analysis of the causes of corrosion on bearing steel ... text.pdf · 148 inŻynieria materiaŁowa...

5
148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel transported by sea Marzena M. Lachowicz 1* , Maciej B. Lachowicz 1,2 1 Wrocław University of Technology and Science, 2 Machinefish Materials & Technologies Sp. z o.o. Sp.k.; * [email protected] The paper presents the results of tests of bearing steel grade 100Cr6, which corroded during maritime transport. As a result of the tests, it was found that the surface was subjected to temporary protection with the use of a preservative. Its presence on the surface contributed to the formation of filiform corrosion. The resulting corrosion changes are on the surface and do not propagate into the element. The microscopic image of the resulting changes also indicates the rapid progress of the filiform corrosion, which is manifested by the formation of linearly arranged corrosion micro pitting. The primary carbides present in the microstructure are cathodic precipitates in relation to the matrix and are not subject to digestion. In the forehead of the corrosion thread, an increased content of chlorine and the presence of sulphur were found in comparison to the tail of the thread. Key words: bearing steel, filiform corrosion, temporary protection, 100Cr6. Inżynieria Materiałowa 4 (224) (2018) 148÷152 DOI 10.15199/28.2018.4.3 MATERIALS ENGINEERING 1. INTRODUCTION In order to prevent corrosion damage of cargo subject to corro- sion during transport, it is subjected to temporary protection. This protection consists of weakening the aggressiveness of the envi- ronment, mainly by lowering the relative humidity, using volatile inhibitors or preserving the surface with the use of lubricants and oils. The immersion method is usually used for protection with pre- servatives, in which the object is placed in a special tub filled with the preservative. In the case of maintenance of large elements, the spray method is used more often. Filiform corrosion is a special type of local corrosion, in which corrosion changes are characterized by a specific form of dissemi- nation in the form of thin, shallow and non-crosslinking corrosion threads of considerable length. It is classified as a type of atmos- pheric corrosion and also referred to as underfilm corrosion or fil- amentary corrosion. This type of corrosion attacks metals coated with organic coating, mainly aluminium and magnesium alloys. However, there have also been cases in which steel has been subject to this type of corrosion [1÷3]. Threads formed from corrosion products have an active head on their front which is a cell that wanders on the surface of the metal and a long trailing tail formed behind the head and filled with dry, porous corrosion products [4]. Oxygen is easily transported through the filament tail [5]. The thread has a red colour, characteristic for Fe 2 O 3 , while the active head is green or blue, which is related to the presence of ferrous ions. The width of typical threads ranges from 0.5 to 1.5 mm [6]. The thread length is several times the di- ameter [7]. If corrosion develops under favourable conditions, then the thread dimensions are similar. Changes in atmospheric condi- tions (temperature, humidity, protective layer thickness) lead to the existence of corrosion macro and micro threads [7]. It was found that the width of threads increases with the relative humidity of the atmosphere [8]. A high relative humidity is required for the development of fili- form corrosion, which must be sufficient to allow salt to sedimenta- tion on the metal surface [8]. The presence of light does not affect the filiform corrosion. It can occur both in sunlight and in complete darkness [7]. Filiform corrosion usually occurs locally. Threads can be initiat- ed on the edges, scratches or impurities present on the metal surface [7]. For this reason, it is favoured by the presence of surfaces with considerable roughness. In the case of coatings, corrosion initiation occurs at the location of the discontinuity of the coating [5, 8÷10]. In the case of steel, a number of mechanisms, including anodic under- mining, cathodic disbondment and mechanical disbondment through electro (osmotic) forces, are given as the main cause of corrosion [5]. Nevertheless, the main driving force behind the corrosion pro- cess is the difference in oxygen concentration between the head and the trailing-edge, leading to the formation of a concentration cell. The difference in aeration causes Fe(OH) 2 to appear in the leading- edge of the filament head constituting an anode, resulting in oxida- tion, while the end of the head, directed towards the trailing-edge is the main site of cathodic oxygen reduction, containing Fe(OH) 3 [4]. The paper presents the results of tests of bearing steel, which corroded during maritime transport. A typical type of corrosion oc- curring in bearing steel is uniform corrosion. Its initiation consists in the creation of corrosion products in isolated points of the metal’s surface. Then, the corrosion spreads to evenly cover the entire metal surface [11]. 2. MATERIAL AND METHODS The paper presents the results of tests conducted on bearing steel, which corroded during the period of about 1 month in the condi- tions of maritime transport. The general view of the corroded sur- face is shown in Figure 1. Metallographic examinations were carried out using a Leica DM6000 metallographic microscope. Microscopic examinations were also carried out using the Phenom World ProX scanning elec- tron microscope coupled with the X-ray EDS microanalyser. The content of elements in the tested steel was determined using the glow discharge optical emission spectrometry (GD-OES) using the LECO GDS 500A device.

Upload: others

Post on 30-Aug-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of the causes of corrosion on bearing steel ... text.pdf · 148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel

148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX

Analysis of the causes of corrosion on bearing steel transported by sea

Marzena M. Lachowicz1*, Maciej B. Lachowicz1,2

1Wrocław University of Technology and Science, 2Machinefish Materials & Technologies Sp. z o.o. Sp.k.; *[email protected]

The paper presents the results of tests of bearing steel grade 100Cr6, which corroded during maritime transport. As a result of the tests, it was found that the surface was subjected to temporary protection with the use of a preservative. Its presence on the surface contributed to the formation of filiform corrosion. The resulting corrosion changes are on the surface and do not propagate into the element. The microscopic image of the resulting changes also indicates the rapid progress of the filiform corrosion, which is manifested by the formation of linearly arranged corrosion micro pitting. The primary carbides present in the microstructure are cathodic precipitates in relation to the matrix and are not subject to digestion. In the forehead of the corrosion thread, an increased content of chlorine and the presence of sulphur were found in comparison to the tail of the thread.

Key words: bearing steel, filiform corrosion, temporary protection, 100Cr6.

Inżynieria Materiałowa 4 (224) (2018) 148÷152DOI 10.15199/28.2018.4.3

MATERIALS ENGINEERING

1. INTRODUCTION

In order to prevent corrosion damage of cargo subject to corro-sion during transport, it is subjected to temporary protection. This protection consists of weakening the aggressiveness of the envi-ronment, mainly by lowering the relative humidity, using volatile inhibitors or preserving the surface with the use of lubricants and oils. The immersion method is usually used for protection with pre-servatives, in which the object is placed in a special tub filled with the preservative. In the case of maintenance of large elements, the spray method is used more often.

Filiform corrosion is a special type of local corrosion, in which corrosion changes are characterized by a specific form of dissemi-nation in the form of thin, shallow and non-crosslinking corrosion threads of considerable length. It is classified as a type of atmos-pheric corrosion and also referred to as underfilm corrosion or fil-amentary corrosion. This type of corrosion attacks metals coated with organic coating, mainly aluminium and magnesium alloys. However, there have also been cases in which steel has been subject to this type of corrosion [1÷3].

Threads formed from corrosion products have an active head on their front which is a cell that wanders on the surface of the metal and a long trailing tail formed behind the head and filled with dry, porous corrosion products [4]. Oxygen is easily transported through the filament tail [5]. The thread has a red colour, characteristic for Fe2O3, while the active head is green or blue, which is related to the presence of ferrous ions. The width of typical threads ranges from 0.5 to 1.5 mm [6]. The thread length is several times the di-ameter [7]. If corrosion develops under favourable conditions, then the thread dimensions are similar. Changes in atmospheric condi-tions (temperature, humidity, protective layer thickness) lead to the existence of corrosion macro and micro threads [7]. It was found that the width of threads increases with the relative humidity of the atmosphere [8].

A high relative humidity is required for the development of fili-form corrosion, which must be sufficient to allow salt to sedimenta-tion on the metal surface [8]. The presence of light does not affect

the filiform corrosion. It can occur both in sunlight and in complete darkness [7].

Filiform corrosion usually occurs locally. Threads can be initiat-ed on the edges, scratches or impurities present on the metal surface [7]. For this reason, it is favoured by the presence of surfaces with considerable roughness. In the case of coatings, corrosion initiation occurs at the location of the discontinuity of the coating [5, 8÷10]. In the case of steel, a number of mechanisms, including anodic under-mining, cathodic disbondment and mechanical disbondment through electro (osmotic) forces, are given as the main cause of corrosion [5]. Nevertheless, the main driving force behind the corrosion pro-cess is the difference in oxygen concentration between the head and the trailing-edge, leading to the formation of a concentration cell. The difference in aeration causes Fe(OH)2 to appear in the leading-edge of the filament head constituting an anode, resulting in oxida-tion, while the end of the head, directed towards the trailing-edge is the main site of cathodic oxygen reduction, containing Fe(OH)3 [4].

The paper presents the results of tests of bearing steel, which corroded during maritime transport. A typical type of corrosion oc-curring in bearing steel is uniform corrosion. Its initiation consists in the creation of corrosion products in isolated points of the metal’s surface. Then, the corrosion spreads to evenly cover the entire metal surface [11].

2. MATERIAL AND METHODS

The paper presents the results of tests conducted on bearing steel, which corroded during the period of about 1 month in the condi-tions of maritime transport. The general view of the corroded sur-face is shown in Figure 1.

Metallographic examinations were carried out using a Leica DM6000 metallographic microscope. Microscopic examinations were also carried out using the Phenom World ProX scanning elec-tron microscope coupled with the X-ray EDS microanalyser.

The content of elements in the tested steel was determined using the glow discharge optical emission spectrometry (GD-OES) using the LECO GDS 500A device.

Page 2: Analysis of the causes of corrosion on bearing steel ... text.pdf · 148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel

NR 4/2018 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 149

3. RESULTS AND DISCUSSION

2.1. Metallographic examination of the ballThe general view of the surface of a corroded bearing ball is shown in Figure 1. Microscopic examinations conducted on the cross-sec-tion of the ball in the near-surface area showed that the resulting corrosion changes do not propagate into the element and have the character of shallow micropitting on the cross-section (Fig. 2). In the microstructure, there was the presence of a fine tempered mar-tensite with fine dispersed carbide precipitations evenly distributed in the matrix (Fig. 3). No relationship was found between the mi-crostructure, the surface condition of the bearing ball and the de-veloping corrosion. In addition to the areas where the threads were present, the bearing ball examined was characterised by a smooth surface, devoid of surface unevenness. The results of the chemical composition of the steel tested are presented in Table 1. Its chemical composition corresponds to steel grade 100Cr6 (1.3505) in accord-ance with EN ISO 683–17.

2.2.Microscopicexaminationoftheballsurface

The performed chemical microanalysis showed that the analysed bearing ball was lubricated. Modern lubricants are very complex in terms of the elements present in them, and the exact chemical compositions are covered by the manufacturer’s secret. The microa-nalysis of chemical composition carried out using the EDS method

from the surface of the bearing ball outside the area of the corrosion allowed to determine that its surface was covered with soap grease. This type of lubricants is characterised by the use of a thickener based on higher group fatty acid soap and cations of metals such as Li+, Al+, Ca++ and Na+. The presence in the spectrum of such ele-ments as Al, Ca and Na should be associated with this. The presence of carbon indicates the use of organic substances in the lubricant. The presence of sulphur, with the simultaneous presence of calcium, may indicate that a calcium sulphonate thickener has been used. The presence of sulphur can also be associated with the use of organic anti-seizure lubricating additives (EP) or organic oxidation inhibi-tors. Also, chlorine present in the spectrum can originate from an or-ganic lubricity additive. Potassium and sodium are included in cor-rosion inhibitors, which also belong to additives commonly used in lubricants. The simultaneous presence of nitrogen may indicate that nitrites were used as corrosion inhibitors. Iron present in the spec-trum comes from the steel surface. Oxygen, in turn, from the oxida-tion of the steel surface and the grease (Fig. 4). Due to the complex-ity of the chemical composition of lubricants and the possibility of

Fig. 1. View of the surface of a bearing ball with filiform corrosion; stereoscopic microscopyRys. 1. Widok powierzchni kulki łożyskowej objętej korozją nitkową; mi-kroskopia stereoskopowa

Fig. 2. Microstructure of the analysed bearing steel in a non-etched state. Visible corrosion micropitting in the cross-section; LMRys. 2. Mikrostruktura badanej stali łożyskowej w stanie nietrawionym. Widoczne mikrowżery korozyjne na przekroju poprzecznym; mikrosko-pia świetlna

Fig. 3. Microstructure of the analysed bearing steel. Visible fine tem-pered martensite with uniformly distributed precipitations of primary carbides; LM, etched stateRys. 3. Mikrostruktura badanej stali łożyskowej. Widoczny skrytoiglasty martenzyt z równomiernie rozłożonymi wydzieleniami węglików pierwot-nych; mikroskopia świetlna, stan trawiony

Table 1. Chemical composition of the analysed bearing steel grade 100Cr6, wt %Tabela 1. Skład chemiczny badanej stali łożyskowej gatunku 100Cr6, % mas.

C Si Mn Cr P S Ni Cu Fe

1.08 0.24 0.32 1.44 0.012 0.004 0.02 0.01 balance

Fig. 4. The characteristic X-ray spectrum obtained using the energy dispersion spectrometry (EDS) method from the surface of the bearing ball at the location of the preservativeRys. 4. Widmo charakterystycznego promieniowania rentgenowskiego uzyskane z wykorzystaniem metody spektrometrii z dyspersją energii (EDS) z powierzchni kulki łożyska w miejscu występowania środka kon-serwującego

Page 3: Analysis of the causes of corrosion on bearing steel ... text.pdf · 148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel

150 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX

occurrence of elements present in the spectrum in many compounds used in lubricants, it is not possible to clearly determine their origin. However, the main goal of the study was not so much to determine the chemical composition of the lubricant used to protect the surface against corrosion for the duration of transport, but to show that the tested element has been protected with such a lubricant.

Microscopic examination of the surface of the bearing ball re-vealed the presence of numerous corrosion threads with a width of several to several dozen micrometers (Fig. 5). SEM microscopic observations of the surface outside the areas of thread occurrence confirmed the lack of unevenness on the surface of the bearing ball, which could become the nucleus of filiform corrosion. The presence of corrosive threads of various dimensions is evidence of changes in atmospheric conditions [7]. No relation was found between the width of the threads formed and their height (Fig. 6).

The images of a corrosion thread after the removal of corrosion products are shown in Figures 7 and 8. It was found that its course is not rectilinear and is characterized by the presence of numerous changes in their direction. The character of the resulting changes also indicates the rapid progress of the filiform corrosion, which is manifested by the formation of linearly arranged corrosion mi-cropitting. The metallic matrix undergoes disintegration, while the primary carbides present in the microstructure constituting cathodic precipitation are not subject to corrosion processes (Fig. 7).

Corrosion products are complex. Analysing the Fe–O phase equilibrium graph, it can be concluded that in the case of corro-sion occurring at ambient temperature, iron corrosion products may contain ferrous iron oxide Fe3O4 (magnetite) and iron oxide with more iron, with the stoichiometric formula Fe2O3 (hematite). In the case of steel, it is of course to be expected that the corrosion prod-ucts generated in the corrosion process will be more or less com-plex combinations of metal oxides constituting a given alloy. This is confirmed by the results obtained by EDS from the corrosion products. An exemplary microanalysis of the chemical composition performed locally for the thread face and in its core (shown in Fig-ure 9) is presented in the form of characteristic radiation spectra and the obtained results of the chemical composition microanalysis (Figures 10, 11). The microanalysis of the chemical composition performed locally in the area of the occurrence of corrosion prod-ucts showed the presence of elements resulting from the chemical composition of steel (Fe, Cr, Si) and oxygen resulting from the oxi-dation processes.

The presence of reflections from calcium in the obtained spec-tra may indicate the presence of calcium deposits in the corrosion threads. Seawater is characterized by the presence of calcium in the form of sulphate and calcium carbonate. More likely, howev-er, is that the calcium originates from the preservative because it has been observed even in areas where no sulphur has been found.

Fig. 5. View of corrosion threads on the surface of the sample; SEMRys. 5. Widok nitek korozyjnych na powierzchni próbki; SEM

Fig. 6. 3D profilometric image of the surface shown in Figure 5Rys. 6. Obraz profilometryczny 3D powierzchni pokazanej na rysunku 5

Fig. 7. View of the sample surface after removal of corrosion products. Visible selective dissolution of the metallic matrix without violating the primary carbide precipitation; SEMRys. 7. Widok powierzchni próbki po usunięciu produktów korozji. Wi-doczne selektywne roztrawianie osnowy metalicznej bez naruszenia wy-dzieleń węglików pierwotnych; SEM

Fig. 8. 3D profilometric image of the surface shown in Figure 7Rys. 8. Obraz profilometryczny 3D powierzchni pokazanej na rysunku 7

Page 4: Analysis of the causes of corrosion on bearing steel ... text.pdf · 148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel

NR 4/2018 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING 151

Meanwhile, in seawater, it is calcium sulphate that is found in larger quantities than calcium carbonate.

In the areas forming the front of the corrosion thread, the con-tent of chlorine and the presence of sulphur were slightly increased

compared to the tail of the thread. The analyses were carried out in several places, each time obtaining convergent results of the mi-croanalyses. The important role of chlorine in the development of filiform corrosion is emphasised by many authors [1, 9]. Literature on the subject also indicates that sulphur ions may also contribute to filiform corrosion [8].

3. SUMMARY

The paper presents the results of tests of bearing steel grade 100Cr6, which was subject to filiform corrosion during maritime transport. The marine environment is characterized by high corrosivity (C5-M in accordance with PN–EN ISO 12944–2) due to the constant con-densation and high pollution. The corrosion affected the entire sur-face of the bearing ball. This type of corrosion occurs in coated ma-terials. The tests confirmed that the surface of the ball was tempo-rarily protected with a preservative to reducing the aggressiveness of the environment. After evaporation of the solvent, a protective film was created on the surface treated, the aim of which was to pro-tect the metal surface from the effects of corrosive agents. The tests carried out indicate that this can become a ground for the develop-ment of corrosion. Due to the presence of probable discontinuities in the resulting protective film, filiform corrosion has developed.

The resulting corrosion is characterized by the following features:1. Changes are on the surface and do not propagate into the element. 2. The microscopic image of the resulting changes also indicates

the rapid progress of the filiform corrosion, which is manifested by the formation of linearly arranged corrosion micro pitting. The presence of corrosion pits was also observed on the cross-section of the analysed bearing ball.

3. The metallic matrix was subject to disintegration, while the pri-mary carbides present in the microstructure constitute cathodic precipitates in relation to the matrix and are not subject to cor-rosion processes.

4. In the forehead of the corrosion thread, a slightly increased con-tent of chlorine and the presence of sulphur were found in com-parison to the tail of the thread. The important role of chlorine in the development of filiform corrosion is emphasized by many authors [1, 9]. Literature on the subject also indicates that sul-phur ions also found in the corrosion products may also contrib-ute to filiform corrosion [8].

REFERENCES

[1] Williams G., McMurray N.: The mechanism of group (I) chloride initiated filiform corrosion on iron. Electrochemistry Communications 5 (2003) 871÷877.

[2] Weissenrieder J., Leygraf C.: In situ studies of filiform corrosion of iron. Journal of The Electrochemical Society 151 (3) (2004) B165÷B171.

[3] Kucharska B.: Badania mikroskopowe korozji nitkowej na stali łożyskowej. Hutnik–Wiadomości Hutnicze 7–8 (2004) 374÷376.

[4] Watson T. M., McMurray H. N., Williams G., Coleman A.: The mecha-nism of chloride-induced filiform corrosion on iron investigated by time-lapse photomicrography. Proceedings Electrochemical Society PV 2004-14 (2005) 321÷327.

[5] Watson T. M., Coleman A. J., Williams G., McMurray H. N.: The effect of oxygen partial pressure on the filiform corrosion of organic coated iron. Corrosion Science 89 (2014) 46÷58.

[6] Uhling H. H: Korozja i jej zapobieganie. WNT, Warszawa (1976).[7] Juchniewicz R.: Z zagadnień korozji metali. PWN, Warszawa (1965).[8] Bautista A.: Filiform corrosion in polymer-coated metals. Progress in Or-

ganic Coatings 28 (1) (1996) 49÷58.[9] Catubig R., Seter M., Neil W., Forsyth M., Hinton B.: Effects of corrosion

inhibiting pigment lanthanum 4-hydroxy cinnamate on the filiform corro-sion of coated steel. Journal of Electrochemical Society 158 (11) (2011) C353÷C358.

[10] Leblanc P. P., Frankel G. P.: Investigation of filiform corrosion of epoxy-coated 1045 carbon steel by scanning kelvin probe force microscopy. Jour-nal of Electrochemical Society 153 (3) (2004) B105÷B113.

[11] Han W., Yu G., Wang Z., Wang J.: Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation. Cor-rosion Science 49 (2007) 2920÷2935.

Fig. 9. View of corrosion threads on the surface of the sample. Points 1 and 2 indicate the locations of the microanalyses of the chemical com-position; SEMRys. 9. Widok nitek korozyjnych na powierzchni próbki. Punktami 1 i 2 zaznaczono miejsca wykonania mikroanaliz składu chemicznego; SEM

Fig. 10. The characteristic X-ray spectrum obtained using the energy dispersion spectrometry (EDS) method from the surface of the bearing ball at point 1 indicated in Figure 9 and constituting an inactive front of the threadRys. 10. Widmo charakterystycznego promieniowania rentgenowskiego uzyskane z wykorzystaniem metody spektrometrii z dyspersją energii (EDS) z powierzchni kulki łożyska w miejscu 1 pokazanym na rysunku 9 i stanowiącym nieaktywne czoło nitki

Fig. 11. The characteristic X-ray spectrum obtained using the energy dispersion spectrometry (EDS) method from the surface of the bear-ing ball at point 2 indicated in Figure 9 and constituting the tail of the corrosion threadRys. 11. Widmo charakterystycznego promieniowania rentgenowskiego uzyskane z wykorzystaniem metody spektrometrii z dyspersją energii (EDS) w miejscu 2 pokazanym na rysunku 9 i stanowiącym ogon korozji nitkowej

Page 5: Analysis of the causes of corrosion on bearing steel ... text.pdf · 148 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX Analysis of the causes of corrosion on bearing steel

152 INŻYNIERIA MATERIAŁOWA MATERIALS ENGINEERING ROK XXXIX

Analiza przyczyn wystąpienia korozji na stali łożyskowej transportowanej drogą morską

Marzena M. Lachowicz1, Maciej B. Lachowicz1,2

1Politechnika Wrocławska, 2Machinefish Materials & Technologies Sp. z o.o. Sp.k.; *[email protected]

Inżynieria Materiałowa 4 (224) (2018) 148÷152DOI 10.15199/28.2018.4.3

MATERIALS ENGINEERING

Słowa kluczowe: stal łożyskowa, korozja nitkowa, zabezpieczenie czasowe, 100Cr6.

1. CEL PRACY

W celu przeciwdziałania uszkodzeniom korozyjnym ładunków ulegających korozji w trakcie transportu poddaje się je zabezpie-czeniom czasowym. Polegają one na osłabieniu agresywności śro-dowiska, głównie przez obniżenie wilgotności względnej, zastoso-wanie inhibitorów lotnych czy konserwację powierzchni z wyko-rzystaniem smarów i olejów.

Korozja nitkowa jest szczególnym rodzajem korozji lokalnej, w której zmiany korozyjne charakteryzują się specyficzną formą rozpowszechniania w postaci cienkich, płytkich i niekrzyżujących się nitek korozyjnych o znacznej długości. Klasyfikowana jest jako rodzaj korozji atmosferycznej. Atakowi tego typu korozji ulegają metale powlekane powłoką organiczną, przede wszystkim stopy aluminium oraz magnezu. Znane są jednak również przypadki, w których temu typowi korozji uległa stal.

W pracy przedstawiono wyniki badań stali łożyskowej, która uległa korozji podczas transportu morskiego. Celem realizowanych badań było określenie przyczyn wystąpienia korozji.

2. MATERIAŁ I METODYKA BADAŃ

W pracy przedstawiono wyniki badań stali łożyskowej, która uległa korozji podczas przebywania przez około 1 miesiąca w warunkach transportu morskiego.

Badania metalograficzne zrealizowano z wykorzystaniem mi-kroskopu metalograficznego Leica DM6000. Badania mikroskopo-we wykonano również za pomocą skaningowego mikroskopu elek-tronowego Phenom World ProX sprzężonego z mikroanalizatorem rentgenowskim EDS.

Zawartość pierwiastków w badanej stali oznaczono z wykorzy-staniem optycznej spektrometrii emisyjnej z wyładowaniem jarze-niowym (GDS OES) na urządzeniu GDS 500A firmy LECO.

3. WYNIKI I ICH DYSKUSJA

Skład chemiczny badanej stali odpowiada stali gatunku 100Cr6 (1.3505) zgodnie z normą EN ISO 683–17 (tab. 1). W mikrostruktu-rze stwierdzono obecność skrytoiglastego martenzytu z równomier-nie rozłożonymi w osnowie wydzieleniami drobnodyspersyjnych wydzieleń węglików (rys. 3). Nie stwierdzono żadnego związku pomiędzy stanem powierzchni kulki łożyskowej a rozwijającą się korozją.

Mikroanaliza składu chemicznego wykonana metodą EDS z po-wierzchni kulki łożyskowej poza obszarem wystąpienia korozji wy-kazała, że jej powierzchnia była pokryta smarem mydlanym.

Badania mikroskopowe powierzchni kulki łożyskowej ujaw-niły obecność nitek korozyjnych o szerokości od kilku do kil-kudziesięciu mikrometrów (rys. 5). Obserwacje mikroskopowe SEM powierzchni poza obszarami występowania nitek potwier-dziły brak nierówności na powierzchni kulki łożyskowej, które mogłyby stać się zaczątkiem korozji nitkowej. Nie stwierdzono zależności pomiędzy szerokością powstałych nitek a ich wyso-kością (rys. 6).

Stwierdzono, że przebieg nitek korozyjnych nie jest prostolinio-wy i charakteryzuje się obecnością licznych zmian w ich kierunku. Charakter powstałych zmian wskazuje również na skokowy postęp nitki korozyjnej, co przejawia się tworzeniem liniowo ułożonych mikrowżerów korozyjnych. Roztwarzaniu ulega osnowa metaliczna, natomiast obecne w mikrostrukturze węgliki pierwotne stanowiące wydzielenia katodowe nie podlegają procesom korozyjnym (rys. 7)

Powstające w wyniku korozji produkty są złożone. W obsza-rach stanowiących czoło nitki korozyjnej stwierdzono nieznacznie zwiększoną zawartość chloru oraz obecność siarki w porównaniu z ogonem nitki. Analizy prowadzono w kilku miejscach, za każdym razem uzyskując zbieżne wyniki mikroanaliz.

4. PODSUMOWANIE

Środowisko morskie charakteryzuje się wysoką korozyjnością (C5-M zgodnie z normą PN–EN ISO 12944–2) ze względu na wy-stępującą tam stałą kondensację i duże zanieczyszczenie. Z tego względu ładunki na statkach ulegające korozji poddaje się czaso-wej ochronie.

W pracy przedstawiono wyniki badań stali łożyskowej gatunku 100Cr6, która uległa korozji podczas transportu morskiego. Ko-rozja nitkowa nie występowała lokalnie, ale na całej powierzchni kulki łożyskowej. Powstałe zmiany korozyjne miały charakter po-wierzchniowy i nie propagowały w głąb elementu. Zmiany miały charakter liniowo ułożonych mikrowżerów korozyjnych, co wska-zuje na skokowy postęp nitki korozyjnej.

W badaniach potwierdzono, że powierzchnia była poddana cza-sowej ochronie z wykorzystaniem środka konserwującego. Po od-parowaniu rozpuszczalnika na powierzchni poddanej konserwacji powstaje film ochronny, który chroni powierzchnię metalu przed oddziaływaniem czynników korozyjnych. Przeprowadzone badania wskazują, że może on stać się podłożem do rozwoju korozji. Wsku-tek obecności prawdopodobnych nieciągłości w powstałym filmie ochronnym nastąpił rozwój korozji nitkowej.

W czole nitki korozyjnej stwierdzono nieznacznie zwiększoną zawartość chloru oraz obecność siarki w porównaniu z ogonem nit-ki. Oba typy jonów odgrywają znaczącą rolę w rozwoju korozji.