an50 optimizing power delivery an50 in pwm motor driver

16
AN50 Thermal Behavior of Single-Phase, Three-Phase Single-Chip PWM Amplifiers SA57-IHZ, SA306-IHZ Contents Introduction2 Device Overview 2 Optimizing Thermal Performance 3 Optimizing Motor Commutation Methods 4 Balancing the Electrical Load 5 Defining a Movement Profile 6 Cooling Options and Results with the 64-pin QFP Package 7 SMT Mounting without Heatsink in Low-Power Applications 7 SMT Mounting with Thermal Pad and Heatsink for Mid-Range Power Applications 9 Flipped-Over SMT Mounting with Heatsink for High-Power Applications 11 Comparisons of Low-Power, Mid-Range Power and High-Power Test Boards 13 High Power Heat Sinking 13 Power Dissipation Derating 15 Conclusions 16 References 16 Appendix Derivation of Maximum Power and Thermal Dynamic Values 22 SMT Mounting Without Heatsink in Low-Power Applications 22 SMT Mounting with a Thermal Pad and Heatsink for Mid-Range Power Applications 23 Flipped-Over SMT Mounting with Heatsink for High-Power Applications 24 AN50 Optimizing Power Delivery in PWM Motor Driver ICs Copyright © Apex Microtechnology, Inc. 2012 (All Rights Reserved) www.apexanalog.com OCT 2012 AN50U REVB

Upload: others

Post on 03-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 1

AN50 OptimizingPowerDeliveryinPWMMotorDriverICs

Thermal Behavior of Single-Phase, Three-Phase Single-ChipPWM Amplifiers SA57-IHZ, SA306-IHZ

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Optimizing Thermal Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 OptimizingMotorCommutationMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 BalancingtheElectricalLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 DefiningaMovementProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Cooling Options and Results with the 64-pin QFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SMTMountingwithoutHeatsinkinLow-PowerApplications . . . . . . . . . . . . . . . . . . . . . . . . . 7 SMTMountingwithThermalPadandHeatsinkforMid-RangePowerApplications . . . . . . . 9 Flipped-OverSMTMountingwithHeatsinkforHigh-PowerApplications . . . . . . . . . . . . . . . 11 ComparisonsofLow-Power,Mid-RangePowerandHigh-PowerTestBoards . . . . . . . . . . 13 HighPowerHeatSinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PowerDissipationDerating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Appendix Derivation of Maximum Power and Thermal Dynamic Values . . . . . . . . . . . . . . . 22 SMTMountingWithoutHeatsinkinLow-PowerApplications . . . . . . . . . . . . . . . . . . . . . . . . 22 SMTMountingwithaThermalPadandHeatsinkforMid-RangePowerApplications . . . . . 23 Flipped-OverSMTMountingwithHeatsinkforHigh-PowerApplications . . . . . . . . . . . . . . . 24

AN50Optimizing Power Delivery in PWM Motor Driver ICs

Copyright © Apex Microtechnology, Inc. 2012(All Rights Reserved)www.apexanalog.com OCT 2012

AN50U REVB

Page 2: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

2 AN50U

IntroductionTheApexSA306-IHZ isanadvanced3-phasesinglechipamplifier,designedforuseasan independentpowerstagetodrive3-phasebrushlessDCmotors .Itincorporatesa3-phasePWMamplifierthatacceptssixindependentcontrolsignals .Thisenablesadesignertochoosefromawidevarietyofcontrolsignalsasappropriateforthecom-mutationmethodchosen .ThisApplicationNotediscussesdifferencesinthethermalbehaviorofthedevicerelatingtomountingtechniques,methodsofmodulationofthepowerstageandexaminessometechniquestoimprovesystemperformanceandoverallefficiency .Inordertochoosetheappropriatethermaldesignforaparticularapplicationandforthebasicdimensioningoftheheatsink,thecalculationofthefirst-orderthermalapproximationisagoodstartingpoint .Therearesomeapplica-tionspecificaspectstobetakenintoaccountbeforestartingthebasicsystemdesign .ThisApplicationNotecoverssomeofthesebasicdesignsteps,dataandideastocarryforwardsothedesigncanachievethebestresults .

Device OverviewBoth theSA306-IHZandSA57-IHZdevices incorporateallof thesub-systemsnecessary todriveabrushedorbrushlessDCmotorunderthecontrolofanMCUorDSP .Atmaximumoutputthesedevicesarecapableofsafelyoperatingmotorsapproaching0 .5hp .Likemanytraditionalmotordriveproducts,SAdevicesintegratecontrol,pow-ersupply,gatedriveandpowerstageintoasingleIC .Unlikecompetingdevices,thisseriesisspecificallydesignedforMCUorDSPcontrolandintegratefeaturesthatenableimplementationofmoderncommutationtechniques,re-sultinginhigherefficiencydrivestages .BothSA306-IHZandSA57-IHZdevicesconsistofmajorblocks,asshowninFigure1 .Theprimarydifferencebetweenthetwodevicesisthenumberofphasessupported;theSA306-IHZsupportsthreephaseswhiletheSA57-IHZsupportstwo .Akey featureof thisseries is theability todirectlycontrol theoutputFETs .Thisenablesmoderncommutationschemessuchasfield-oriented,vector-oriented,andsinusoidaltobeimplementedwithinthecontrollerwithnoin-

SA306 Switching Amplifier

BRUSHLESSMOTOR

Vs (phase A)

PGND (A&B)

CurrentmonitorSignals

Sensor – Hall SensorsorSensorless – Input from Stator leads

AB

C

OUT AOUT BOUT C

PGND (C)

GND

Vs (phase B&C)

Vs +

Sensingcircuits

GND

SGND

GateControl

ControlLogic

FaultLogic

TEM PILIM/D IS1

SC

Ia

IcIb

VDD

PWMSignals

DIS2

SG ND

AtAb

BtBb

CtCb

M icrocontrolleror DSC

Figure 1. System Block Diagram using the 3-Phase SA306-IHZ Device

Page 3: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 3

terveningcircuitry .ThisarchitecturesimplifiescircuitdesignandreducesEMC/EMI .ThesedevicestaketheinputsforeachgateandprovidesbufferinganddrivetothecompanionFET .Anothersignificantfeatureisbuilt-incurrentsense .Currentsenseisavailableforeachofthephasesfromasepa-rateoutputpin .Theoutputcurrentof thesensepins is~1/5000thof thephasecurrent .Thecurrentsensepinsprovidedirect,real-timefeedbacktothecontroller .Currentsenseisperformedatthehigh-sideonly .Sensingoflow-sidecurrentsunderbrakingorflybackconditionsisnotsupported .Over-temperature,short-circuitandcurrentlimitarealsoimplemented .Thesefaultsignalsprovideimportantfeed-backtothesystemcontrollerwhichcansafelydisabletheoutputdriversintheeventofafaultcondition .ThesetopicsarediscussedingreaterdetailinReference3 .Both theSA306-IHZandSA57-IHZ implementacycle-by-cyclecurrent limitscheme .Thisallowsvariableuser-definedcurrentlimitthresholdswithoutdamagetothedevice .However,eveninthismode,theusermustconsiderandplanforexcessivecurrentexcursionswhichcouldresultinexcessivepowerdissipation .ThearchitectureoftheSA306-IHZandSA57-IHZdevicesenablesthedesignertoconfiguredynamically-changingcurrentlimitinginthedeviceinresponsetochangingsystemoperatingconditions .TheSA306-IHZorSA57-IHZdatasheetsspecifyapeakcurrentof17amperes .However,ifdesiredthedesignercanchoosetolowerthislimitortodisablethefeaturealtogether .Inapplicationswherethecurrentinthemotorisnotdirectlycontrolled,boththeaveragecurrentratingofthemotorandtheinrushcurrentmustbeconsidered .Forexample,a1Acontinuousmotormightrequireadriveamplifierthatcandeliverwellover10APEAKinordertoprovidetherequiredstart-uptorque .Thecycle-by-cyclecurrentlimitfeatureenablestheSA57-IHZ/SA306-IHZtosafelyandeasilydriveawiderangeofbrushandbrushlessmotorsthroughastartupinrushcondition .Withlimitedcurrent,thestartingtorqueandaccelerationarealsolimited .TheplotsinFigure2illustratestartingcurrentandbackEMFwithandwithoutcurrentlimitenabled .

MoreinformationontheseandotherfeaturesoftheSA306-IHZandSA57-IHZcanbefoundintheproductdatasheets,aswellasanyassociatedApplicationNoteslistedintheReferencesectionfoundattheendofthisdocu-ment .

Optimizing Thermal PerformanceAllpowerdevices,fromFETsandIGBTstolargemicroprocessors,dissipatepowerintheformofheat .Fordeviceswhoseprimarypurposeispowerconversionorpowertransmissionappropriatemanagementofheatisthekeytodetermininghowmuchpowercanbesafelyprocessedbythedevice .Thisfactappliestospecificationlimitsaswell .Adevicemayberatedfor5Acontinuousbutthesystemdesignermustalwaystakecarethatthepowerlostintheformofheatdoesnotresultindamagetothedevice .Itmustbenotedthattotaloutputpowerandtotalpowerdissipationaredependentonboththeoutputcurrentandoperatingvoltage .ForallmountingtechniquesdiscussedinthisApplicationNotetheeffectofvoltageandcurrentlevelswillproducevariationsinpowerdissipation .Forexample,graphsoflowpoweroperationshowheatdissipa-tionforagivenoutputpower .BecausepowerdissipationfollowstheformulaP=I2R,increasingoperatingvoltagetothehighestpracticallimitwillresultingreateroutputpoweratagivencurrent(internalpowerdissipation) .Con-verselypowerdissipationcanbereduced foragivenoutputpowerby increasingvoltageandreducingcurrent .

Time, Milliseconds

NON-LIMITED BACK EMF

NON-LIMITED MOTOR CURRENT

Cur

rent

, Am

pere

s

Time, Milliseconds

Cur

rent

, Am

pere

s

LIMITED BACK EMF

LIMITED MOTOR CURRENT

(a) (b)

Figure 2. Motor Current Behavior at Startup — (a) Without cycle-by-cycle current limit. (b) With cycle-by-cycle current limit

Page 4: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

4 AN50U

Graphsaregenerallynotprovidedformultiplecombinationsofcurrentandvoltage .Rathertheemphasisisonthecalculationofpowerdissipationandthermalresistance,thusenablingthede-signertocalculatedietemperatureforthesystem'scombinationofvoltage,current,andheatsinking .ShowninFigure3isaninfraredimageofaSA57-IHZdrivingabrushedDCmotorwithacontinuouscurrentof3Aatasupplyvoltageof24V .Thenumbersmarkthelocaltemperaturesofthedesign .Thehighandlow-sideFETsoftheactivehalf-bridgecanclearlybeseenaswhitedots,representingatemperatureofap-proximately110°C .Thispictureshowsthetemperaturegradientsacrossthesilicon .Theheatgeneratedatthetwohot-spotsspreadsoverthesiliconarea .The result isa core temperatureofapproximately90°C .TheredarearepresentstheheatslugoftheIC .Thistemperatureisnearlyequaltothecoretemperatureofthesilicon .Theheatistransferredtotheheatsinkonthebackside(yellow)andinthiscasetothetopandbottomlayer(green)ofthePCB,thendis-sipatedintotheambientair .(Notethattheapparenttemperaturedifferenceofthescrewsistheresultofemissivitydifferencesbe-tweenthescrewsandtherestofthetestsystem .Insteady-stateoperationthescrewsareapproximatelythesametemperatureastheheatsink) .

Optimized Motor Commutation MethodsTheON-resistanceofthepowerFETsistheprimarycontributortoheatgenerationwithinamotordrive .Incalculat-ingthepowerlosttotheONresistanceweusethestandardpowerformulaP=I2R,whereI=thecurrentflowingthroughthemotorandR=theON-resistanceoftheIC .AstheSA57-IHZandSA306-IHZofferdirectaccesstoeachsingleFET,itispossibletousealternativecommutationtechniquestoincreasethesystemperformanceandtoreducethermalloads .Thebestexampleforasimplesystemoptimizationissinusoidalcommutationofa3-phasebrushlessDCmotor .Thismethodoffersincreasedefficiencyandreducedpowerdissipation .Alternatetypesofcommutationaremorefeasiblenowthatvirtuallyeverymotorcontrolsystemhassometypeofmicro-controllerorDSP/DSCavailable .

4.608

4.096

3.584

3.072

2.560

2.048

1.536

1.024

.512

0

-.512

-1.024

-1.536

-2.048

-2.560

-3.072

-3.584

-4.096

-4.608Single FET Control

Phase BDual FET Control

Phase B/CSingle FET Control

Phase CDual FET Control

Phase C/ASingle FET Control

Phase ADual FET Control

Phase A/B

Dual FET ControlPhase C/A

Single FET ControlPhase A

Dual FET ControlPhase A/B

Single FET ControlPhase B

Dual FET ControlPhase B/C

Single FET ControlPhase C

PWM

Dut

y C

ycle

as

12-B

it Va

lue

(BIT

)

60° 120 ° 180° 240° 300° 360°

Low-Side MOSFETS

High-Side MOSFETS

Rotor Angle

Figure 3. Infrared picture of a SA57 running at 3 amperes at 24 volts.

Figure 4. Power and voltage behavior in the case of 3-phase sinusoidal commutation.

Page 5: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 5

Sinusoidalcommutationofa3-phaseBLDCmotorspreads thegeneratedheatoverawiderareaof thesiliconthanwithblockcommutation .Thisreduceslocalizedheatinginthedie .Duringsinusoidalcommutationthecurrentthroughthemotorisdeliveredbytwohigh-sideFETsandasinglelow-sideFETor, inthenextstep,byusingasinglehigh-sideFETandtwolow-sideFETs .ThismeansthattherearealwaystwoactiveFETsinparallelwhichdecreasestheONresistanceofthetwoparallelconductingFETs .Theresultingresistanceisnotlinearbecausetheon-timeofeachPWMsignalofthetwoFETsconnectedinparallelfollowsasinωt/cosωtrelation .(SeeyellowareasinFigure4)TheeffectiveONresistanceacrossanelectriccommutationcyclecanbecalculatedbydividingtheON-resistancevalueoftheparallelhighorlowsideFETsby√2 .Usingthiscommutationtechniquecan,inadditiontoseveralotheradvantages,reducethethermalloadbyapproximately10%to15% .Theundissipatedpowercanbeusedtodrivethemotorortoreducethetotalpowerconsumption .Ineithercasetheoverallefficiencyofthesystemisincreased .

Balancing the Electrical LoadAswehavejustdiscussed,themainheatgeneratingcontributor isthecurrentflowingthroughthepowerFETs .BecausetheSA57-IHZandtheSA306-IHZarehigh-voltagedevicessuitableforsupplyvoltagesupto60V,anin-creaseinthesupplyvoltagecanleadtoadecreaseofthecontinuouscurrentforagivenpowerlevelandthereforetoadecreaseofthethermalload .Fromthispointofview,thebasicideaistoincreasethesupplyvoltagewhilekeepingthecontinuouscurrentcon-stanttoreducethethermalload .Inapulse-drivensystemwithaninductiveload,therelationbetweenvoltageandcurrentisnotlinearsowehavetotakeacloserlookatswitchinglossesandthecurrentcharacteristicsundervari-ousoperationconditions .An application is balanced when the for-wardandbackwardmagnetizationofthein-ductorisfullyrealizedwithinasinglePWMcycle .Thisshouldbethenormaloperatingconditioninapplicationswithconstantrota-tionspeedandlowdynamics,suchasfans,pumpsorunidirectionaldrives .Intheseap-plications,onceaccelerated,themotorrunsat a constant speed with a constant me-chanicalload .Shown in Figure 5 are the characteristicsof the voltage and current during a PWMpulseinabalancedoperatingsituation .Therisingand fallingedgesof thevoltagearenearlylinearwithintheperiodgivenbythetimevaluefortheraisingandfallingedges– typically 200 nanoseconds . The currentcharacteristicdependsonthetechnicalpa-rameters of themotor winding . Thewind-ings produce a reverse voltage when therisingedgeoccurs .Thecurrentreachesitsmaximumwhenthesupplyvoltageandthereversevoltagearemoreor lessequal .Theresultingphaseshift isrepresentedbytVI .Whenthesupplyvoltagev3isbeingincreased,thephaseshifttVIbecomeswiderasshownbyarrowv1andtherisingedgeofthecurrentv2appearslater .Theterminationofthedutycycleshutsdownthecurrentimmediatelyandalwaysatthesamepointintime .Sowhenthesupplyvoltageincreases,bothcurveschangeinthedirectionsindicatedbythearrowslabeledv1,andv2 .ShowninFigures6and7arevoltageandcurrent(overshootnotvisible)plotsresultingfromaPWMpulseappliedtophaseA .Both10Vand30Vsupplyvoltagesareshown .WhenwelookatthefallingedgeofthePWMpulse,weseethatthecurrentdropswiththesameslewrateatasup-plyvoltageofboth10Vand30V,butforalongertimeintervalbecauseofthehigherpeakcurrent .Thismeansthattheswitchinglossesincreaseonthefallingedge .AttherisingedgeofthePWMpulsethecurrentisless,sothattheswitchinglossesonthissidehavedecreased .

Voltage

Currentt(rise) t(fall)

t(VI)

Time

v1

v2v3

Cycle Termination

Figure 5: Characteristic of voltage and current during a PWM pulse in a balanced system

Page 6: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

6 AN50U

Whenwecomparethetotalaveragecurrentovertime,wefindsimilarvaluesatasupplyvoltageof10Vand30V .Althoughthepeakcurrentat30Visapproximately30%higher,thepulsewidthis20%shorterandtheslopeofthepulsetopissteeperthanat10V .Inanoverallcomparisontheaveragecurrentofbothpulsesisnearlyconstantwithslightlyincreasedswitchinglosses .Becausetheaveragecurrentremainssimilar,theaveragetemperatureduetoI2RlosseswithintheFETsisalsosimilar .However,becausevoltagedeliveredtothemotordoesincrease,thereisgreaterpoweravailabletothemo-torwindings .Thisfactresultsinincreasedefficiencybydrivingmotorsathighervoltages .

Defining a Movement Profile Insomeapplications,suchasservodrivesforpositioningorrobotics,wefindawidevarietyofspecificoperationmodes, includingperiodicaccelerationor stalledmotoroperationwithhigh torqueand low rotational speed . Intheseoperatingmodesthesystemisnot“balanced”sincethemotorwindingsarenotallowedtoachievecompleteforwardandbackwardmagnetizationwithinasinglePWMcycle .Intheseconditionsthemotorwindingscanbecomeoverenergized,orsaturatedwithpower .Asthisbeginstooccur,increasedmotorcurrentnolongerproducesproportionalincreasesintorqueandincreasedheatingcanoccurintheFETsofthedevice .Insomecasesthemotorwindingsareoverenergizedtoobtainthetorquerequiredtobrakethemechanicalload,resultinginamajorchangeofthecurrentwaveformcharacteristic .

20

10

0

-10

VD

C

0 10 20 30 40 50 60 70 80 90 100 Microseconds

Am

pere

s

30

20

10

0

-10

0 10 20 30 40 50 60 70 80 90 100Microseconds

VD

CA

mpe

res

40

Figure 6. Voltage (green) and current (blue) during a PWM pulse on phase A at a supply voltage of 10 V DC, a 25 kHz switching frequency and a 50% duty cycle.

Figure 7. Voltage (green) and current (blue) during a PWM pulse on phase A at a sup-ply voltage of 30 V DC, a 25 kHz switching frequency and a 50% duty cycle.

Page 7: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 7

In thesemodes of operation, tVI becomes smaller and a highcurrentpeakappearsattheraisingedgeofthePWMpulseasshowninFigure8 .Themorethesupplyvoltagev3increasesthehigherthecurrentpeakv2willbe .Thiscurrentpeakcanreachmultiplesofthecontinuouscurrent .TheplotsinFigure9depicttherelationshipbetweendutycycle,continuouscurrentandtemperatureatasupplyvoltageof20VDC .ByseparatingtheperformancegraphinFigure9intotwoparts,thebalancedoperation(A)andtheoverenergizedoperation(B)canbebetteranalyzed .Duringbalancedoperation,thecurrentandvoltagewaveformsfollowtherelationshipsshowninFigure5 .Thephaseshift tVI increasesso that thecontinuouscurrentandtemperatureincreaseonlyslightly .Whenthemotorwindingstartsbeingoverenergized(B),tVIdecreasesrapidlyasshownin Figure 8 .The current peak at the rising edge of thePWMcycleincreasesthetotalaveragecurrentandthethermalload .Overenergizedconditionsnormallyhappeninthe60-70%dutycyclerange .ThisrangecorrespondswiththekneeofthecurvesinFigure9 .Theexactpointisdependentonboththequalityofthemotorandtheoperatingcondition .Theoperatingconditionwith theexpectedmaximal thermal loadand itsmaximal timeintervalisthebasisfortheselectionofthebestmountingtech-niqueandheatsinkingmethod .The64-pinPowerQFPpackageused for theSA306-IHZandSA57-IHZ lends itself to different kinds ofmounting and heatsinking options which can be used under different operatingconditionstorealizethebestresultsaccordingtoperformanceandtotalsystemcost .Inthefollowingsectionssuggestionsareprovidedonhowtoselectthebestsolutionforyourapplication .

Cooling Options and Results with the 64-pin QFP PackageThe size and orientation of the heatsinkmust be selected tomanagetheaveragepowerdissipationofthedriverICs .Applica-tionsvarywidelyandvariousthermaltechniquesareavailabletomatchtherequiredperformance .Thissectiondiscussesseveraltechniquesthatareappropriatefordifferentpowerlevels .Thefollowingexamplesweredevelopedtoevaluatedifferentmountingandcoolingoptionsandtodefinetheirbasiccapabilities .DerivationofmaximumpowerandthermalsystemdynamicsisshowninAppendixA .Twodifferentsetsof testswereconductedon theSA306-IHZ .For thefirstsetof tests thepowerdevicesweremountedonaPCBwithaDigitalSignalController(DSC) .ThisDSCoffersanenhancedmotioncontrolinterfaceandallowsadesignertocommutatethemotorindifferentways .Forthesecondsetoftestsapowertestbenchwasusedtoshowtheeffectofsteadystatecurrentsonpowerdissipationandthermalperformance .

SMT Mounting without Heatsink in Low-Power Applications ThemostcosteffectivewayofmountingeitheroftheSA306-IHZorSA57-IHZdevicesistosolderthemdirectlyonaPCBwithoutanyfurtherheatsinkingcomponents .Theheatslugofthe64-pinQFPpackageoffersoptimizedheattransfertothePCB(asshowninFigure10) .TheICpackage,includingtheheatslug,canbesolderedtothetoplayerofthePCB .Beneaththeheatslug,severalviascanbeusedtooptimizeheattransfertothebacksideoftheboard .Thecopperareausedforthepowergroundisalsousedforbetterthermalcouplingtotheambientair .Aspartofthetests,semiconductortemperaturesensorwasplacedinthemiddleoftheheatslugareatomeasurethebackside(maximum)heatslugtemperature .Atanoutputpowerof20W,atemperaturegradientof99 .6°Kwasobtained .Thisindicatesthatthejunctiontemperaturewillbeapproximately130°Catanambienttemperatureof30°C .TheplotsinFigure11denoteavalueof136°Catanambienttemperatureof27°Cwithatotalthermalresis-tanceforthesystemofapproximately5 .343K/W .

Voltage

v1

v3

Currentt(rise) t(fall)

t(VI)

Cycle Termination

v2

v1

Time

) )

Duty Cycle @ 20V DC [%]

Tem

pera

ture

[°C

]

Con

tinuo

usC

urre

nt [A

]Temperature [°C]

Continuous Current [A]

AB

Figure 8. Voltage (green) and current (blue) during a PWM pulse over energizing a mo-tor winding

Figure 9. Temperature and continuous cur-rent vs. PWM duty cycle during a stalled motor operation

Page 8: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

8 AN50U

Using the thermal resistance value, the maxi-mumoutputpowercanbecalculatedforanappli-cationcoveringtheindustrialtemperaturerangeupto+85°Catapproximately9W .Thisresultisvalid for static operation under the specific setofvoltageandcurrentconditions .Inapplicationswith frequentaccelerationsanddecelerations itisimportanttoknowthethermalresponsetime .Thisvalueprovidesanindicationforthetimere-quiredtotransferaspecificamountofheatfromthedietothebacksideoftheboard .Derivationsforcalculatingthermalresistanceandmaximumpowerdissipation canbe found inAppendixA .ShowninFigure12isthetemperaturecharacter-isticofthegroundplanefromtheambienttothemaximumtemperaturewhenthemotorisdrivencontinuouslyatanoutputpowerof9W .

ConclusionAlthoughthemaximumoutputpowerratingof8Wto9Wseemslow,thesedevicesarestillcapableofdeliveringPEAKcurrentsupto15Aforseveralseconds .Inaddition,increasedvoltageorreducedambienttemperaturemayresultinincreasedpowercapability .ThismakestheSA57-IHZandSA306-IHZunusuallywellsuitedforapplicationsusinggearswithhightransmissionrateswherelargemechanicalloadshavetobeacceleratedthroughstart-upphaseandendathighspeedswithlowerpowerrequirements .Thismountingtechniqueisappropriateforsmaller,low-powerorhigh-speeddrivesincostsensitiveapplicationssuchasfans,pumps,scanners,surveillancecameras, labelingmachinesorpaperfeeders–allwheresizeandproductioncostsarecrucial .

SMT Mounting with Thermal Pad and Heatsink for Mid-Range Power ApplicationsForapplicationswherehigheroutputpowerisrequiredforalongerperiodoftime,buteaseofproductionisstillamaindesignissue,anadditionaltestboardwasdesignedwheretheSA306-IHZisstillmountedintheconventionalmanner .However,beneaththeICisa100mm²cutout .AthermalpadisusedtotransfertheheatfromtheheatslugdirectlytotheHS33heatsink .Thethermalpadismadefromapolymerthatcontainsmaterialschosenforlowthermalresistance,suchassilver .Thesepadsremainsoftforyearsandthereforecanaccommodateanyshiftingthatmayoccurtoequalizebetweenmaterials

Thermal Response Time at MAX. Output Power

100

120

140

Hea

t Slu

g Te

mpe

ratu

re [°

C]

- Common SMT Mounting Technique -

0

20

40

60

80

Time [sec]

t30

T30

T90t90

0 16014012010080604020

GroundPlane

HeatSlug

TemperatureSensor

HEAT SLUG TEMPERATURE VS.ELECTRICAL OUTPUT POWER

- COMMON SMT MOUNTING TECHNIQUE -

0

20

40

60

80

100

120

140

160

0 5 10 15 20Total Electrical Power [W]

Hea

t Slu

g Te

mpe

ratu

re [°

C]

Block Commutation

Sinusoidal Commutation

Figure 10. Bottom layer of the PICtail™ plus test board for low power applications

Figure 11. Temperature characteristic of the SA306-IHZ mounted on test board for low-power applications

Figure 12. Thermal response time at MAX output power of 9 W

Page 9: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 9

withdifferentcoefficientsofexpansionthatislikelytooccurduetotemperaturechanges .Onthemid-powertestboarda2mmthermalpadisusedtofillthegapbetweentheheatslugandtheheatsink(seeFigure13) .ThethermalpadchosenisaBerquistTMGapPad5000S35 .Thecutoutareais10mmx10mm .

Thisboarddesignprovidesthreeadvantages:• TheSA306-IHZisstillmountedlikeaconventionalSMTpart,includingtheside-wingsoftheheatslug .• Thermalcouplingisalwaysconstant,evenifthethicknessofthePCBsvariesfrom1 .5mmto1 .7mm .• Accurateplacementoftheheatsinkisnotrequired .

ShowninFigure14isthebackofthemid-powertestboard .The100mm²heatslugarea(red)hasbeencutouttoaccom-modatethethermalpad .ThetemperaturesensorhasbeenmovedtoanaturalcutoutoftheHS33heatsink .Theheightofthesensorpackageisexactlytheheightofthecutout .Thethermalcouplingcomesaboutduetotheintimatecontactofthepackagetopwiththeheatsink .Theheatsinkismountedwithtwoscrews .Notethatthelightgreenareaoftheheatsinkhasdirectcontactwiththedark-greengroundplanearea .Withthismountingtechniquethetotalthermalresistanceisreducedwhilethecontactareaisincreasedtoambientair .AlthoughtheHS33heatsinkisusedonthistestboard,itisnotessential .Athermalpadcouldalsobeusedtocoupletheheatslugtotheenclosuretoimprovethethermalpath .The100mm²x1 .5mmthickthermalpadwithitsthermalconductivityof86W/mKhasathermalresistanceof0 .174K/W .Whenthisvalueiscomparedtothe

SiliconHeat Slug

Package Lid

Power FETs

PCB

Dissipated Heat QEM

Thermal Pad

HS33 Heatsink

SiliconHeat Slug

Thermal Pad

Figure 13. Simplified cross sectional view of the thermal system of the mid-power test board

GroundPlane

HeatSlugTemperatureSensor

Figure 14. Bottom layer of the test board for mid-range power applications

Heat Slug Temperature vs Electrical Output Power

-

0.

20

40

60

80

100

120

140

160

Hea

t Slu

g Te

mpe

ratu

re [°

C]

Common SMT with Heatsink and Thermal Pad -

0

.0

.0

.0

.0

.0

.0

.0

.0

0 10 20 30 40 50 60Total Electrical Power [W]

Block Commutation

Sinusoidal Commutation

0.

Thermal Response Time at MAX Output Power- Common SMT Mounting Technique -

00 20 40 60 80 100 120 140 160

Time [sec]

20

40

60

80

100

120

140

Hea

t Slu

g Te

mpe

ratu

re[°

C] t90

T90

T30

t30

Figure 15. Temperature characteristic of the SA306-IHZ mounted on the test board for mid-range power applications using a thermal pad and the HS33 heatsink

Figure 16. Thermal response time at output power of 20 W

Page 10: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

10 AN50U

previousmodelwithvias,thissolutionprovideslessthana10thofthethermalresistance .Usingthethermalpad,approximately51Wofcontinuousoutputpowerisachievedwithdietemperaturesofapproximately+155°Catanambienttemperatureof+26°Cusingblockcommutation .Themaximumpoweroutput,up to+85°Cfor thisconfiguration isap-proximately20Watthechosenvoltageandcurrent .Withthisso-lution it ispossible todouble theoutputpowerat similar systemtemperatures .Whatismostimportantistheimprovedperformanceovertheshortheatpathtotheheatsinkdueinparttothelowther-malresistancethroughthethermalpad .

ConclusionThethermalpadofferseasysystemassemblyandgoodthermalperformanceatmoderatepowerratings .Theshortthermalpathaf-fordsbenefitsinacceleratingheavymechanicalloadsforalongertime .Thisisanappropriatesolutionforawidevarietyofindustrialapplicationsusinggearsandwithproductionrunsinmid-rangevol-umes .

Flipped-Over SMT Mounting with Heatsink for High-Power ApplicationsThe third test boarduses the sameheat sinkingmethodas theApex Microtechnology Evaluation Boards DB63R and DB64R .ThistechniqueisalsodescribedintheHigh-Power Heatsinkingsection .This time the SA306-IHZ is flipped over and mounted . TheheatsinkisthenmounteddirectlyontotheheatslugoftheIC .ThisshortensthethermalpathfromtheICtotheambientairandreducesthetotalthermalresistanceofthesystemtoamin-imumof1 .674K/W .ShowninFigure17istheassemblyoftheICandheatsinkonthetestboardforhigh-powerapplications .Thepositionofthetemperaturesensor,themountingmethodoftheheatsinkandthethermalcouplingtothegroundplanearestillthesame .Theonlydifference is that theSA306-IHZ isflippedoverandsol-deredinaprecisecutoutfromthebacksideoftheboard .Apic-tureoftheactualmountingtechniquecanbeseeninFigure20 .As a result of thismounting technique, the characteristics ofthetemperatures inFigure18becomequite linearacrossthewholepowerrange .Theoutputpoweratadietemperatureof135°Cisapproximately52Wat+25°Candapproximately29Wat+85°C .Thissolutionprovidesonlyaslightlyhighermaxi-mumoutputpower than the thermal pad .However, the shortthermalpathhas itsadvantages indynamicapplications .Thefastresponsetimebetweenthedieandtheheatslugprovidesbenefitsinapplicationswheremultipleaccelerationsoccurovershorttimespans(seeFigure19) .

ConclusionTheprincipaladvantageoftheflipped-overmountingisthat itprovidesashortheatpathforsupportinghighdynamicapplica-tions .Thefreeaccesstotheheatslugoffersawidevarietyofheatsinkingmethodsandmoreeffectivecoolingoptions .

GroundPlane

HeatSlugTemperatureSensor

Heat Slug Temperature vs Electrical Output Power

0

20

40

60

80

100

120

140

160

180

Hea

t Slu

g Te

mpe

ratu

re [°

C]

- Flipped-Over SMT w. Heatsink HS33 -

0 10 20 30 40 50 60 70Total Electrical Power [W]

Block Commutation

Sinusoidal Commutation

Figure 17. Bottom layer of the test board for high-power applications

Figure 18. Temperature characteristic of the SA306-IHZ mounted flipped over on the test board for high power applications using the HS33 heatsink

Figure 19. Thermal response time at a output power of 25 W

Thermal Response Time at MAX Output Power- Common SMT Mounting Technique -

00 20 40 60 80 100 120 140 160

Time [sec]

20

40

60

80

100

120

140

Hea

t Slu

g Te

mpe

ratu

re[°

C] t90

T90

T30

t30

Page 11: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 11

Comparisons of the Low-Power, Mid-Range Power and High-Power Test BoardThefollowingtablecomparesthebenchmarkvaluesforeachmountingtechniqueinaside-by-sidecomparison .Pleasenote that thecolumns for themaximumoutputpowerare rated forambient temperaturesof+25°Cand+85°C .ThereisamoredetailedchartforthepowerdissipationderatingacrossambienttemperaturesinthePower Dissipation Deratingsection .

Table 1. Temperature characteristics of the SA306-IHZ mounted flipped over on the PICtail™ Plus test board for high-power applications using the HS33 heatsink

MountingTechnique

Calculated MAX Output Power@ +85°C (W)

MAX Output Power at

Test Voltage@ +25°C (W)

MAX Continuous Current at Test

Voltage@ +25°C (A)

Total Thermal Resistance RTH (K/W)

Average Ther-mal Response

Time k90(K/sec)

CommonSMT 9 .0 19 0 .93 2 .789-5 .343 1 .323CommonSMTwithPad&Heatsink 19 .8 38 2 .73 0 .628-2 .529 1 .869

FlippedOverwithHeatsink 23 .9 52 4 .12 0 .801-1 .726 2 .637

AllvaluesinthisSectionaretheresultofactualtestsunderlaboratoryconditionsandshouldprovideanindicationofthecapabilitiesofseveraldesignvariants .ThebehavioroftheseICsmaydifferunderdifferentdesignandopera-tionconditions .

High-Power Heat SinkingSincetheSA306-IHZisdesignedforhigherpowerapplications,itisalsonecessarytodetermineheatsinkingfac-torsthatallowforhigherpowerdissipation .Becauseoftheconcentrationofheatasaresultofpowerdensity,itisimportanttouseheatsinktypesthatprovideshortthermalpaths .Forthisreasonlargeextrusionswithfinsonwidecentershavenotbeenincludedinthisevaluation .Dissipationcapacitywithtwotypesofaluminumextrusionswereevaluated .TheHS33isasmallheatsink,0 .4"x0 .4"x1 .5",thathasfourfinson0 .118-inchcenters .ThisconfigurationplacesallfourfinsdirectlyundertheheatslugoftheSA306-IHZpackage .TheHS33heatsinkisshowninFigure20 .ThisheatsinkisusedontheApexMicrotech-nologyDB64RevaluationboardfortheSA306-IHZ .Thesecondheatsink inFigure21 isapinconfigurationwithdimensionsof1"x2"x2" .Thepinsare0 .070" indiameteron0 .137"centers .Thishighlyeffectiveheatsinkprovidesmultipleheatpathsdirectlyunderthesilicon .Becauseofitssize,itiscapableofsafelydissipatingmuchhigherpowerlevelsthantheHS33 .Thetestset-upfortheHS33usedtheApexMicrotechnologyDB64Revaluationboardwithan8Ωresistiveload .Toincreasepower,theDCvoltageacrosstheboardandloadwereincreased .Thisset-updoesnotfullysimulatetheoperationofamotor .However,itdoesallowstabletemperaturestobeachieved,thusfacilitatingmeasurement .Thisset-upmetthegoalofallowingpowerdissipationanddietemperaturemeasurementswithvaryingheatsinks .

Figure 20. HS33 Finned Heatsink with SA306-IHZ Figure 21. Pin Heatsink with SA306-IHZ

Page 12: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

12 AN50U

Table 2. Results of Thermal Testing

Configuration Orientation Convection Dissipated Power (W)

Output Power @ 85% Effi-

ciency (W)

Heatsink Temp MAX

(ºC)

Junction Temp MAX

(ºC)

Thermal Resis-tance (ºC/W)

HS33andPCB

Horizontal,HSdown Natural 7 .5 42 .5 139 145 16

HS33andPCB

Vertical,HSvertical Natural 9 51 138 146 13

HS33andPCB

Horizontal,HSdown Forced 17 96 .3 127 140 6 .8

PinHeatsink Horizontal,HSup Natural 16 90 .7 125 141 7 .3

PinHeatsink Horizontal,HSdown Forced 39 221 .0 79 113 2 .3

Fivedifferentthermalconfigurationsweretested,andtheresultsareshowninTable2 .Notethatconsistentwithrealworldapplications,thedifferencesintestset-upandmeasurementtechniquesbetweenthistestandtheprevioussectionproducedifferenttestresultsandpowercapabilities .Thisistobeexpectedandshowsthatdesignersmusttakeintoaccounttheirspecificoperatingenvironmentwhenevaluatingthermalperformance .ThreerowsofHS33dataareshowninTable2 .Thefirsttwousedconvectioncoolingonly .Asonemightassume,placingtheheatsinkinahorizontalpositiondoesnotproduceaseffectiveacoolingsurfaceasplacingtheheatsinkvertically .Withaverticalheatsinkunderconvectionconditionstheheatsinkdissipates9W,allowing50Wofmotorpowerata+140°Cjunctiontemperature .Thermalresistanceresultswiththeverticalheatsinkmeasured13°C/Wjunctiontoair .The thirdHS33testwasperformedusingasmall fanblowingacross theboard .Theobjectwas tosimulateanenclosedhousingwithafanprovidingoutsideair,similartoaPC .Inthiscase,dissipationimprovedto17Wandallowingalmost100Watthemotorat85%efficiency .Thermalresistancejunction-to-casealsoimproveddramati-callyto6 .8°C/W .Subsequent testingwith this configuration suggests that use of a small fan, in this case a 1" Sunon unit (PNGM0502PFV1-8,similartoMPUorgraphicschipFAN),directedontotheHS33,allowsheatsinkdissipationinex-cessof21Wandsuggestingmotorpowerofapproximately120W .Undertheseconditions,dietemperatureshouldnotexceed+140°C .For full-power applications, the pin heatsink was tested . The pin heatsink was tested under both convectionandforced-airconditions .ThetestboardandfancanbeseeninFigure22 .Thefanusedwasa2"Sunon(PNKDE1205PHV2)capableof595linearfeetperminuteofairflow .Theretainingscrewsforthefanalsoholdtheheatsinkandthedeviceinplaceontheboard .ThetestconfigurationforthepinheatsinkusedamodifiedPCBlayoutanda4Ωresistiveload .Undernormalconvectionconditions,thisheatsinkwasabletodissipate16Wofpower,allowingmotorpowerof91W,similartotheHS33withairflow .However,whenusingforcedairwiththisheatsink,powerdissipationwithintheheatsinkincreasedtoalmost40W,allowingforgreaterthan220Wofpowertothemotor .Inaddition,thejunctiontemperaturedroppedto+113°C,sug-gestingthisisahighreliabilityconfigurationwithroomforincreasedpoweroutput .The junction to air thermal resistance also improved dramatically,measuring2 .3°C/W .Withsomeincreaseindietemperatureandawellde-signedsystem,thepinheatsinkinaforcedairconfigurationwillallowthefull48Wand5Aratingofthedevice .Useofaheatsinkdoesincreasesystemcost .Insomecases,thedesignermayfindthatasmallamountofairflowacrossanHS33-typeheatsinkpro-videssufficientdissipationandlowercostsversusalargerheatsink .How-ever,forfullpowerdissipation,useofalargeheatsinkwithforcedairmaybenecessary . Figure 22. Pin heatsink and test

board with fan attached

Page 13: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 13

Power Dissipation DeratingToprovidehigh-reliabilityoperation,thedietemperaturemustbekepttoasafelevel .Thedesignermustconsidertotalpower,heatsinkcapabilityandambienttemperatureinordertomakeappropriatesystemchoices .ThegraphinFigure23showsderatingcurvesforpower .Curvesaregivenforloadpowerversusheatsinkandambienttem-peratures .Inaddition,curvesaregivenforsingle-sidedanddoublelayerPCBs .Figure23alsoshowsthatbelow+25°CtheSA306-IHZcanoperateabove300W,assumingdietemperaturesareheldtoareliablelevel .Above+30°Cimprovedheatsinkingmustbeemployedorthedevicemayneedtobede-rated .Again,actualpowercapabilityisafunctionofoperatingvoltage,efficiency,ambienttemperatureandheatsinkcapability .Actualderatingwillvarybasedonthesefactors .Itshouldalsobenotedthatthederatingofheatsinksthemselveschangewithtemperatureandthereforewithpowerdissipation .AsshowninFigure24fortheHS33,bothairflowandambienttemperatureplayaroleinaccuratelymodelingthedissipationcapabilityoftheheatsink .

ConclusionApplicationsvarywidelyandvarious thermal techniquesareavail-able tomatch the required performance .The size and orientationoftheheatsinkmustbeselectedtomanagetheaveragepowerdis-sipationoftheIC .StandardPCBmountingtechniquesenablethesedevicestodissipateasmuchas9W .Theuseofaheatpadorthepatent-pending mounting technique shown in Figure 20, with theSA306-IHZinvertedandsuspendedthroughacutoutinthePCB,isadequateforpowerdissipationexceeding20W .Infreeair,mountingthePCBperpendiculartotheground,sothattheheatedairflowsupwardalongthechannelsofthefins,canprovideimprovedcooling .Inapplicationsinwhichhigherpowerdissipationor lowerjunctionorcasetemperaturesarerequired,alargerheat-sink or circulated air can significantly improve performance .A pinheatsink can successfully dissipate the thermal energy generatedwhendrivingmotors inexcessof200W .Byusing the techniquesinthisApplicationNote,theSA57-IHZandSA306-IHZcanprovidelong-term,reliablemotorcontrolinaverycompactpackage .

References1 . SA57-IHZ Pulse Width Modulation AmplifierDataSheet,www .apexanalog .com2 . SA306-IHZ Pulse Width Modulation AmplifierDataSheet,www .apexanalog .com3 . 3-Phase Switching AmplifierApplicationNoteSA306-IHZ,AN46,www .apexanalog .com

SA306-IHZ Output Power Dissipation Derating

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140Ambient Temperature, Ta (°C)

Load

Pow

er, P

(W)

HS33 and PCB Horizontal/HSdown - Natural HS33 and PCB Vertical/HSvertical - Natural HS33 and PCB Horizontal/HSdown - Forced

PIN Heatsink Horizontal/HSdown - Forced

Note: Careful consideration of operating current isrequired so not to exceed maximum wire temp of +150° C.

0

50

100

150

200

250

300

350HS33 and PCB Horizontal/HSdown - Natural HS33 and PCB Vertical/HSvertical - Natural HS33 and PCB Horizontal/HSdown - Forced PIN Heatsink Horizontal/HS up - Natural PIN Heatsink Horizontal/HSdown - Forced Typical SMT device on a Double-Sided BoardTypical SMT device on a Single-Sided Board

THE

RM

AL

RE

SIS

TAN

CE

(°C

/W)

AIR FLOW (LFM)200 1000800600400

0.00

20.00

15.00

10.00

5.00

1.0 5.14.13.02.0AIR FLOW (m/s)

Figure 23. Load power derating curves for ambient temperature, Ta (°C)

Figure 24. Heatsink thermal resistance versus air flow

Page 14: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

14 AN50U

Appendix A – Derivation of Maximum Power and Thermal Dynamics Values for PCB Based TestsSection A.1 Result for Common SMT Mounting with Heatsink in Low-Power Applications

ThetotalthermalresistanceofthecommonSMTmodelforaSA306-IHZis4 .98K/W(Kelvinperwatt) .Tocalculatethemaximumoutputpowerforthismountingtechniquewithoutspecificvaluesforvoltageorcurrent,wehavetotransformtheequation:

(12)Where: T0=SA306-IHZorSA57-IHZjunctiontemperature T2=ambientairtemperature PE=electricaloutputpower

TheplotsinFigure7denoteavalueof+136°Catanambienttemperatureof+27°Cwithathermalresistanceofapproximately5 .343K/W .Thedifferenceisduetothefactthatthefactorincludesthethermalresistanceintotheambientairandisthereforeacombinedvaluefor(αA)-1+Rth .WhenweusethevalueforthethermalresistanceofthePICtailTMPlusTestBoardtocalculatethemaximumoutputpowerforanapplicationcoveringthewholeindustrialambienttemperaturerangeupto+85°C,themaximumcon-tinuousoutputpowerisapproximately9W:

(13)

Where: T0=SA306-IHZorSA57-IHZjunctiontemperature T2=ambientairtemperature RT=totalthermalconductivity PMAX=MAXelectricaloutputpower

ShowninFigure12isthetemperaturecharacteristicofthegroundplanefromtheambienttothemaximumtem-perature,whenthemotorisdrivencontinuouslyatamaximumpowerof9W .ForlatercomparisonsthefocusisonthetransferratioΔT30/Δt30andΔT90/Δt90,describedbyaquotientKfortheslewratefromthecoldstateto30%and90%,respectively,ofthemaximumtemperature .Theslewratequotientkisanindicationforthequalityofthedynamicbehaviourofthethermalsystem:

(14a)

(14b)Where:

k=slewratequotientinKelvinpersecond Δθ=temperaturedifferenceinKelvin Δt=durationinseconds T0=temperatureattimet0 T1=temperatureattimet1

T0 - T2 = ( + Rth) • RDS(ON) • IC21

αA

T0 - T2 = ( + Rth) • PE

1αA

PMAX =T0 - T2

Rt

PMAX = = 9.4W135°C - 85°C

5.343 KW

k = = ∆θ T1 - T0∆t t1 - t0

k30 = = 1.31754.5°C - 26.8°C21 sec

Ksec

k90 = = 0.988109.7°C - 26.8°C84 sec

Ksec

Page 15: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

AN50U 15

Section A.2 SMT Mounting with a Thermal Pad and Heatsink for Mid-Range Power Applications

Thefirstorderapproximationofthethermalmodelgivesathermalresistanceof2 .678K/W .Thefollowingequationisusedtoverifytherealvalueofthecompletesystem:

(15)

Where:T0=SA306-IHZorSA57-IHZjunctiontemperatureT2=ambientairtemperaturePE=electricaloutputpowerRt=totalthermalconductivity

Nextistofindthemaximumpowerratingtocoverthetotalindustrialrangeforambienttemperaturesupto+85°Catamaximumdietemperatureof+135°C .

(16)

Where:T0=SA306-IHZorSA57-IHZjunctiontemperatureT2=ambientairtemperatureRt=totalthermalconductivityPMAX=Max .electricaloutputpower

ThechartinFigure12showstheimprovementsofthethermaldynamics .Theslewratequotientsk30andk90are:

(17a)

(17b)

Where:k=slewratequotientinK/sΔθ=temperaturedifferenceinKelvinΔt=durationinsecondsT0=temperatureattimet0T1=temperatureattimet1

= ( + Rth)1αA

T0 - T2 = ( + Rth) • PE

1αA

T0 - T2PE

Rt = = 2.529155°C - 26°C51W

KW

PMAX =T0 - T2

Rt

PMAX = = 19.8W135°C - 85°C

2.529 KW

k = = ∆θ T1 - T0∆t t1 - t0

k30 = = 1.93855.8°C - 26.8°C15 sec

Ksec

k90 = = 1.407114.7°C - 26.8°C63 sec

Ksec

Page 16: AN50 Optimizing Power Delivery AN50 in PWM Motor Driver

AN50

16 AN50U

Section A.3 Flipped Over SMT Mounting with Heatsink for High-Power Applications

Thefollowingequationsareusedtocalculatetheestimatedmaximumoutputpowerforambienttemperaturesof+85°C:

(18)

Where:T0=SA306-IHZ/SA57-IHZjunctiontemperatureT2=ambientairtemperatureRt=totalthermalconductivityPMAX=MAXelectricaloutputpower

Usingthismountingtechnique,thefollowingvaluesareobtainedfork30andk90:

(19a) (19b)Where:k=slewratequotientinK/sΔθ=temperaturedifferenceinKelvinΔt=durationinsecondsT0=temperatureattimet0T1=temperatureattimet1

k = = ∆θ T1 - T0∆t t1 - t0

k30 = = 2.63858.5°C - 26.8°C12 sec

Ksec

k90 = = 1.792121.8°C - 26.8°C53 sec

Ksec

PMAX =T0 - T2

Rt

PMAX = = 28.97W135°C - 85°C

2.096 KW

= ( + Rth)1αA

T0 - T2PE

Rt = = 2.096135°C - 26°C52W

KW

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!ForallApexMicrotechnologyproductquestionsandinquiries,calltollfree800-546-2739inNorthAmerica .Forinquiriesviaemail,pleasecontactapex .support@apexanalog .com .InternationalcustomerscanalsorequestsupportbycontactingtheirlocalApexMicrotechnologySalesRepresentative .Tofindtheonenearesttoyou,gotowww .apexanalog .comIMPORTANTNOTICE

ApexMicrotechnology,Inc .hasmadeeveryefforttoinsuretheaccuracyofthecontentcontainedinthisdocument .However,theinformationissubjecttochangewithoutnoticeandisprovided"ASIS"withoutwarrantyofanykind(expressedorimplied) .ApexMicrotechnologyreservestherighttomakechangeswithoutfurthernoticetoanyspecificationsorproductsmentionedhereintoimprovereliability .ThisdocumentisthepropertyofApexMicrotechnologyandbyfurnishingthisinforma-tion,ApexMicrotechnologygrantsnolicense,expressedorimpliedunderanypatents,maskworkrights,copyrights,trademarks,tradesecretsorotherintellectualpropertyrights .ApexMicrotechnologyownsthecopyrightsassociatedwiththeinformationcontainedhereinandgivesconsentforcopiestobemadeoftheinforma-tiononlyforusewithinyourorganizationwithrespecttoApexMicrotechnologyintegratedcircuitsorotherproductsofApexMicrotechnology .Thisconsentdoesnotextendtoothercopyingsuchascopyingforgeneraldistribution,advertisingorpromotionalpurposes,orforcreatinganyworkforresale .

APEXMICROTECHNOLOGYPRODUCTSARENOTDESIGNED,AUTHORIZEDORWARRANTEDTOBESUITABLEFORUSEINPRODUCTSUSEDFORLIFESUPPORT,AUTOMOTIVESAFETY,SECURITYDEVICES,OROTHERCRITICALAPPLICATIONS .PRODUCTSINSUCHAPPLICATIONSAREUNDER-STOODTOBEFULLYATTHECUSTOMERORTHECUSTOMER’SRISK .

ApexMicrotechnology,ApexandApexPrecisionPoweraretrademarksofApexMicrotechnolgy,Inc .Allothercorporatenamesnotedhereinmaybetrademarksoftheirrespectiveholders .

Copyright © Apex Microtechnology, Inc. 2012(All Rights Reserved)www.apexanalog.com OCT 2012

AN50U REVB