analysis of human eeg data pavel stránský supervisor: prof. rndr. petr Šeba, drsc

20
Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc.

Upload: elmer-osborne

Post on 15-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

Analysis of Human EEG Data

Pavel Stránský

Supervisor: Prof. RNDr. Petr Šeba, DrSc.

Page 2: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

Content

1. Measurement and structure of EEG signal

2. EEG as a multivariate time series, statistical approach to EEG data processing

3. Small introduction to random matrices theory

4. My present results and outlook

Page 3: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

1

Measurement and Structure of EEG Signal

Page 4: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

1. Measurement and Structure of EEG Signal

Cerebral Electric Activity

EEG = Electro-encephalography, Electro-encephalogram

Page 5: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

1. Measurement and Structure of EEG Signal

Location of the Electrodes(10-20 system, 21 electrodes)

Page 6: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

1. Measurement and Structure of EEG Signal

An Example of EEG

Measurement

•Alpha waves

•Beta, theta, delta waves

•Other graphoelements

•Artefacts

Page 7: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

2.

Statistical Approach to EEG Data

Page 8: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

2. Statistical Approach to EEG Data

Modelling and processing time series

• Vector Autoregression VAR(p)

Stacionarity (Covariance – stacionarity):

for all t and any j

White noise:

for all t, t1, t2

Page 9: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

2. Statistical Approach to EEG Data

Modelling and processing time series (cont.)

• Other ways of treating with time series:Principal component analysis

Independent component analysis

Testing for periodicity (Fisher’s test, Siegel’s test)

mixing

ICA

Page 10: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

3. Small introduction to random matrix theory

(RMT)

Page 11: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

3. Small introduction to RMT

Random matrices

• Study of excitation spectra of compound nuclei• The same behaviour like eigenvalues of random matrices• 3 principal ensembles: GOE, GUE, GSE

Def: Gaussian othogonal ensemble is defined in the space of real symmetric matrices by two requirements:

1. Invariance (O is orthogonal matrix)

2. Elements are statistically independent

which means that , where

(probablity density function)

Hermitian matrices, unitary transformations

Hermitian self-dual matrices, symplectic transformations

Page 12: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

3. Small introduction to RMT

Random matrices (cont.)

• Universality classes:GUE Hamiltonians without time reversal symmetry

GOE Hamiltonians with time reversal symmetry and WITHOUT spin-1/2 interactionsGSE Hamiltonians with time reversal symmetry and WITH spin-1/2 interactions

• Universal law for joint probability density function:

For energies (eigenvalues of H)= 1 GOE

= 2 GUE

= 4 GSE

Page 13: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

3. Little introduction to RMT

Random matrices (cont.)

• Spectral correlations (nearest neighbour spacing distribution):Wigner distribution

Normalization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3

s

p(s)

GOE

GUE

GSE

Poisson

Page 14: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

3. Little introduction to RMT

Random matrices (cont.)

• Other distributions (taking into account correlations for longer distances)statistics (number variance)

3 statistics (spectral rigidity)

Page 15: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4.Results, outlook

Page 16: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4. Results, outlook

Correlation analysis of EEG Data

• Dividing EEG signal from M channels x1, ..., xM into cells of constant time length T

• Computing correlation matrix Cm for the mth cell with normalizing mean and variance:

• Finding eigenvalues m of all correlation matrices Cm

Page 17: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4. Results, outlook

Correlation analysis (cont.)

• Unfolding the spectra:

(after unfolding all eigenvalues are "equally important", the resulting eigenvalue density (x) is constant)

• Finding nearest neighbour distribution p(s) for the unfolded spectra:

Page 18: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4. Results, outlook

Correlation analysis (cont.)

• Comparing computed spacing distribution with theoretical

Wigner curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5

s

p(s)

EEG

Wigner

Page 19: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4. Results, outlook

Outlook

• Use more subtle method from RMT and time series analysis to analyze the correlations and also autocorrelations (correlations in time)

• Find significant and reproducible variables for standard EEG measured on healthy subjects

• Deviations are expected if there was some neural disease

Page 20: Analysis of Human EEG Data Pavel Stránský Supervisor: Prof. RNDr. Petr Šeba, DrSc

4. Results, outlook

Literature

• P. Šeba, Random Matrix Analysis of Human EEG Data, Phys. Rev. Lett. 91, 198104 (2003)

• T. Guhr, A. Müller-Groeling, H. A. Weidenmüller, Random Matrix Theories in Quantum Physics: Common Concepts, Phys. Rep. 299, 189 (1998)

• M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press (1967)

• H. J. Stöckmann, Quantum Chaos: An Introduction, Cambridge University Press (1999)

• A. F. Siegel, Testing for Periodicity in a Time Series, JASA 75, 345 (1980)• J. D. Hamilton, Time Series Analysis, Princeton University Press (1994)• A. Jung, Statistical Analysis of Biomedical Data, Dissertation, Universität

Regensburg (2003)• J. Faber, Elektroencefalografie a psychofyziologie, ISV nakladatelství Praha

(2001)