analog integrated circuits design electrical and ......chapter 2 s d ece697bb/oliaei 15 mos symbols...

94
ANALOG INTEGRATED CIRCUITS DESIGN University of Massachusetts Electrical and Computer Engineering Department Omid Oliaei

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • ANALOG INTEGRATED

    CIRCUITS DESIGN

    University of Massachusetts

    Electrical and Computer Engineering Department

    Omid Oliaei

  • ECE697BB/Oliaei

    2

    •Real-world signals are Analog.

    •Signals generated by sensors are analog

    •Digital signal processing of signals requires Analog-to-Digital Conversion.

    •Analog signal needs to be amplified and filtered before A/D.

    •Amplifiers and Filters are Analog Circuits.

    •A/D is a Mixed-Signal Circuit.

    Why Analog?

    Chapter 1

  • ECE697BB/Oliaei

    3

    •Digital signals in a digital communication system behave as analogsignals

    at certain stages of transmission, receive and processing.

    Ex 1. Lossy Cable

    Ex 2. Disc Drive

    •Signal Attenuation, Noiseand Distortion incurred in the propagation

    channel require that the received signal be Amplified, Filteredand

    Equalizedusing Analogcircuits.

    Ex 3. Wireless Receiver

    Ex 3. Optical Receiver

    Chapter 1

  • ECE697BB/Oliaei

    4

    •Why Integrated?

    •Larger integration �larger complexity

    •Lower parasitics �Higher speed

    •Lower cost

    •Moore’s Law: Number of transistors doubles every 18 months:

    •1960: 25 µm Gate length

    •Today: 90 nm and 65 nm in production

    •45 nm and 32 nm are in lab. 22nm and 16nm on roadmap.

    •Why CMOS?

    •Digital (Main Driver)

    •Low Power, Simplicity, Scaling, Low cost

    •Analog

    •Integration with digital

    •Improved speed over years

    Chapter 1

  • ECE697BB/Oliaei

    5Chapter 1

    Analog

    Design

    Performance

    Constraints

    Schematic

    TestLayout

    System Level

    Circuit Level

    Component Level

    Levels of Abstraction

    What is Analog Design?

    Don’t Forget

    Variations

  • ECE697BB/Oliaei

    6

    CAD TOOLS FOR CIRCUIT DESIGN

    •Two Dominant Suppliers:

    •Cadence

    80% market share

    •Mentor Graphics

    20% market share

    •Simulation:

    •System Level:

    Matlab, SPW

    •High-Level (Behavioral):

    Verilog, Verilog_A, Verilog AMS

    •Low-Level (Electrical):

    SPICE, SPECTRE, ADS, Proprietary Tools

    •Cadence and Mentor Graphics Include tools for

    •Schematic Capture

    •Simulation

    •Layout

    Chapter 1

  • ECE697BB/Oliaei

    7

    Schematic Capture

    Netlist

    Electrical/Behavioral Simulations

    Layout: Automatic/Manual

    Technology

    Device Model

    Parasitic Extraction

    Design Rules Check (DRC)

    Layout Versus Schematic (LVS)

    Masks

    Fabrication

    Design House

    Foundry

    Customer

    Specifications

    Test

    Production

    Chapter 1

  • ECE697BB/Oliaei

    8

    Analog Design Space

    Tra

    deo

    ffs

    •Analog Design is a Multi-Dimensional OptimizationProblem.

    •Improving one parameter always results in degradation of some others.

    Cost ?

    Chapter 1

  • ECE697BB/Oliaei

    9Chapter 2

    Basic MOS Device Physics

    •Understanding Device Physics is Essential to Analog Design.

    •MOS device is symmetric.

    NMOS

    Bulk

    Side Diffusion

    (Sio

    2)Contact

    (Metal)

    Ddrawn

    eff

    LL

    L2

    −=

    5 nm

    0.25 µ µµµm

    2.2 nm

    0.13 µ µµµm

    3.5 nm

    0.18 µ µµµm

    Tox

    Ldrawn

  • ECE697BB/Oliaei

    10

    •MOS is a four-terminal device.

    •Substrate (bulk) of an NMOS is connected to the lowest potential.

    •Substrate (bulk) of a PMOS is connected to the highest potential.

    •All p-njunctions are reversebiased.

    •Conduction takes place beneath gate, between source and drain.

    NMOS

    PMOS

    Chapter 2

  • ECE697BB/Oliaei

    11

    Complementary MOS Process (CMOS):

    PMOS

    NMOS

    Chapter 2

    PMOS

  • ECE697BB/Oliaei

    12

    MOS CHANNEL FORMATION

    Cut Off

    Depletion

    Inversion

    VG

    GND

    VG

    GND

    VG

    GND

    GND

    VTH

    Chapter 2

  • ECE697BB/Oliaei

    13

    •Device turn-on is a gradual phenomenon.

    •There exists several definitions for VTH.

    •One definition: when VG=VTH:

    density of electrons on the interfaced equals density of holes in the substrate

    •VTHincreases with increasing the substrate doping.

    Adjusting V

    THby ion implantation:

    •P+layer increases VTH

    Chapter 2

  • ECE697BB/Oliaei

    14

    PMOS IN INVERSION STATE

    •PMOS: Holes flow from Source to Drain.

    •NMOS: Electrons flow from Source to Drain.

    •Electrons have a higher Mobility. �NMOS is faster than PMOS (~ 3 times).

    Chapter 2

    SD

  • ECE697BB/Oliaei

    15

    MOS Symbols

    Chapter 2

    Arrow indicates current flow from positive voltage to negative voltage polarity.

  • ECE697BB/Oliaei

    16

    NMOS

    I-V CHARACTERISTICS

    Uniform Charge

    Distribution

    •Larger VDS�Larger Longitudinal Field

    •Larger VGS�More Charge Carriers

    Chapter 2

    More Current

  • ECE697BB/Oliaei

    17

    I/V Characteristics (cont.) v

    xV

    VV

    WC

    ITH

    GS

    ox

    D)]

    ([

    −−

    −=

    ∫∫

    ==

    −−

    =VDS

    V

    TH

    GS

    nox

    L

    x

    DdV

    xV

    VV

    WC

    dx

    I0

    0

    )](

    Giv

    en v

    =µE

    an

    d E

    (x)=

    −d

    V(x

    )

    dx dxx

    dV

    xV

    VV

    WC

    In

    TH

    GS

    ox

    D)

    ()]

    ([

    µ−

    −=

    ID=

    µnC

    ox

    W L[(

    VG

    S−

    VT

    H)V

    DS−

    1 2V

    DS

    2]

  • ECE697BB/Oliaei

    18

    I-V CHARACTERISTICS: Triode Region

    Triode Region:

    TH

    GS

    DS

    VV

    V−

    <

    I D=

    µnC

    ox

    W L[(

    VG

    S−

    VT

    H)V

    DS−

    1 2V

    DS

    2]

    Almost Linear

    Electrons Mobility

    oxsi

    ox

    tC

    ε=

    Oxide Capacitance

    WDevice Width

    LDevice Length

    35.0

    =siε

    DS

    TH

    GS

    LWox

    nD

    VV

    VC

    I)

    (−

    ≈µ

    Oxide Permittivity

    oxt

    Oxide Thickness

    sVcm

    .2

    []

    mµ []

    Chapter 2

    []

    cmpF/

    []2

    /cm

    pF

  • ECE697BB/Oliaei

    19

    TH

    GS

    DS

    VV

    V−

    >

    I-V CHARACTERISTICS: Saturation Region

    2 )(

    2TH

    GS

    ox

    nD

    VV

    LWC

    I−

    ′=

    µ

    V' D

    S=

    VG

    S−

    VT

    H (

    Pin

    ch−

    off

    )

    LL

    ≈′Chapter 2

  • ECE697BB/Oliaei

    20

    MOS OPERATION REGIMES

    Both PMOS and NMOS:

    TH

    GS

    DS

    VV

    V−

    <

    Triode Region

    TH

    GS

    DS

    VV

    V−

    =

    Pinch-Off

    TH

    GS

    DS

    VV

    V−

    >

    Saturation Region

    •In saturation, MOS behaves as a current source.

    Chapter 2

  • ECE697BB/Oliaei

    21

    constant

    VDS

    GS

    Dm

    VIg

    ∂∂= =µn

    Cox

    W L(V

    GS−

    VT

    H)

    gm=

    2µn

    Cox

    W LID

    =2

    ID

    VG

    S−

    VT

    H

    Transconductance in Saturation Region

    2 )(

    2TH

    GS

    ox

    nD

    VV

    LWC

    I−

    Chapter 2

  • ECE697BB/Oliaei

    22

    ID=

    µnC

    ox

    W L[(

    VG

    S−

    VT

    H)V

    DS−

    1 2V

    DS

    2]

    ID=

    µnC

    ox

    W L(V

    GS−

    VT

    H)V

    DS,

    VD

    S

  • ECE697BB/Oliaei

    23

    THRESHOLD VOLTAGE AND BODY EFFECT

    ()

    22

    0F

    SB

    FTH

    TH

    VV

    −+

    Φ+

    VB < 0 attracts holes and widens depletion region

    �Larger VG > 0 to put opposite charge on gate

    �Larger VG > 0 to create inversion

    �Higher VTH

    4.0

    3.0

    <<γ

    Body effect coefficient

    Fermi level

    Source-Bulk voltage

    Chapter 2

  • ECE697BB/Oliaei

    24

    CHANNEL LENGTH MODULATION: SATURATION REGION

    L'=

    L−

    ∆L

    )1(

    1)

    /1(

    1'

    /1

    DS

    VL

    LL

    LL

    λ+

    =∆

    +=

    )1(

    )(

    2

    2DS

    TH

    GS

    ox

    nD

    VV

    VLW

    CI

    λµ

    +−

    =

    LL’

    DS

    TH

    GS

    ox

    n

    DS

    DS

    IV

    VLW

    C

    VIg

    DS

    λµ

    λ≈

    −=

    ∂∂=

    2 )(

    2

    Chapter 2

    L1∝

    λ,

    LIg

    DS

    DS∝

  • ECE697BB/Oliaei

    25

  • ECE697BB/Oliaei

    26

    =T

    GS

    D

    VVI

    exp

    0

    SUBTHRESHOLD CONDUCTION

    •For VGS<VTH, there exists a weak inversion layer causing a small diffusion current.

    •This “leakage”current causes increased power dissipation in digital circuits.

    •To operate in weak inversion, transistor must be wide �low speed.

    •Application: Ultra Low-Power design.

    Chapter 2

  • ECE697BB/Oliaei

    27

    MOS LAYOUT

    Gate

    (Poly)

    Contacts

    (Metal)

    Gate

    Shared

    Chapter 2

    Gate Contact

  • ECE697BB/Oliaei

    28

    PARASITIC CAPACITANCES

    Overlap

    Bottom-plate

    cap

    Side-wall

    cap

    •Junction capacitance increases non-linearlywith reverse bias.

    Chapter 2

  • ECE697BB/Oliaei

    29

    GAT-SOURCE AND GATE DRAIN CAPCITANCES

    •Cgsis maximum in the saturation region

    • •Device is symmetric in the triode region

    Chapter 2

    )](

    [x

    VV

    VWC

    QTH

    GS

    ox

    ch−

    −∝

    ox

    GS

    WLC

    C32

    ox

    GD

    GS

    WLC

    CC

    21≈

    =

  • ECE697BB/Oliaei

    30

    LOW-FREQUENCY MOS SMALL-SIGNAL MODEL

    D

    o

    Ir

    λ1=

    SB

    F

    mBS

    D

    mb

    Vg

    VIg

    ==

    22

    γ∂∂

    0=

    SB

    V0

    ≠SB

    V

    : Drain-source resistance

    : Bulk transconductance

    saturation

    Chapter 2

  • ECE697BB/Oliaei

    31

    HIGH-FREQUENCY SMALL-SIGNAL MODEL

    Chapter 2Saturation

    Triode

    Cut Off

  • ECE697BB/Oliaei

    32

  • ECE697BB/Oliaei

    33

  • ECE697BB/Oliaei

    34

    GATE ACCESS RESISTANCE

    Two fingers

    Reduce resistance

    Chapter 2

    •Gate resistance effect is significant at RF.

  • ECE697BB/Oliaei

    35

    COMMON-SOURCE with RESISTIVE LOAD

    Av=

    −g

    mR

    D

    Deep triode

    Saturation

    Sat.

    Triode

    Off

    Chapter 3

  • ECE697BB/Oliaei

    36

    om

    vr

    gA

    −=

    Av=

    −g

    mro

    ||R

    D

    ∞→

    DR

    Chapter 3

    COMMON-SOURCE with RESISTIVE LOAD: Model

  • ECE697BB/Oliaei

    37

    DIODE-CONNECTED MOS

    (gm+

    gm

    b)V

    x+

    Vx

    ro=

    Ix

    Vx Ix=

    1

    gm+

    gm

    b

    ||ro

    ≈1

    gm+

    gm

    b

    Chapter 3

  • ECE697BB/Oliaei

    38

    COMMON-SOURCE STAGE with DIODE-CONNECTED LOAD

    Av=−

    gm

    1

    1

    gm

    2+

    gm

    b2

    =−

    gm

    1

    gm

    2

    1

    1+η

    Av=

    −(W

    /L

    ) 1(W

    /L

    ) 2

    1

    1+η

    Av=

    −u

    n(W

    /L

    ) 1u

    p(W

    /L

    ) 2

    •G

    ain

    in

    dep

    end

    ent

    of

    bia

    s cu

    rren

    t

    •G

    oo

    d g

    ain

    acc

    ura

    cy:

    goo

    d m

    atc

    hin

    g

    •G

    ain

    in

    dep

    end

    ent

    of

    bia

    s cu

    rren

    t

    •G

    ain

    set

    by t

    wo

    dif

    fere

    nt

    typ

    es o

    f tr

    an

    sist

    or

    PMOS Diode-Connected Load

    Chapter 3

  • ECE697BB/Oliaei

    39

    COMMON-SOURCE with CURRENT SOURCE LOAD

    Av=−

    gm

    r o1

    ||r o

    2

    •Large Output Voltage Compared with Resistive Load

    •All Transistors Need to be in Saturation for High Gain

    •M1 sets the Minimum Output Voltage

    •M2 Sets the Maximum Output Voltage

    Saturation

    Triode

    Av=

    −g

    mR

    ON

    2

    RO

    N2=

    1

    µnC

    ox

    W L

    2

    (VD

    D−

    Vb−

    |VT

    HP

    |)

    Chapter 3

    High-Resistance Node

  • ECE697BB/Oliaei

    40

    COMMON-SOURCE WITH SOURCE DEGENERATIONS

    Av=

    −G

    mR

    D

    Av=

    −g

    mR

    D

    1+

    gm

    RS

    Gm

    =g

    m

    1+

    gmR

    S

    Gm

    =g

    mr o

    RS+

    [1+

    (gm+

    g mb)R

    S]r

    o

    Av=

    −G

    mR

    D||

    RO

    UT

    Including Second-Order Effects

    Chapter 3

  • ECE697BB/Oliaei

    41

    COMMON-SOURCE OUTPUT RESISTANCE

    RO

    UT=

    [1+

    (gm+

    gm

    b)r

    o]R

    S+

    r o

    RO

    UT=

    r o'≈

    r o[1

    +(g

    m+

    gm

    b)R

    S]

    Av=

    −G

    mR

    D||

    r o'

    Av=

    −g

    mR

    D

    1+

    gm

    RS

    =

    −R

    D

    1/g

    m+

    RS

    Simplified Model

    Chapter 3

  • ECE697BB/Oliaei

    42

    SOURCE FOLLOWER

    mb

    mmb

    m

    out

    gg

    gg

    R+

    ==

    11

    ||1

    Av=

    gmR

    S

    1+

    (gm+

    gm

    b)R

    S

    =R

    S

    1/g

    m+

    (gm+

    gm

    b

    gm

    )RS

    ≈R

    S

    1/g

    m+

    RS

    Small-Signal Model

    Output Resistance

    •Source Follower Exhibits a high input resistance

    and a low output resistance.

    Chapter 3

  • ECE697BB/Oliaei

    43

    SOURCE FOLLOWER WITH FIXED BIAS CURRENT

    •I d1, thus, Vgs1-Vth1, are independent of Vin.

    Av=

    1 g mb

    ||r o

    1||

    r o2

    ||R

    L

    1 g mb

    ||r o

    1||

    r o2

    ||R

    L+

    1 g m

    Load Effect on Gain

    Application: Buffering a High-Gain Stage

    Chapter 3

  • ECE697BB/Oliaei

    44

    COMMON-GATE

    Rout=

    {[1+

    (gm+

    gm

    b)r

    o]R

    S+

    r o}

    ||R

    D

    AC coupling

    DC coupling

    Dmb

    mD

    DS

    So

    mb

    mo

    omb

    mv

    Rg

    gR

    RR

    Rr

    gg

    r

    rg

    gA

    )(

    )(

    1)

    (+

    ≈+

    ++

    ++

    +=

    Small-Signal Model

    Gain

    Output Resistance

    Input Resistance

    Rin

    =r o

    ||1 gm

    ||1 g m

    b

    Chapter 3

  • ECE697BB/Oliaei

    45

    CASCODE AMPLIFIER

    Dmb

    mo

    o

    Do

    oo

    mb

    m

    Rg

    gr

    r

    Rr

    rr

    gg

    Rout

    ||)]

    ([

    ||}

    ])

    (1{[

    22

    21

    21

    22

    2

    +≈

    ++

    +=

    AV≈

    gm

    1{[r

    o1r o

    2(g

    m2+

    gm

    b2)]

    ||R

    D]}

    AV≈

    gm

    1[(

    r o1r

    o2g

    m2)|

    |(r o

    3ro

    4g

    m3)]

    Shielding Effect of Cascode

    Chapter 3

  • ECE697BB/Oliaei

    46

    DIFFERENTIAL VERSUS SINGLE-ENDED

    Single-Ended Source

    Differential Sources

    Advantage: Reduced Sensitivity to Supply Noise

    Supply Noise

    Clock Noise

  • ECE697BB/Oliaei

    47

    PSEUDO-DIFFERENTIAL AMPLIFIER

    Disadvantage: Sensitive to Input Common-Mode Voltage

    Chapter 4

  • ECE697BB/Oliaei

    48

    DIFFERENTIAL AMPLIFIER

    Tail current: Rejects input common mode

    Dm

    inin

    out

    out

    diff

    Rg

    VV

    VV

    A=

    −−=

    21

    21

    Differential-Mode Gain

    0=

    cA

    Common-Mode Gain

    2

    2

    /

    4

    /

    4

    2in

    ox

    n

    SS

    in

    ox

    n

    SS

    ox

    n

    inDm

    VL

    WC

    I

    VL

    WC

    I

    LWC

    VIG

    −−=

    ∆∆=

    µµµ

    ∂∂

    Chapter 4

  • ECE697BB/Oliaei

    49

    SMALL-SIGNAL ANALYSIS

    Dm

    dR

    gA

    −=

    Differential-Mode

    SS

    mDc

    RgR

    A+

    −=

    )2/(1

    2/

    Common-Mode

    Virtual ground

    Chapter 4

  • ECE697BB/Oliaei

    50

    COMMON-MODE RESPONSE

    SS

    m

    Dm

    CM

    in

    YX

    RgR

    g

    V

    VV

    21

    ,+

    =−

    Load Resistor Mismatch

    Transistor Mismatch

    ()

    1)

    (2

    1

    21

    ,+

    +−

    −=

    SS

    mm

    Dm

    m

    CM

    in

    YX

    Rg

    g

    Rg

    g

    V

    VV

    Chapter 4

  • ECE697BB/Oliaei

    51

    DIFF. AMP WITH ACTIVE LOAD

    mP

    mN

    oP

    oN

    mP

    mN

    dgg

    rr

    gg

    A−

    ≈−

    =−

    )||

    ||(

    1)

    ||(

    oP

    oN

    mN

    dr

    rg

    A−

    =

    )](||)

    [(7

    55

    13

    31

    oo

    mo

    om

    md

    rr

    gr

    rg

    gA

    Chapter 4

  • ECE697BB/Oliaei

    52

    Chapter 5

    CURRENT MIRRORS

    2

    12

    2)

    (2

    TH

    DD

    ox

    nOUT

    VV

    RR

    R

    LWC

    I−

    +≈

    µ

    Reference Current

    Sensitive to V

    DD, Vth, W, L

  • ECE697BB/Oliaei

    53

    CURRENT-BIASED DIFFERENTIAL AMPLIFIER

    Chapter 5

  • ECE697BB/Oliaei

    54

    CASCODE CURRENT MIRROR

    Low-Voltage Cascode

    Chapter 5

  • ECE697BB/Oliaei

    55

    DIFFERENTIAL AMPLIFIER WITH

    ACTIVE CURRENT MIRROR

    Large-Signal Operation

    Chapter 5

  • ECE697BB/Oliaei

    56

    I D1=

    I D3=

    I D4=

    gm

    1,2

    Vin

    /2

    I D2=

    −g

    m1,

    2V

    in/2

    I out=

    I D2−

    I D4=

    −g

    m1,

    2V

    in ,⇒

    Gm=

    gm

    1,2

    DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

    Small-Signal Analysis

    Av≈

    Gm

    Ro

    ut

    Rout≈

    r o2

    ||r o

    4 ,

    (2r o

    1,2>>

    [1/g

    m3]|

    |ro

    3)

    Chapter 5

  • ECE697BB/Oliaei

    57

    COMMON-MODE ANALYSIS

    4,3

    2,1

    2,1

    21

    1

    mm

    SS

    m

    CM

    gg

    Rg

    A+

    −≈

    xF

    VV

    =

    )2

    1)(

    ||(

    2,1

    4,3

    2,1

    4,3

    SS

    mo

    om

    CM

    DM

    Rg

    rr

    gAA

    CMRR

    +=

    =

    Common-Mode Gain

    Common-Mode Rejection Ratio

    Chapter 5

  • ECE697BB/Oliaei

    58

    FREQUENCY RESPONSE OF AMPLIFIERS

    vi

    vo

    pio

    sRCS

    sCR

    sC

    sV

    sV

    ω/1

    1

    1

    1

    /1/

    1

    )(

    )(

    +=

    +=

    +=

    RC

    ω2/

    1=

    Single-Pole Passive RC

    ωωω

    jRC

    VV

    io

    +=1

    1

    )(

    )(

    : pole frequency

    ()2

    2

    1

    1

    )(

    )(

    ωωω

    RC

    VV

    io

    +=

    ωjs=

    Z1=

    Z

    (1−

    Av)

    Z2=

    Z

    (1−

    A−

    1 v)

    Miller’s Theorem

    XYv

    VVA

    =vA

    Chapter 6

  • ECE697BB/Oliaei

    59

    AMPLIFIER FREQUENCY RESPONSE ANALYSIS

    C1=

    CF(1

    −A

    v)

    C2=

    CF(1

    −A

    −1v)≈

    CF

    Capacitance Multiplication

    Association of Poles and Nodes

    ωω

    ωp

    Nin

    sinout

    CR

    CRA

    CRA

    sV

    sV

    21

    21

    1

    1

    11

    )(

    )(

    ++

    +=

    Chapter 6

  • ECE697BB/Oliaei

    60

    COMMON-SOURCE FREQUENCY RESPONSE

    []1

    ()

    1()

    (

    )(

    )

    2+

    ++

    ++

    ++

    +−

    =DB

    GD

    DGS

    SGD

    Dm

    SDB

    GD

    SB

    GS

    GD

    GS

    DS

    Dm

    GD

    io

    CC

    RC

    RC

    Rg

    Rs

    CC

    CC

    CC

    RR

    s

    Rg

    sC

    VV

    f p,i

    n=

    1

    2πR

    SC

    GS+

    (1+

    gmR

    D)C

    GD

    []

    f p,o

    ut=

    1

    CG

    D+

    CD

    B(

    )RD

    []

    Exa

    ct A

    naly

    sis

    GDm

    zC

    g+

    Chapter 6

    Ap

    pro

    xim

    ate

    An

    aly

    sis

    (Mil

    ler)

  • ECE697BB/Oliaei

    61

    SOURCE FOLLOWER OR COMMON DRAIN

    vo vi=

    g m+

    sCG

    S

    s2R

    S(C

    GSC

    L+

    CG

    SC

    GD+

    CG

    DC

    L)+

    sg

    mR

    SC

    GD+

    CG

    D+

    CG

    S(

    )+g m

    f p1≈

    g m

    gm

    RSC

    GD+

    CL+

    CG

    S(

    ) ,

    assu

    min

    g

    f p2>>

    f p1

    =

    1

    2πR

    SC

    GD+

    CL+

    CG

    S

    gm

    Chapter 6

  • ECE697BB/Oliaei

    62

    SOURCE FOLLOWER INPUT IMPEDANCE

    At

    low

    fre

    qu

    enci

    es,

    gm

    b>

    >|s

    CL

    |

    Zin≈

    1

    sCG

    S

    1+

    g m/g

    mb

    ()+

    1/g

    mb

    ∴ C

    in=

    CG

    Sg

    mb

    /(g

    m+

    g mb)+

    CG

    D

    (sa

    me

    as M

    ille

    r)

    Lmb

    GS

    m

    GS

    insC

    gsCg

    sCZ

    +

    +

    +≈

    11

    1

    At

    hig

    h f

    requen

    cies

    , g

    mb

    <<

    |sC

    L|

    Zin≈

    1

    sCG

    S

    +1 sC

    L

    +g m

    s2C

    GSC

    L

    Chapter 6

  • ECE697BB/Oliaei

    63

    SOURCE FOLLOWER OUTPUT IMPEDANCE

    ZO

    UT=

    VX

    /IX

    =

    sRSC

    GS+

    1

    gm

    +sC

    GS

    1/g

    m ,

    at

    low

    fr

    equ

    enci

    es

    RS

    , a

    t h

    igh

    fr

    equ

    enci

    es

    ()

    mS

    mGS

    mS

    mg

    RgC

    Lg

    RR

    gR

    /1

    ,/1

    ,/1

    12

    −=

    −=

    =

    Ou

    tpu

    t ri

    ngin

    g d

    ue

    to C

    Lan

    d i

    nd

    uct

    ive

    com

    pon

    ent

    of

    ou

    tpu

    t im

    ped

    an

    ce.

    Chapter 6

  • ECE697BB/Oliaei

    64

    CASCODE STAGE

    f pA=

    1

    2πR

    SC

    GS1+

    CG

    D1

    1+

    gm

    1

    gm

    2+

    g mb

    2

    f pX=

    gm

    2+

    g mb

    2

    2πC

    GD

    1+

    CD

    B1+

    CS

    B2+

    CG

    S2

    ()

    f pY=

    1

    2πR

    DC

    DB

    2+

    CL+

    CG

    D2

    ()

    Chapter 6

  • ECE697BB/Oliaei

    65

    DIFFERENTIAL PAIR

    f p1≈

    1

    2π(r

    oN

    ||r o

    P)C

    L

    f p2=

    gm

    P

    2πC

    E

    f Z=

    2f p

    2=

    2g

    mP

    2πC

    E

    Chapter 6

  • ECE697BB/Oliaei

    66

    FEEDBACK PRINCIPLES

    Y(s

    )=

    H(s

    )[X

    (s)−

    G(s

    )Y(s

    )]

    Y(s

    )

    X(s

    )=

    H(s

    )

    1+

    G(s

    )H(s

    )

    ββ

    ββ

    β1

    1

    1

    1≈

    +⋅

    =+

    ==

    A

    A

    AA

    XYACL

    •Gain Desensitization

    2

    21

    1

    1

    1 R

    RR

    A

    AACL

    +=

    +⋅

    =

    β

    βββ

    •Example

    121

    RRACL

    +≈

    Chapter 8

  • ECE697BB/Oliaei

    67

    FEEDBACK EFFECT ON BANDWIDTH

    +=

    p

    cl

    ff

    jAA

    1

    0

    ()

    ++

    +=

    )1(

    11

    1

    00

    0

    ββ

    ββ

    Af

    fj

    A

    AA

    p

    CL

    Chapter 8

  • ECE697BB/Oliaei

    68

    FEEDBACK EFFECT ON OUTPUT IMPEDANCE

    I X=

    VX−

    VM

    Rout

    =V

    X−

    (−βA

    0VX

    )

    Rout

    VX

    I X=

    Rout,

    CL=

    Rout

    1+βA

    0

    VX

    I X=

    Rin

    ,CL=

    Rin(1

    +βA

    0)

    •Input Impedance

    •Output Impedance

    Chapter 8

  • ECE697BB/Oliaei

    69

    AMPLIFIER TYPES

    Chapter 8

  • ECE697BB/Oliaei

    70

    OP-AMP

    -+

    -+- +

    Differential Output

    Single-Ended Output

    ∞→

    vA

    Ideal Op-Amp

    ∞→

    inR

    0=

    out

    R

    Chapter 9

  • ECE697BB/Oliaei

    71

    SINGLE-STAGE OP-AMP

    •OP-AMP as a voltage buffer

    Chapter 9

  • ECE697BB/Oliaei

    72

    CASCODE OP-AMP: SINGLE-STAGE

    + Higher Gain

    -Reduced Output Swing

    -Output swing dependent on input swing

    Telescopic Cascode

    Chapter 9

  • ECE697BB/Oliaei

    73

    IMPROVED SINGLE-ENDED CASCODE OP-AMP

    Chapter 9

    Low-Voltage Cascode Current Mirror

  • ECE697BB/Oliaei

    74

    TRIPLE CASCODE

    •A

    vap

    p. (g

    mr o

    )3/2

    •S

    ever

    ely L

    imit

    ed O

    utp

    ut S

    win

    g

    •C

    om

    ple

    x b

    iasi

    ng

    Chapter 9

  • ECE697BB/Oliaei

    75

    FOLDED-CASCODE AMPLIFIER

    PMOS Input

    NMOS Input

    + High Gain

    + Output Swing Decoupled from Input Swing

    -Reduced Speed

    Chapter 9

  • ECE697BB/Oliaei

    76

    FOLDED-CASCODE OP-AMP

    13

    33

    1]

    )[(

    ||

    oo

    mb

    mm

    vr

    rg

    gg

    A4

    43

    44

    21

    +≈

    Cascode Gain

    Chapter 9

  • ECE697BB/Oliaei

    77

    |Av

    |≈g

    m1{[

    (gm

    3+

    gm

    b3)r

    o3(r

    o1||

    r o5)]

    ||[(

    gm

    7+

    g mb

    7)r

    o7r o

    9]}

    FOLDED-CASCODE OP-AMP

    Chapter 9

  • ECE697BB/Oliaei

    78

    TELESCOPIC VERSUS FOLDED CASCODE

    Non-dominant Pole

    Non-dominant Pole

    Chapter 9

  • ECE697BB/Oliaei

    79

    FOLDED-CASCODE OP-AMP IMPLEMENTATION

    Current-Mirror

    Current-MirrorDevices in Signal Path

    Current-Mirror

    signal

    Chapter 9

  • ECE697BB/Oliaei

    80

    SINGLE-ENDED TWO-STAGE OP-AMPS

    + Large Voltage Swing

    -Reduced Speed

    Single-Ended Output Two-Stage Op Amp

    Chapter 9

    Active Current Mirror

  • ECE697BB/Oliaei

    81

    FULLY-DIFFERENTIAL TWO-STAGE OP-AMPS

    + Larger Voltage Swing

    + Better Noise Performance

    Chapter 9Ex.1

    Ex.2

  • ECE697BB/Oliaei

    82

    OUTPUT IMPEDANCE ENHANCEMENT USING FEEDBACK

    Rout=

    A1g

    m2r o

    2r o

    1

    Disadvantage: Low swing or Large Supply Voltage

    Regulated Cascode

    Chapter 9

  • ECE697BB/Oliaei

    83

    DIFFERENTIAL GAIN BOOSTING

    Low-Supply

    High-Supply

    Chapter 9

  • ECE697BB/Oliaei

    84

    OP-AMP USING DIFFERENTIAL GAIN BOOSTING

    Enhanced Telescopic Cascode

    Chapter 9

    Enhanced Folded Cascode

  • ECE697BB/Oliaei

    85

    COMPARISON

    Chapter 9

    Performance Comparison of OP-AMP Topologies

  • ECE697BB/Oliaei

    86

    COMMON-MODE FEEDBACK

    Chapter 9

    Low-Gain Amplifier

    -+- +

    High-Gain Amplifier

    •Output common-mode voltage in a low-gain diff-pair is well-defined.

    •Output common-mode voltage in a low-gain diff-pair is ill-defined.

  • ECE697BB/Oliaei

    87

    COMMON-MODE FEEDBACK PRINCIPLE

    Auxiliary amplifier sets the output common-mode.

    CM

    ref

    oo

    VV

    VV

    ==

    + 22

    1ref

    CM

    VV

    =

  • ECE697BB/Oliaei

    88

    COMMON-MODE SENSING METHODS

    Resistive

    Buffered-Resistive

  • ECE697BB/Oliaei

    89

    FOLDED-CASCODE WITH COMMON-MODE CONTROL

    (a)

    (b)

  • ECE697BB/Oliaei

    90

    SIMPLIFIED CMFB

    •M7and M8in Triode.

    •Advantages:

    •Simple, low power

    •Disadvantages:

    •Low Accuracy

    •Reduced Output Swing due to M

    7and M

    8

    •Increased Output Parasitic Capacitance

    •CMFBwith improved output swing:

  • ECE697BB/Oliaei

    91

    IMPROVED CMFB

    CM

    ref

    VV

    =

    Through Symmetry:

    Complete Implementation

  • ECE697BB/Oliaei

    92

    TRANSIENT LARGE-SIGNAL: SLEWING

    Sle

    w r

    ate

    :

    ()LSS

    out

    CI

    dt

    tdV

    SR

    ==

  • ECE697BB/Oliaei

    93

    SLEWING IN TELESCOPIC OP-AMP

    ()LSS

    out

    CI

    dt

    tdV

    SR

    2=

    =

    Fully-Differential:

  • ECE697BB/Oliaei

    94

    FOLDED-CASCODE SLEWING

    ()LSS

    out

    CI

    dt

    tdV

    SR

    2=

    =

    Fully-Differential: