analisis stabilitas tiang -eng

Upload: haris-restu-utama

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    1/16

    References:

    Coduto, D.P. (1994): Foundation design: principles and

    practices

    Day, R.W. (2010): Foundation engineering handbook

    Hardiyatmo, H.C. (2011): Analisis dan Perancangan

    Fondasi, Bagian II

    Teng , Wayne C. (1992): Foundation Design

    Tomlinson, M.J. (2001): Foundation design and

    construction

    Deep Foundation

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    2/16

    Topics (from SAP):Kapasitas dukung tiang terhadap gaya lateral

    dalam tanah kohesif 

    a. Ujung tiang bebas (tiang pendek dan tiang panjang)

    b. Ujung tiang terjepit (tiang pendek dan tiang panjang)

    Defleksi tiang a. Ujung tiang bebas (tiang pendek dan tiang panjang)b. Ujung tiang terjepit (tiang pendek dan tiang panjang)

    Analisis stabilitas fondasi tiang

    a. Beban tiang

    b. Kapasitas dukung tiang

    c. Jumlah tiang

    d. Susunan tiang

    e. Kontrol

    Turap

    a. Pengertian

    b. Tipe struktur turap

    c. Tipe turap dari segi bahan

    Perancangan turap jenis kantilever

    a. Gaya-gaya yang bekerja

    b. Panjang turap yang dipancang

    c. Dimensi turap dan pemilihan profil turap

    Perancangan turap dengan angkur

    a. Letak tumpuan angkur

    b. Dimensi batang angkur

    c. Konstruksi angkur

    Fondasi caisson

    a. Pengertian dan jenis fondasi caisson

    b. Bentuk tampang fondasi sumuran

    c. Analisis fondasi sumuran

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    3/16

    Basic principle of Pile Foundation Design

    a. Load

    • Vertical load (downward/upward)• Lateral load

    • Moment

    Type of structural load :• Dead load  relatively constant over time, including the

    weight of the structure itself, and immovable fixtures

    • Live load temporary, of short duration, or moving. These

    dynamic loads may involve considerations such as impact,momentum, vibration, slosh dynamics of fluids, fatigue, etc.

    • Environmental load act as a result of weather, topography

    and other natural phenomena (

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    4/16

    Design of Pile Foundation

    b. Bearing capacity of the pile

    • Dead loadPa : Axial load capacity (downward)

    T a : Axial load capacity (upward)

    Ha : Lateral load capacity

    • Live load / Environmental load

    Pas = 1½ PaT as = 1½ T a

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    5/16

    c. Number of pile

    Based on dead load

    V : Vertical load

    Pa : Allowable axial load capacity

    n : number of pile

    d. Pile arrangement

    By trial and error

    • Pile distance > minimum distance

    • The center of pile group is located at the load resistance point

    a P 

    V n  

    Design of Pile Foundation

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    6/16

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    7/16

    Example:

    An upper structure is made by reinforced concrete, with the

    sectional size of 2,0 m x 2,0 m, and 20 m high. Pile foundation isused with the thickness of pile cap = 1,0 m, pile head on the ground

    surface. Seismic coefficient = 0,10.

    Allowable bearing capacity of the pile (based on soil characteristic)

    •   Pa = 400 kN/pile dead load

    •   T a = 100 kN/pile dead load

    •   Ha = 10 kN/pile dead load

    Unit volume weight of concrete (  concrete) = 25 kN/m3

    Design the pile foundation.

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    8/16

    Solution:

    a. Considering dead load

    Construction weight,   P1 = 222025 = 2000 kN

    Assumed Pile-cap weight,   P2 = 250 kN

    Total vertical weight,   V  = P1 + P2 = 2250 kN

    Number of pile   use 6 piles

    The seismic load may act to every direction, therefore

    symmetrical piles is considered.If pile-cap is square use 8 piles.

    6,54002250

    a P V n

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    9/16

    Control of the pile-cap weight

    Pile-cap weight

    = 331 m325kN/m3 = 225 kN

    P1 = 2000 kN

    Pile-cap load = 225 kNV total  = 2225 kN

     p (=287,12 kN) < Pa (= 400 kN)

    The foundation can be used

    kN128,278

    8

    2225

    n

    V  p

    P1=2000 kN

    O

    0,5

    O

    0,5

    0,5 0,5

    1,0

    1,0

    1,0

    1,0 1,0

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    10/16

    b. Control by the seismic load

    Seismic load is calculated as the weight of upper structure,

    working on the center weight of the structure.

    Upper structure weight:

    = 2225 kN = 2000 kN

    Seismic load (H):

    = 0,12000 = 200 kN

    (center weight is working at 10 m

    above the ground surface)

    20 m

    1 m

    P2

    P1

    H

    10 m

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    11/16

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    12/16

    Conclusion:

    • Due to dead load OK

    • Control by seismic load NOT OK

    • Increase the pile distance (moment arm)

    Pile-cap weigth

    = 3,53,5125 = 306,25 kNV  = 2000 + 306,25 = 2306,25 kN

    H = 200 kN

    M = 2200 kN m

     x 2 = 3(-1,25)2 + 3(+1,25)2 = 9,375 m2

    0,5

    O

    0,5

    0,5 0,5

    1,25

    1,25

    1,25 1,25

    IIIIII

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    13/16

    Dead load

    < Pa (= 400 kN)

    Seismic load

    < 1,5 Pa (downward)

    < 1,5 T a (upward)

    Conclusion :

    The pile foundation arrangement can be applied to support dead

    load and seismic load

    kN28,288

    8

    25,2306

    n

    V  p

    kN615,581

    375,9

    25,12200

    8

    25,2306III)(columnmaks

     

     p

    kN052,5

    375,9

    25,12200

    8

    25,2306I)(columnmin

     

     p

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    14/16

    Control by the lateral load due to earthquake

    Without inclined pile : Ht = H

    For each pile : > Ha= 10 kN

    The use of inclined pile is considered

    Inclined pile of number: 2, 5, 4, 7

    Pile inclination 1 : m = 1 : 4

    kN258

    200 n

     H h   t t 

    0,5

    O

    0,5

    0,5 0,5

    1,25

    1,25

    1,25 1,25

    1 2 3

    4 5

    6 7 8

    1

    4

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    15/16

    Col I : ( )

    ( )

    < 1,5 T a OK

    Col II : (no inclined piles)

    ( )

    Col III : ( )

    ( )

    < 1,5 Pa OK

    kN052,5614     P  P V 

    kN263,14

    052,544  

    m

     H 

    kN43,41 244     mm

    V  P 

    kN28872   n

    V V V 

    kN14555   n

    V  H 

    kN581853     P V  P 

    kN5991 255     mn

    V  P 

  • 8/20/2019 Analisis Stabilitas Tiang -EnG

    16/16

    Lateral load

    = 200 + (-1,263 – 145,404) = 53,333 kN

    < Ha= 10 kN

    Conclusion: the group pile arrangement could support the horizontalload.

    NOTE:Seismic load may work to every direction, therefore the inclined

    pile is designed symmetrical to both X and Y axes.

    it    H  H h

    kN667,68333,53

    n H h   t t