐‘Ž > 0.

Proof:

๐ฟ{๐‘’๐‘Ž๐‘ฅ๐‘ข(๐‘ฅ)} = โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ๐‘’๐‘Ž๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ

โˆž

0

= โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ+๐‘Ž๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ =

โˆž

0

โˆซ ๐‘’โˆ’(๐‘ โˆ’๐‘Ž)๐‘ฅ๐‘ข(๐‘ฅ)๐‘‘๐‘ฅ = ๐‘ˆ(๐‘  โˆ’ ๐‘Ž)

โˆž

0

hence,

๐ฟ{๐‘’๐‘Ž๐‘ฅ๐‘ข(๐‘ฅ)} = ๐‘ˆ(๐‘  โˆ’ ๐‘Ž).

Theorem(2.4)[๐Ÿ๐Ÿ“]: Let ๐‘ข(๐‘ฅ) be a continuous fuzzy valued function and

๐ฟ{๐‘ข(๐‘ฅ)} = ๐‘ˆ(๐‘ ). Suppose that ๐‘ is a constant, then:

๐ฟ{๐‘ข(๐‘๐‘ฅ)} =1

๐‘๐‘ˆ (

๐‘ 

๐‘)

Proof:

๐ฟ{๐‘ข(๐‘๐‘ฅ)} = โˆซ ๐‘’โˆ’๐‘ ๐‘ฅ๐‘ข(๐‘๐‘ฅ)๐‘‘๐‘ฅ

โˆž

0

๐‘๐‘ข๐‘ก ๐‘ฆ = ๐‘๐‘ฅ โŸน๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐‘ โŸน ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ

๐‘

now,

๐ฟ{๐‘ข(๐‘๐‘ฅ)} = โˆซ ๐‘’โˆ’๐‘ ๐‘ฆ๐‘๐‘ข(๐‘ฆ)

๐‘‘๐‘ฆ

๐‘

โˆž

0

=1

๐‘โˆซ ๐‘’โˆ’๐‘ 

๐‘ฆ๐‘๐‘ข(๐‘ฆ)๐‘‘๐‘ฆ

โˆž

0

=1

๐‘๐‘ˆ (

๐‘ 

๐‘)

Page 39: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

28

hence,

๐ฟ{๐‘ข(๐‘๐‘ฅ)} =1

๐‘๐‘ˆ (

๐‘ 

๐‘).

2.2 Fuzzy Convolution

In this section we will introduce the concept of fuzzy convolution, and

solve fuzzy convolution Volterra integral equation of the second kind.

Definition (๐Ÿ. ๐Ÿ) [ 42 ]: (๐‘ฑ๐’–๐’Ž๐’‘ ๐’…๐’Š๐’”๐’„๐’๐’๐’•๐’Š๐’๐’–๐’Š๐’•๐’š): Suppose that ๐‘ข(๐‘ฅ) is a

fuzzy-valued function, ๐‘ข is said to have a jump discontinuity at ๐‘ฅ0 if the

following conditions are satisfied:

lim๐‘ฅโ†’๐‘ฅ0โˆ’

๐‘ข(๐‘ฅ)๐‘Ž๐‘›๐‘‘ lim๐‘ฅโ†’๐‘ฅ0+

๐‘ข(๐‘ฅ) ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก

๐‘ข(๐‘ฅ0โˆ’) โ‰  ๐‘ข(๐‘ฅ0

+)

Definition (๐Ÿ. ๐Ÿ‘)[42]: (๐’‘๐’Š๐’†๐’„๐’†๐’˜๐’Š๐’”๐’† ๐’„๐’๐’๐’•๐’Š๐’๐’–๐’๐’–๐’”): Let ๐‘ข(๐‘ฅ) be a fuzzy-

valued function,then ๐‘ข is a piecewise continuous on [ 0,โˆž ) if :

lim๐‘ฅโ†’0+

๐‘ข(๐‘ฅ) = ๐‘ข(0+)

๐‘ข is continuous on every finite interval (0,๐‘š) except at finite

number of points ๐‘Ž1, ๐‘Ž2, โ€ฆ , ๐‘Ž๐‘› in the interval (0,๐‘š) at which ๐‘ข has

a jump discontinuity.

Definition (๐Ÿ. ๐Ÿ’) [42 ]: (๐’†๐’™๐’‘๐’๐’๐’†๐’๐’•๐’Š๐’‚๐’ ๐’๐’“๐’…๐’†๐’“): Suppose that ๐‘ข(๐‘ฅ) is a

fuzzy-valued function on [ 0,โˆž ), then ๐‘ข has an exponential order ๐‘Ž if

there exists constants ๐œ‘ > 0 ๐‘Ž๐‘›๐‘‘ ๐‘Ž, such that |๐‘ข(๐‘ฅ)| โ‰ค ๐œ‘๐‘’๐‘Ž๐‘ฅ, ๐‘ฅ โ‰ฅ ๐‘ฅ0, for

some ๐‘ฅ0 โ‰ฅ 0.

Page 40: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

29

Definition (๐Ÿ. ๐Ÿ“)[ 45 ]: Fuzzy convolution: Let ๐‘(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ž(๐‘ฅ) are two

piece-wise continuous fuzzy-valued functions on [ 0,โˆž ), then the

convolution of ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘ž denoted by ๐‘ โˆ— ๐‘ž is defined as:

(๐‘ โˆ— ๐‘ž)(๐‘ฅ) = โˆซ๐‘(๐œ)๐‘ž(๐‘ฅ โˆ’ ๐œ)๐‘‘๐œ . (2.2)

๐‘ฅ

0

Properties of fuzzy convolution:

( ๐‘– ) (๐‘ โˆ— ๐‘ž) = (๐‘ž โˆ— ๐‘) (๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ)

( ๐‘–๐‘– ) ๐œ†(๐‘ โˆ— ๐‘ž) = (๐œ†๐‘) โˆ— ๐‘ž = ๐‘ โˆ— (๐œ†๐‘ž), ๐œ† ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก

(๐‘–๐‘–๐‘–)๐‘ โˆ— (๐‘ž โˆ— โ„Ž) = (๐‘ โˆ— ๐‘ž) โˆ— โ„Ž (๐‘Ž๐‘ ๐‘ ๐‘œ๐‘๐‘–๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ)

Proof:

(๐‘–) ๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘›๐‘” ๐‘› = ๐‘ฅ โˆ’ ๐œ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› (2.2),

๐‘ค๐‘’ ๐‘”๐‘’๐‘ก:

(๐‘ โˆ— ๐‘ž)(๐‘ฅ) = โˆซ๐‘ž(๐‘›)๐‘(๐‘ฅ โˆ’ ๐‘›)๐‘‘๐‘ฅ = (๐‘ž โˆ— ๐‘)(๐‘ฅ)

๐‘ฅ

0

(๐‘–๐‘–) ๐‘ก๐‘Ÿ๐‘–๐‘ฃ๐‘–๐‘Ž๐‘™

(๐‘–๐‘–๐‘–) [๐‘ โˆ— (๐‘ž โˆ— โ„Ž)](๐‘ฅ) = โˆซ๐‘(๐œ). (๐‘ž โˆ— โ„Ž)(๐‘ฅ โˆ’ ๐œ)๐‘‘๐œ

๐‘ฅ

0

Page 41: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

30

= โˆซ๐‘(๐œ)(โˆซ ๐‘ž(๐œˆ)โ„Ž(๐‘ฅ โˆ’ ๐œ โˆ’ ๐œˆ)๐‘‘๐œˆ

๐‘ฅโˆ’๐œ

0

)๐‘‘๐œ

๐‘ฅ

0

= โˆซ(โˆซ๐‘(๐œ)

๐‘›

0

๐‘ž(๐‘› โˆ’ ๐œ)๐‘‘๐œ)โ„Ž(๐‘ฅ โˆ’ ๐‘›)

๐‘ฅ

0

๐‘‘๐‘›

= [(๐‘ โˆ— ๐‘ž) โˆ— โ„Ž](๐‘ฅ)

Theorem(๐Ÿ. ๐Ÿ“)[๐Ÿ’๐Ÿ“]: Convolution theorem:

Suppose that ๐‘(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ž(๐‘ฅ) are piece-wise continuous fuzzy-valued

functions on [ 0,โˆž) of exponential order ๐‘Ž with fuzzy Laplace transforms

๐‘ƒ(๐‘ ) ๐‘Ž๐‘›๐‘‘ ๐‘„(๐‘ ) respectively, then:

๐ฟ{(๐‘ โˆ— ๐‘ž)(๐‘ฅ)} = ๐ฟ{๐‘(๐‘ฅ)}. ๐ฟ{๐‘ž(๐‘ฅ)} = ๐‘ƒ(๐‘ ). ๐‘„(๐‘ ), ๐‘  > ๐‘Ž

Proof: See [45]

Definition (๐Ÿ. ๐Ÿ”)[45]: Fuzzy convolution Volterra integral equation of

the second kind: The fuzzy convolution Volterra integral equation of the

second kind is defined as:

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ†โˆซ๐‘˜(๐‘ฅ โˆ’ ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž (2.3)

where ๐‘˜(๐‘ฅ โˆ’ ๐‘ก)is an arbitrary given fuzzy-valued convolution kernel

function, and ๐‘“(๐‘ฅ)is a continuous fuzzy-valued function.

Page 42: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

31

now, by taking fuzzy Laplace transform on both sides of equation (2.3), we

get:

L{๐‘ข(๐‘ฅ)} = ๐ฟ{๐‘“(๐‘ฅ)} + ๐ฟ ๐œ†โˆซ๐‘˜(๐‘ฅ โˆ’ ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

0

, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž

then, by using fuzzy convolution and definition of fuzzy Laplace transform,

we get:

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ†๐ฟ{๐‘˜(๐‘ฅ, ๐‘ก)} ๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)}

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ†๐ฟ{๐‘˜(๐‘ฅ, ๐‘ก)} ๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} (2.4)

For solving the equation (2.4), we will discuss the following cases:

๐‘๐‘Ž๐‘ ๐‘’(1): ๐‘–๐‘“ ๐‘˜(๐‘ฅ, ๐‘ก) > 0 , ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก:

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ† ๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)}

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ†๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)}

we obtain explicit formula:

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} =๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)}

1 โˆ’ ๐œ† ๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} =๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)}

1 โˆ’ ๐œ†๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}

take the inverse of fuzzy Laplace transform, we get the solution:

๐‘ข(๐‘ฅ, ๐›ผ) = ๐ฟโˆ’1 ๐น(๐‘ )

1 โˆ’ ๐œ†๐พ(๐‘ )

Page 43: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

32

๐‘ข(๐‘ฅ, ๐›ผ) = ๐ฟโˆ’1 ๐น(๐‘ )

1 โˆ’ ๐œ†๐พ(๐‘ )

where F(s) and K(s) are fuzzy Laplace transformations f(x)and k(x, t)

respectively.

๐‘๐‘Ž๐‘ ๐‘’(2): ๐‘–๐‘“ ๐‘˜(๐‘ฅ, ๐‘ก) < 0, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก:

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ† ๐ฟ{๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)}

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)} + ๐œ†๐ฟ{๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)}

we obtain explicit formula:

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} =๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)} โˆ’ ๐œ†๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)}

1 โˆ’ ๐œ†2๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)} ๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}

๐ฟ{ ๐‘ข(๐‘ฅ, ๐›ผ)} =๐ฟ{ ๐‘“(๐‘ฅ, ๐›ผ)} โˆ’ ๐œ†๐ฟ{๐‘˜(๐‘ฅ, ๐‘ก)}๐ฟ { ๐‘“(๐‘ฅ, ๐›ผ)}

1 โˆ’ ๐œ†2๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)} ๐ฟ{ ๐‘˜(๐‘ฅ, ๐‘ก)}

take the inverse of fuzzy Laplace transform, we get the solution:

๐‘ข(๐‘ฅ, ๐›ผ) = ๐ฟโˆ’1 ๐น(๐‘ ) โˆ’ ๐œ†๐พ(๐‘ )๐น(๐‘ )

1 โˆ’ [๐œ† ๐พ(๐‘ )]2

๐‘ข(๐‘ฅ, ๐›ผ) = ๐ฟโˆ’1 ๐น(๐‘ ) โˆ’ ๐œ†๐พ(๐‘ )๐น(๐‘ )

1 โˆ’ [๐œ† ๐พ(๐‘ )]2

where F(s) and K(s) are fuzzy Laplace transformations f(x)and k(x, t)

respectively.

Page 44: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

33

Example (2.1): consider the following fuzzy Volterra integral equation

๐‘ข(๐‘ฅ) = (๐›ผ + 1,3 โˆ’ ๐›ผ) + โˆซ (๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข(๐‘ก)๐‘‘๐‘ก, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž (2.5)

by taking fuzzy Laplace transform on both sides of equation(2.5), we get:

๐ฟ{๐‘ข(๐‘ฅ)} = ๐ฟ{(๐›ผ + 1,3 โˆ’ ๐›ผ)} + ๐ฟ{๐‘ฅ}. ๐ฟ{๐‘ข(๐‘ก)}

๐‘–. ๐‘’

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ{(๐›ผ + 1) } + ๐ฟ{๐‘ฅ}. ๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)}, 0โ‰ค ๐›ผ โ‰ค 1

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = ๐ฟ{(3 โˆ’ ๐›ผ)} + ๐ฟ{๐‘ฅ}. ๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)}, 0 โ‰ค ๐›ผ โ‰ค 1

hence, we get:

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = (๐›ผ + 1)1

๐‘ +

1

๐‘ 2๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)}, 0 โ‰ค ๐›ผ โ‰ค 1

๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)} = (3 โˆ’ ๐›ผ)1

๐‘ +

1

๐‘ 2๐ฟ{๐‘ข(๐‘ฅ, ๐›ผ)}, 0 โ‰ค ๐›ผ โ‰ค 1

Finally, by taking the inverse of fuzzy Laplace transform on both sides of

above equations, we get:

{๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) cosh(๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) cosh(๐‘ฅ) 0 โ‰ค ๐›ผ โ‰ค 1

2.3 Fuzzy Homotopy Analysis Method

In this section, we find the approximate analytical solutions of fuzzy

Volterra integral equations of the second kind by using fuzzy homotopy

analysis method. The main advantage of this method is that it can be used

Page 45: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

34

directly without using assumptions or transformations. The (FHAM)

solutions depend on an auxiliary parameter which provides a suitable way

of controlling the convergence region of series solutions. we give an

example reveal the efficiency of this method.

Consider the following differential equation:

โ„ณ(๐‘ข(๐‘ฅ, ๐›ผ)) = 0, (2.6)

where โ„ณ is a nonlinear operator, ๐‘ฅ denotes independent variable and

๐‘ข(๐‘ฅ, ๐›ผ)is the unknown function.

Definition (๐Ÿ. ๐Ÿ•) [31]: Homotopy operator: We define the homotopy

operator โ„‹ as:

โ„‹(ฮฆ, ๐‘ž) โ‰ก (1 โˆ’ ๐‘ž)โ„’(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)) โˆ’ ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ) โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

(2.7)

where ๐‘ž โˆˆ [0, 1] is the embedding parameter, ๐‘  โ‰  0 is a non- zero auxiliary

parameter (convergence control parameter), ๐‘†(๐‘ฅ, ๐›ผ) โ‰  0 is an auxiliary

function, ๐‘ข0(๐‘ฅ, ๐›ผ) denotes the initial approximation of ๐‘ข(๐‘ฅ, ๐›ผ) in the

equation (2.6)ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) is an unknown function, and โ„’ is an auxiliary

linear operator with property โ„’(0) = 0.

In equation (2.7) if we put โ„‹(ฮฆ, ๐‘ž, ๐›ผ) = 0, we will construct the so-

called ๐‘ง๐‘’๐‘Ÿ๐‘œ order deformation equation

(1 โˆ’ ๐‘ž)โ„’(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ))

= ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ) โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)) (2.8)

Page 46: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

35

obviously, for ๐‘ž = 0 we get

โ„’(ฮฆ(๐‘ฅ, 0, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)) = 0 โŸน ฮฆ(๐‘ฅ, 0, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ)

whereas, for ๐‘ž = 1,we get:

โ„ณ(ฮฆ(๐‘ฅ, 1, ๐›ผ)) = 0 โŸน ฮฆ(๐‘ฅ, 1, ๐›ผ) = ๐‘ข(๐‘ฅ, ๐›ผ), where ๐‘ข(๐‘ฅ) is

the solution of the equation (2.6)

thus, as ๐‘ž increases from 0 ๐‘ก๐‘œ 1, the solution ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) changes

continuously from the initial approximation ๐‘ข0(๐‘ฅ, ๐›ผ) to the exact solution

๐‘ข(๐‘ฅ, ๐›ผ).

by expanding ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) into the Maclaurin series with respect to ๐‘ž,

we have:

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) + โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›

โˆž

๐‘›=1

(2.9)

where

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = ๐ท๐‘›(ฮฆ) = 1

๐‘›! ๐œ•๐‘›โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

๐œ•๐‘ž๐‘› ๐‘ž=0

, ๐‘› = 1,2, โ€ฆ (2.10)

if the series (2.9) convergent for ๐‘ž = 1, then we have

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) + โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ) (2.11)

โˆž

๐‘›=1

In [๐Ÿ๐Ÿ”] by using equation (2.9), we can write equation (2.8) as:

Page 47: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

36

(1 โˆ’ ๐‘ž)โ„’(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)) = (1 โˆ’ ๐‘ž)โ„’ โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›

โˆž

๐‘›=1

= ๐‘ž ๐‘  ๐‘†(๐‘ฅ)โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)) (2.12)

this implies

โ„’ โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›

โˆž

๐‘›=1

โˆ’ ๐‘žโ„’ โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›

โˆž

๐‘›=1

= ๐‘ž ๐‘  ๐‘†(๐‘ฅ)โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

(2.13)

by differentiating the both sides of equation (2.13)๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘  with respect to

๐‘ž, we get:

๐‘›! โ„’[๐‘ข๐‘›(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ)] = ๐‘  ๐‘†(๐‘ฅ)๐‘› ๐œ•๐‘›โˆ’1โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

๐œ•๐‘ž๐‘›โˆ’1 ๐‘ž=0

hence, the ๐‘›th-order deformation equation (๐‘› > 0) is:

โ„’[๐‘ข๐‘›(๐‘ฅ, ๐›ผ) โˆ’ ๐œ’๐‘›๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ)] = ๐‘  ๐‘†(๐‘ฅ) ฮค๐‘›(๏ฟฝโƒ—๏ฟฝ ๐‘›โˆ’1(๐‘ฅ, ๐›ผ)) (2.14)

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๏ฟฝโƒ—๏ฟฝ ๐‘›โˆ’1 = {๐‘ข0(๐‘ฅ, ๐›ผ), ๐‘ข1(๐‘ฅ, ๐›ผ),โ€ฆ , ๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ)},

๐œ’๐‘› = {0, ๐‘› โ‰ค 11, ๐‘› > 1

(2.15)

๐‘Ž๐‘›๐‘‘

ฮค๐‘›(๏ฟฝโƒ—๏ฟฝ ๐‘›โˆ’1(๐‘ฅ, ๐›ผ)) = 1

(๐‘› โˆ’ 1)!

๐œ•๐‘›โˆ’1

๐œ•๐‘ž๐‘›โˆ’1โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

๐‘ž=0

(2.16)

To ensure the convergence of the series, we must concentrate that ๐‘ข0(๐‘ฅ, ๐›ผ)

is the initial approximation, ๐‘  โ‰  0 is a non-zero auxiliary parameter, โ„’ is an

Page 48: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

37

auxiliary linear operator, ๐‘ž is the embedding parameter, and ๐‘†(๐‘ฅ, ๐›ผ) is an

auxiliary function.

In this part, we will rewrite the fuzzy Volterra integral equations of the

second kind, and then solve them by using homotopy analysis method.

we know that the parametric form of fuzzy Volterra integral equation of

second kind is:

{

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ† โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

(2.17)

now, assume that ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0 , ๐‘Ž โ‰ค ๐‘  โ‰ค ๐‘, ๐‘Ž๐‘›๐‘‘ ๐‘˜(๐‘ฅ, ๐‘ก) < 0, ๐‘ โ‰ค ๐‘  โ‰ค ๐‘ฅ

with above assumptions, the equation (2.17) becomes:

{

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ† โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐‘Ÿ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ ฮป โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ ๐œ† โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

(2.18)

we note that (2.18) is a linear Fredholm-Volterra integral equations in

crisp case for each 0 โ‰ค ๐›ผ โ‰ค 1.

To solve the system (2.18) by means of homotopy analysis method, we

choose the linear operator [๐Ÿ‘๐Ÿ“]:

Page 49: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

38

โ„’[ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)] = ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) (2.19)

we now define a nonlinear operator โ„ณ(ฮฆ(๐‘ฅ, ๐‘ž, ๐‘Ÿ)) as:

โ„ณ (ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)) = ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘“(๐‘ฅ, ๐›ผ) โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘,

and

โ„ณ (ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)) = ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘“(๐‘ฅ, ๐›ผ) โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’ฮป โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘. (2.20)

using the two equations (2.8) and (2.20), we construct the ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘กโ„Ž-๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ

deformation equation:

{(1 โˆ’ ๐‘ž)โ„’[ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)] = ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ)โ„ณ (ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

(1 โˆ’ ๐‘ž)โ„’[ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)] = ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ)โ„ณ (ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)) (2.21)

Substituting equation (2.19) ๐‘Ž๐‘›๐‘‘ (2.20) ๐‘–๐‘›๐‘ก๐‘œ (2.21), we obtain:

Page 50: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

39

๐‘Ž๐‘›๐‘‘

(1 โˆ’ ๐‘ž)[ ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)] = ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ)[ ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘“(๐‘ฅ, ๐›ผ)

โˆ’๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’ฮปโˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก],

๐‘ฅ

๐‘

(1 โˆ’ ๐‘ž)[ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘ข0(๐‘ฅ, ๐›ผ)] = ๐‘ž ๐‘  ๐‘†(๐‘ฅ, ๐›ผ)ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) โˆ’ ๐‘“(๐‘ฅ, ๐›ผ)

โˆ’๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’ฮปโˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

(2.22)

take ๐‘†(๐‘ฅ, ๐›ผ) = 1,when ๐‘ž = 0, the zero-order deformation (2.22) becomes:

{ฮฆ(๐‘ฅ, 0, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ)

ฮฆ(๐‘ฅ, 0, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) (2.23)

when ๐‘ž = 1, the ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘กโ„Ž ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ deformation (2.22) becomes:

{

ฮฆ(๐‘ฅ, 1, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, 1, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ ฮปโˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, 1, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

ฮฆ(๐‘ฅ, 1, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, 1, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ ฮปโˆซ๐‘˜(๐‘ฅ, ๐‘ก)ฮฆ(๐‘ก, 1, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

(2.24)

notice that this equation is the same as equation (2.18). Thus, as ๐‘ž

increases from 0 to 1, the analytical solution (ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ),ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ))

changes from the initial approximation (๐‘ข0(๐‘ฅ, ๐›ผ), ๐‘ข0(๐‘ฅ, ๐›ผ)) to the exact

solution (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)).

Page 51: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

40

Expanding ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ), ๐‘Ž๐‘›๐‘‘ ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) into the Maclaurin series with

respect to ๐‘ž, we have:

{ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) + โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›โˆž

๐‘›=1

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) + โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ)๐‘ž๐‘›โˆž๐‘›=1

(2.25)

where

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = 1

๐‘›! ๐œ•๐‘›ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘› ๐‘ž=0

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = [1

๐‘›! ๐œ•๐‘›ฮฆ(๐‘ฅ,๐‘ž,๐›ผ)

๐œ•๐‘ž๐‘› ]๐‘ž=0

(2.26)

Differentiating equation (2.22) ๐‘› times with respect to ๐‘ž, we obtain [๐Ÿ๐Ÿ”]:

๐‘Ž๐‘›๐‘‘

๐œ•๐‘›ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘› โˆ’

๐œ•๐‘›โˆ’1ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 = ๐‘ [

๐œ•๐‘›โˆ’1ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 โˆ’ ๐‘“(๐‘ฅ, ๐›ผ)

โˆ’๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐œ•๐‘›โˆ’1ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 ๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐œ•๐‘›โˆ’1ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 ๐‘‘๐‘ก

๐‘ฅ

๐‘

],

๐œ•๐‘›ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘› โˆ’

๐œ•๐‘›โˆ’1ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 = ๐‘ [

๐œ•๐‘›โˆ’1ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 โˆ’ ๐‘“(๐‘ฅ, ๐›ผ)

โˆ’ฮปโˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐œ•๐‘›โˆ’1ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1

๐‘

๐‘Ž

๐‘‘๐‘ก

โˆ’๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐œ•๐‘›โˆ’1ฮฆ(๐‘ก, ๐‘ž, ๐›ผ)

๐œ•๐‘ž๐‘›โˆ’1 ๐‘‘๐‘ก

๐‘ฅ

๐‘

].

(2.27)

now, dividing the equation(2.27) by ๐‘›!, and setting ๐‘ž = 0, we get the ๐‘›th-

order deformation equation:

Page 52: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

41

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = ๐œ‡๐‘› ๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ) + s[ ๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ) โˆ’ ํœ€๐‘›๐‘“(๐‘ฅ, ๐›ผ)

โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก]

๐‘ฅ

๐‘

(2.27)

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = ๐œ‡๐‘› ๐‘ข๐‘›โˆ’1 (๐‘ฅ, ๐›ผ) + s[ ๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ) โˆ’ ํœ€๐‘›๐‘“(๐‘ฅ, ๐›ผ)

โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

โˆ’ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก]

๐‘ฅ

๐‘

where ๐‘› โ‰ฅ 1, ๐‘Ž๐‘›๐‘‘

๐œ‡๐‘› = {0, ๐‘› = 11, ๐‘› โ‰  1

,

ํœ€๐‘› = {0, ๐‘› โ‰  11, ๐‘› = 1

,

If we take ๐‘ข0(๐‘ฅ, ๐›ผ) = ๐‘ข0(๐‘ฅ, ๐›ผ) = 0, for ๐‘› โ‰ฅ 2, we have:

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = (๐‘  + 1)๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ) โˆ’ ๐‘  ๐œ†(โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก ),

๐‘ฅ

๐‘

๐‘ข๐‘›(๐‘ฅ, ๐›ผ) = (๐‘  + 1)๐‘ข๐‘›โˆ’1(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ ๐œ†(โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›โˆ’1(๐‘ก, ๐‘ž, ๐›ผ)๐‘‘๐‘ก ).

๐‘ฅ

๐‘

(2.29)

hence, the solution of the system (2.18) in series form is:

Page 53: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

42

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘žโ†’1

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

โˆž

๐‘›=1

(๐‘ฅ, ๐›ผ),

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘žโ†’1

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

โˆž

๐‘›=1

(๐‘ฅ, ๐›ผ).

(2.30)

We denote the ๐‘—๐‘กโ„Ž โˆ’order approximation to the solutions

๐‘ข(๐‘ฅ, ๐›ผ), ๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ) respectively with:

๐‘ข๐‘—(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

๐‘—

๐‘›=1

(๐‘ฅ, ๐›ผ),

๐‘ข๐‘—(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

๐‘—

๐‘›=1

(๐‘ฅ, ๐›ผ).

Example (๐Ÿ. ๐Ÿ):

Consider the fuzzy Volterra integral equation

๐‘ข(๐‘ฅ) = (๐›ผ + 1,3 โˆ’ ๐›ผ) + โˆซ (๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž

Solution:

In this example, ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0 for each 0โ‰ค ๐‘ก โ‰ค ๐‘ฅ, in this case ๐‘ = ๐‘ฅ,

๐‘Ž = 0, ๐‘ = 1. By equation (2.27), the first terms of homotopy analysis

method series are:

๐‘ข0(๐‘ฅ, ๐›ผ) = 0,

๐‘ข1(๐‘ฅ, ๐›ผ) = โˆ’๐‘ ๐‘“(๐‘ฅ, ๐›ผ) = โˆ’๐‘ (๐›ผ + 1)

Page 54: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

43

๐‘ข2(๐‘ฅ, ๐›ผ) = (1 + ๐‘ )๐‘ข1(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ โˆซ(๐‘ฅ โˆ’ ๐‘ก) ๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= โˆ’๐‘ (๐›ผ + 1) 1 + ๐‘  (1 โˆ’๐‘ฅ2

2)

๐‘ข3(๐‘ฅ, ๐›ผ) = (1 + ๐‘ ) ๐‘ข2(๐‘ฅ, ๐›ผ) โˆ’ ๐‘  โˆซ (๐‘ฅ โˆ’ ๐‘ก) ๐‘ข2(๐‘ก, ๐›ผ)๐‘‘๐‘ก ๐‘ฅ

0

= โˆ’๐‘ (๐›ผ + 1) 1 + ๐‘ (2 โˆ’ ๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +๐‘ฅ4

24)

and

๐‘ข0(๐‘ฅ, ๐›ผ) = 0

๐‘ข1(๐‘ฅ, ๐›ผ) = โˆ’๐‘ ๐‘“(๐‘ฅ, ๐›ผ) = โˆ’๐‘ (3 โˆ’ ๐›ผ)

๐‘ข2(๐‘ฅ, ๐›ผ) = (1 + ๐‘ )๐‘ข1(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ โˆซ(๐‘ฅ โˆ’ ๐‘ก) ๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= โˆ’๐‘ (3 โˆ’ ๐›ผ) 1 + ๐‘  (1 โˆ’๐‘ฅ2

2)

๐‘ข3(๐‘ฅ, ๐›ผ) = (1 + ๐‘ ) ๐‘ข2(๐‘ฅ, ๐›ผ) โˆ’ ๐‘  โˆซ (๐‘ฅ โˆ’ ๐‘ก)๐‘ข2 (๐‘ก, ๐›ผ)๐‘‘๐‘ก ๐‘ฅ

0

= โˆ’๐‘ (3 โˆ’ ๐›ผ) 1 + ๐‘ (2 โˆ’ ๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +๐‘ฅ4

24)

then we approximate ๐‘ข(๐‘ฅ, ๐›ผ) with

๐‘ข3(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

3

๐‘›=1

(๐‘ฅ, ๐›ผ)

= โˆ’๐‘  (๐›ผ + 1) 3 + ๐‘  (3 โˆ’3

2๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +

๐‘ฅ4

24)

Page 55: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

44

and ๐‘ข(๐‘ฅ, ๐›ผ) with

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ข๐‘›

3

๐‘›=1

(๐‘ฅ, ๐›ผ)

= โˆ’๐‘  (3 โˆ’ ๐›ผ) 3 + ๐‘  (3 โˆ’3

2๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +

๐‘ฅ4

24)

The exact solution of system is given by:

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘žโ†’1

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ),

โˆž

๐‘›=1

and

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘žโ†’1

ฮฆ(๐‘ฅ, ๐‘ž, ๐›ผ) = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ).

โˆž

๐‘›=1

hence, the solution is:

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ’๐‘  (๐›ผ + 1) 3 + ๐‘  (3 โˆ’3

2๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +

๐‘ฅ4

24) + โ‹ฏ ,

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ’๐‘  (3 โˆ’ ๐›ผ) 3 + ๐‘  (3 โˆ’3

2๐‘ฅ2) + ๐‘ 2 (1 โˆ’ ๐‘ฅ2 +

๐‘ฅ4

24) + โ‹ฏ

note that the solution series contains the auxiliary parameter ๐‘ , which

provides a convenient way to controlling the convergence region of series

solution. we choose ๐‘  = โˆ’1, we have:

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) 1 +๐‘ฅ2

2+

๐‘ฅ4

24+ โ‹ฏ = (๐›ผ + 1)โˆ‘

๐‘ฅ2๐‘›

(2๐‘›)!

โˆž

๐‘›=0

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) 1 +๐‘ฅ2

2+

๐‘ฅ4

24+ โ‹ฏ = (3 โˆ’ ๐›ผ)โˆ‘

๐‘ฅ2๐‘›

(2๐‘›)!

โˆž

๐‘›=0

Page 56: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

45

as ๐‘› โ†’ โˆž, the solution series converges to:

{๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) cosh(๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) cosh(๐‘ฅ) 0 โ‰ค ๐›ผ โ‰ค 1

2.4 Adomian Decomposition Method (๐€๐ƒ๐Œ)

The Adomian decomposition method has been applied by scientists and

engeneers since the beginning of the 1980(s)[15]. this method gives the

solution as infinite series usually converges to the closed form solution.

The Adomian decomposition method is a special case of homotopy

analysis method, if we take ๐‘  = โˆ’1 in a homotopy frame then it's

converted to the Adomian decomposition method. Consider the fuzzy

Volterra integral equation:

{

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)(๐‘ข(๐‘ก, ๐›ผ))

๐‘ฅ

๐‘Ž

๐‘‘๐‘ก

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)(๐‘ข(๐‘ก, ๐›ผ))

๐‘ฅ

๐‘Ž

๐‘‘๐‘ก

(2.31)

where ๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘ฅ, ๐‘ฅ โˆˆ [๐‘Ž, ๐‘], 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘Ž๐‘›๐‘‘

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ) = {๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0,

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0.

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ) = {๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0,

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ฅ, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0.

for each 0 โ‰ค ๐›ผ โ‰ค 1, and ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘.

Page 57: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

46

In order to solve equation(2.31) by the Adomian decomposition method,

we express the solution for the unknown functions

[ ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)] in series form[15]:

{

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

โˆž

๐‘Ÿ=0

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

โˆž

๐‘Ÿ=0

(2.32)

now, setting (2.32) ๐‘–๐‘›๐‘ก๐‘œ (2.31) yields:

{

โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ) =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก) (โˆ‘ ๐‘ข๐‘›(๐‘ก, ๐›ผ)

โˆž

๐‘›=0

) ๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐›ผ) =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก) (โˆ‘ ๐‘ข๐‘›(๐‘ก, ๐›ผ)

โˆž

๐‘›=0

) ๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

(2.33)

or

{

๐‘ข0(๐‘ฅ, ๐›ผ) + โ‹ฏ = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)(๐‘ข0(๐‘ก, ๐›ผ) + ๐‘ข1(๐‘ก, ๐›ผ) + โ‹ฏ )๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

๐‘ข0(๐‘ฅ, ๐›ผ) + โ‹ฏ = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)(๐‘ข0(๐‘ก, ๐›ผ) + ๐‘ข1(๐‘ก, ๐›ผ) + โ‹ฏ )๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

(2.34)

The ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘กโ„Ž ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก can be identified by all the terms not included

under the integral sign, that is:

๐‘ข0(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ)

๐‘ข0(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) (2.35)

Page 58: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

47

whereas the ๐‘—๐‘กโ„Ž โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก๐‘ , ๐‘— โ‰ฅ 1 are given by the recurrence

relation:

๐‘ข๐‘›+1(๐‘ฅ, ๐›ผ) = ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)( ๐‘ข๐‘›(๐‘ก, ๐›ผ) )๐‘‘๐‘ก,

๐‘ฅ

๐‘Ž

(2.36)

๐‘ข๐‘›+1(๐‘ฅ, ๐›ผ) = ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)( ๐‘ข๐‘›(๐‘ก, ๐›ผ) )๐‘‘๐‘ก, ๐‘› โ‰ฅ 0

๐‘ฅ

๐‘Ž

we approximate ๐‘ข(๐‘ฅ, ๐›ผ) = [ ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ) ] by [45]:

๐œ“๐‘› = โˆ‘ ๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

๐‘›โˆ’1

๐‘Ÿ=0

๐‘Ž๐‘›๐‘‘ ๐œ“๐‘›

= โˆ‘ ๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

๐‘›โˆ’1

๐‘Ÿ=0

where

lim๐‘›โ†’โˆž

๐œ“๐‘› = ๐‘ข(๐‘ฅ, ๐›ผ)

and

lim๐‘›โ†’โˆž

๐œ“๐‘›

= ๐‘ข(๐‘ฅ, ๐›ผ)

Example (๐Ÿ. ๐Ÿ‘):

Consider the fuzzy Volterra integral equation:

๐‘ข(๐‘ฅ) = (๐›ผ + 1,3 โˆ’ ๐›ผ) + โˆซ (๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข(๐‘ก)๐‘‘๐‘ก, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž

Page 59: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

48

Solution:

In this example ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0, ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž 0 โ‰ค ๐‘ก โ‰ค ๐‘ฅ.

the first terms of Adomain decomposition series are:

๐‘ข0(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)

๐‘ข1(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข0(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

(๐›ผ + 1)๐‘‘๐‘ก = (๐›ผ + 1)(๐‘ฅ2

2)

๐‘ข2(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก) (๐‘ก2

2)

๐‘ฅ

0

(๐›ผ + 1)๐‘‘๐‘ก

= (๐›ผ + 1) (๐‘ฅ4

24)

๐‘ข3(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข2(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก) (๐‘ก4

24)

๐‘ฅ

0

(๐›ผ + 1)๐‘‘๐‘ก

= (๐›ผ + 1) (๐‘ฅ6

720)

and

๐‘ข0(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)

๐‘ข1(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข0(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

(3 โˆ’ ๐›ผ)๐‘‘๐‘ก = (3 โˆ’ ๐›ผ)(๐‘ฅ2

2)

๐‘ข2(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก) (๐‘ก2

2)

๐‘ฅ

0

(3 โˆ’ ๐›ผ)๐‘‘๐‘ก

= (3 โˆ’ ๐›ผ)(๐‘ฅ4

24)

Page 60: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

49

๐‘ข3(๐‘ฅ, ๐›ผ) = โˆซ(๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข2(๐‘ก, ๐›ผ)๐‘‘๐‘ก = โˆซ(๐‘ฅ โˆ’ ๐‘ก) (๐‘ก4

24)

๐‘ฅ

0

(3 โˆ’ ๐›ผ)๐‘‘๐‘ก

= (3 โˆ’ ๐›ผ)(๐‘ฅ6

720)

then, we approximate ๐‘ข(๐‘ฅ, ๐›ผ) = [ ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)] by:

๐œ“4 = โˆ‘๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

3

๐‘Ÿ=0

= (๐›ผ + 2) (1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!)

and

๐œ“4= โˆ‘๐‘ข๐‘Ÿ(๐‘ฅ, ๐›ผ)

3

๐‘Ÿ=0

= (3 โˆ’ ๐›ผ) (1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!)

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘›โ†’โˆž

๐œ“๐‘› =(๐›ผ + 1) lim๐‘›โ†’โˆž

(1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!+ โ‹ฏ)

= (๐›ผ + 1) cosh(๐‘ฅ),

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘›โ†’โˆž

๐œ“๐‘›

=(3 โˆ’ ๐›ผ) lim๐‘›โ†’โˆž

(1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!+ โ‹ฏ)

= (3 โˆ’ ๐›ผ) cosh(๐‘ฅ).

2.5 Fuzzy Differential Transformation Method

In this section FDTM is applied to fuzzy Volterra integral equation of the

second kind, an example is shown to illustrate the superiority of this

method.

Page 61: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

50

As special case of definition (1.23) if ๐‘ข(๐‘ฅ) is a fuzzy-valued function, we

get the following result.

Definition(๐Ÿ. ๐Ÿ–)[๐Ÿ๐Ÿ]: (๐’๐ญ๐ซ๐จ๐ง๐ ๐ฅ๐ฒ ๐ ๐ž๐ง๐ž๐ซ๐š๐ฅ๐ข๐ณ๐ž๐ ๐๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐›๐ฅ๐ž ๐จ๐Ÿ ๐ญ๐ก๐ž

๐’ โˆ’ ๐’•๐’‰ ๐จ๐ซ๐๐ž๐ซ ๐š๐ญ ๐’™๐ŸŽ)

Let ๐‘ข: (๐‘Ž, ๐‘) โ†’ ๐ธ and ๐‘ฅ0 โˆˆ (๐‘Ž, ๐‘). we say that ๐‘ข is strongly generalized

differential of the ๐‘›๐‘กโ„Ž ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ at ๐‘ฅ0. If there exists an element ๐‘ข(๐‘˜)(๐‘ฅ0) โˆˆ

๐ธ, โˆ€๐‘˜ = 1,2,โ€ฆ , ๐‘›, such that:

(๐‘–) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0),

โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž), and the limits (in the metric ๐‘‘)

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0)

โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž

= ๐‘ข(๐‘˜)(๐‘ฅ0)

(๐‘–๐‘–) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž),

โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) and the limits (in the metric d)

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž)

โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0)

โ„Ž

= ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0),

(๐‘–๐‘–๐‘–) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0)(๐‘ฅ0 + โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0),

โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0)(๐‘ฅ0 โˆ’ โ„Ž) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) and the limits (in the metric d)

Page 62: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

51

๐‘™๐‘–๐‘šโ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž)

โˆ’โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž)

โˆ’โ„Ž

= ๐‘ข(๐‘˜)(๐‘ฅ0),

(๐‘–๐‘ฃ) โˆ€ โ„Ž > 0 Sufficiently small, โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž),

โˆƒ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž), and the limits (in the metric d)

๐‘™๐‘–๐‘šโ„Žโ†’โ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 + โ„Ž)

โˆ’โ„Ž= ๐‘™๐‘–๐‘š

โ„Žโ†’0

๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0) โˆ’ ๐‘ข(๐‘˜โˆ’1)(๐‘ฅ0 โˆ’ โ„Ž)

โ„Ž

= ๐‘ข(๐‘˜)(๐‘ฅ0).

Theorem(๐Ÿ. ๐Ÿ”)[๐Ÿ๐Ÿ]:

Let ๐‘ข: ๐‘… โ†’ ๐ธ be a fuzzy-valued function denoted by:

๐‘ข(๐‘ฅ) = (๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)) , ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐›ผ โˆˆ [0,1], ๐‘กโ„Ž๐‘’๐‘›:

(1) If ๐‘ข(๐‘ฅ) is (๐‘–) โˆ’ differentiable, then ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ) are

differentiable functions, and ๐‘ขโ€ฒ(๐‘ฅ) = (๐‘ขโ€ฒ(๐‘ฅ, ๐›ผ), ๐‘ขโ€ฒ(๐‘ฅ, ๐›ผ)).

(2) If ๐‘ข(๐‘ฅ) is (๐‘–๐‘–) โˆ’ differentiable, then ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ) are

differentiable functions, and ๐‘ขโ€ฒ(๐‘ฅ) = ( ๐‘ขโ€ฒ(๐‘ฅ, ๐›ผ) , ๐‘ขโ€ฒ(๐‘ฅ, ๐›ผ) ).

Definition (๐Ÿ. ๐Ÿ—) [๐Ÿ‘๐Ÿ•]:

Let ๐‘ข(๐‘ฅ, ๐›ผ) be strongly generalized differentiable of order ๐‘› in time

domain ๐‘‡, then if ๐‘ข(๐‘ฅ, ๐›ผ) is differentiable in first form (๐‘–)

๐œ‘ (๐‘ฅ, ๐‘›, ๐›ผ) = ๐‘‘๐‘› (๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘› , ๐œ‘ (๐‘ฅ, ๐‘›, ๐›ผ) =

๐‘‘๐‘›(๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘› , โˆ€๐‘ฅ โˆˆ ๐‘‡

Page 63: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

52

then

๐‘ˆ๐‘–(๐‘›, ๐›ผ) =

{

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘ (๐‘ฅ๐‘– , ๐‘›, ๐›ผ) =

๐‘‘๐‘› (๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘›| ๐‘ฅ=๐‘ฅ๐‘–

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘(๐‘ฅ๐‘– , ๐‘›, ๐›ผ) = ๐‘‘๐‘›(๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘›|๐‘ฅ=๐‘ฅ๐‘–

, โˆ€๐‘› โˆˆ ๐‘

If ๐‘ข(๐‘ฅ, ๐›ผ) is differentiable in second form (๐‘–๐‘–)

๐œ‘ (๐‘ฅ, ๐‘›, ๐›ผ) = ๐‘‘๐‘›(๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘› , ๐œ‘ (๐‘ฅ, ๐‘›, ๐›ผ) =

๐‘‘๐‘› (๐‘ข (๐‘ฅ, ๐›ผ))

๐‘‘ ๐‘ฅ๐‘› , โˆ€๐‘ฅ โˆˆ ๐‘‡

then

๐‘ˆ๐‘–(๐‘›, ๐›ผ) =

{

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘ (๐‘ฅ๐‘– , ๐‘›, ๐›ผ) =

๐‘‘๐‘›(๐‘ข(๐‘ฅ,๐›ผ))

๐‘‘ ๐‘ฅ๐‘› |๐‘ฅ=๐‘ฅ๐‘–

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘ (๐‘ฅ๐‘– , ๐‘›, ๐›ผ) = ๐‘‘๐‘›(๐‘ข (๐‘ฅ,๐›ผ))

๐‘‘ ๐‘ฅ๐‘›|๐‘ฅ=๐‘ฅ๐‘–

, ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

๐‘ˆ๐‘–(๐‘›, ๐›ผ) =

{

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘ (๐‘ฅ๐‘– , ๐‘›, ๐›ผ) =

๐‘‘๐‘›(๐‘ข (๐‘ฅ,๐›ผ))

๐‘‘ ๐‘ฅ๐‘›|๐‘ฅ=๐‘ฅ๐‘–

๐‘ˆ๐‘–(๐‘›, ๐›ผ) = ๐œ‘ (๐‘ฅ๐‘– , ๐‘›, ๐›ผ) = ๐‘‘๐‘›(๐‘ข(๐‘ฅ,๐›ผ))

๐‘‘ ๐‘ฅ๐‘› |๐‘ฅ=๐‘ฅ๐‘–

, ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

where ๐‘ˆ๐‘–(๐‘›, ๐›ผ) and ๐‘ˆ๐‘–(๐‘›, ๐›ผ) are the lower and the upper spectrum of

๐‘ข(๐‘ฅ) at ๐‘ฅ = ๐‘ฅ๐‘– in the domain ๐‘‡, respectively.

If ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’, then ๐‘ข(๐‘ฅ, ๐›ผ) can be represented as

follows:

Page 64: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

53

{

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=0

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)

๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=0

, ๐‘› โˆˆ ๐‘

and if ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’, then ๐‘ข(๐‘ฅ, ๐›ผ) can be represented

as follows:

{

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ) + โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)

๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ) + โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ๐‘–)๐‘›

๐‘›!๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

(2.37)

equation (2.37) is known as the inverse transformation of ๐‘ˆ(๐‘›, ๐›ผ).

If ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ˆ(๐‘›, ๐›ผ) is defined as:

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›) [๐‘‘๐‘› (๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘›]

๐‘ฅ=๐‘ฅ0

,

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›) ๐‘‘๐‘›(๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=๐‘ฅ0

.

if ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ˆ(๐‘›, ๐›ผ) can be described as:

๐‘ˆ(๐‘›, ๐›ผ) =

{

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›) [

๐‘‘๐‘› (๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘›]

๐‘ฅ=๐‘ฅ0

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›) ๐‘‘๐‘›(๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=๐‘ฅ0

, ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

Page 65: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

54

(2.38)

๐‘ˆ(๐‘›, ๐›ผ) =

{

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›)

๐‘‘๐‘›(๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=๐‘ฅ0

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Š(๐‘›) ๐‘‘๐‘›(๐‘(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ))

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=๐‘ฅ0

, ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

now, if ๐‘ข(๐‘ฅ, ๐›ผ)๐‘–๐‘  (๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ข(๐‘ฅ, ๐›ผ) can be represented as

follows:

๐‘ข(๐‘ฅ, ๐›ผ) =

{

๐‘ข(๐‘ฅ, ๐›ผ) =

1

๐‘(๐‘ฅ)โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)

and if ๐‘ข(๐‘ฅ, ๐›ผ)๐‘–๐‘  (๐‘–๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ข(๐‘ฅ, ๐›ผ) defined as:

{

1

๐‘(๐‘ฅ)( โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)+ โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›))

1

๐‘(๐‘ฅ)( โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)+ โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›))

(2.39)

where ๐‘Š(๐‘›) > 0 and it is the weighting factor and ๐‘(๐‘ฅ) > 0 is regard as a

kernel corresponding to ๐‘ข(๐‘ฅ, ๐›ผ). If ๐‘Š(๐‘›) = 1 ๐‘Ž๐‘›๐‘‘ ๐‘(๐‘ฅ) = 1, then (2.37)

is a special case of (2.39). in this section the transformation

๐‘Š(๐‘›) =๐ป๐‘›

๐‘›! ๐‘Ž๐‘›๐‘‘ ๐‘(๐‘ฅ) = 1 will be applied, where ๐ป is the time horizon of

interest. So, the equations (2.38) become

If ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ˆ(๐‘›, ๐›ผ) is defined as:

๐‘ˆ(๐‘›, ๐›ผ) =๐ป๐‘›

๐‘›!

๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›,

Page 66: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

55

and

๐‘ˆ(๐‘›, ๐›ผ) =๐ป๐‘›

๐‘›!

๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›

if ๐‘ข(๐‘ฅ, ๐›ผ) is (๐‘–๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ˆ(๐‘›, ๐›ผ) can be described as:

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘ˆ(๐‘›, ๐›ผ) =

๐ป๐‘›

๐‘›!

๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›

๐‘ˆ(๐‘›, ๐›ผ) = ๐ป๐‘›

๐‘›!

๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›

, ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

(2.40)

๐‘ˆ(๐‘›, ๐›ผ) = ๐‘ˆ(๐‘›, ๐›ผ) =

๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›

๐‘ˆ(๐‘›, ๐›ผ) =๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘›

, ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Using the fuzzy differential transformation, a fuzzy differential equation in

the domain of interest can be transformed to an algebraic equation in the

domain T, and ๐‘ข(๐‘ฅ) can be obtained as the finite- term Taylor series plus

reminder, as:

if ๐‘ข(๐‘ฅ, ๐›ผ)๐‘–๐‘  (๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ข(๐‘ฅ, ๐›ผ) becomes:

๐‘ข(๐‘ฅ, ๐›ผ) =

{

๐‘ข(๐‘ฅ, ๐›ผ) =

1

๐‘(๐‘ฅ)โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)+ ๐‘…๐‘›+1(๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)โˆ‘

(๐‘ฅ โˆ’ ๐‘ฅ0)๐‘›

๐‘›!

โˆž

๐‘›=0

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)+ ๐‘…๐‘›+1(๐‘ฅ)

hence

Page 67: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

56

๐‘ข(๐‘ฅ, ๐›ผ) =

{

๐‘ข(๐‘ฅ, ๐›ผ) =

1

๐‘(๐‘ฅ)โˆ‘ (

๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=0

+ ๐‘…๐‘›+1(๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)โˆ‘ (

๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

โˆž

๐‘›=0

๐‘ˆ(๐‘›, ๐›ผ) + ๐‘…๐‘›+1(๐‘ฅ)

(2.41)

and, if ๐‘ข(๐‘ฅ, ๐›ผ)๐‘–๐‘  (๐‘–๐‘–) โˆ’ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘ก๐‘–๐‘Ž๐‘๐‘™๐‘’ then ๐‘ข(๐‘ฅ, ๐›ผ) becomes:

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)

(

โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘›

๐‘›!

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)

+ โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘›

๐‘›!

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›))

+ ๐‘…๐‘›+1(๐‘ฅ),

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)

(

โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘›

๐‘›!

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›)

+ โˆ‘(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘›

๐‘›!

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ)

๐‘Š(๐‘›))

+ ๐‘…๐‘›+1(๐‘ฅ)

hence,

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)

(

โˆ‘ (๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

+ โˆ‘ (๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ))

+ ๐‘…๐‘›+1(๐‘ฅ),

(2.42)

๐‘ข(๐‘ฅ, ๐›ผ) =1

๐‘(๐‘ฅ)

(

โˆ‘ (๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

๐‘ˆ(๐‘›, ๐›ผ)

โˆž

๐‘›=0,๐‘’๐‘ฃ๐‘’๐‘›

+ โˆ‘ (๐‘ฅ โˆ’ ๐‘ฅ0

๐ป)๐‘›

โˆž

๐‘›=1,๐‘œ๐‘‘๐‘‘

๐‘ˆ(๐‘›, ๐›ผ))

+ ๐‘…๐‘›+1(๐‘ฅ)

Page 68: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

57

Our aim is finding the solution of the Volterra integral equation (1.17) at

the equally spaced grid points {๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘˜} where ๐‘ฅ0 = ๐‘Ž, ๐‘ฅ๐‘˜ = ๐‘,

๐‘ฅ๐‘– = ๐‘Ž + ๐‘–โ„Ž ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘’๐‘โ„Ž ๐‘– = 0,1,2,โ€ฆ , ๐‘˜, ๐‘Ž๐‘›๐‘‘ โ„Ž =๐‘โˆ’๐‘Ž

๐‘˜. This means, the

domain of interest is divided to ๐‘˜ sub-domain, and the fuzzy

approximation functions in each sub-domain are ๐‘ข๐‘–(๐‘ฅ, ๐›ผ) for ๐‘– =

0,1โ€ฆ , ๐‘˜ โˆ’ 1, respectively.

Definition (๐Ÿ. ๐Ÿ๐ŸŽ)[๐Ÿ”]: (Fuzzy differential transformation)

Let ๐‘ข(๐‘ฅ, ๐›ผ) be differentiable fuzzy-valued function, we define the one-

dimensional differential transform by:

๐‘ˆ(๐‘›, ๐›ผ) =

{

๐‘ˆ(๐‘›, ๐›ผ) =

1

๐‘›! ๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=0

๐‘ˆ(๐‘›, ๐›ผ) = 1

๐‘›! ๐‘‘๐‘›๐‘ข(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘› ๐‘ฅ=0

where ๐‘ข(๐‘ฅ) is the original function and ๐‘ˆ(๐‘›) is the transformed function.

Definition (๐Ÿ. ๐Ÿ๐Ÿ)[๐Ÿ”]: (Fuzzy differential inverse transformation) The

differential inverse transform of ๐‘ˆ(๐‘›, ๐›ผ) on the girds ๐‘ฅ๐‘–+1 is defined by:

๐‘ข(๐‘ฅ๐‘–+1, ๐›ผ) โ‰ˆ ๐‘ข๐‘–(๐‘ฅ๐‘–+1, ๐›ผ)

= ๐‘ˆ๐‘–(0, ๐›ผ) + ๐‘ˆ๐‘–(1, ๐›ผ)(๐‘ก1 โˆ’ ๐‘ก0) + ๐‘ˆ๐‘–(2, ๐›ผ)(๐‘ก2 โˆ’ ๐‘ก1)2 + โ‹ฏ

+ ๐‘ˆ๐‘–(๐‘, ๐›ผ)(๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘–)๐‘ = โˆ‘ ๐‘ˆ๐‘–(๐‘˜, ๐›ผ)โ„Ž๐‘˜

๐‘

๐‘˜=0

,

and

Page 69: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

58

๐‘ข(๐‘ฅ๐‘–+1, ๐›ผ) โ‰ˆ ๐‘ข๐‘–(๐‘ฅ๐‘–+1, ๐›ผ)

= ๐‘ˆ๐‘–(0, ๐›ผ) + ๐‘ˆ๐‘–(1, ๐›ผ)(๐‘ก1 โˆ’ ๐‘ก0) + ๐‘ˆ๐‘–(2, ๐›ผ)(๐‘ก2 โˆ’ ๐‘ก1)2 + โ‹ฏ

+ ๐‘ˆ๐‘–(๐‘, ๐›ผ)(๐‘ก๐‘–+1 โˆ’ ๐‘ก๐‘–)๐‘ = โˆ‘ ๐‘ˆ๐‘–(๐‘˜, ๐›ผ)โ„Ž๐‘˜

๐‘

๐‘˜=0

.

Theorem (2.7 )[๐Ÿ’]:

Let ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ฃ(๐‘ฅ, ๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘ค(๐‘ฅ, ๐›ผ) are fuzzy valued functions, and let

๐‘ˆ(๐‘ฅ, ๐›ผ), ๐‘‰(๐‘ฅ, ๐›ผ), ๐‘Ž๐‘›๐‘‘ ๐‘Š(๐‘ฅ, ๐›ผ) are their differential transformations

respectively, then we get the following:

i. If ๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘ฃ(๐‘ฅ, ๐›ผ) ยฑ ๐‘ค(๐‘ฅ, ๐›ผ), ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = ๐‘‰(๐‘›, ๐›ผ) ยฑ ๐‘Š(๐‘›, ๐›ผ).

ii. If ๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘Ž ๐‘ฃ(๐‘ฅ, ๐›ผ), ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = ๐‘Ž ๐‘‰(๐‘›, ๐›ผ),where a is a constant.

iii. if

๐‘ข(๐‘ฅ, ๐›ผ) =๐‘‘๐‘˜๐‘ฃ(๐‘ฅ, ๐›ผ)

๐‘‘๐‘ฅ๐‘˜ , ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) =

(๐‘›+๐‘˜)!

๐‘›!๐‘‰(๐‘› + ๐‘˜, ๐›ผ)

iv. If ๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘ฅ๐‘˜, ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = ๐›ฟ(๐‘› โˆ’ ๐‘˜, ๐›ผ), ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

๐›ฟ(๐‘› โˆ’ ๐‘˜) = {1 ๐‘–๐‘“ ๐‘› = ๐‘˜0 ๐‘–๐‘“ ๐‘› โ‰  ๐‘˜

v. If

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘ฃ(๐‘ฅ, ๐›ผ). ๐‘ค(๐‘ฅ, ๐›ผ), ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = โˆ‘๐‘‰(๐‘™).๐‘Š(๐‘› โˆ’ ๐‘™, ๐›ผ)

๐‘›

๐‘™=0

.

vi. If ๐‘ข(๐‘ฅ, ๐›ผ) = exp(๐‘Ž ๐‘ฅ, ๐›ผ) , ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = (๐‘Ž๐‘›

๐‘›!โ„ , ๐›ผ) , ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

๐‘Ž ๐‘–๐‘  a constant.

Page 70: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

59

vii. If

๐‘ข(๐‘ฅ, ๐›ผ) = (๐‘ฅ + 1)๐‘˜, ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = (๐‘˜(๐‘˜โˆ’1)โ€ฆ.(๐‘˜โˆ’๐‘›โˆ’1)

๐‘›!, ๐›ผ)

viii. If

๐‘ข(๐‘ฅ, ๐›ผ) = (sin(๐‘Ž ๐‘ฅ + ๐‘), ๐›ผ), ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = (๐‘Ž๐‘›

๐‘›!sin ( ๐œ‹๐‘›

2! + ๐‘),๐›ผ)

๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž, ๐‘ ๐‘Ž๐‘Ÿ๐‘’ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก๐‘ .

ix. If

๐‘ข(๐‘ฅ, ๐›ผ) = (cos(๐‘Ž ๐‘ฅ + ๐‘), ๐›ผ), ๐‘กโ„Ž๐‘’๐‘› ๐‘ˆ(๐‘›, ๐›ผ) = (๐‘Ž๐‘›

๐‘›!cos( ๐œ‹๐‘›

2! + ๐‘),๐›ผ)

where ๐‘Ž, ๐‘ are constants.

Proof: Using definition(2.9).

Theorem (2.8 )[๐Ÿ”]:

Suppose that ๐‘ˆ(๐‘›, ๐›ผ), ๐บ(๐‘›, ๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘‰(๐‘›) are differential transformations of

the fuzzy- valued functions ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐‘”(๐‘ฅ, ๐›ผ), and positive real valued

function ๐‘ฃ(๐‘ฅ), respectively then the following are satisfied:

(1) If ๐‘”(๐‘ฅ, ๐›ผ) = โˆซ ๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘ฅ0, 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘กโ„Ž๐‘’๐‘›

๐บ(๐‘›, ๐›ผ) =

{

๐บ(๐‘›, ๐›ผ) =๐‘ˆ(๐‘› โˆ’ 1, ๐›ผ)

๐‘›

๐บ(๐‘›, ๐›ผ) =๐‘ˆ(๐‘› โˆ’ 1, ๐›ผ)

๐‘›

,๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘› โ‰ฅ 1.

(2) If ๐‘”(๐‘ฅ, ๐›ผ) = โˆซ ๐‘ฃ(๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘ฅ0, 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘กโ„Ž๐‘’๐‘›

๐บ(๐‘›, ๐›ผ) =

{

๐บ(๐‘›, ๐›ผ) =

1

๐‘›โˆ‘ ๐‘‰(๐‘™)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ),

๐‘›โˆ’1

๐‘™=0

๐บ(๐‘›, ๐›ผ) =1

๐‘›โˆ‘ ๐‘‰(๐‘™)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ),

๐‘›โˆ’1

๐‘™=0

, ๐บ(0) = 0, ๐‘› โ‰ฅ 1.

(3) If ๐‘”(๐‘ฅ, ๐›ผ) = ๐‘ฃ(๐‘ฅ) โˆซ ๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘ฅ0, 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘กโ„Ž๐‘’๐‘›

Page 71: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

60

๐บ(๐‘›, ๐›ผ) =

{

๐บ(๐‘›, ๐›ผ) = โˆ‘

1

๐‘™๐‘‰(๐‘› โˆ’ ๐‘™)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ),

๐‘›

๐‘™=1

๐บ(๐‘›, ๐›ผ) = โˆ‘1

๐‘™๐‘‰(๐‘› โˆ’ ๐‘™)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ),

๐‘›

๐‘™=1

, ๐บ(0) = 0, ๐‘› โ‰ฅ 1.

(4) If ๐‘”(๐‘ฅ, ๐›ผ) = ๐‘ฃ(๐‘ฅ)๐‘ข(๐‘ฅ, ๐›ผ), ๐‘กโ„Ž๐‘’๐‘›

๐บ(๐‘›, ๐›ผ) = โˆ‘๐‘‰(๐‘™)๐‘ˆ(๐‘› โˆ’ ๐‘™, ๐›ผ),

๐‘›

๐‘™=0

Proof: see [6].

now, taking the fuzzy differential transformation for both sides of equation

(1.17), we get:

๐‘ˆ(๐‘›, ๐›ผ) =

{

๐‘ˆ(๐‘›, ๐›ผ) = ๐น(๐‘›, ๐›ผ) +

๐œ†

๐‘›โˆ‘ ๐‘‰(๐‘™)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

๐‘ˆ(๐‘›, ๐›ผ) = ๐น(๐‘›, ๐›ผ) +๐œ†

๐‘›โˆ‘ ๐‘‰(๐‘™)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

where ๐œ† > 0, ๐‘ˆ(๐‘›, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐น(๐‘›, ๐›ผ)are fuzzy differential transformations

of fuzzy valued functions ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘Ž๐‘›๐‘‘ ๐‘“(๐‘ฅ, ๐›ผ) respectively, and ๐พ(๐‘›) is a

fuzzy differential transformation of a positive real- valued function

๐‘˜(๐‘ฅ). ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘ˆ(0, ๐›ผ) = ๐น(0, ๐›ผ).

Example (๐Ÿ. ๐Ÿ’):

Consider the fuzzy Volterra integral equation:

๐‘ข(๐‘ฅ) = (๐›ผ + 1,3 โˆ’ ๐›ผ) + โˆซ (๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข(๐‘ก)๐‘‘๐‘ก, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž

Page 72: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

61

Solution:

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข

๐‘ฅ

0

(๐‘ก, ๐›ผ)๐‘‘๐‘ก,

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข

๐‘ฅ

0

(๐‘ก, ๐›ผ)๐‘‘๐‘ก.

taking fuzzy differential transformation, we get:

๐‘ˆ(๐‘›, ๐›ผ) = (๐›ผ + 1)๐›ฟ(๐‘› โˆ’ 0) + โˆ‘1

๐‘™๐›ฟ(๐‘› โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

๐‘›

๐‘™=1

โˆ’1

๐‘›โˆ‘ ๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

,

and

๐‘ˆ(๐‘›, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(๐‘› โˆ’ 0) + โˆ‘1

๐‘™๐›ฟ(๐‘› โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

โˆ’1

๐‘›โˆ‘ ๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(๐‘› โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

.

First terms of differential transformation series are:

๐‘ˆ(0, ๐›ผ) = (๐›ผ + 1)

๐‘ˆ(1, ๐›ผ) = (๐›ผ + 1)๐›ฟ(1 โˆ’ 0) + โˆ‘1

๐‘™๐›ฟ(1 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

1

๐‘™=1

โˆ’1

1โˆ‘ ๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(1 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

= 0

Page 73: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

62

๐‘ˆ(2, ๐›ผ) = (๐›ผ + 1)๐›ฟ(2 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(2 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

2

๐‘™=1

โˆ’1

2โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(2 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

1

๐‘™=0

=1

2๐‘ˆ(0, ๐›ผ) =

1

2(๐›ผ + 1)

๐‘ˆ(3, ๐›ผ) = (๐›ผ + 1)๐›ฟ(3 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(3 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

3

๐‘™=1

โˆ’1

3โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(3 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

2

๐‘™=0

= 0

๐‘ˆ(4, ๐›ผ) = (๐›ผ + 1)๐›ฟ(4 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(4 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

4

๐‘™=1

โˆ’1

4โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(4 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

3

๐‘™=0

=1

12๐‘ˆ(2, ๐›ผ) =

1

24(๐›ผ + 1)

๐‘ˆ(5, ๐›ผ) = (๐›ผ + 1)๐›ฟ(5 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(5 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

5

๐‘™=1

โˆ’1

5โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(5 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

4

๐‘™=0

= 0

๐‘ˆ(6, ๐›ผ) = (๐›ผ + 1)๐›ฟ(5 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(6 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

6

๐‘™=1

โˆ’1

6โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(6 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

5

๐‘™=0

=1

30๐‘ˆ(4, ๐›ผ) =

1

720(๐›ผ + 1)

Page 74: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

63

and

๐‘ˆ(0, ๐›ผ) = (3 โˆ’ ๐›ผ)

๐‘ˆ(1, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(1 โˆ’ 0) + โˆ‘1

๐‘™๐›ฟ(1 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

1

๐‘™=1

โˆ’1

1โˆ‘ ๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(1 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

๐‘›โˆ’1

๐‘™=0

= 0

๐‘ˆ(2, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(2 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(2 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

2

๐‘™=1

โˆ’1

2โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(2 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

1

๐‘™=0

=1

2๐‘ˆ(0, ๐›ผ) =

1

2(3 โˆ’ ๐›ผ)

๐‘ˆ(3, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(3 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(3 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

3

๐‘™=1

โˆ’1

3โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(3 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

2

๐‘™=0

= 0

๐‘ˆ(4, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(4 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(4 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

4

๐‘™=1

โˆ’1

4โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(4 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

3

๐‘™=0

=1

12๐‘ˆ(2, ๐›ผ) =

1

24(3 โˆ’ ๐›ผ)

Page 75: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

64

๐‘ˆ(5, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(5 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(5 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

5

๐‘™=1

โˆ’1

5โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(5 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

4

๐‘™=0

= 0

๐‘ˆ(6, ๐›ผ) = (3 โˆ’ ๐›ผ)๐›ฟ(5 โˆ’ 0)

+ โˆ‘1

๐‘™๐›ฟ(6 โˆ’ ๐‘™ โˆ’ 1)๐‘ˆ(๐‘™ โˆ’ 1, ๐›ผ)

6

๐‘™=1

โˆ’1

6โˆ‘๐›ฟ(๐‘™ โˆ’ 1)๐‘ˆ(6 โˆ’ ๐‘™ โˆ’ 1, ๐›ผ)

5

๐‘™=0

=1

30๐‘ˆ(4, ๐›ผ) =

1

720( 3 โˆ’ ๐›ผ)

therefore, the solution of fuzzy Volterra integral equation will be as

following:

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ˆ(๐‘›, ๐›ผ). ๐‘ฅ๐‘›

โˆž

๐‘›=0

= (๐›ผ + 1) {1 +1

2!๐‘ฅ2 +

1

4!๐‘ฅ4 +

1

6!๐‘ฅ6 +

1

8!๐‘ฅ8 +

1

10!๐‘ฅ10 + โ‹ฏ},

and

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘ ๐‘ˆ(๐‘›, ๐›ผ). ๐‘ฅ๐‘›

โˆž

๐‘›=0

= (3 โˆ’ ๐›ผ) {1 +1

2!๐‘ฅ2 +

1

4!๐‘ฅ4 +

1

6!๐‘ฅ6 +

1

8!๐‘ฅ8 +

1

10!๐‘ฅ10 + โ‹ฏ}.

this converges to the closed form solution:

๐‘ข(๐‘ฅ, ๐›ผ) = {๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) cosh(๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) cosh(๐‘ฅ)

Page 76: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

65

2.6 Fuzzy successive approximation method

Consider the following fuzzy Volterra integral equation:

{

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ) ๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

(2.43)

where ๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘ฅ, ๐‘ฅ โˆˆ [๐‘Ž, ๐‘], 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘Ž๐‘›๐‘‘

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ) = {๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0

and

๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ) = {๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ), ๐‘˜(๐‘ฅ, ๐‘ก) < 0

for each 0 โ‰ค ๐›ผ โ‰ค 1, ๐‘Ž๐‘›๐‘‘ ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘.

The successive approximation method introduces the recurrence relation:

{

๐‘ข๐‘›+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›(๐‘ก, ๐›ผ)๐‘‘๐‘ก , ๐‘› โ‰ฅ 0

๐‘ฅ

๐‘Ž

๐‘ข๐‘›+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘›(๐‘ก, ๐›ผ)๐‘‘๐‘ก , ๐‘› โ‰ฅ 0

๐‘ฅ

๐‘Ž

(2.44)

We can choose the ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘กโ„Ž โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก either [ 0, 0 ], [ ๐‘“(๐‘ฅ, ๐›ผ), ๐‘“(๐‘ฅ, ๐›ผ)]

The exact solution ๐‘ข(๐‘ฅ, ๐›ผ)[ ๐‘ข(๐‘ฅ, ๐›ผ), ๐‘ข(๐‘ฅ, ๐›ผ)].

where

Page 77: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

66

lim๐‘›โ†’โˆž

๐‘ข๐‘›+1 = ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ lim๐‘›โ†’โˆž

๐‘ข๐‘›+1 = ๐‘ข(๐‘ฅ, ๐›ผ)

Consider the fuzzy Volterra integral equation:

๐‘ข(๐‘ฅ) = (๐›ผ + 1,3 โˆ’ ๐›ผ) + โˆซ (๐‘ฅ โˆ’ ๐‘ก)

๐‘ฅ

0

๐‘ข(๐‘ก)๐‘‘๐‘ก, ๐‘ฅ โˆˆ [0, ๐‘‡], ๐‘‡ < โˆž

Solution:

In this example ๐‘˜(๐‘ฅ, ๐‘ก) โ‰ฅ 0, ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž 0 โ‰ค ๐‘ก โ‰ค ๐‘ฅ.

let ๐‘ข0(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)

the first terms of successive approximation method series are:

๐‘ข1(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข0(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)(๐›ผ + 1)๐‘‘๐‘ก

๐‘ฅ

0

=(๐›ผ + 1) (1 +๐‘ฅ2

2)

๐‘ข2(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก) (1 +๐‘ก2

2) (๐›ผ + 1)๐‘‘๐‘ก

๐‘ฅ

0

=(๐›ผ + 1) (1 +๐‘ฅ2

2+

๐‘ฅ4

24)

Page 78: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

67

๐‘ข3(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข2(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (๐›ผ + 1) + โˆซ(๐‘ฅ โˆ’ ๐‘ก) (1 +๐‘ก2

2+

๐‘ก4

24) (๐›ผ + 1)๐‘‘๐‘ก

๐‘ฅ

0

=(๐›ผ + 1) (1 +๐‘ฅ2

2+

๐‘ฅ4

24+

๐‘ฅ6

720)

and

๐‘ข0(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)

๐‘ข1(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข0(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)(3 โˆ’ ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

=(3 โˆ’ ๐›ผ)) (1 +๐‘ฅ2

2)

๐‘ข2(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข1(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก) (1 +๐‘ก2

2) (3 โˆ’ ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

=(3 โˆ’ ๐›ผ) (1 +๐‘ฅ2

2+

๐‘ฅ4

24)

๐‘ข3(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข2(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

= (3 โˆ’ ๐›ผ) + โˆซ(๐‘ฅ โˆ’ ๐‘ก) (1 +๐‘ก2

2+

๐‘ก4

24) (3 โˆ’ ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

=(3 โˆ’ ๐›ผ) (1 +๐‘ฅ2

2+

๐‘ฅ4

24+

๐‘ฅ6

720)

Page 79: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

68

hence, the exact solution is:

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) lim๐‘›โ†’โˆž

(1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!+ โ‹ฏ)

= (๐›ผ + 1) cosh(๐‘ฅ),

and

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ) lim๐‘›โ†’โˆž

(1 +๐‘ฅ2

2!+

๐‘ฅ4

4!+

๐‘ฅ6

6!+ โ‹ฏ)

= (3 โˆ’ ๐›ผ) cosh(๐‘ฅ)

Page 80: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

69

Chapter Three

Numerical Methods for Solving Linear Fuzzy Volterra

Integral Equation of the Second Kind

Introduction

Several numerical methods for approximating linear Volterra integral

equation is known. In this chapter we introduce three numerical methods

to solve the Volterra fuzzy integral equation

๐‘ข(๐‘ฅ) = ๐‘“(๐‘ฅ) + ๐œ† โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

These methods are Taylor expansion method, trapezoidal method, and the

variational iteration method.

3.1 Taylor Expansion Method

if ๐‘“(๐‘ฅ) is continuous and infinity differentiable function on some

open interval ๐ผ, and if ๐‘ฅ = ๐‘ง โˆˆ ๐ผ, then the taylor series of ๐‘“(๐‘ฅ)

about ๐‘ฅ = ๐‘ง is given as:

๐‘“(๐‘ฅ) = ๐‘“(๐‘ง) +1

2!๐‘“โ€ฒ(๐‘ง)(๐‘ฅ โˆ’ ๐‘ง) + โ‹ฏ+

1

๐‘›!๐‘“(๐‘›)(๐‘ง)(๐‘ฅ โˆ’ ๐‘ง)๐‘› + โ‹ฏ

Here we use the Taylor expansion method to solve linear fuzzy Volterra

integral equation of the second kind. This method depends on

differentiating the fuzzy integral equation of the second kind ๐‘› ๐‘ก๐‘–๐‘š๐‘’๐‘  ,

then substitute the Taylor series expansion for the unknown function. as a

Page 81: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

70

result, we get a linear system for which the solution of this system yields

the unknown Taylor coefficient of the solution functions.

Definition(๐Ÿ‘. ๐Ÿ)[๐Ÿ‘๐Ÿ”]:

The second kind fuzzy Volterra integral equations system is in the form:

๐‘ข๐‘–(๐‘ฅ) = ๐‘“๐‘–(๐‘ฅ) + โˆ‘(๐œ†๐‘–,๐‘— โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

๐‘š

๐‘—=1

(3.1)

where ๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘ฅ โ‰ค ๐‘, ๐‘Ž๐‘›๐‘‘ ๐œ†๐‘–,๐‘— โ‰  0 ๐‘“๐‘œ๐‘Ÿ ๐‘–, ๐‘— = 1,2,โ€ฆ ,๐‘š are real

constants. Moreover, in system (3.1) the fuzzy function ๐‘“๐‘–(๐‘ฅ) and ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

are given, and assumed to be sufficiently differentiable with respect to all

their arguments on the interval ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘ก โ‰ค ๐‘. also we assume that the

kernel function ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) โˆˆ ๐ฟ2([๐‘Ž, ๐‘] ร— [๐‘Ž, ๐‘]), and ๐‘ข(๐‘ฅ) =

[๐‘ข1(๐‘ฅ),โ€ฆ , ๐‘ข๐‘š(๐‘ฅ)]๐‘‡is the solution to be determined.

Now, the parametric form of ๐‘“๐‘–(๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘–(๐‘ฅ) are

(๐‘“๐‘–(๐‘ฅ, ๐›ผ), ๐‘“๐‘–(๐‘ฅ, ๐›ผ)) ๐‘Ž๐‘›๐‘‘ (๐‘ข๐‘–(๐‘ฅ, ๐›ผ), ๐‘ข๐‘–(๐‘ฅ, ๐›ผ)), respectively. ( 0 โ‰ค ๐›ผ โ‰ค 1,

๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘). To simplify we assume ๐œ†๐‘–,๐‘— > 0, (๐‘–, ๐‘— = 1,2,โ€ฆ ,๐‘š).

In order to design a numerical scheme for solving (3.1), we write the

parametric form of the given fuzzy integral equations system as:

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘(๐œ†๐‘–,๐‘— โˆซ๐‘ข๐‘–,๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

๐‘–

๐‘—=1

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘(๐œ†๐‘–,๐‘— โˆซ๐‘ข๐‘–,๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

)

๐‘–

๐‘—=1

(3.2)

Page 82: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

71

where

๐‘ข๐‘–,๐‘—(๐‘ก, ๐›ผ) = {๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ) ๐‘˜๐‘–,๐‘— โ‰ฅ 0

๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ) ๐‘˜๐‘–,๐‘— < 0

(3.3)

๐‘ข๐‘–,๐‘—(๐‘ก, ๐›ผ) = {๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ) ๐‘˜๐‘–,๐‘— โ‰ฅ 0

๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ) ๐‘˜๐‘–,๐‘— < 0

now, we assume that

{

๐œ†๐‘–,๐‘—๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) โ‰ฅ 0, ๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘๐‘–,๐‘—

๐œ†๐‘–,๐‘—๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) < 0, ๐‘๐‘–,๐‘— โ‰ค ๐‘ก โ‰ค ๐‘ฅ (3.4)

then the system (3.2) becomes:

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘๐œ†๐‘–,๐‘—

(

โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

+ โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘— )

๐‘–

๐‘—=1

๐‘ข๐‘–(๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘๐œ†๐‘–,๐‘—

(

โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

+ โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘— )

๐‘–

๐‘—=1

(3.5)

We seek the solution of system (3. 5) in the form of

๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) = โˆ‘ (1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—๐‘ (๐‘ฅ,๐›ผ)

๐‘Ÿ|๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ)๐‘ ๐‘Ÿ=0

๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) = โˆ‘ (1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—๐‘ (๐‘ฅ,๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ |๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ)๐‘ ๐‘Ÿ=0

๐‘Ž โ‰ค ๐‘ฅ, ๐‘ง โ‰ค ๐‘ (3.6)

Page 83: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

72

for ๐‘— = 1,โ€ฆ ,๐‘š which are the Taylor expansion of degree ๐‘  at ๐‘ฅ = ๐‘ง

for the unknown functions ๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ), ๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ), respectively.

To obtain the solution in the form of expression (3.6) we find the ๐‘› ๐‘กโ„Ž

derivative of each equation in the system (3.5) with respect to ๐‘ฅ by using

the Leibnitz's rule, (๐‘› = 0,1,โ€ฆ , ๐‘ ) and obtain by [ 46 ]:

๐œ•(๐‘›)๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›=

๐œ•(๐‘›)๐‘“๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›+ โˆ‘๐œ†๐‘–,๐‘— {โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

๐‘š

๐‘—=1

+ โˆ‘ (๐œ•(๐‘™)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘™|๐‘ก=๐‘ฅ

. ๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ))

(๐‘›โˆ’๐‘™โˆ’1)๐‘›โˆ’1

๐‘™=0

+ โˆซ๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

}

๐œ•(๐‘›)๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›=

๐œ•(๐‘›)๐‘“๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›+ โˆ‘๐œ†๐‘–,๐‘— {โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

๐‘š

๐‘—=1

+ โˆ‘ (๐œ•(๐‘™)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘™|๐‘ก=๐‘ฅ

. ๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ))

(๐‘›โˆ’๐‘™โˆ’1)๐‘›โˆ’1

๐‘™=0

+ โˆซ๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

}

(3.7)

for ๐‘› = 0,1,โ€ฆ , ๐‘  , ๐‘Ž๐‘›๐‘‘ ๐‘– = 1,2,โ€ฆ ,๐‘š.

From the Leibniz's rule, the system (3.7) becomes:

Page 84: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

73

๐œ•(๐‘›)๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›=

๐œ•(๐‘›)๐‘“๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›+ โˆ‘๐œ†๐‘–,๐‘— {โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

๐‘š

๐‘—=1

+ โˆ‘ โˆ‘ (๐‘› โˆ’ ๐‘™ โˆ’ 1

๐‘Ÿ)

๐‘›โˆ’๐‘Ÿโˆ’1

๐‘™=0

(๐œ•(๐‘™)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘™|๐‘ก=๐‘ฅ

)

(๐‘›โˆ’๐‘™โˆ’๐‘Ÿโˆ’1)

(๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ))(๐‘Ÿ)

๐‘›โˆ’1

๐‘Ÿ=0

+ โˆซ๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

}

๐œ•(๐‘›)๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›=

๐œ•(๐‘›)๐‘“๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›+ โˆ‘๐œ†๐‘–,๐‘— {โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

๐‘š

๐‘—=1

+ โˆ‘ โˆ‘ (๐‘› โˆ’ ๐‘™ โˆ’ 1

๐‘Ÿ)

๐‘›โˆ’๐‘Ÿโˆ’1

๐‘™=0

(๐œ•(๐‘™)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘™|๐‘ก=๐‘ฅ

)

(๐‘›โˆ’๐‘™โˆ’๐‘Ÿโˆ’1)

(๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ))(๐‘Ÿ)

๐‘›โˆ’1

๐‘Ÿ=0

+ โˆซ๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘›๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

] (3.8)

our purpose is determining the coefficients ๐‘ข๐‘—๐‘ (๐‘›)(๐‘ง, ๐›ผ) and

๐‘ข๐‘—๐‘ (๐‘›)

(๐‘ง, ๐›ผ), ๐‘“๐‘œ๐‘Ÿ ๐‘› = 0,โ€ฆ , ๐‘ , ๐‘Ž๐‘›๐‘‘ ๐‘— = 1,โ€ฆ ,๐‘š in the system (3.7)

so that, we expand ๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ) and ๐‘ข๐‘—๐‘ (๐‘ก, ๐›ผ) in Taylor's series at arbitrary

point ๐‘ง: ๐‘Ž โ‰ค ๐‘ง โ‰ค ๐‘.

{

๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) = โˆ‘(

1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—,๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ)

๐‘ 

๐‘Ÿ=0

๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) = โˆ‘(1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—,๐‘ (๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ)

๐‘ 

๐‘Ÿ=0

, ๐‘Ž โ‰ค ๐‘ฅ, ๐‘ง โ‰ค ๐‘

0 โ‰ค ๐›ผ โ‰ค 1 , for ๐‘— = 1,โ€ฆ ,๐‘š (3.9)

Page 85: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

74

where

๐‘ข๐‘–,๐‘ (๐‘›)(๐‘ง, ๐›ผ) = ๐‘“๐‘–

(๐‘›)(๐‘ง, ๐›ผ) + โˆ‘ โˆ‘ ๐ท๐‘›,๐‘Ÿ(๐‘–,๐‘—)

๐‘›โˆ’1

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)

(๐‘ง, ๐›ผ) + โˆ‘๐ธ๐‘›,๐‘Ÿ(๐‘–,๐‘—)

๐‘ 

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)(๐‘ง, ๐›ผ)

๐‘š

๐‘—=1

+โˆ‘๐ธโ€ฒ๐‘›,๐‘Ÿ(๐‘–,๐‘—)

๐‘ 

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)

(๐‘ง, ๐›ผ)

๐‘ข๐‘–,๐‘ (๐‘›)

(๐‘ง, ๐›ผ) = ๐‘“๐‘–

(๐‘›)(๐‘ง, ๐›ผ) + โˆ‘ โˆ‘ ๐ท๐‘›,๐‘Ÿ

(๐‘–,๐‘—)

๐‘›โˆ’1

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)(๐‘ง, ๐›ผ) + โˆ‘๐ธ๐‘›,๐‘Ÿ

(๐‘–,๐‘—)

๐‘†

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)

(๐‘ง, ๐›ผ)

๐‘š

๐‘—=1

+โˆ‘๐ธโ€ฒ๐‘›,๐‘Ÿ(๐‘–,๐‘—)

๐‘ 

๐‘Ÿ=0

. ๐‘ข๐‘—๐‘†(๐‘Ÿ)(๐‘ง, ๐›ผ) (3.10)

then substitute the ๐‘ ๐‘กโ„Ž truncation in (3.8), we get

๐ธ๐‘›,๐‘Ÿ(๐‘–,๐‘—)

=๐œ†๐‘–,๐‘—

๐‘Ÿ!โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—

๐œ•๐‘ฅ๐‘›

๐‘๐‘–,๐‘—

๐‘Ž

(๐‘ฅ, ๐‘ก)|

๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ๐‘‘๐‘ก

๐ธโ€ฒ๐‘›,๐‘Ÿ(๐‘–,๐‘—)

=๐œ†๐‘–,๐‘—

๐‘Ÿ!โˆซ

๐œ•(๐‘›)๐‘˜๐‘–,๐‘—

๐œ•๐‘ฅ๐‘›

๐‘

๐‘๐‘–,๐‘—

(๐‘ฅ, ๐‘ก)|

๐‘ฅ=๐‘ง

. (๐‘ก โˆ’ ๐‘ง)๐‘Ÿ๐‘‘๐‘ก

๐ท๐‘›,๐‘Ÿ(๐‘–,๐‘—)

= ๐œ†๐‘–,๐‘— โˆ‘(๐‘› โˆ’ ๐‘™ โˆ’ 1

๐‘Ÿ) (

๐œ•(๐‘Ÿ)๐‘˜๐‘–,๐‘—

๐œ•๐‘ฅ๐‘Ÿ(๐‘ฅ, ๐‘ก)|

๐‘ฅ=๐‘ง

)

(๐‘›โˆ’๐‘™โˆ’๐‘Ÿโˆ’1)๐‘›โˆ’๐‘™

๐‘Ÿ=0

๐‘–, ๐‘— = 1,2,โ€ฆ ,๐‘š

๐‘“๐‘œ๐‘Ÿ ๐‘› = 0 ,โˆ‘ โˆ‘ ๐ท๐‘›,๐‘Ÿ(๐‘–,๐‘—)

๐‘›โˆ’1

๐‘Ÿ=0

๐‘ข๐‘—๐‘†(๐‘Ÿ)

(๐‘ง, ๐›ผ) = 0

๐‘š

๐‘—=1

๐‘“๐‘œ๐‘Ÿ ๐‘› โ‰ค ๐‘Ÿ,๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐ท๐‘›,๐‘Ÿ(๐‘–,๐‘—)

= 0,๐‘ค๐‘’ ๐‘ก๐‘Ž๐‘˜๐‘’ ๐‘›, ๐‘Ÿ = 0,1โ€ฆ ๐‘ 

Page 86: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

75

Consequently, the equation (3.8) can be written in the matrix form:

(๐ท + ๐ธ)๐‘ˆ = โ„ฑ (3.11)

where

๐น = [

โˆ’๐‘“1(๐‘ง, ๐›ผ),โ€ฆ ,โˆ’๐‘“1(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง, โˆ’๐‘“

1(๐‘ง, ๐›ผ), โ€ฆ ,โˆ’๐‘“

1

(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง, โ€ฆ ,

โˆ’๐‘“๐‘š(๐‘ง, ๐›ผ),โ€ฆ , โˆ’๐‘“๐‘š(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง, โˆ’๐‘“

๐‘š(๐‘ง, ๐›ผ),โ€ฆ , โˆ’๐‘“

๐‘š

(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง ]

๐‘ก

๐‘ข = [๐‘ข1๐‘†(๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข1๐‘†

(๐‘†)(๐‘ฅ, ๐›ผ)|๐‘ฅ=๐‘ง

, ๐‘ข1๐‘†(๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข1๐‘†(๐‘†)

(๐‘ฅ, ๐›ผ)|๐‘ฅ=๐‘ง

, โ€ฆ ,

๐‘ข๐‘š๐‘†(๐‘ง, ๐›ผ), โ€ฆ , ๐‘ข๐‘š๐‘†(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง, ๐‘ข๐‘š๐‘†(๐‘ง, ๐›ผ), โ€ฆ , ๐‘ข๐‘š๐‘†

(๐‘†)(๐‘ฅ, ๐›ผ)|

๐‘ฅ=๐‘ง ]

๐‘ก

D= ๐ท(1,1) โ‹ฏ ๐ท(1,๐‘š)

โ‹ฎ โ‹ฑ โ‹ฎ๐ท(๐‘š,1) โ‹ฏ ๐ท(๐‘š,๐‘š)

, E= ๐ธ(1,1) โ‹ฏ ๐ธ(1,๐‘š)

โ‹ฎ โ‹ฑ โ‹ฎ๐ธ(๐‘š,1) โ‹ฏ ๐ธ(๐‘š,๐‘š)

(3.12)

Parochial matrices ๐ท(๐‘–,๐‘—) ( ๐‘“๐‘œ๐‘Ÿ ๐‘–, ๐‘— = 1,โ€ฆ๐‘š) are defined with the

following elements:

๐ท(๐‘–,๐‘—) = ๐ท1,1

(๐‘–,๐‘—)๐ท1,2

(๐‘–,๐‘—)

๐ท2,1(๐‘–,๐‘—)

๐ท2,2(๐‘–,๐‘—)

, ๐ธ(๐‘–,๐‘—) = ๐ธ1,1

(๐‘–,๐‘—)๐ธ1,2

(๐‘–,๐‘—)

๐ธ2,1(๐‘–,๐‘—)

๐ธ2,2(๐‘–,๐‘—)

, ๐‘–, ๐‘— = 1,โ€ฆ ,๐‘š

(3.13)

where

๐ธ1,1(๐‘–,๐‘—)

= ๐ธ2,2(๐‘–,๐‘—)

=

[ ๐‘’0,0

(๐‘–,๐‘—)โˆ’ 1 ๐‘’0,1

(๐‘–,๐‘—)โ‹ฏ ๐‘’0,๐‘ โˆ’1

(๐‘–,๐‘—)๐‘’0,๐‘ 

(๐‘–,๐‘—)

๐‘’1,0(๐‘–,๐‘—)

๐‘’1,1(๐‘–,๐‘—)

โˆ’ 1 โ‹ฏ ๐‘’1,๐‘ โˆ’1(๐‘–,๐‘—)

๐‘’1,๐‘ (๐‘–,๐‘—)

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘’๐‘ โˆ’1,1(๐‘–,๐‘—)

๐‘’๐‘ โˆ’1,1(๐‘–,๐‘—)

โ‹ฏ ๐‘’๐‘ โˆ’1,๐‘ โˆ’1(๐‘–,๐‘—)

โˆ’ 1 ๐‘’๐‘ โˆ’1,๐‘ (๐‘–,๐‘—)

๐‘’๐‘ ,0(๐‘–,๐‘—)

๐‘’๐‘ ,1(๐‘–,๐‘—)

โ‹ฏ ๐‘’๐‘ ,๐‘ โˆ’1(๐‘–,๐‘—)

๐‘’๐‘ ,๐‘ (๐‘–,๐‘—)

โˆ’ 1]

,

Page 87: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

76

๐ธ1,2(๐‘–,๐‘—)

= ๐ธ2,1(๐‘–,๐‘—)

=

[ ๐‘’โ€ฒ0,0

(๐‘–,๐‘—)โˆ’ 1 ๐‘’โ€ฒ0,1

(๐‘–,๐‘—)โ‹ฏ ๐‘’โ€ฒ0,๐‘ โˆ’1

(๐‘–,๐‘—)๐‘’โ€ฒ0,๐‘ 

(๐‘–,๐‘—)

๐‘’โ€ฒ1,0(๐‘–,๐‘—)

๐‘’โ€ฒ1,1(๐‘–,๐‘—)

โˆ’ 1 โ‹ฏ ๐‘’โ€ฒ1,๐‘ โˆ’1(๐‘–,๐‘—)

๐‘’โ€ฒ1,๐‘ (๐‘–,๐‘—)

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘’โ€ฒ๐‘ โˆ’1,0(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ โˆ’1,1(๐‘–,๐‘—)

โ‹ฏ ๐‘’โ€ฒ๐‘ โˆ’1,๐‘ โˆ’1(๐‘–,๐‘—)

โˆ’ 1 ๐‘’โ€ฒ๐‘ โˆ’1,๐‘ (๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ ,0(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ ,1(๐‘–,๐‘—)

โ‹ฏ ๐‘’โ€ฒ๐‘ ,๐‘ โˆ’1(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ ,๐‘ (๐‘–,๐‘—)

โˆ’ 1]

,

(3.14)

๐ท1,2(๐‘–,๐‘—)

= ๐ท2,1(๐‘–,๐‘—)

=

[

0 0 โ‹ฏ 0 0

๐‘‘โ€ฒ1,0(๐‘–,๐‘—)

0 โ‹ฏ 0 0

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘‘โ€ฒ๐‘ โˆ’1,0(๐‘–,๐‘—)

๐‘‘โ€ฒ๐‘ โˆ’1,1(๐‘–,๐‘—)

โ‹ฏ 0 0

๐‘‘โ€ฒ๐‘ ,0(๐‘–,๐‘—)

๐‘‘โ€ฒ๐‘ ,1(๐‘–,๐‘—)

โ‹ฏ ๐‘‘โ€ฒ๐‘ ,๐‘ โˆ’1(๐‘–,๐‘—)

0]

๐ท1,1(๐‘–,๐‘—)

= ๐ท2,2(๐‘–,๐‘—)

=

[ 0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0]

(๐‘ +1)ร—(๐‘ +1)

3.2 Convergence Analysis

In this section, we will prove that the approximation solution from Taylor

expansion method converges to the exact solution of fuzzy system (3.2).

Theorem (๐Ÿ‘. ๐Ÿ) [๐Ÿ‘๐Ÿ”]: Let the kernel be bounded and belongs to ๐ฟ2 and

๐‘ข๐‘—,๐‘ (๐‘ฅ, ๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘—,๐‘ 

(๐‘ฅ, ๐›ผ) ( ๐‘“๐‘œ๐‘Ÿ ๐‘— = 1,โ€ฆ ,๐‘š) be Taylor polynomials of

degree ๐‘ , and their coefficients are computed by solving the linear system

(3.12), then these polynomials converges to the exact solution of fuzzy

system (3.2), ๐‘คโ„Ž๐‘’๐‘› ๐‘  โ†’ +โˆž.

Page 88: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

77

Proof:

Consider the fuzzy system (3.2). Since the series (3.10) converges to

๐‘ข๐‘—(๐‘ฅ, ๐›ผ)๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘—(๐‘ฅ, ๐›ผ)( ๐‘“๐‘œ๐‘Ÿ ๐‘— = 1,โ€ฆ ,๐‘š), respectively, ๐‘–. ๐‘’

๐‘ข๐‘—(๐‘ฅ, ๐›ผ) = lim๐‘ โ†’โˆž

๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ) , ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘—(๐‘ฅ, ๐›ผ) = lim๐‘ โ†’โˆž

๐‘ข๐‘—๐‘ (๐‘ฅ, ๐›ผ)

then, we conclude that

๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘๐œ†๐‘–,๐‘—

(

โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘–

๐‘Ž

+ โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘— )

๐‘š

๐‘—=1

,

๐‘ข๐‘–๐‘ (๐‘ฅ, ๐›ผ) = ๐‘“๐‘–(๐‘ฅ, ๐›ผ) + โˆ‘๐œ†๐‘–,๐‘—

(

โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

+ โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘— )

๐‘š

๐‘—=1

๐‘–, ๐‘— = 1,โ€ฆ ,๐‘š

(3.15)

now, we define the error function ๐‘’๐‘ (๐‘ฅ, ๐›ผ)as a difference between the two

systems (3.5) ๐‘Ž๐‘›๐‘‘ (3.15), we obtain:

๐‘’๐‘ (๐‘ฅ, ๐›ผ) = โˆ‘๐‘’๐‘–,๐‘ (๐‘ฅ, ๐›ผ),

๐‘š

๐‘–=1

(3.16)

where, ๐‘’๐‘–,๐‘ (๐‘ฅ, ๐›ผ) = ๐‘’๐‘–,๐‘ (๐‘ฅ, ๐›ผ) + ๐‘’๐‘–,๐‘ (๐‘ฅ, ๐›ผ),

Page 89: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

78

๐‘’๐‘–,๐‘ (๐‘ฅ, ๐›ผ) = (๐‘ˆ๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ˆ๐‘–,๐‘ (๐‘ฅ, ๐›ผ))

+โˆ‘๐œ†๐‘–,๐‘— (โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ˆ๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’ ๐‘ˆ๐‘—,๐‘ (๐‘ก, ๐›ผ)) ๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

)

๐‘š

๐‘—=1

+โˆ‘๐œ†๐‘–,๐‘—

๐‘š

๐‘—=1

( โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ˆ๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ˆ๐‘—,๐‘ (๐‘ก, ๐›ผ))๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

)

(3.17)

we must show when ๐‘  โ†’ +โˆž, ๐‘กโ„Ž๐‘’๐‘› ๐‘’๐‘ (๐‘ฅ, ๐›ผ) โ†’ 0

taking the โ€– โ€–of system (3.17 ) we proceed as:

โ€–๐‘’๐‘ โ€– = โ€–โˆ‘๐‘’๐‘–๐‘ 

๐‘š

๐‘–=1

โ€– โ‰ค โˆ‘โ€–๐‘’๐‘–๐‘ โ€–

๐‘š

๐‘–=1

= โˆ‘โ€–๐‘’๐‘–๐‘  + ๐‘’๐‘–๐‘ โ€– โ‰ค โˆ‘(โ€–๐‘’๐‘–๐‘ โ€– + โ€–๐‘’๐‘–๐‘ โ€–)

๐‘š

๐‘–=1

๐‘š

๐‘–=1

= โˆ‘{(๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ))

๐‘š

๐‘–=1

+ โˆ‘๐œ†๐‘–,๐‘— (โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)) ๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

)

๐‘š

๐‘—=1

+ โˆ‘๐œ†๐‘–,๐‘—

๐‘š

๐‘—=1

( โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)) ๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

)}

+โ€–(๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ))

+ โˆ‘๐œ†๐‘–,๐‘— (โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ))๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

)

๐‘š

๐‘—=1

+ โˆ‘๐œ†๐‘–,๐‘—

๐‘š

๐‘—=1

( โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) (๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)) ๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

)โ€–

Page 90: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

79

โ‰ค โˆ‘โ€–(๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ)) + (๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ))โ€–

๐‘š

๐‘–=1

+โˆ‘โ€–โˆ‘๐œ†๐‘–,๐‘— โˆซ ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)(๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) + ๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ))๐‘‘๐‘ก

๐‘๐‘–,๐‘—

๐‘Ž

๐‘š

๐‘—=1

๐‘š

๐‘–=1

+ โˆ‘๐œ†๐‘–,๐‘— โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)(๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ) + ๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ))๐‘‘๐‘ก

๐‘ฅ

๐‘๐‘–,๐‘—

๐‘š

๐‘—=1

โ€–

โ‰ค โˆ‘โ€–(๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ)) + (๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ))โ€–

๐‘š

๐‘–=1

+ โˆ‘โˆ‘ ๐œ†๐‘–,๐‘—

๐‘š

๐‘—=1

๐‘š

๐‘–=1

โ€–โˆซ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก) ( ๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)

๐‘ฅ

๐‘Ž

+ ๐‘ข๐‘—(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ))๐‘‘๐‘กโ€–

โ‰ค โˆ‘โ€–(๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ)) + (๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ))โ€–

๐‘š

๐‘–=1

+ โˆ‘{โˆ‘ ๐œ†๐‘–,๐‘—

๐‘š

๐‘—=1

โˆซโ€–๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)โ€–( โ€–๐‘ข๐‘—(๐‘ก, ๐›ผ) โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)โ€– +

๐‘ฅ

๐‘Ž

โ€–๐‘ข๐‘—(๐‘ก, ๐›ผ)

๐‘š

๐‘–=1

โˆ’ ๐‘ข๐‘—,๐‘ (๐‘ก, ๐›ผ)โ€– )๐‘‘๐‘ก}

since โ€–๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)โ€– is continuous on [๐‘Ž, ๐‘] ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘, therefore,

โ€–๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)โ€– is bounded, this implies that โ€–๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ)โ€– โ†’ 0,

and, โ€–๐‘ข๐‘–(๐‘ฅ, ๐›ผ) โˆ’ ๐‘ข๐‘–,๐‘ (๐‘ฅ, ๐›ผ)โ€– โ†’ 0 ๐‘Ž๐‘  ๐‘  โ†’ +โˆž, โ„Ž๐‘’๐‘›๐‘๐‘’ โ€–๐‘’๐‘ โ€– โ†’ 0.

Page 91: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

80

3.3 Trapezoidal Method

We consider fuzzy Volterra integral equation of the second kind (1.18) and

subdivide the interval of integration [๐‘Ž, ๐‘ฅ] into ๐‘  equal subintervals

[๐‘ฅ๐‘–โˆ’1, ๐‘ฅ๐‘–] of width ๐ฟ =๐‘โˆ’๐‘Ž

๐‘  , ๐‘  โ‰ฅ 1, where b is the end point we choose

for ๐‘ฅ. Now let ๐‘ฅ๐‘– = ๐‘Ž + ๐‘–๐ฟ = ๐‘ก๐‘–. 0 โ‰ค ๐‘– โ‰ค ๐‘ 

the Trapezoidal rule is:

โˆซ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = ๐ฟ ๐‘“(๐‘Ž) + ๐‘“(๐‘)

2+ โˆ‘๐‘“(๐‘ฅ๐‘–)

๐‘ โˆ’1

๐‘–=1

๐‘

๐‘Ž

using the trapezoidal rule with ๐‘› subintervals, we approximate the fuzzy

Volterra integral equation by [20]:

โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก โ‰ˆ ๐ฟ ๐‘˜(๐‘ฅ, ๐‘ก0)๐‘ข(๐‘ก0) + ๐‘˜(๐‘ฅ, ๐‘ก๐‘†)๐‘ข(๐‘ก๐‘†)

2+ โˆ‘๐‘˜(๐‘ฅ, ๐‘ก๐‘–)๐‘ข(๐‘ก๐‘–)

๐‘†โˆ’1

๐‘–=1

๐‘ฅ

๐‘Ž

(3.18)

๐ฟ =๐‘ก๐‘— โˆ’ ๐‘Ž

๐‘—=

๐‘ฅ๐‘  โˆ’ ๐‘Ž

๐‘ , ๐‘ก๐‘— โ‰ค ๐‘ฅ, ๐‘— โ‰ฅ 1, ๐‘ = ๐‘ฅ๐‘† = ๐‘ก๐‘† , ๐‘— = 0,1,โ€ฆ , ๐‘ 

let us define:

{

๐บ๐‘ (๐‘ฅ, ๐›ผ) = ๐ฟ

๐‘˜(๐‘ฅ, ๐‘Ž)๐‘ข(๐‘Ž) + ๐‘˜(๐‘ฅ, ๐‘)๐‘ข(๐‘)

2+ โˆ‘ ๐‘˜(๐‘ฅ, ๐‘ก๐‘–)๐‘ข(๐‘ก๐‘–)

๐‘›โˆ’1

๐‘–=1

๐บ๐‘ (๐‘ฅ, ๐›ผ) = ๐ฟ ๐‘˜(๐‘ฅ, ๐‘Ž)๐‘ข(๐‘Ž) + ๐‘˜(๐‘ฅ, ๐‘)๐‘ข(๐‘)

2+ โˆ‘ ๐‘˜(๐‘ฅ, ๐‘ก๐‘–)๐‘ข(๐‘ก๐‘–)

๐‘›โˆ’1

๐‘–=1

(3.19)

Page 92: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

81

hence, the fuzzy Volterra integral equation (1.18) is approximated by:

๐‘ข(๐‘ฅ, ๐›ผ) = { ๐‘“(๐‘ฅ, ๐›ผ) + ๐บ๐‘ (๐›ผ)

๐‘“(๐‘ฅ, ๐›ผ) + ๐บ๐‘ (๐›ผ) (3.20)

we substitute ๐‘ฅ = ๐‘ฅ๐‘– in the equation (3.20), we get:

๐‘ข(๐‘ฅ๐‘– , ๐›ผ) = ๐‘“(๐‘ฅ๐‘– , ๐›ผ) + ๐ฟ [

๐‘˜(๐‘ฅ๐‘–,๐‘Ž)๐‘ข(๐‘Ž)+๐‘˜(๐‘ฅ๐‘–,๐‘ฅ๐‘–)๐‘ข(๐‘ฅ๐‘–)

2+ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š)๐‘–โˆ’1

๐‘š=1 ]

๐‘“(๐‘ฅ๐‘– , ๐›ผ) + ๐ฟ ๐‘˜(๐‘ฅ๐‘–,๐‘Ž)๐‘ข(๐‘Ž)+๐‘˜(๐‘ฅ๐‘–,๐‘ฅ๐‘–)๐‘ข(๐‘ฅ๐‘–)

2+ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š)๐‘–โˆ’1

๐‘š=1

(3.21)

now, we assume that

{๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š) โ‰ฅ 0, 0 โ‰ค ๐‘š โ‰ค ๐‘

๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š) โ‰ค 0, ๐‘ + 1 โ‰ค ๐‘š โ‰ค ๐‘– (3.22)

then, the equation (3.21) becomes:

๐‘ข(๐‘ฅ๐‘– , ๐›ผ) = ๐‘“(๐‘ฅ๐‘– , ๐›ผ) +๐ฟ

2๐‘˜(๐‘ฅ๐‘– , ๐‘Ž)๐‘ข(๐‘Ž, ๐›ผ) + +๐ฟ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š

๐‘

๐‘š=1

)

+ ๐ฟ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š

๐‘–

๐‘š=๐‘+1

) +๐ฟ

2๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘–)๐‘ข(๐‘ฅ๐‘–, ๐‘ฅ๐‘–),

and (3.23)

๐‘ข(๐‘ฅ๐‘– , ๐›ผ) = ๐‘“(๐‘ฅ๐‘– , ๐›ผ) +๐ฟ

2๐‘˜(๐‘ฅ๐‘– , ๐‘Ž)๐‘ข(๐‘Ž, ๐›ผ) + +๐ฟ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š

๐‘

๐‘š=1

)

+ ๐ฟ โˆ‘ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘š)๐‘ข(๐‘ฅ๐‘š

๐‘–

๐‘š=๐‘+1

) +๐ฟ

2๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘–)๐‘ข(๐‘ฅ๐‘– , ๐‘ฅ๐‘–)

Page 93: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

82

๐‘– = 0,1,2, โ€ฆ , ๐‘ 

from the equation (3.234) , the following system was obtained:

(๐‘Š + ๐‘‰) ๐‘ˆ = ๐น (3.24)

where

๐‘ข = [๐‘ข(๐‘ฅ0, ๐›ผ), ๐‘ข(๐‘ฅ1, ๐›ผ), โ€ฆ , ๐‘ข(๐‘ฅ๐‘ , ๐›ผ), ๐‘ข(๐‘ฅ0, ๐›ผ), ๐‘ข(๐‘ฅ1, ๐›ผ),โ€ฆ , ๐‘ข(๐‘ฅ๐‘ , ๐›ผ)]๐‘ก

๐น = [๐‘“(๐‘ฅ0, ๐›ผ), ๐‘“(๐‘ฅ1, ๐›ผ),โ€ฆ , ๐‘“(๐‘ฅ๐‘ , ๐›ผ), ๐‘“(๐‘ฅ0, ๐›ผ), ๐‘“(๐‘ฅ1, ๐›ผ), โ€ฆ , ๐‘“(๐‘ฅ๐‘ , ๐›ผ)]๐‘ก

๐‘Š = ๐‘Š1,1 ๐‘Š1,2

๐‘Š2,1 ๐‘Š2,2

where ๐‘Š1,1 = (๐‘ค)๐‘–,๐‘— ,0 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘  , 1โ‰ค ๐‘ โ‰ค ๐‘ , with:

(๐‘ค)๐‘–,๐‘— =

{

โˆ’๐ฟ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) ,1 โ‰ค ๐‘— โ‰ค ๐‘– โ‰ค ๐‘

1 ,0 โ‰ค ๐‘– = ๐‘— โ‰ค ๐‘  โˆ’โˆ’๐ฟ

2 ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) ,1 โ‰ค ๐‘– โ‰ค ๐‘, ๐‘— = 0

0 , ๐‘’๐‘™๐‘ ๐‘’ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

๐‘Š1,1 = ๐‘Š2,2 , ๐‘Š1,2 = ๐‘Š2,1 = ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ .

๐‘‰ = ๐‘‰1,1 ๐‘‰1,2

๐‘‰2,1 ๐‘‰2,2

where ๐‘‰1,1 = (๐‘ฃ)๐‘–,๐‘— ,0 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘  , 1โ‰ค ๐‘ โ‰ค ๐‘ ,with:

Page 94: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

83

(๐‘ฃ)๐‘–,๐‘— =

{

โˆ’๐ฟ ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) , ๐‘ + 1 โ‰ค ๐‘— โ‰ค ๐‘– โ‰ค ๐‘ 

โˆ’๐ฟ

2 ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) ,1 โ‰ค ๐‘– = ๐‘— โ‰ค ๐‘ 

โˆ’๐ฟ

2 ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) , ๐‘ + 1 โ‰ค ๐‘– โ‰ค ๐‘ , ๐‘— = 0

0 , ๐‘’๐‘™๐‘ ๐‘’ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

๐‘‰1,1 = ๐‘‰2,2 , ๐‘‰1,2 = ๐‘‰2,1 = ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ .

for arbitrary fixed ๐›ผ we have

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘†โ†’โˆž

๐บ๐‘›(๐›ผ) = โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

,

and (3.25)

๐‘ข(๐‘ฅ, ๐›ผ) = lim๐‘†โ†’โˆž

๐บ๐‘›(๐›ผ) = โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

.

Theorem (๐Ÿ‘. ๐Ÿ) [๐Ÿ’๐Ÿ”]:

If ๐‘“(๐‘ฅ, ๐›ผ) is continuous in the metric ๐ท, then ๐บ๐‘›(๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐บ๐‘›(๐›ผ)

converges uniformly in ๐›ผ ๐‘ก๐‘œ ๐‘ข(๐‘ฅ, ๐›ผ) ๐‘Ž๐‘›๐‘‘ ๐‘ข(๐‘ฅ, ๐›ผ), respectively.

proof: see [46]

3.4 Variation Iteration Method

In this section, we will use the variation iteration method (VIM) to

approximate the solution of Volterra integral equations of the second kind.

The method constructs a convergent sequence of functions, which

approximates the exact solution with some iteration.

Page 95: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

84

Consider the following general nonlinear system by [29]:

๐ฟ[๐‘ข(๐‘ฅ)] + ๐‘[๐‘ข(๐‘ก)] = โ„Ž(๐‘ฅ), (3.26)

where ๐ฟ is a linear operator, ๐‘ is a nonlinear operator and โ„Ž(๐‘ฅ) is a given

continuous function. from the Variational iteration method, we can

construct the following correction functional:

๐‘ข๐‘+1(๐‘ฅ) = ๐‘ข๐‘(๐‘ฅ) + โˆซ๐œ†(๐‘ง)[๐ฟ[๐‘ข๐‘(๐‘ง)] + ๐‘[๏ฟฝฬƒ๏ฟฝ๐‘(๐‘ง)] โˆ’ โ„Ž(๐‘ง)]

๐‘ฅ

0

๐‘‘๐‘ง

(3.27)

where ๐‘ = 0,1,3, โ€ฆ, and ๐œ† is a langrage multiplier which can identified

optimally via variational theory, ๐‘ข๐‘ is the ๐‘ ๐‘กโ„Ž approximate solution,

and ๏ฟฝฬƒ๏ฟฝ๐‘ is a restricted variation (๐‘–. ๐‘’, ๐›ฟ๏ฟฝฬƒ๏ฟฝ๐‘ = 0).

now, let us differentiate both sides of the Volterra integral equation of the

second kind with respect to ๐‘ฅ , we get:

๐‘ขโ€ฒ(๐‘ฅ) = ๐‘“โ€ฒ(๐‘ฅ) +๐‘‘

๐‘‘๐‘ฅโˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž (3.28)

We use the variation iteration method in direction ๐‘ฅThen we get the

following iteration sequence:

๐‘ข๐‘+1(๐‘ฅ) =

๐‘ข๐‘(๐‘ฅ) + โˆซ๐œ†(๐‘ง) ๐‘ข๐‘โ€ฒ (๐‘ง) โˆ’ ๐‘“โ€ฒ(๐‘ง) โˆ’

๐‘‘

๐‘‘๐‘งโˆซ๐‘˜(๐‘ง, ๐‘ก)๐‘ข๐‘(๐‘ก)๐‘‘๐‘ก

๐‘ง

๐‘Ž

๐‘ฅ

0

๐‘‘๐‘ง

(3.29)

Page 96: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

85

then we calculate variation with respect to ๐‘ข๐‘, notice that ๐›ฟ๐‘ข๐‘(0)=0,

yields:

๐›ฟ๐‘ข๐‘+1 = ๐›ฟ๐‘ข๐‘ + ๐œ†๐›ฟ๐‘ข๐‘ ๐‘ง=๐‘ฅโˆ’ โˆซ ๐œ†โ€ฒ(๐‘ง)๐›ฟ๐‘ข๐‘๐‘‘๐‘ง = 0

๐‘ฅ

0 (3.30)

therefore, we get the following stationary conditions:

๐œ†โ€ฒ(๐‘ง)|๐‘ง=๐‘ฅ = 0, 1 + ๐œ†(๐‘ง)|๐‘ง=๐‘ฅ = 0

hence, the lagrange multiplier, can be identified:

๐œ†(๐‘ง) = โˆ’1,

If we substitute the value of the the Lagrange multiplier into the equation

(3.29), we obtain the following iteration formula:

๐‘ข๐‘+1(๐‘ฅ) =

๐‘ข๐‘(๐‘ฅ) โˆ’ โˆซ ๐‘ข๐‘โ€ฒ (๐‘ง) โˆ’ ๐‘“โ€ฒ(๐‘ง) โˆ’

๐‘‘

๐‘‘๐‘งโˆซ๐‘˜(๐‘ง, ๐‘ก)๐‘ข๐‘(๐‘ก)๐‘‘๐‘ก

๐‘ง

๐‘Ž

๐‘ฅ

0

๐‘‘๐‘ง

(3.31)

we apply variational iteration method on fuzzy Volterra integral equation

of the second kind:

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘Ž

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ† โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

๐‘Ž

(3.32)

we suppose that the kernel ๐‘˜(๐‘ฅ, ๐‘ก) > 0 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž โ‰ค ๐‘ก โ‰ค ๐‘ , ๐‘Ž๐‘›๐‘‘

Page 97: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

86

๐‘˜(๐‘ฅ, ๐‘ก) < 0 ๐‘“๐‘œ๐‘Ÿ ๐‘ โ‰ค ๐‘ก โ‰ค ๐‘ฅ, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š (3.32) becomes by [1]:

{

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

๐‘

๐‘Ž

๐‘ข(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘

๐‘Ž

+ ๐œ†โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

๐‘

(3.33)

for each 0 โ‰ค ๐›ผ โ‰ค 1 ๐‘Ž๐‘›๐‘‘ ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘,

now, using variation iteration method and equation (3.31), we get the

following iteration formulas:

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘ข๐‘(๐‘ฅ, ๐›ผ) โˆ’

โˆซ[๐‘ข๐‘โ€ฒ (๐‘ง, ๐›ผ) โˆ’ ๐‘“โ€ฒ(๐‘ง, ๐›ผ) โˆ’ โˆซ

๐œ•๐‘˜(๐‘ง, ๐‘ก)

๐œ•๐‘ง๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’

๐ถ

๐‘Ž

๐‘˜(๐‘ง, ๐‘ง)๐‘ข๐‘(๐‘ง, ๐›ผ)

๐‘ฅ

0

โˆ’ โˆซ๐œ•๐‘˜(๐‘ง, ๐‘ก)

๐œ•๐‘ง(๐‘ก, ๐›ผ)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ง

๐‘

] ๐‘‘๐‘ง

(3.34)

and

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘ข๐‘(๐‘ฅ, ๐›ผ) โˆ’

โˆซ [๐‘ข๐‘โ€ฒ(๐‘ง, ๐›ผ) โˆ’ ๐‘“

โ€ฒ(๐‘ง, ๐›ผ) โˆ’ โˆซ

๐œ•๐‘˜(๐‘ง, ๐‘ก)

๐œ•๐‘ง๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก โˆ’

๐ถ

๐‘Ž

๐‘˜(๐‘ง, ๐‘ง)๐‘ข(๐‘ง, ๐›ผ)

๐‘ฅ

0

โˆ’ โˆซ๐œ•๐‘˜(๐‘ง, ๐‘ก)

๐œ•๐‘ง(๐‘ก, ๐›ผ)๐‘ข๐‘˜(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ง

๐‘

] ๐‘‘๐‘ง

Page 98: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

87

where ๐‘ = 0,1,2, โ€ฆ

Using the formulas in (3.34), we can find a solution of equation (3.33) and

hence obtain a fuzzy solution of the linear fuzzy Volterra integral equation

of the second kind.

Page 99: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

88

Chapter Four

Numerical Examples and Results

In this chapter, we will use algorithms and MAPLE software to solve

numerical examples, then draw a comparison between approximate

solutions and exact ones, to demonstrate the efficiency of these

numerical schemes in chapter three. These include: Taylor expansion

method, Trapezoidal method, and variation iteration method.

Numerical example (๐Ÿ’. ๐Ÿ): (๐‘ป๐’‚๐’š๐’๐’๐’“ ๐’†๐’™๐’‘๐’‚๐’๐’”๐’Š๐’๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

Consider the linear fuzzy Volterra integral equations:

{

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 + โˆซ(๐‘ฅ โˆ’ ๐‘ก)๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

(4.1)

0 โ‰ค ๐‘ฅ โ‰ค 1, 0 โ‰ค ๐›ผ โ‰ค 1

the analytical solution of the above problem is given by:

{๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ + 1) (๐‘’๐‘ฅ + ๐‘’โˆ’๐‘ฅ โˆ’ 2)

๐‘ข(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)(๐‘’๐‘ฅ + ๐‘’โˆ’๐‘ฅ โˆ’ 2) 0 โ‰ค ๐›ผ โ‰ค 1 (4.2)

we expand the unknown functions in the Taylor series at ๐‘ง =1

4

to solve the previous example by using Taylor expansion method using

MAPLE software, we will apply the following algorithm:

Page 100: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

89

Algorithm (๐Ÿ’. ๐Ÿ)

1. Input ๐‘Ž, ๐‘, ๐‘ง,๐‘š, ๐œ† , ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก), ๐‘“๐‘–(๐‘ฅ, ๐›ผ), ๐‘“๐‘–(๐‘ฅ, ๐›ผ)

2. Input the Taylor expansion degree ( ๐‘ )

3. Calculate ๐œ•(๐‘›)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›,๐œ•(๐‘›)๐‘“๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘›,๐œ•(๐‘›)๐‘“

๐‘–(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘› , ๐‘› = 0,1,โ€ฆ , ๐‘ 

4. Calculate

๐‘’๐‘›+1,๐‘Ÿ+1(๐‘–,๐‘—)

=๐œ†๐‘–,๐‘—

๐‘Ÿ! โˆซ

๐œ•๐‘Ÿ๐‘˜๐‘–,๐‘—

๐œ•๐‘ฅ๐‘Ÿ(๐‘ฅ, ๐‘ก).

๐‘๐‘–,๐‘—

๐‘Ž

(๐‘ก โˆ’ ๐‘ง)๐‘Ÿ ๐‘‘๐‘ก ๐‘–, ๐‘— = 1,โ€ฆ ,๐‘š

5. Calculate

๐‘’โ€ฒ๐‘›+1,๐‘Ÿ+1(๐‘–,๐‘—)

=๐œ†๐‘–,๐‘—

๐‘Ÿ! โˆซ

๐œ•๐‘Ÿ๐‘˜๐‘–,๐‘—

๐œ•๐‘ฅ๐‘Ÿ(๐‘ฅ, ๐‘ก).

๐‘๐‘–,๐‘—

๐‘Ž

(๐‘ก โˆ’ ๐‘ง)๐‘Ÿ ๐‘‘๐‘ก ๐‘–, ๐‘— = 1,โ€ฆ ,๐‘š

6. Put ๐ธ1,1

(๐‘–,๐‘—)= ๐ธ2,2

(๐‘–,๐‘—)

=

[ ๐‘’1,1

(๐‘–,๐‘—)โˆ’ 1 ๐‘’1,2

(๐‘–,๐‘—)โ‹ฏ ๐‘’1,๐‘ 

(๐‘–,๐‘—)๐‘’1,๐‘ +1

(๐‘–,๐‘—)

๐‘’2,1(๐‘–,๐‘—)

๐‘’2,2(๐‘–,๐‘—)

โˆ’ 1 โ‹ฏ ๐‘’2,๐‘ (๐‘–,๐‘—)

๐‘’2,๐‘ +1(๐‘–,๐‘—)

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘’๐‘ ,1(๐‘–,๐‘—)

๐‘’๐‘ ,2(๐‘–,๐‘—)

โ‹ฏ ๐‘’๐‘ ,๐‘ (๐‘–,๐‘—)

โˆ’ 1 ๐‘’๐‘ ,๐‘ +1(๐‘–,๐‘—)

๐‘’๐‘ +1,1(๐‘–,๐‘—)

๐‘’๐‘ +1,2(๐‘–,๐‘—)

โ‹ฏ ๐‘’๐‘ +1,๐‘ (๐‘–,๐‘—)

๐‘’๐‘ +1,๐‘ +1(๐‘–,๐‘—)

โˆ’ 1]

(๐‘ +1)ร—(๐‘ +1)

7. ๐ธโ€ฒ

1,2(๐‘–,๐‘—)

= ๐ธโ€ฒ2,1(๐‘–,๐‘—)

=

[ ๐‘’

โ€ฒ1,1(๐‘–,๐‘—)

โˆ’ 1 ๐‘’โ€ฒ1,2(๐‘–,๐‘—)

โ‹ฏ ๐‘’โ€ฒ1,๐‘ (๐‘–,๐‘—)

๐‘’โ€ฒ1,๐‘ +1(๐‘–,๐‘—)

๐‘’โ€ฒ2,1(๐‘–,๐‘—)

๐‘’โ€ฒ2,2(๐‘–,๐‘—)

โˆ’ 1 โ‹ฏ ๐‘’โ€ฒ2,๐‘ (๐‘–,๐‘—)

๐‘’โ€ฒ2,๐‘ +1(๐‘–,๐‘—)

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘’โ€ฒ๐‘ ,1(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ ,2(๐‘–,๐‘—)

โ‹ฏ ๐‘’โ€ฒ๐‘ ,๐‘ (๐‘–,๐‘—)

โˆ’ 1 ๐‘’โ€ฒ๐‘ ,๐‘ +1(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ +1,1(๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ +1,2(๐‘–,๐‘—)

โ‹ฏ ๐‘’โ€ฒ๐‘ +1,๐‘ (๐‘–,๐‘—)

๐‘’โ€ฒ๐‘ +1,๐‘ +1(๐‘–,๐‘—)

โˆ’ 1]

Page 101: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

90

where ๐‘–, ๐‘— = 1,2,โ€ฆ ,๐‘š

8. Calculate

๐‘‘๐‘›+1,๐‘™+1โ€ฒ = โˆ‘(

๐‘› โˆ’ ๐‘Ÿ โˆ’ 1

๐‘› โˆ’ ๐‘™ โˆ’ ๐‘Ÿ โˆ’ 1)(

๐œ•(๐‘Ÿ)๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ก=๐‘ฅ

)

(๐‘›โˆ’๐‘™โˆ’๐‘Ÿโˆ’1)

|

๐‘ฅ=๐‘ง

๐‘›โˆ’๐‘™โˆ’1

๐‘Ÿ=0

9. Put

๐ท1,1(๐‘–,๐‘—)

= ๐ท2,2(๐‘–,๐‘—)

=

[ 0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0]

(๐‘ +1)ร—(๐‘ +1)

10. Put

๐ทโ€ฒ1,2(๐‘–,๐‘—)

= ๐ทโ€ฒ2,1(๐‘–,๐‘—)

=

[

0 0 โ‹ฏ 0 0

๐‘‘โ€ฒ2,1(๐‘–,๐‘—)

0 โ‹ฏ 0 0

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ

๐‘‘โ€ฒ๐‘˜,1(๐‘–,๐‘—)

๐‘‘โ€ฒ๐‘˜,2(๐‘–,๐‘—)

โ‹ฏ 0 0

๐‘‘โ€ฒ๐‘˜+1,1(๐‘–,๐‘—)

๐‘‘โ€ฒ๐‘˜+1,2(๐‘–,๐‘—)

โ‹ฏ ๐‘‘โ€ฒ๐‘˜+1,๐‘˜(๐‘–,๐‘—)

0]

(๐‘ +1)ร—(๐‘ +1)

11. denote ๐ท(๐‘–,๐‘—) = ๐ท1,1

(๐‘–,๐‘—)๐ท1,2

(๐‘–,๐‘—)

๐ท2,1(๐‘–,๐‘—)

๐ท2,2(๐‘–,๐‘—)

,

12. put

โ„ฑ = [โˆ’๐‘“1(๐‘ง, ๐›ผ), โ€ฆ ,โˆ’๐‘“1

(๐‘˜)(๐‘ง, ๐›ผ),โˆ’๐‘“1(๐‘ง, ๐›ผ),โ€ฆ ,โˆ’๐‘“

1

(๐‘ )(๐‘ง, ๐›ผ),โ€ฆ ,

โˆ’๐‘“๐‘š(๐‘ง, ๐›ผ),โ€ฆ , โˆ’๐‘“๐‘š(๐‘ )(๐‘ง, ๐›ผ), โˆ’๐‘“

๐‘š(๐‘ง, ๐›ผ), โ€ฆ ,โˆ’๐‘“

๐‘š

(๐‘ )(๐‘ง, ๐›ผ)

]

๐‘ก

Page 102: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

91

13. put

๐‘ข = ๐‘ข1๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข1๐‘ 

(๐‘ )(๐‘ง, ๐›ผ), ๐‘ข1๐‘ (๐‘ง, ๐›ผ), โ€ฆ , ๐‘ข1๐‘ (๐‘ )

(๐‘ง, ๐›ผ), โ€ฆ ,

๐‘ข๐‘š๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข๐‘š๐‘ (๐‘ )(๐‘ง, ๐›ผ), ๐‘ข๐‘š๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข๐‘š๐‘ 

(๐‘ )(๐‘ง, ๐›ผ)

๐‘ก

14. solve the following linear system (๐ธ + ๐ท)๐‘ข = โ„ฑ

15. estimate ๐‘ข(๐‘ง, ๐›ผ), ๐‘ข(๐‘ง, ๐›ผ) by computing Taylor expansion for ๐‘ข

{

๐‘ข๐‘—,๐‘  = โˆ‘(

1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’ ๐‘ง)๐‘Ÿ)

๐‘ 

๐‘Ÿ=0

๐‘ข๐‘—,๐‘  = โˆ‘(1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’ ๐‘ง)๐‘Ÿ)

๐‘ 

๐‘Ÿ=0

, ๐‘Ž โ‰ค ๐‘ฅ, ๐‘ง โ‰ค ๐‘,

0 โ‰ค ๐›ผ โ‰ค 1, ๐‘— = 1,2,โ€ฆ ,๐‘š

We get the following results

๐ธ1,1(1,1)

= ๐ธ2,2(1,1)

= [

โˆ’0.96875 โˆ’0.00520833 0.00048828 โˆ’0.000032550.25000 โˆ’1.03125000 0.00260416 โˆ’0.00016276

0 0 โˆ’1 00 0 0 โˆ’1

]

๐ธ1,2(1,1)

= ๐ธ2,1(1,1)

= [

0 0 0 00 0 0 00 0 0 00 0 0 0

]

โ„Ž๐‘’๐‘›๐‘๐‘’,

๐ธ = ๐ธ1,1

(1,1)๐ธ1,2

(1,1)

๐ธ2,1(1,1)

๐ธ2,2(1,1)

๐ท1,1(1,1)

= ๐ท2,2(1,1)

= [

0 0 0 00 0 0 01 0 0 00 1 0 0

]

๐ท1,2(1,1)

= ๐ท2,1(1,1)

= [

0 0 0 00 0 0 00 0 0 00 0 0 0

]

Page 103: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

92

๐ท = ๐ท1,1

(1,1)๐ท1,2

(1,1)

๐ท2,1(1,1)

๐ท2,2(1,1)

=

[ 0 0 0 0 0 0 0 00 0 0 0 0 0 0 01 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 0]

โ„ฑ(๐‘ง, ๐›ผ) = [

โˆ’๐‘“(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒโ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒโ€ฒโ€ฒ(๐‘ง, ๐›ผ),

โˆ’๐‘“(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“

โ€ฒโ€ฒ(๐‘ง, ๐›ผ), โˆ’๐‘“

โ€ฒโ€ฒโ€ฒ(๐‘ง, ๐›ผ)

]

๐‘ก

โ„ฑ(๐‘ง, ๐›ผ) =

โˆ’1

16(๐›ผ + 1),

โˆ’1

2(๐›ผ + 1),โˆ’2(๐›ผ + 1), 0,

โˆ’1

16(3 โˆ’ ๐›ผ),

โˆ’1

2(3 โˆ’ ๐›ผ),โˆ’2(3 โˆ’ ๐›ผ),0

๐‘ก

Solving the linear system

(๐ท + ๐ธ)๐‘ข = โ„ฑ

we get the following:

๐‘ข(๐‘ง, ๐›ผ) =

[ 0.0628227120219095(๐›ผ + 1)

0.505207645425615(๐›ผ + 1)

2.06282271202191(๐›ผ + 1)

0.505207645425615(๐›ผ + 1)

0.0628227120219095(3 โˆ’ ๐›ผ)

0.505207645425615(3 โˆ’ ๐›ผ)

2.06282271202191(3 โˆ’ ๐›ผ)

0.505207645425615(3 โˆ’ ๐›ผ) ]

{

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(

1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’1

4)๐‘Ÿ

)

๐‘ 

๐‘Ÿ=0

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’1

4)๐‘Ÿ

)

๐‘ 

๐‘Ÿ=0

, 0 โ‰ค ๐‘ฅ โ‰ค 1,0 โ‰ค ๐›ผ โ‰ค 1

hence, the approximated solution is:

Page 104: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

93

๐‘ข(๐‘ฅ, ๐›ผ) = 2.000407015 ๐‘ฅ + 1.738708618 ๐›ผ + .3524026447๐‘ฅ3

+ 0.1975243281 ๐‘ฅ4 + 0.1905848255 ๐‘ฅ5 โˆ’ 0.73872694+ 0.04282267662 ๐›ผ ๐‘ฅ4 โˆ’ 0.01020620726 ๐›ผ ๐‘ฅ5

โˆ’ 1.000007782 ๐›ผ ๐‘ฅ + 0.9961625156 ๐‘ฅ2 โˆ’ 0.4999246903 ๐›ผ ๐‘ฅ2 + 0.1662755673 ๐›ผ ๐‘ฅ3,

and

๐‘ข(๐‘ฅ, ๐›ผ) = 0.18846813606572846 โˆ’ 0.06282271202190949๐›ผ

+(3.09423406803286 โˆ’ 1.0314113560109548 ๐›ผ) (๐‘ฅ โˆ’1

4)2

+(1.5156229362768463 โˆ’ 0.5052076454256154 ๐›ผ) (๐‘ฅ โˆ’1

4)

+(0.2526038227128076 โˆ’ 0.08420127423760254๐›ผ) (๐‘ฅ โˆ’1

4)3

Figure (4.1) (a) compares between the exact and numerical solutions for

๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.1) at ๐‘ฅ =1

2

Figure (4.1) (a) shows the absolute error between the exact and numerical solutions for

๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.1) at ๐‘ฅ =1

2

Page 105: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

94

Table (๐Ÿ’. ๐Ÿ)(๐›) shows the comparison between the exact solution and the approximate

solution, and the resulted error.

Page 106: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

95

Table 4.1: The exact and numerical solutions for ๐’–(๐’™, ๐œถ), and the resulted error by algorithm (๐Ÿ’. ๐Ÿ) ๐’‚๐’• ๐’™ = ๐Ÿ

๐Ÿ

๐œถ Numerical solution ๐’–(๐’™, ๐œถ) Exact solution ๐’–(๐’™, ๐œถ) Numerical solution ๐’–(๐’™, ๐œถ) Exact solution ๐’–(๐’™, ๐œถ) Error =D

(๐’–๐’†๐’™๐’‚๐’„๐’•, ๐’–๐’‚๐’‘๐’‘)

0 ๐ŸŽ. ๐Ÿ๐Ÿ“๐Ÿ’๐Ÿ—๐ŸŽ๐Ÿ‘๐Ÿ’๐Ÿ•๐Ÿ–๐ŸŽ ๐ŸŽ. ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ“๐Ÿ๐Ÿ—๐Ÿ‘๐Ÿ ๐ŸŽ. ๐Ÿ•๐Ÿ”๐Ÿ’๐Ÿ•๐Ÿ๐ŸŽ๐Ÿ’๐Ÿ‘๐Ÿ’ ๐ŸŽ. ๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ•๐Ÿ“๐Ÿ“๐Ÿ•๐Ÿ—๐Ÿ 1.045 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.1 ๐ŸŽ. ๐Ÿ๐Ÿ–๐ŸŽ๐Ÿ‘๐Ÿ—๐Ÿ‘๐Ÿ–๐Ÿ๐Ÿ“๐Ÿ– ๐ŸŽ. ๐Ÿ๐Ÿ–๐ŸŽ๐Ÿ•๐Ÿ•๐Ÿ•๐Ÿ๐Ÿ๐Ÿ’ ๐ŸŽ. ๐Ÿ•๐Ÿ‘๐Ÿ—๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐Ÿ–๐Ÿ” ๐ŸŽ. ๐Ÿ•๐Ÿ’๐ŸŽ๐Ÿ๐Ÿ‘๐ŸŽ๐Ÿ“๐Ÿ—๐Ÿ— 1.0105 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.2 ๐ŸŽ. ๐Ÿ‘๐ŸŽ๐Ÿ“๐Ÿ–๐Ÿ–๐Ÿ’๐Ÿ๐Ÿ•๐Ÿ‘๐Ÿ” ๐ŸŽ. ๐Ÿ‘๐ŸŽ๐Ÿ”๐Ÿ‘๐ŸŽ๐Ÿ๐Ÿ‘๐Ÿ๐Ÿ• ๐ŸŽ. ๐Ÿ•๐Ÿ๐Ÿ‘๐Ÿ•๐Ÿ๐Ÿ—๐Ÿ•๐Ÿ‘๐Ÿ– ๐ŸŽ. ๐Ÿ•๐Ÿ๐Ÿ’๐Ÿ•๐ŸŽ๐Ÿ“๐Ÿ’๐ŸŽ๐Ÿ” 9.7566 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.3 ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ‘๐Ÿ•๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ๐Ÿ’ ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ“๐Ÿ๐ŸŽ ๐ŸŽ. ๐Ÿ”๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ‘๐Ÿ—๐Ÿ‘๐Ÿ—๐ŸŽ ๐ŸŽ. ๐Ÿ”๐Ÿ–๐Ÿ—๐Ÿ๐Ÿ–๐ŸŽ๐Ÿ๐Ÿ๐Ÿ‘ 9.4082 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.4 ๐ŸŽ. ๐Ÿ‘๐Ÿ“๐Ÿ”๐Ÿ–๐Ÿ”๐Ÿ’๐Ÿ–๐Ÿ”๐Ÿ—๐Ÿ ๐ŸŽ. ๐Ÿ‘๐Ÿ“๐Ÿ•๐Ÿ‘๐Ÿ“๐Ÿ๐Ÿ•๐ŸŽ๐Ÿ‘ ๐ŸŽ. ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ•๐Ÿ’๐Ÿ—๐ŸŽ๐Ÿ’๐Ÿ ๐ŸŽ. ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ”๐Ÿ“๐Ÿ“๐ŸŽ๐Ÿ๐ŸŽ 9.0598ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.5 ๐ŸŽ. ๐Ÿ‘๐Ÿ–๐Ÿ๐Ÿ‘๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ๐Ÿ•๐ŸŽ ๐ŸŽ. ๐Ÿ‘๐Ÿ–๐Ÿ๐Ÿ–๐Ÿ•๐Ÿ•๐Ÿ–๐Ÿ—๐Ÿ” ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ•๐Ÿ๐Ÿ“๐Ÿ–๐Ÿ”๐Ÿ—๐Ÿ“ ๐ŸŽ. ๐Ÿ”๐Ÿ‘๐Ÿ–๐Ÿ๐Ÿ๐Ÿ—๐Ÿ–๐Ÿ๐Ÿ• 8.7113 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.6 ๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ•๐Ÿ–๐Ÿ’๐Ÿ“๐Ÿ“๐Ÿ”๐Ÿ’๐Ÿ– ๐ŸŽ. ๐Ÿ’๐ŸŽ๐Ÿ–๐Ÿ’๐ŸŽ๐Ÿ‘๐ŸŽ๐Ÿ—๐ŸŽ ๐ŸŽ. ๐Ÿ”๐Ÿ๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ–๐Ÿ‘๐Ÿ’๐Ÿ• ๐ŸŽ. ๐Ÿ”๐Ÿ๐Ÿ๐Ÿ”๐ŸŽ๐Ÿ’๐Ÿ”๐Ÿ‘๐Ÿ‘ 8.3628 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.7 ๐ŸŽ. ๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ“๐Ÿ—๐Ÿ๐Ÿ๐Ÿ” ๐ŸŽ. ๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ—๐Ÿ๐Ÿ–๐Ÿ๐Ÿ–๐Ÿ ๐ŸŽ. ๐Ÿ“๐Ÿ–๐Ÿ”๐Ÿ๐Ÿ•๐Ÿ•๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ’ ๐ŸŽ. ๐Ÿ“๐Ÿ–๐Ÿ•๐ŸŽ๐Ÿ•๐Ÿ—๐Ÿ’๐Ÿ’๐ŸŽ 8.0144 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.8 ๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ–๐Ÿ–๐Ÿ๐Ÿ”๐Ÿ๐Ÿ”๐ŸŽ๐Ÿ’ ๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ—๐Ÿ’๐Ÿ“๐Ÿ‘๐Ÿ’๐Ÿ•๐Ÿ“ ๐ŸŽ. ๐Ÿ“๐Ÿ”๐ŸŽ๐Ÿ•๐Ÿ–๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ ๐ŸŽ. ๐Ÿ“๐Ÿ”๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ’๐Ÿ๐Ÿ’๐Ÿ• 7.6659 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.9 ๐ŸŽ. ๐Ÿ’๐Ÿ–๐Ÿ’๐Ÿ‘๐Ÿ๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ–๐Ÿ ๐ŸŽ. ๐Ÿ’๐Ÿ–๐Ÿ’๐Ÿ—๐Ÿ•๐Ÿ–๐Ÿ”๐Ÿ”๐Ÿ– ๐ŸŽ. ๐Ÿ“๐Ÿ‘๐Ÿ“๐Ÿ๐Ÿ—๐Ÿ•๐Ÿ‘๐ŸŽ๐Ÿ‘ ๐ŸŽ. ๐Ÿ“๐Ÿ‘๐Ÿ”๐ŸŽ๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ“๐Ÿ’ 7.3175 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

1.0 ๐ŸŽ. ๐Ÿ“๐ŸŽ๐Ÿ—๐Ÿ–๐ŸŽ๐Ÿ”๐Ÿ—๐Ÿ“๐Ÿ”๐ŸŽ ๐ŸŽ. ๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ“๐ŸŽ๐Ÿ‘๐Ÿ–๐Ÿ”๐Ÿ ๐ŸŽ. ๐Ÿ“๐ŸŽ๐Ÿ—๐Ÿ–๐ŸŽ๐Ÿ”๐Ÿ—๐Ÿ“๐Ÿ” ๐ŸŽ. ๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ“๐ŸŽ๐Ÿ‘๐Ÿ–๐Ÿ”๐Ÿ 6.9690 ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’

Page 107: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

96

These results show the accuracy of the Taylor expansion method to solve

the equation (4.1) with maximum error

= 1.045 ร— 10โˆ’3 .

Numerical example (๐Ÿ’. ๐Ÿ): (๐‘ป๐’‚๐’š๐’๐’๐’“ ๐’†๐’™๐’‘๐’‚๐’๐’”๐’Š๐’๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

Consider the linear fuzzy Volterra integral equations:

{

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ) cot(๐‘ฅ) + โˆซ๐‘’๐‘ฅโˆ’๐‘ก๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

๐‘ข(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ) cot(๐‘ฅ) + โˆซ๐‘’๐‘ฅโˆ’๐‘ก๐‘ข(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

0 โ‰ค ๐›ผ โ‰ค 1 (4.3)

๐‘ฅ โˆˆ [0 , ๐œ‹

4]

The analytical solution of the above problem is given by,

๐‘ข(๐‘ฅ, ๐›ผ) = (๐›ผ) (

3

5cos(๐‘ฅ) +

1

5sin(๐‘ฅ) +

2

5๐‘’2๐‘ฅ)

๐‘ข(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ) (3

5cos(๐‘ฅ) +

1

5sin(๐‘ฅ) +

2

5๐‘’2๐‘ฅ)

(4.4)

0 โ‰ค ๐›ผ โ‰ค 1

Expand the unknown functions in Taylor series at ๐‘ง =๐œ‹

12

To solve the previous example by using the Taylor expansion method using

MAPLE software, we will apply algorithm(4.1) :

๐ธ1,1(1,1)

= ๐ธ2,2(1,1)

=

[ โˆ’.70073 โˆ’.04088 .00364 โˆ’.00024 1.275 ร— 10โˆ’5 โˆ’5.598 ร— 10โˆ’7

. 29927 โˆ’1.0409 . 00364 โˆ’.00024 1.275 ร— 10โˆ’5 โˆ’5.598 ร— 10โˆ’7

. 29927 โˆ’.04088 โˆ’.99636 โˆ’.00024 1.275 ร— 10โˆ’5 โˆ’5.598 ร— 10โˆ’7

. 29927 โˆ’.04088 . 00364 โˆ’1.0002 1.275 ร— 10โˆ’5 โˆ’5.598 ร— 10โˆ’7

. 29927 โˆ’.04088 . 00364 โˆ’.00024 โˆ’0.99999 โˆ’5.598 ร— 10โˆ’7

. 29927 โˆ’.04088 . 00364 โˆ’.00024 1.275 ร— 10โˆ’5 โˆ’1.000 ]

Page 108: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

97

๐ธ1,2(1,1)

= ๐ธ2,1(1,1)

=

[ 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0]

โ„Ž๐‘’๐‘›๐‘๐‘’,

๐ธ = ๐ธ1,1

(1,1)๐ธ1,2

(1,1)

๐ธ2,1(1,1)

๐ธ2,2(1,1)

๐ท1,1(1,1)

= ๐ท2,2(1,1)

=

[ 0 0 0 0 0 01 0 0 0 0 01 1 0 0 0 01 1 1 0 0 01 1 1 1 0 01 1 1 1 1 0]

๐ท1,2(1,1)

= ๐ท2,1(1,1)

=

[ 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0]

๐ท = ๐ท1,1

(1,1)๐ท1,2

(1,1)

๐ท2,1(1,1)

๐ท2,2(1,1)

โ„ฑ(๐‘ง, ๐›ผ)

= [

โˆ’๐‘“(๐‘ง, ๐›ผ), โˆ’๐‘“โ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒโ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒโ€ฒโ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“(4)(๐‘ง, ๐›ผ),โˆ’๐‘“(5)(๐‘ง, ๐›ผ)

โˆ’๐‘“(๐‘ง, ๐›ผ),โˆ’๐‘“โ€ฒ(๐‘ง, ๐›ผ), โˆ’๐‘“

โ€ฒโ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“

โ€ฒโ€ฒโ€ฒ(๐‘ง, ๐›ผ),โˆ’๐‘“

(4)(๐‘ง, ๐›ผ), โˆ’๐‘“

(5)(๐‘ง, ๐›ผ)

]

๐‘ก

Page 109: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

98

๐“• =

[ โˆ’๐›ผ cos (

๐œ‹

12)

๐›ผ ๐‘ ๐‘–๐‘› (๐œ‹

12)

๐›ผ cos (๐œ‹

12)

โˆ’๐›ผ ๐‘ ๐‘–๐‘› (๐œ‹

12)

โˆ’๐›ผ cos (๐œ‹

12)

๐›ผ ๐‘ ๐‘–๐‘› (๐œ‹

12)

โˆ’(2 โˆ’ ๐›ผ) cos (๐œ‹

12)

(2 โˆ’ ๐›ผ) ๐‘ ๐‘–๐‘› (๐œ‹

12)

(2 โˆ’ ๐›ผ) cos (๐œ‹

12)

โˆ’(2 โˆ’ ๐›ผ) ๐‘ ๐‘–๐‘› (๐œ‹

12)

โˆ’(2 โˆ’ ๐›ผ) cos (๐œ‹

12)

(2 โˆ’ ๐›ผ) ๐‘ ๐‘–๐‘› (๐œ‹

12) ]

Solving the linear system

(๐ท + ๐ธ)๐‘ข = โ„ฑ

we get the following:

Page 110: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

99

๐‘ข(๐‘ง, ๐›ผ) =

[

1.30655494406977๐›ผ

1.38836501660070๐›ผ

2.06962325214024๐›ผ

5.36399137514409๐›ผ

11.4350895320246๐›ผ

21.4350895320246๐›ผ

1.30655494406977(2 โˆ’ ๐›ผ)

1.38836501660070(2 โˆ’ ๐›ผ)

2.06962325214024(2 โˆ’ ๐›ผ)

5.36399137514409(2 โˆ’ ๐›ผ)

11.4350895320246(2 โˆ’ ๐›ผ)

21.4350895320246(2 โˆ’ ๐›ผ)]

{

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(

1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’๐œ‹

12)๐‘Ÿ

)

๐‘ 

๐‘Ÿ=0

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ‘(1

๐‘Ÿ! ๐œ•(๐‘Ÿ)๐‘ข๐‘—(๐‘ฅ, ๐›ผ)

๐œ•๐‘ฅ๐‘Ÿ|๐‘ฅ=๐‘ง

(๐‘ฅ โˆ’๐œ‹

12)๐‘Ÿ

)

๐‘ 

๐‘Ÿ=0

0 โ‰ค ๐‘ฅ โ‰ค 1, 0 โ‰ค ๐›ผ โ‰ค 1

the approximated solution is:

๐‘ข(๐‘ฅ, ๐›ผ) = 0.9999816737 ๐›ผ + 1.000399233 ๐›ผ ๐‘ฅ

+ 0.4962378250 ๐›ผ ๐‘ฅ2 + 0.5186782119๐›ผ ๐‘ฅ3

+ 0.2403470047 ๐›ผ ๐‘ฅ4 + 0.1803786182 ๐›ผ ๐‘ฅ5

Page 111: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

100

๐‘ข(๐‘ฅ, ๐›ผ) = 2.000407015 ๐‘ฅ + 1.738708618 ๐›ผ + 0.3524026447 ๐‘ฅ3 +

0.1975243281 ๐‘ฅ4 + 0.1905848255 ๐‘ฅ5 โˆ’ 0.7387269443 +

0.04282267662 ๐›ผ ๐‘ฅ 4 โˆ’ 0.01020620726 ๐›ผ ๐‘ฅ5 โˆ’ 1.000007782 ๐›ผ ๐‘ฅ +

0.9961625156 ๐‘ฅ2 โˆ’ 0.4999246903 ๐›ผ ๐‘ฅ2 + 0.1662755673 ๐›ผ ๐‘ฅ3

Figure (4.2) (a) compares between the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example

(4.2) at ๐‘ฅ =๐œ‹

8

Page 112: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

101

Figure (4.2) (b) shows the absolute error between the exact and numerical solutions for

๐‘ˆ(๐‘ฅ, ๐›ผ) in Example (4.2) at ๐‘ฅ =๐œ‹

8

Table (4.2) shows a comparison between the exact solution and the

approximate solution, and the resulted error.

Page 113: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

102

Table 4.2: The exact and numerical solutions for ๐’–(๐’™, ๐œถ), and the resulted error by algorithm (4.1) ๐’‚๐’• ๐’™ = ๐…

๐Ÿ–

๐œถ Numerical solution ๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ)

Numerical solution ๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ) Error =D

(๐’–๐’†๐’™๐’‚๐’„๐’•, ๐’–๐’‚๐’‘๐’‘๐’“๐’๐’™)

0 ๐ŸŽ 0 3.016349432 3.01635285 3.4210 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.1 0.1508174716

0.15081764 2.865531960 2.86553521 3.2500ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.2 0.3016349432 0.30163528 2.714714489 2.71471756 ๐Ÿ‘. ๐ŸŽ๐Ÿ•๐Ÿ—๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.3 0.4524524148 0.45245292 2.563897017 2.56389992 ๐Ÿ. ๐Ÿ—๐ŸŽ๐Ÿ–๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.4 0.6032698864 0.60327057 2.413079546 2.41308228 ๐Ÿ. ๐Ÿ•๐Ÿ‘๐Ÿ”๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.5 0.7540873580 0.75408821 2.262262074 2.26226464 ๐Ÿ. ๐Ÿ“๐Ÿ”๐Ÿ”๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.6 0.9049048296 0.90490585 2.111444602 2.11144699 ๐Ÿ. ๐Ÿ‘๐Ÿ—๐Ÿ“๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.7 1.055722301 1.05572349 1.960627131 1.96062935 ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ‘๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.8 1.206539773 1.20654114 1.809809659 1.80981171 ๐Ÿ. ๐ŸŽ๐Ÿ“๐Ÿ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

0.9 1.357357244 1.35735878 1.658992188 1.65899406 ๐Ÿ. ๐Ÿ–๐Ÿ–๐ŸŽ๐Ÿ” ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

1.0 1.508174716 1.50817642 1.508174716 1.50817642 ๐Ÿ. ๐Ÿ•๐Ÿ๐ŸŽ๐Ÿ’ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”

Page 114: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

103

These results show the accuracy of the Taylor expansion method to solve

the equation (4.2) with a maximum error

= 3.4210 ร— 10โˆ’6.

Numerical example (๐Ÿ’. ๐Ÿ‘): (๐‘ป๐’“๐’‚๐’‘๐’†๐’›๐’๐’Š๐’…๐’‚๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

The fuzzy Volterra integral equations (4.1) have the analytical

solution (4.2)

The following algorithm implements the trapezoidal rule using the MAPLE

software.

Algorithm (๐Ÿ’. ๐Ÿ)

1. Input ๐‘ฅ0 = ๐‘Ž, ๐‘ฅ๐‘  = ๐‘, ๐œ† , ๐‘˜๐‘–,๐‘—(๐‘ฅ, ๐‘ก), ๐‘“๐‘–(๐‘ฅ, ๐›ผ), ๐‘“๐‘–(๐‘ฅ, ๐›ผ)

2. Input ๐‘ก๐‘— = ๐‘ฅ๐‘— , ๐‘“๐‘œ๐‘Ÿ ๐‘— = 0,1, , โ€ฆ , ๐‘ 

3. Input ( ๐‘ ) the number of subdivisions of [๐‘Ž, ๐‘]

4. Calculate ๐ฟ =๐‘โˆ’๐‘Ž

๐‘ , s= 0,1,โ€ฆ , ๐‘

5. Calculate ๐‘ฅ๐‘–= ๐‘–. ๐ฟ ๐‘– = 0,โ€ฆ , ๐‘ 

6. Put ๐‘Š1,1 = ๐‘Š๐‘–,๐‘— =

{

โˆ’๐ฟ. ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘—) 1 โ‰ค ๐‘— < ๐‘– โ‰ค ๐‘ 

1 โˆ’๐ฟ

2. ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ๐‘–) 1 โ‰ค ๐‘– โ‰ค ๐‘ 

1 ๐‘– = ๐‘— = 0

โˆ’๐ฟ

2. ๐‘˜(๐‘ฅ๐‘– , ๐‘ฅ0) 1 โ‰ค ๐‘– โ‰ค ๐‘ 

0 ๐‘’๐‘™๐‘ ๐‘’ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’

7. Put ๐‘Š1,1 = ๐‘Š2,2

Page 115: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

104

8. Put

๐‘Š1,2 = ๐‘Š2,1 =

[ 0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ0 0 โ‹ฏ 0 00 0 โ‹ฏ 0 0]

(๐‘ +1)ร—(๐‘ +1)

9. denote ๐‘Š = ๐‘Š1,1 ๐‘Š1,2

๐‘Š2,1 ๐‘Š2,2 ,

10. put

โ„ฑ = [โˆ’๐‘“1(๐‘ง, ๐›ผ), โ€ฆ ,โˆ’๐‘“1

(๐‘˜)(๐‘ง, ๐›ผ),โˆ’๐‘“1(๐‘ง, ๐›ผ),โ€ฆ ,โˆ’๐‘“

1

(๐‘ )(๐‘ง, ๐›ผ),โ€ฆ ,

โˆ’๐‘“๐‘š(๐‘ง, ๐›ผ),โ€ฆ , โˆ’๐‘“๐‘š(๐‘ )(๐‘ง, ๐›ผ), โˆ’๐‘“

๐‘š(๐‘ง, ๐›ผ), โ€ฆ ,โˆ’๐‘“

๐‘š

(๐‘ )(๐‘ง, ๐›ผ)

]

๐‘ก

11. put

๐‘ข = ๐‘ข1๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข1๐‘ 

(๐‘ )(๐‘ง, ๐›ผ), ๐‘ข1๐‘ (๐‘ง, ๐›ผ), โ€ฆ , ๐‘ข1๐‘ (๐‘ )

(๐‘ง, ๐›ผ), โ€ฆ ,

๐‘ข๐‘š๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข๐‘š๐‘ (๐‘ )(๐‘ง, ๐›ผ), ๐‘ข๐‘š๐‘ (๐‘ง, ๐›ผ),โ€ฆ , ๐‘ข๐‘š๐‘ 

(๐‘ )(๐‘ง, ๐›ผ)

๐‘ก

12. solve the following linear system ๐‘Š๐‘ข = โ„ฑ

13. estimate ๐‘ข(๐‘ง, ๐›ผ), ๐‘ข(๐‘ง, ๐›ผ)

If we take ๐‘ฅ = 21. ๐ฟ , we get :

๐‘ข(๐‘ฅ, ๐›ผ) = 0.7479719827489786. ๐›ผ + 0.7479719827489785 ,

and

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ’0.7479719827489785. ๐›ผ + 2.2439159482469355.

Page 116: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

105

Figure (4.3) (a) compares the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.3) at

๐‘ฅ = 0.84 with ๐‘  = 25

Figure (4.3) (b) shows the absolute error between the exact and numerical solutions in Example

(4.3) at ๐‘ฅ = 0.84 ๐‘ค๐‘–๐‘กโ„Ž ๐‘  = 25

Page 117: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

106

Table 4.3: The exact and numerical solutions for ๐’–(๐’™, ๐œถ), and the resulted error by algorithm (4.2) ๐’‚๐’• ๐’™ = ๐ŸŽ. ๐Ÿ–๐Ÿ’

๐œถ

Numerical

solution

๐’–(๐’™,๐œถ)

Exact solution ๐’–(๐’™,๐œถ) Numerical

solution ๐’–(๐’™,๐œถ)

Exact solution

๐’–(๐’™,๐œถ)

Error =D

(๐’–๐’†๐’™๐’‚๐’„๐’•, ๐’–๐’‚๐’‘๐’‘๐’“๐’๐’™)

0 0.747971982 0.7480775000 2.243915948246 2.244232500 3.165517๐Ÿ— ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.1 0.822769181 0.8228852500 2.169118749972 2.169424750 3.0600002ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.2 0.897566379 0.8976930000 2.094321551697 2.094617000 2.9544830ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.3 0.972363577 0.9725007500 2.019524353422 2.019809250 2.8489657ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.4 1.047160775 1.047308500 1.944727155147 1.945001500 2.7434485ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.5 1.121957974 1.122116250 1.869929956872 1.870193750 2.6379312ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.6 1.196755172 1.196924000 1.795132758597 1.870193750 2.5324140ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.7 1.271552370 1.271731750 1.720335560322 1.720578250 2.4268967ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.8 1.346349568 1.346539500 1.645538362047 1.645770500 2.3213795ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

0.9

1.421146767

1.421347250 1.570741163772 1.570962750 2.2158622ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

1.0 1.495943965 1.496155000 1.495943965497 1.496155000 2.1103450ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’

Page 118: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

107

These results show the efficiency of the Trapezoidal method to solve the

equation (4.1) with a maximum error

= 3.1655179 ร— 10โˆ’4

Numerical example (๐Ÿ’. ๐Ÿ’): (๐‘ป๐’“๐’‚๐’‘๐’†๐’›๐’๐’Š๐’…๐’‚๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

The fuzzy Volterra integral equations (4.3) have the analytical solution

(4.4)

Algorithm (4.2) implements the trapezoidal method using the MAPLE

software, on the interval [0,๐œ‹

4] with s=25

If we take ๐‘ฅ = 23. ๐ฟ =0.23๐œ‹ , we get:

๐‘ข(๐‘ฅ, ๐›ผ) = 2.275392420 . ๐›ผ, where , 0โ‰ค ๐›ผ โ‰ค 1

๐‘ข(๐‘ฅ, ๐›ผ) = โˆ’2.275392420. ๐›ผ + 4.550784838.

Page 119: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

108

Figure (4.4) (a) compares the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.4) at

๐‘ฅ = 0.23๐œ‹ with ๐‘  = 25

Figure (4.4) (b) shows the absolute error between the exact and numerical solutions for๐‘ข(๐‘ฅ, ๐›ผ)

in Example (4.4) at ๐‘ฅ = 0.23๐œ‹ with ๐‘  = 25

Page 120: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

109

Table 4.4: The exact and numerical solutions for ๐’–(๐’™, ๐œถ), and the resulted error by algorithm (4.2) at ๐’™ = ๐ŸŽ. ๐Ÿ๐Ÿ‘๐… with ๐’” = ๐Ÿ๐Ÿ“

๐œถ Numerical

solution ๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ) Numerical solution ๐’–(๐’™,๐œถ)

Exact solution ๐’–(๐’™,๐œถ)

Error =D (๐’–๐’†๐’™๐’‚๐’„๐’•, ๐‘ผ๐’‚๐’‘๐’‘๐’“)

0 0 0 4.550784838 4.55858982 7.804982ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.1 0.2275392420 0.2279294911 4.323245596 4.33066033 7.414733ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.2 0.4550784840 0.4558589821 4.095706354 4.10273083 7.024484ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.3 0.6826177260 0.6837884731 3.868167112 3.874801348 6.634235ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.4 0.9101569680 0.9117179641 3.640627870 3.64687185 6.243986ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.5 1.137696210 1.139647455 3.413088628 3.41894236 5.853736ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.6 1.365235452 1.367576946 3.185549386 3.19101287 5.463487ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.7 1.592774694 1.595506437 2.958010144 2.96308338 5.073238ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.8 1.820313936

1.823435928

2.730470902 2.73515389 4.682989ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

0.9

2.047853178

2.051365419 2.502931660 2.50722440 4.292740ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

1.0 2.275392420 2.279294911 2.275392418 2.279294911 3.902491ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ‘

Page 121: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

110

These results show the efficiency of the Trapezoidal method to solve the

equation (4.3) with a maximum error

= 7.804982 ร— 10โˆ’3.

We notice from our numerical test cases that the Taylor expansion method

is more accurate than the trapezoidal method.

Numerical example (๐Ÿ’. ๐Ÿ“): (๐’—๐’‚๐’“๐’Š๐’‚๐’•๐’Š๐’๐’๐’‚๐’ ๐’Š๐’•๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

The fuzzy Volterra integral equation(4.1) have the exact solution(4.2).

In the view of the variational iteration method, we construct a correction

functional in the following form:

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

,

and (4.5)

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

.

where ๐‘ = 0,1,2, โ€ฆ , ๐‘ 

Starting with the initial approximation:

๐‘ข0(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2,

and

๐‘ข0(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2.

Page 122: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

111

in equation (4.1) successive approximations ๐‘ข๐‘(๐‘ฅ, ๐›ผ)โ€ฒ๐‘  will be achieved.

In this example we calculate the 8th order of approximate solution using

the variational iteration method by MAPLE software.

Algorithm (๐Ÿ’. ๐Ÿ‘)

1. Input ๐‘Ž, ๐‘, ๐œ†, ๐‘˜(๐‘ฅ, ๐‘ก), ๐‘ , ๐‘“(๐‘ฅ, ๐›ผ), ๐‘“(๐‘ฅ, ๐›ผ)

2. Input ๐‘ข0(๐‘ฅ, ๐›ผ), ๐‘ข0(๐‘ฅ, ๐›ผ)

3. for ๐‘ = 1 ๐‘ก๐‘œ ๐‘  + 1, compute

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก๐‘ฅ

0,

and

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

We obtain the following results:

๐‘ข1(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

4(๐›ผ + 1)๐‘ฅ4 +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข2(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’

1

6(

1

12๐›ผ +

1

12) ๐‘ฅ6 +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข3(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข4(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

10(

1

20160๐›ผ +

1

20160) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

20160๐›ผ +

1

20160) โˆ’

1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข5(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

12(

1

1814400๐›ผ +

1

1814400) ๐‘ฅ12 +

1

11๐‘ฅ12 (

1

1814400๐›ผ +

1

1814400) โˆ’

1

10(

1

20160๐›ผ +

1

20160) ๐‘ฅ10 +

Page 123: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

112 1

9๐‘ฅ10 (

1

20160๐›ผ +

1

20160) โˆ’

1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข6(๐‘ฅ, ๐›ผ) =

1

13(

1

239500800๐›ผ +

1

239500800) ๐‘ฅ14 โˆ’

1

12(

1

1814400๐›ผ +

1

1814400) ๐‘ฅ12 +

1

11๐‘ฅ12 (

1

1814400๐›ผ +

1

1814400) โˆ’

1

10(

1

20160๐›ผ +

1

20160) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

20160๐›ผ +

1

20160) โˆ’

1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข7(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’

1

16(

1

43589145600๐›ผ +

1

43589145600) ๐‘ฅ16 +

1

15(

1

43589145600๐›ผ +

1

43589145600) ๐‘ฅ16 โˆ’

1

14(

1

239500800๐›ผ +

1

239500800) ๐‘ฅ14 +

1

13(

1

239500800๐›ผ +

1

239500800) ๐‘ฅ14 โˆ’

1

12(

1

1814400๐›ผ +

1

1814400) ๐‘ฅ12 +

1

11๐‘ฅ12 (

1

1814400๐›ผ +

1

1814400) โˆ’

1

10(

1

20160๐›ผ +

1

20160) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

20160๐›ผ +

1

20160) โˆ’

1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

๐‘ข8(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

18(

1

10461394944000๐›ผ +

1

10461394944000) ๐‘ฅ18 +

1

17(

1

10461394944000๐›ผ +

1

10461394944000) ๐‘ฅ18 +

1

16(

1

43589145600๐›ผ +

1

43589145600) ๐‘ฅ16 +

1

15(

1

43589145600๐›ผ +

1

43589145600) ๐‘ฅ16 โˆ’

1

14(

1

239500800๐›ผ +

1

239500800) ๐‘ฅ14 +

1

13(

1

239500800๐›ผ +

1

239500800) ๐‘ฅ14 โˆ’

1

12(

1

1814400๐›ผ +

1

1814400) ๐‘ฅ12 +

1

11๐‘ฅ12 (

1

1814400๐›ผ +

1

1814400) โˆ’

1

10(

1

20160๐›ผ +

1

20160) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

20160๐›ผ +

1

20160) โˆ’

1

8(

1

360๐›ผ +

1

360) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

360๐›ผ +

1

360) โˆ’

1

6๐‘ฅ6 (

1

12๐›ผ +

1

12) +

1

5๐‘ฅ6 (

1

12๐›ผ +

1

12) โˆ’

1

4๐‘ฅ4(๐›ผ + 1) +

1

3๐‘ฅ4(๐›ผ + 1)

Page 124: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

113

and

๐‘ข1(๐‘ฅ, ๐›ผ) = (๐›ผ + 1)๐‘ฅ2 โˆ’1

4(3 โˆ’ ๐›ผ)๐‘ฅ4 +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ)

๐‘ข2(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’

1

6(1

4โˆ’

1

12๐›ผ)๐‘ฅ6 +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ)

๐‘ข3(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’1

8(

1

120โˆ’

1

360๐›ผ) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ)

๐‘ข4(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’

1

10(

1

6720โˆ’

1

20160๐›ผ)๐‘ฅ10 +

1

9๐‘ฅ10 (

1

6720โˆ’

1

20160๐›ผ) โˆ’

1

8(

1

120โˆ’

1

360๐›ผ)๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ)

๐‘ข5(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’1

12(

1

604800โˆ’

1

1814400๐›ผ)๐‘ฅ12 +

1

11๐‘ฅ12 (

1

604800โˆ’

1

1814400๐›ผ) โˆ’

1

10(

1

6720โˆ’

1

20160๐›ผ)๐‘ฅ10 +

1

9๐‘ฅ10 (

1

6720โˆ’

1

20160๐›ผ) โˆ’

1

8(

1

120โˆ’

1

360๐›ผ)๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ).

๐‘ข6(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’

1

14(

1

79833600โˆ’

1

239500800๐›ผ) ๐‘ฅ14 +

1

13(

1

79833600โˆ’

1

239500800๐›ผ)๐‘ฅ14 โˆ’

1

12(

1

604800โˆ’

1

1814400๐›ผ)๐‘ฅ12 +

1

11๐‘ฅ12 (

1

604800โˆ’

1

1814400๐›ผ) โˆ’

1

10(

1

6720โˆ’

1

20160๐›ผ) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

6720โˆ’

1

20160๐›ผ) โˆ’

1

8(

1

120โˆ’

1

360๐›ผ) ๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ).

๐‘ข7(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’

1

16(

1

14529715200โˆ’

1

43589145600๐›ผ)๐‘ฅ16 +

1

15(

1

14529715200โˆ’

1

43589145600๐›ผ)๐‘ฅ16 โˆ’

1

14(

1

79833600โˆ’

1

239500800๐›ผ)๐‘ฅ14 +

1

13(

1

79833600โˆ’

1

239500800๐›ผ) ๐‘ฅ14 โˆ’

Page 125: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

114 1

12(

1

604800โˆ’

1

1814400๐›ผ)๐‘ฅ12 +

1

11๐‘ฅ12 (

1

604800โˆ’

1

1814400๐›ผ) โˆ’

1

10(

1

6720โˆ’

1

20160๐›ผ)๐‘ฅ10 +

1

9๐‘ฅ10 (

1

6720โˆ’

1

20160๐›ผ) โˆ’

1

8(

1

120โˆ’

1

360๐›ผ)๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ).

๐‘ข8(๐‘ฅ, ๐›ผ) = (3 โˆ’ ๐›ผ)๐‘ฅ2 โˆ’

1

18(

1

3487131648000โˆ’

1

10461394944000๐›ผ)๐‘ฅ18 +

1

17(

1

3487131648000โˆ’

1

10461394944000๐›ผ)๐‘ฅ18 โˆ’

1

16(

1

14529715200โˆ’

1

43589145600๐›ผ) ๐‘ฅ16 +

1

15(

1

14529715200โˆ’

1

43589145600๐›ผ)๐‘ฅ16 โˆ’

1

14(

1

79833600โˆ’

1

239500800๐›ผ)๐‘ฅ14 +

1

13(

1

79833600โˆ’

1

239500๐›ผ)๐‘ฅ14 โˆ’

1

12(

1

604800โˆ’

1

1814400๐›ผ)๐‘ฅ12 +

1

11๐‘ฅ12 (

1

604800โˆ’

1

1814400๐›ผ) โˆ’

1

10(

1

6720โˆ’

1

20160๐›ผ) ๐‘ฅ10 +

1

9๐‘ฅ10 (

1

6720โˆ’

1

20160๐›ผ) โˆ’

1

8(

1

120โˆ’

1

360๐›ผ)๐‘ฅ8 +

1

7๐‘ฅ8 (

1

120โˆ’

1

360๐›ผ) โˆ’

1

6๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) +

1

5๐‘ฅ6 (

1

4โˆ’

1

12๐›ผ) โˆ’

1

4๐‘ฅ4(3 โˆ’ ๐›ผ) +

1

3๐‘ฅ4(3 โˆ’ ๐›ผ) .

Figure (4.5) (a) compares the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.5) at ๐‘ฅ = 0.5

Page 126: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

115

Figure (4.5) (b) shows the absolute error between the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.5) at ๐‘ฅ = 0.5

Table (4.5)(๐‘Ž) shows the exact and numerical results when applying

algorithm(4.3), and showing the absolute error between the exact and

numerical solutions of equation(4.1)

Page 127: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

116

Table ๐Ÿ’. ๐Ÿ“: the exact and numerical results, the absolute resulted error of applying algorithm (๐Ÿ’. ๐Ÿ‘) for

equation(๐Ÿ’. ๐Ÿ) ๐’‚๐’• ๐’™ = ๐ŸŽ. ๐Ÿ“.

๐œถ Numerical solution ๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ) Numerical solution

๐’–(๐’™,๐œถ) Exact solution

๐’–(๐’™,๐œถ) Error =D

(๐’–๐’†๐’™๐’‚๐’„๐’•, ๐’–๐’‚๐’‘๐’‘๐’“๐’๐’™)

0 0.2552519305 0.255251931 0.7657557912 0.765755793 1.8000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.1 0.2807771236 0.2807771241 0.7402305982 0.7402305999 1.7500ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.2 0.3063023166 0.3063023172 0.7147054051 0.7147054068 1.7000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.3 0.3318275096 0.3318275103 0.6891802120 0.6891802137 1.6500ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.4 0.3573527027 0.3573527034 0.6636550190 0.6636550206 1.6000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.5 0.3828778957 0.3828778965 0.6381298260 0.6381298275 1.5500ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.6 0.4084030888 0.4084030896 0.6126046329 0.6126046344 1.5000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.7 0.4339282819 0.4339282827 0.5870794398 0.5870794413 1.4500ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.8 0.4594534749 0.4594534758 0.5615542468 0.5615542482 1.4000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

0.9 0.4849786679 0.4849786689 0.5360290538 0.5360290551 ๐Ÿ. ๐Ÿ‘๐Ÿ“๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

1.0 0.5105038610 0.5105038620 0.5105038607 0.5105038620 ๐Ÿ. ๐Ÿ‘๐ŸŽ๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ—

Page 128: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

117

The results showed that the convergence and accuracy of variational

iteration method for numerical solution the Volterra integral equations were

in a good agreement with the analytical solutions.

Error =๐ท (๐‘ข๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก(. 5, ๐›ผ), ๐‘ข๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘ฅ๐‘–๐‘š๐‘Ž๐‘ก๐‘’(. 5, ๐›ผ))

= sup0โ‰ค๐›ผโ‰ค1

{๐‘š๐‘Ž๐‘ฅ ๐‘ข๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ ๐‘ข๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘ฅ๐‘–๐‘š๐‘Ž๐‘ก๐‘’ ,๐‘š๐‘Ž๐‘ฅ ๐‘ข๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก โˆ’ ๐‘ข๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘ฅ๐‘–๐‘š๐‘Ž๐‘ก๐‘’ }

=1. 8 ร— 10โˆ’9

Numerical example (๐Ÿ’. ๐Ÿ”): (๐’—๐’‚๐’“๐’Š๐’‚๐’•๐’Š๐’๐’๐’‚๐’ ๐’Š๐’•๐’†๐’“๐’‚๐’•๐’Š๐’๐’ ๐’Ž๐’†๐’•๐’‰๐’๐’…)

The fuzzy Volterra integral equation(4.3) have the exact solution(4.4).

In the view of the variational iteration method, we construct a correction

functional in the following form:

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

,

and

๐‘ข๐‘+1(๐‘ฅ, ๐›ผ) = ๐‘“(๐‘ฅ, ๐›ผ) + โˆซ๐‘˜(๐‘ฅ, ๐‘ก)๐‘ข๐‘(๐‘ก, ๐›ผ)๐‘‘๐‘ก

๐‘ฅ

0

.

where ๐‘ = 0,1,2, โ€ฆ , ๐‘ 

Starting with the initial approximation:

๐‘ข0(๐‘ฅ, ๐›ผ) = (๐›ผ) cos ๐‘ฅ,

and

๐‘ข0(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ) cos ๐‘ฅ.

Page 129: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

118

where , 0 โ‰ค ๐›ผ โ‰ค 1

In equation (4.3) successive approximations ๐‘ข๐‘(๐‘ฅ, ๐›ผ)โ€ฒ๐‘  will be achieved.

In this example we calculate the 6th order of approximate solution using the

variational iteration method by MAPLE software.

applying algorithm(4.3), we obtain the following results:

๐‘ข1(๐‘ฅ, ๐›ผ) =1

2๐›ผ cos ๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ +

1

2๐›ผ sin ๐‘ฅ

๐‘ข2(๐‘ฅ, ๐›ผ) =

1

2๐›ผ cos ๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ

๐‘ข3(๐‘ฅ, ๐›ผ) =3

4๐›ผ cos ๐‘ฅ +

1

4๐›ผ๐‘’๐‘ฅ +

1

4๐›ผ sin ๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ2

๐‘ข4(๐‘ฅ, ๐›ผ) = 1

2๐›ผ cos ๐‘ฅ +

1

2๐›ผ๐‘’๐‘ฅ +

1

4๐›ผ sin ๐‘ฅ++

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ2 +

1

12๐›ผ๐‘’๐‘ฅ๐‘ฅ3

๐‘ข5(๐‘ฅ, ๐›ผ) =

5

8๐›ผ cos ๐‘ฅ +

3

8๐›ผ๐‘’๐‘ฅ +

1

8๐›ผ sin ๐‘ฅ++

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

8๐›ผ๐‘’๐‘ฅ๐‘ฅ2 +

1

12๐›ผ๐‘’๐‘ฅ๐‘ฅ3 +

1

48๐›ผ๐‘’๐‘ฅ๐‘ฅ4

๐‘ข6(๐‘ฅ, ๐›ผ) =

5

8๐›ผ cos ๐‘ฅ +

3

8๐›ผ๐‘’๐‘ฅ +

1

4๐›ผ sin ๐‘ฅ++

3

8๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ2 +

1

24๐›ผ๐‘’๐‘ฅ๐‘ฅ3 +

1

48๐›ผ๐‘’๐‘ฅ๐‘ฅ4 1

240๐›ผ๐‘’๐‘ฅ๐‘ฅ5

and ๐‘ข1(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ + ๐‘’๐‘ฅ โˆ’

1

2๐›ผ๐‘’๐‘ฅ โˆ’cos ๐‘ฅ + sin ๐‘ฅ +

1

2๐›ผ cos ๐‘ฅ โˆ’

1

2๐›ผ sin ๐‘ฅ

Page 130: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

119

๐‘ข2(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ + ๐‘’๐‘ฅ โˆ’ 1

2๐›ผ๐‘’๐‘ฅ โˆ’cos ๐‘ฅ +

1

2๐›ผ cos ๐‘ฅ + ๐‘’๐‘ฅ๐‘ฅ -

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ.

๐‘ข3(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ +1

2๐‘’๐‘ฅ โˆ’

1

4๐›ผ๐‘’๐‘ฅ โˆ’

1

2cos ๐‘ฅ +

1

2sin ๐‘ฅ +

1

4๐›ผ cos ๐‘ฅ ๐‘’ โˆ’

1

4๐›ผ sin ๐‘ฅ + ๐‘’๐‘ฅ๐‘ฅ โˆ’

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

2๐‘’๐‘ฅ๐‘ฅ2 โˆ’

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ2

๐‘ข4(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ + ๐‘’๐‘ฅ โˆ’

1

2๐›ผ๐‘’๐‘ฅ โˆ’

1

12๐›ผ๐‘’๐‘ฅ๐‘ฅ3 +

1

2๐‘’๐‘ฅ๐‘ฅ +

1

2๐‘’๐‘ฅ๐‘ฅ2 +

1

6๐‘’๐‘ฅ๐‘ฅ3 โˆ’ cos ๐‘ฅ +

1

2sin ๐‘ฅ โˆ’

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ โˆ’

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ2 +

1

2๐›ผ cos ๐‘ฅ โˆ’

1

4๐›ผ sin ๐‘ฅ

๐‘ข5(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ +

3

4๐‘’๐‘ฅ โˆ’

3

8๐›ผ๐‘’๐‘ฅ +

1

4๐‘’๐‘ฅ๐‘ฅ2 +

3

8๐›ผ cos ๐‘ฅ +

1

6๐‘’๐‘ฅ๐‘ฅ3 +

1

4sin ๐‘ฅ + ๐‘’๐‘ฅ๐‘ฅ โˆ’

3

4cos ๐‘ฅ โˆ’

1

48๐›ผ๐‘’๐‘ฅ๐‘ฅ4 โˆ’

1

8๐›ผ sin ๐‘ฅ โˆ’

1

12๐›ผ๐‘’๐‘ฅ๐‘ฅ3 โˆ’

1

8๐›ผ๐‘’๐‘ฅ๐‘ฅ2 โˆ’

1

2๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

24๐‘’๐‘ฅ๐‘ฅ4

๐‘ข6(๐‘ฅ, ๐›ผ) = (2 โˆ’ ๐›ผ )cos ๐‘ฅ +

3

4๐‘’๐‘ฅ โˆ’

3

8๐›ผ๐‘’๐‘ฅ +

1

2๐‘’๐‘ฅ๐‘ฅ2 +

3

8๐›ผ cos ๐‘ฅ +

1

12๐‘’๐‘ฅ๐‘ฅ3 +

1

2sin ๐‘ฅ +

3

4 ๐‘’๐‘ฅ๐‘ฅ โˆ’

3

4cos ๐‘ฅ +

1

120๐‘’๐‘ฅ๐‘ฅ5 โˆ’

1

240๐›ผ๐‘’๐‘ฅ๐‘ฅ5 โˆ’

1

48๐›ผ๐‘’๐‘ฅ๐‘ฅ4 โˆ’

1

4๐›ผ sin ๐‘ฅ โˆ’

1

24๐›ผ๐‘’๐‘ฅ๐‘ฅ3 โˆ’

1

4๐›ผ๐‘’๐‘ฅ๐‘ฅ2 โˆ’

3

8๐›ผ๐‘’๐‘ฅ๐‘ฅ +

1

24๐‘’๐‘ฅ๐‘ฅ4

Page 131: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

120

Figure (4.6) (a) compares the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ) in Example (4.6) at

๐‘ฅ =๐œ‹

8

Figure (4.6) (b) shows absolute error between the exact and numerical solutions for ๐‘ข(๐‘ฅ, ๐›ผ)

in Example (4.6) at ๐‘ฅ =๐œ‹

8

Table (4.6) shows the exact and numerical results when applying algorithm

(4.3), and showing the resulted error of equation(4.3).

Page 132: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

121

Table ๐Ÿ’. ๐Ÿ”: the exact and numerical results, the resulted absolute error by applying algorithm (๐Ÿ’. ๐Ÿ‘) for equation

(๐Ÿ’. ๐Ÿ‘) ๐’‚๐’• ๐’™ =๐…

๐Ÿ–.

๐œถ Numerical solution

๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ)

Numerical solution

๐’–(๐’™,๐œถ) Exact solution ๐’–(๐’™,๐œถ)

Error =D

(๐’–๐’†๐’™๐’‚๐’„๐’•, ๐’–๐’‚๐’‘๐’‘๐’“๐’๐’™)

0 0 0 3.016352007 3.01635285 . ๐Ÿ’๐Ÿ”๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•8

0.1 0.1508176002 0.1508176426 2.865534406 2.865535210 8.0400ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.2 0.3016352007 0.3016352853 2.714716807 2.71471756 7.6100ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.3 0.4524528010 0.4524529279 2.563899206

2.56389992

7.1900ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.4 0.6032704013 0.6032705706 2.413081606 2.41308228 6.7700ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.5 0.7540880017 0.7540882132 2.262264004 2.262264640 6.3600ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.6 0.9049056021 0.9049058558 2.111446404 2.11144699 5.9300ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.7 1.055723203 1.055723498 1.960628805 1.96062935 5.5000ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.8 1.206540802 1.206541141 1.809811204 1.80981171 5.0700ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

0.9 1.357358403 1.357358784 1.658993604 1.65899406 ๐Ÿ’. ๐Ÿ”๐Ÿ“๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

1.0 1.508176002 1.508176426 1.508176002 1.508176426 ๐Ÿ’. ๐Ÿ๐Ÿ’๐ŸŽ๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ•

Page 133: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

122

Table (4.6) shows the convergence and accuracy of variational iteration

method for numerical solution the Volterra integral equations were in a

good agreement with the analytical solutions , with a maximum error =

8.46 ร— 10โˆ’7

from our numerical test cases, we conclude that the variational iteration

method is more efficient than the trapezoidal and the Taylor methods .

Page 134: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

123

Conclusion

In this thesis we have solved the linear fuzzy Volterra integral equation of

the second kind using various analytical and numerical methods.

The numerical methods methods were implemented in a form of

algorithms to solve some numerical tests cases using MAPLE software

We have obtained the following results

Numerical method Maximum error

Taylor expansion method 3.4210 ร— 10โˆ’6

Trapezoidal rule 7.804982 ร— 10โˆ’3

Variation iteration method 8.46 ร— 10โˆ’7

Numerical results have shown to be in a close agreement with the

analytical ones. Moreover, the variation iteration method is one of the

most powerful numerical technique for solving fuzzy Volterra integral

equation of the second kind in comparison with other numerical techniques.

Page 135: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

124

References

[๐Ÿ] S. Abbasbandy and M. Alvai, A method for Solving Fuzzy Linear

Systems, Iranian Journal of Fuzzy Systems, Vol. 2, No. 2, 2005, 37-

43.

[๐Ÿ] T. Allahviranloo, M. Ghanbari, and R. Nuraei, An application of semi-

analytical method on linear fuzzy Volterra integral equations,

Journal of Fuzzy set valued Analysis, Vol.2014, 2014, 1-15.

[๐Ÿ‘] T. Allahviranloo, M. Jahantigh, and M. Otidi, Numerical Solution

of Fuzzy Integral Equations, Applied Mathematical Science,

Vol. 2, No.1, 2008, 33-46.

[๐Ÿ’] T. Allahviranloo, N. Motamedi, and N. Kiana, Solving fuzzy

integral equations by differential transformation method,

Information Sciences, Vol. 197, Issue 7, 2009, 956-966.

[๐Ÿ“] T. Allahviranloo, S. Salahshour, M. Nejad, and D. Baleanu, General

Solutions of Fully Fuzzy Linear Systems, Abstract and Applied

Analysis, Vol. 2013, 2013, 1-9.

[๐Ÿ”] M. Amawi, Fuzzy Fredholm Integral Equation of the Second Kind,

M. Sc Thesis, An-Najah University, 2014.

[๐Ÿ•] M. Amawi and N. Qatanani, Numerical Methods for Solving Fuzzy

Fredholm Integral Equation of the Second Kind, International

Journal of Applied Mathematics, Vol.28, No.3, 2015, 177-195.

Page 136: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

125

[๐Ÿ–] S. Amrahov and I. Askerzade, Strong Solution of Fuzzy Linear

Systems, Ankara university, Computer Modeling in Engineering and

Science,Vol.76, No. 4, 2011, 207-216.

[๐Ÿ—] E. Babolian, H. Goughery, and S. Abbasbandy, Numerical solution

of linear Fredholm fuzzy integral equations of the second kind by

Adomian method, Applied Mathematics and Computation, Vol.

161, Issue 3, 2005, 733-744.

[๐Ÿ๐ŸŽ] S. Banerjee and T. Roy, Arithmatic Operations on Generalized

Trapezoidal Fuzzy Number and its Applications, An Official

Journal of Turkish Fuzzy systems Association, Vol. 3, No. 1, 2012,

16-44.

[๐Ÿ๐Ÿ] M. Barkhordari Ahmadi, and N. Kiani, Solving Fuzzy Partial

Differential Equation by Differential Transformation Method,

Journal of Applied Mathematics, Vol.7, No.4, 2011, 1-16.

[๐Ÿ๐Ÿ] B. Beats, D. Dubois, and E. Hullermeier, Fuzzy Sets and Systems,

An International Journal in Information Science and

Engineering, Vol. 293, 2016, 1-144.

[๐Ÿ๐Ÿ‘] B. Bede, I. Rudas, and L. Bencsik, First order linear fuzzy

differential equations under generalized differentiability, Fuzzy

Set Applictions in Industrial Engineering, Vol. 177, Issue 7, 2007,

1648- 1662.

Page 137: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

126

[๐Ÿ๐Ÿ’] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in

Fuzziness and soft computing, Vol. 295, 2013, 1-64.

[๐Ÿ๐Ÿ“] S. Behiry, R. Abd-Elmonem, and A. Gomaa, Discrete Adomain

decomposition solution of nonlinear Fredholm integral equation,

Ainshams Engineering Journal, Vol. 1, Issue 1, 2010, 97-101.

[๐Ÿ๐Ÿ”] Sh. Behzadi, Solving Fuzzy Nonlinaer Volterra Fredholm

Integral Equations by using Homotopy Analysis and Adomain

Decomposition Methods, Journal of Fuzzy Set Valued Analysis,

Vol. 2011, 2011, 1-13.

[17] S. Chang and L. Zadeh, On fuzzy mapping and control, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 2, Issue 1,

1972, 30-34.

[18] W. Cong-xin, and M. Ming, Embedding problem of fuzzy number

space: part 1, Fuzzy sets and systems, Vol. 44, Issue 1, 1991,

33-38.

[๐Ÿ๐Ÿ—] M. Dehghan, and B. Hashemi, Iterative Solution of Fuzzy Linear

systems, Applied Mathematics and Computation, Vol. 175, 2006,

645-674.

[๐Ÿ๐ŸŽ] P. Diamond, and P. Kloeden, Metric Spaces of fuzzy sets, Fuzzy

Sets and Systems, Vol. 100, Issue 1, 1999, 63-71.

Page 138: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

127

[21 ] D. Dubois and H. Prade, Operations on fuzzy numbers,

International Journal of Systems Science, Vol. 9, Issue 6, 1978,

613- 626.

[๐Ÿ๐Ÿ] M. Farooq, S. Ullah, L. Ahmad, and S. Abdullah, Application of

fuzzy Laplace transforms for solving fuzzy partial Volterra

integro-differential equations, Cornell University Library, General

Mathematics, 2014, 1-11.

[23] M. Friedman, M. Ma and A. Kandel, Numerical solutions of

Fuzzy differential and integral equations, Fuzzy Sets and

Systems, Vol. 106, Issue 1, 1999, 35-48.

[๐Ÿ๐Ÿ’] A. Gani, and S. Assarudeen, A new operation on triangular fuzzy

number for solving fuzzy linear programming problem, Applied

Mathematical Sciences, Vol. 6, No. 11, 2012, 525-532.

[๐Ÿ๐Ÿ“] SH. Gao, Z. Zhang , and C. Cao, Multiplication Operation On

Fuzzy Number, Journal of Software, Vol. 4, No. 4, 2009, 331-

338.

[๐Ÿ๐Ÿ”] M. Ghanbari, Numerical Solution of fuzzy linear Volterra

Integral Equations of The Second Kind, International Journal

of Industrial Mathematics, Vol.2, No.2, 2010, 73-87.

[๐Ÿ๐Ÿ•] M. Ghanbari, Numerical solution of fuzzy linear Volterra

integral equations of the second kind by Homotopy Analysis

Method, Int. J. Industrial Mathematics, Vol.2, No.2, 2010, 73-87.

Page 139: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

128

[๐Ÿ๐Ÿ–] B. Ghazanfari, and R. Nazari, Two Steps Runge - kutta- like

Method for Numarical Solutions of Fuzzy Differential

Equations, International Research Journal of Applied and Basic

Sciences, Vol.4(10), 2013, 3209-3219.

[๐Ÿ๐Ÿ—] M. Gholami, and B. Ghanbari, Variational Iteration Method for

Solving Voltarra and Fredholm Integral Equations of the Second

Kind, Vol.2, No. 1, 2011, 143-148.

[30] R. Goetschel and W. Voxman, Elementary calculus, Fuzzy Sets and

Systems, Vol. 18, Issue 1, 1986, 31-43.

[๐Ÿ‘๐Ÿ] E. Hetmaniok, T. Trawinski, B. Witula, and D. Slota, Usage of the

homotopy analysis method for solving the nonlinear and linear

equations of the second kind, Numerical Algorithms, Vol. 67,

Issue 1, 2014, 163- 185.

[๐Ÿ‘๐Ÿ] A. Jafarian, S. Measoomy Nia, and S. Tavan, A Numerical Scheme

to Solve Fuzzy Linear Volterra Integral Equations System, Journal

of Applied Mathematics, Vol. 2012, 2012, pages 1-17.

[33] O. Kaleva, Fuzzy differential equations, Fuzzy Set and Systems,

Fuzzy Numbers, Vol. 24, Issue 3, 1987, 301-317.

[34] S. Liao, Beyond Perturbation: introduction to the homotopy

analysis method, Modern Mechanics and Mathematics, Vol. 2,

2003, 1-336.

Page 140: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

129

[๐Ÿ‘๐Ÿ“] M. Matinfar, M. Saeidy, and J. Vahidi, Application of Homotopy

Analysis Method for Solving Systems of Volterra Integral

Equations, Advances in Applied Mathematics and Mechanics,

Vol.4, No.1, 2012, 36-45.

[๐Ÿ‘๐Ÿ”] S. Measoomy Nia, A.Jafarian, and S. Tavan, A numerical scheme to

solve fuzzy Volterra integral equations system, Hindawi publishing

corporation journal of Applied Mathematics , vol. 2012, 2012,

1-17.

[๐Ÿ‘๐Ÿ•] N. Mikaeilvand, S. Khakrangin, and T. Allahvirnaloo, Solving fuzzy

Volterra integro-differential equation by fuzzy differential

transform method, EUSFLAT, Advances in Intellingent Systems

Research, Vol. 2011, 2011, 891-896.

[๐Ÿ‘๐Ÿ–] M. Mosleh and M. Otidi, Fuzzy Fredholm integro- differential

equations with artificial neural networks, Communications in

Numerical analysis, Vol. 2012 (2012), 1-13.

[39] S. Nanda, On integration of fuzzy mappings, Fuzzy Sets and

Systems, Vol. 32, 1989, 95-101.

[๐Ÿ’๐ŸŽ] S. Nasseri and G.Gholami, Linear System of Equations with

Trapizoidal Fuzzy Numbers, The Journal of Mathematics and

Computer Science, Vol.3, No.1, 2011, 71-79.

Page 141: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

130

[๐Ÿ’๐Ÿ] M. Paripour, T. Lotfi, and N. Najafi, Computing the fuzzy Laplace

transform via Homotopy perturbation Method, Journal of

Interpolation and Approximation in Scientific Computing,

Vol. 2014, 2014, 1-13.

[๐Ÿ’๐Ÿ] I. Perfilieva, Fuzzy Functions: Theoretical and Practical Point of

View, University of Ostrava, Inst. for Research and Applications of

Fuzzy Modeling, 2011, 480-532.

[๐Ÿ’๐Ÿ‘] A. Sadeghi, A. Ismail, and A. Jameel, Solving Systems of Fuzzy

Differential Equation, International Mathematical Forum, Vol.6,

No. 42, 2011, 2087-2100.

[๐Ÿ’๐Ÿ’] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, and P. Agarwal,

On Analytical solutions of the Fractional Differential Equation

with uncertainty: Application to the Basset problem, Entropy,

Vol. 17, Issue 2, 2015, 885-902.

[๐Ÿ’๐Ÿ“] S. Salahshour, M.Khezerloo, S. Hajighasemi, and M. Khorasany,

Solving Fuzzy Integral Equations of the Second Kind by Fuzzy

Laplace Transform Method, Int. J. Industrial Mathematics, Vol. 4,

No. 1, 2012, 21-29.

[๐Ÿ’๐Ÿ”] H. Sorkun, and S. Yalcinbas, Approximate Solutions of linear

Volterra integral equation systems with variabl coefficients,

Applied Mathematical Modeling, Vol. 34, Issue 11, 2010, 3451-

3464.

Page 142: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

131

[๐Ÿ’๐Ÿ•] Yu.Syau, L. Sugianto, E. Lee, Continuity and Semi continuity of

Fuzzy Mappings, Computers and Mathematics with Applications,

Vol. 61, Issue 4, 2011, 1122-1128.

[๐Ÿ’๐Ÿ–] L. Zadeh, Fuzzy Sets, Information and control, Vol. 8, 1965,

338-358.

[49] L. Zadeh, Linguistic variables, approximate reasoning and

disposition, Medical Informatics, Vol. 8, Issue 3, 1983, 173-186.

[๐Ÿ“๐ŸŽ] H. Zimmermann, Fuzzy set theory and applications, Springer

Science and Business Media, Vol.2, 2010, 317-332.

Page 143: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

ุฌุงู…ุนุฉ ุงู„ู†ุฌุงุญ ุงู„ูˆุทู†ูŠุฉ

ูƒู„ูŠุฉ ุงู„ุฏุฑุงุณุงุช ุงู„ุนู„ูŠุง

ุญู„ ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุงู„ุฎุทูŠุฉ ุงู„ุถุจุงุจูŠุฉ ู…ู† ุงู„ู†ูˆุน ุงู„ุซุงู†ูŠ ุจุงู„ุทุฑู‚ ุงู„ุชุญู„ูŠู„ูŠุฉ ูˆุงู„ุนุฏุฏูŠุฉ

ุฅุนุฏุงุฏ ุฌูŠู‡ุงู† ุชุญุณูŠู† ุนุจุฏ ุงู„ุฑุญูŠู… ุญู…ุงูŠุฏูŠ

ุฅุดุฑุงู ุฃ.ุฏ. ู†ุงุฌูŠ ู‚ุทู†ุงู†ูŠ

ู‚ุฏู…ุช ู‡ุฐู‡ ุงุฃู„ุทุฑูˆุญุฉ ุงุณุชูƒู…ุงุงู„ ู„ู…ุชุทู„ุจุงุช ุงู„ุญุตูˆู„ ุนู„ู‰ ุฏุฑุฌุฉ ุงู„ู…ุงุฌุณุชูŠุฑ ููŠ ุงู„ุฑูŠุงุถูŠุงุช ุจูƒู„ูŠุฉ .ูู„ุณุทูŠู† -ุงู„ุฏุฑุงุณุงุช ุงู„ุนู„ูŠุง ููŠ ุฌุงู…ุนุฉ ุงู„ู†ุฌุงุญ ุงู„ูˆุทู†ูŠุฉุŒ ู†ุงุจู„ุณ

2016

Page 144: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

ุจ

ุญู„ ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุงู„ุฎุทูŠุฉ ุงู„ุถุจุงุจูŠุฉ ู…ู† ุงู„ู†ูˆุน ุงู„ุซุงู†ูŠ ุจุงู„ุทุฑู‚ ุงู„ุชุญู„ูŠู„ูŠุฉ ูˆุงู„ุนุฏุฏูŠุฉ

ุฅุนุฏุงุฏ ุงู„ุฑุญูŠู… ุญู…ุงูŠุฏูŠุฌูŠู‡ุงู† ุชุญุณูŠู† ุนุจุฏ ุฅุดุฑุงู

ุฃ.ุฏ. ู†ุงุฌูŠ ู‚ุทู†ุงู†ูŠ

ุงู„ู…ู„ุฎุต

ู…ู† ุชุทุจูŠู‚ุงุช ุงู„ู…ุนุงุฏุงู„ุช ุงู„ุชูƒุงู…ู„ูŠุฉ ุจุดูƒู„ ุนุงู… ุชู„ุนุจ ุฏูˆุฑุง ู‡ุงู…ุง ุฌุฏุง ููŠ ุงู„ู‡ู†ุฏุณุฉ ูˆุงู„ุชูƒู†ูˆู„ูˆุฌูŠุง ู„ู…ุง ู„ู‡ุงุงู„ุชุทุจูŠู‚ุงุช ู…ุซู„ ุงู„ุชุญูƒู… ูˆุงุณุนุฉ. ู…ุนุงุฏุงู„ุช ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุงู„ุถุจุงุจูŠุฉ ุจุดูƒู„ ุฎุงุต ู„ู‡ุง ุงู„ุนุฏูŠุฏ ู…ู†

ุงู„ุถุจุงุจูŠุฉ. ุงู„ุชุญูˆูŠู„ ูˆุงู„ู†ุธู… ุงุงู„ู‚ุชุตุงุฏูŠุฉุงู„ุถุจุงุจูŠุฉ ูˆ

ุจุนุฏ ุฃู† ุชู†ุงูˆู„ู†ุง ุงู„ู…ูุงู‡ูŠู… ุงุฃู„ุณุงุณูŠุฉ ููŠ ุงู„ุฑูŠุงุถูŠุงุช ุงู„ุถุจุงุจูŠุฉุŒ ู‚ู…ู†ุง ุจุงู„ุชุฑูƒูŠุฒ ุนู„ู‰ ุงู„ุทุฑู‚ ุงู„ุชุญู„ูŠู„ูŠุฉ ูˆุงู„ุนุฏุฏูŠุฉ ู„ุญู„ ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุงู„ุถุจุงุจูŠุฉ ู…ู† ุงู„ู†ูˆุน ุงู„ุซุงู†ูŠ. ูˆู„ุญู„ ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ

ุงุจูŠุฉุŒ ุทุฑูŠู‚ุฉ ู‡ูˆู…ูˆุชูˆุจูŠ ุงู„ุชุญู„ูŠู„ูŠุฉ ุจุงู„ุทุฑู‚ ุงู„ุชุญู„ูŠู„ูŠุฉ ู‚ุฏู…ู†ุง ุงู„ุทุฑู‚ ุงู„ุชุงู„ูŠุฉ: ุทุฑูŠู‚ุฉ ุชุญูˆูŠู„ ุงู„ุจุงู„ุณ ุงู„ุถุจุงู„ุถุจุงุจูŠุฉุŒ ุทุฑูŠู‚ุฉ ุฃุฏูˆู…ูŠุงู† ุงู„ุชุญู„ูŠู„ูŠุฉ ุงู„ุถุจุงุจูŠุฉุŒ ุทุฑูŠู‚ุฉ ุงู„ุชุญูˆูŠู„ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุถุจุงุจูŠุฉุŒ ุทุฑูŠู‚ุฉ ุงู„ุชู‚ุฑูŠุจ

ุงู„ู…ุชุชุงู„ูŠ ุงู„ุถุจุงุจูŠุฉ.

ูˆู„ุญู„ ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุจุงู„ุทุฑู‚ ุงู„ุนุฏุฏูŠุฉ ู‚ู…ู†ุง ุจุชู†ูุฐ ุทุฑู‚ ู…ุฎุชู„ูุฉ ูˆู‡ูŠ: ุทุฑูŠู‚ุฉ ุชุงูŠู„ุฑ ุงู„ุชูˆุณุนูŠุฉุŒ .ุทุฑูŠู‚ุฉ ุชุจุงูŠู† ุงู„ุชูƒุฑุงุฑุจู‡ ุงู„ู…ู†ุญุฑูุŒ ุทุฑูŠู‚ุฉ ุด

ุŒ ุญูŠุซ ุฃุธู‡ุฑุช ุงู„ู†ุชุงุฆุฌ ูŠุฉ ู‚ู…ู†ุง ุจุญู„ ุจุนุถ ุงุฃู„ู…ุซู„ุฉ ุงู„ุนุฏุฏูŠุฉูˆู„ู„ุชุญู‚ู‚ ู…ู† ูƒูุงุกุฉ ู‡ุฐู‡ ุงู„ุทุฑู‚ ุงู„ุนุฏุฏุงู„ุนุฏุฏูŠุฉ ุฏู‚ุชู‡ุง ูˆู‚ุฑุจู‡ุง ู…ู† ุงู„ู†ุชุงุฆุฌ ุงู„ุชุญู„ูŠู„ูŠุฉุŒ ูˆูƒุงู†ุช ุทุฑูŠู‚ุฉ ุชุจุงูŠู† ุงู„ุชูƒุฑุงุฑ ู‡ูŠ ุงุฃู„ู‚ูˆู‰ ูˆุงุฃู„ุฏู‚ ููŠ ุญู„

ู…ุน ุงู„ุทุฑู‚ ุงู„ุนุฏุฏูŠุฉ ุงุฃู„ุฎุฑู‰.ู…ุนุงุฏู„ุฉ ููˆู„ุชูŠุฑุง ุงู„ุชูƒุงู…ู„ูŠุฉ ุงู„ุถุจุงุจูŠุฉ ู…ู† ุงู„ู†ูˆุน ุงู„ุซุงู†ูŠ ุจุงู„ู…ู‚ุงุฑู†ุฉ

Page 145: Analytical and Numerical Methods for Solving Linear Fuzzy ...1.6 Fuzzy integral equations 20 Chapter Two 24 Analytical methods for Solving Fuzzy Volterra Integral Equation of the Second

ุฌ