an overview of available reactor designs 2012 nuclear plant...an overview of available reactor...

13
An overview of available reactor designs 2012 Jim Thomson The main designs worldwide are: 1. Areva EPR 2. (Areva Kerena BWR) 3. Areva-Mitsubishi Atmea 4. Atomstroyexport VVER-1200 5. CNGPC CPR-1000 6. GE-Hitachi ESBWR 7. KEPCO APR1400 8. Mitsubishi APWR 9. SNC Lavalin CANDU 10. Toshiba-Westinghouse AP1000 www.safetyinengineering.com January 2012 1

Upload: lebao

Post on 31-Mar-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

An overview of available reactor designs 2012Jim Thomson

The main designs worldwide are:

1. Areva EPR

2. (Areva Kerena BWR)

3. Areva-Mitsubishi Atmea

4. Atomstroyexport VVER-1200

5. CNGPC CPR-1000

6. GE-Hitachi ESBWR

7. KEPCO APR1400

8. Mitsubishi APWR

9. SNC Lavalin CANDU

10. Toshiba-Westinghouse AP1000

www.safetyinengineering.com

January 2012 1

Nuclear power stations under

construction, 20112011 India, NPCIL Kaiga 4 PHWR 202

2011 Iran, AEOI Bushehr 1 PWR 950

2011 India, NPCIL Kudankulam 1 PWR 950

2011 Korea, KHNP Shin Kori 1 PWR 1000

2011 Argentina, CNEA Atucha 2 PHWR 692

2011 India, NPCIL Kudankulam 2 PWR 950

2011 Russia, Energoatom Kalinin 4 PWR 950

2011 Korea, KHNP Shin Kori 2 PWR 1000

2011 China, CGNPC Lingao II-2 PWR 1080

2011 Japan, Chugoku Shimane 3 ABWR 1375

2012 Taiwan Power Lungmen 1 ABWR 1300

2011 Canada, Bruce Pwr Bruce A1 PHWR 769

2012 Canada, Bruce Pwr Bruce A2 PHWR 769

2011 Pakistan, PAEC Chashma 2 PWR 300

2013 China, CNNC Fangjiashan 1 PWR 1080

2013 China, CNNC Fuqing 1 PWR 1080

2013 China, CGNPC Hongyanhe 2 PWR 1080

2013 Slovakia, SE Mochovce 4 PWR 440

2014 China, CNNC Sanmen 2 PWR 1250

2014 China, CPI Haiyang 1 PWR 1250

2014 China, CGNPC Ningde 3 PWR 1080

2014 China, CGNPC Hongyanhe 3 PWR 1080

2014 China, CGNPC Hongyanhe 4 PWR 1080

2015 China, CGNPC Yangjiang 2 PWR 1080

2014 China, CNNC Fangjiashan 2 PWR 1080

2014 China, CNNC Fuqing 2 PWR 1080

2014 China, CNNC Changiang 1 PWR 650

2014 China, China Huaneng Shidaowan HTR 200

2016 Korea, KHNP Shin-Ulchin 2 PWR 1350

2016 Romania, SNN Cernavoda 3 PHWR 655

2016 Russia, Energoatom Novovoronezh II-2 PWR 1070

2016 Russia, Energoatom Leningrad II-2 PWR 1200

2016 Russia, Energoatom Rostov 4 PWR 1200

2016 Russia, Energoatom Baltic 1 PWR 1200

2016 Russia, Energoatom Seversk 1 PWR 1200

2016 Ukraine, Energoatom Khmelnitsky 3 PWR 1000

2016 India, NPCIL Kakrapar 4 PHWR 640

2016 India, NPCIL Rajasthan 7 PHWR 640

2016 China, several

2017 Russia, Energoatom Leningrad II-3 PWR 1200

2017 Ukraine, Energoatom Khmelnitsky 4 PWR 1000

2017 India, NPCIL Rajasthan 8 PHWR 6402011 Pakistan, PAEC Chashma 2 PWR 300

2011 India, Bhavini Kalpakkam FBR 470

2012 Finland, TVO Olkilouto 3 PWR 1600

2012 China, CNNC Qinshan phase II-4 PWR 650

2012 Taiwan Power Lungmen 2 ABWR 1300

2012 Korea, KHNP Shin Wolsong 1 PWR 1000

2012 Canada, NB Power Point Lepreau 1 PHWR 635

2012 France, EdF Flamanville 3 PWR 1600

2012 Russia, Energoatom Vilyuchinsk PWR x 2 70

2012 Russia, Energoatom Novovoronezh II-1 PWR 1070

2012 Slovakia, SE Mochovce 3 PWR 440

2012 China, CGNPC Hongyanhe 1 PWR 1080

2012 China, CGNPC Ningde 1 PWR 1080

2013 Korea, KHNP Shin Wolsong 2 PWR 1000

2013 USA, TVA Watts Bar 2 PWR 1180

2013 Russia, Energoatom Leningrad II-1 PWR 1070

2013 Korea, KHNP Shin-Kori 3 PWR 1350

2013 China, CNNC Sanmen 1 PWR 1250

2013 China, CGNPC Ningde 2 PWR 1080

2013 China, CGNPC Yangjiang 1 PWR 1080

2013 China, CGNPC Taishan 1 PWR 1700

2014 China, China Huaneng Shidaowan HTR 200

2014 Korea, KHNP Shin-Kori 4 PWR 1350

2014 Japan, Tepco Fukishima I-7 ABWR 1380

2014 Japan, EPDC/J Power Ohma ABWR 1350

2014 Russia, Energoatom Rostov 3 PWR 1070

2014 Russia, Energoatom Beloyarsk 4 FNR 750

2015 Japan, Tepco Fukishima I-8 ABWR 1380

2015 China, CGNPC Yangjiang 3 PWR 1080

2015 China, CPI Haiyang 2 PWR 1250

2015 China, CGNPC Taishan 2 PWR 1700

2015 China, CGNPC Ningde 4 PWR 1080

2015 China, CGNPC Hongyanhe 5 PWR 1080

2015 China, CGNPC Fangchenggang 1 PWR 1080

2015 China, CNNC Changiang 2 PWR 650

2015 China, CNNC Hongshiding 1 PWR 1080

2015 China, CNNC Taohuajiang 1 PWR 1250

2015 China, CNNC Fuqing 3 PWR 1080

2015 Korea, KHNP Shin-Ulchin 1 PWR 1350

2015 Japan, Tepco Higashidori 1 ABWR 1385

2015 Japan, Chugoku Kaminoseki 1 ABWR 1373

2015 India, NPCIL Kakrapar 3 PHWR 640

2015 Bulgaria, NEK Belene 1 PWR 1000

2017 India, NPCIL Rajasthan 8 PHWR 640

2017 Romania, SNN Cernavoda 4 PHWR 655

2017 China, several

2www.safetyinengineering.com

January 2012

Principal available reactor designs• Seven of the designs – EPR, VVER-1200, APR-1400, AP-1000, APWR, Atmea and CPR-

1000 – are variants of Pressurised Water Reactors (PWRs). • VVER is the Russian acronym for PWR. The VVER design is similar to PWRs but

employs horizontal steam generators.• SNC Lavalin’s (formerly AECL) CANDU is a heavy-water moderated, pressure tube

design, with separate horizontal pressure tubes for each fuel channel, in a primary circuit with steam generators, a pressuriser, and primary pumps.

• GE-Hitachi’s ESBWR is the latest version of their Boiling Water Reactor (BWR). This design differs from all the others in that the steam generated in the RPV passes straight to the turbine, so the turbine operates using mildly radioactive steam.straight to the turbine, so the turbine operates using mildly radioactive steam.

• PWRs, CANDUs and BWRs are all fundamentally proven designs in widespread use around the world. The versions listed here are the most modern variants which are currently offered by the designers.

• Current status of the Areva Kerena BWR is unclear (following Siemens withdrawal from nuclear construction projects after Fukushima).

• Modern nuclear power plants are all designed for a nominal 50 to 60 year life.• Site construction time for all designs is usually stated to be in the range 42 to 60

months.• All designs except CPR-1000 are “Generation III+” designs which are said to offer

significant improvements in safety and economics over the Generation III advanced reactor designs certified by the US NRC in the 1990s .

3www.safetyinengineering.com

January 2012

Areva European Pressurised Water

Reactor (EPR)

• Based on French N-4 and German Konvoi

• 1600 MWe

• Advanced safety systems

• First EPR is close to completion in Finland

• Construction in progress in France and China• Construction in progress in France and China

• More are planned in France and the UK

• Currently being evaluated in UK Generic Design Assessment

• This design is the front-runner for UK new reactors

• Design of Control and Instrumentation systems has been changed due to UK and Finnish concerns

• Electricite de France (EdF) and Areva plan to build four units in the UK

• Horizon Power (joint venture between Germany’s E.On and RWE) is also considering this design

4www.safetyinengineering.com

January 2012

Areva Kerena BWR

• 1250MWe Boiling Water Reactor

• Used Gundremmingen BWR plant in Germany as basis

• Advanced safety features

• Load-following design

• The current status of this design is unclear following Siemens’

withdrawal from new nuclear projects

5www.safetyinengineering.com

January 2012

Areva-Mitsubishi Atmea

• 1100MWe plant, 3-loop

• Based on 900MWe Framatome-EdF unit design

• Claimed Generation III+ safety features

• Load-following design

• Smaller size (than EPR) intended for countries with smaller grids

• No orders yet (Jan 2012)

6www.safetyinengineering.com

January 2012

Atomstroyexport VVER-1200

• 1200 MWe

• Includes some passive safety features

• Planned construction in Russia, China, Vietnam and Turkey

Tianwan twin VVER plant, China

• Developed from earlier VVER-1000 designs

• There are currently at least twelve units under

construction in Russia

• 4-loop design, horizontal steam generators

• Advanced safety features including 72 hour site

blackout capability

Tianwan twin VVER plant, China

7www.safetyinengineering.com

January 2012

CNGPC CPR-1000

• Chinese development of French 3-loop 900MWe design (Gravelines is the reference plant)

•At least 20 are currently in advanced planning or under construction.

• Chinese plan to have 100 units operational by 2030, most of which will be CPR-1000 units.

• This is a Generation II design – the Chinese authorities have said they are reviewing for

extreme external events and site black-out, post-Fukushima.

8www.safetyinengineering.com

January 2012

GE-Hitachi ESBWR

• Economic Simplified Boiling Water Reactor

• 1600 MWe

• Passive safety features

• Modular construction

• An earlier version, the ABWR (Advanced BWR), is in operation in Japan and Taiwan

• First ABWR began commercial operation at Kashiwazaki-Kariwa in Japan, in 1996

• The design was initially submitted to UK Generic Design Assessment but

GE withdrew because some aspects of the design were not sufficiently mature

9www.safetyinengineering.com

January 2012

KEPCO APR-1400

• 1400MWe PWR

• Based on the Westinghouse/CE System 80+ at Palo Verde USA

• Four APR1400 are under construction in South Korea, first due to go to power in 2013

• KEPCO has won a tender to supply four APR1400 units to the United Arab Emirates

• First UAE nuclear power plant will be the fifth unit of the APR1400 plants in the world

• South Korean Shin-Kori plant will serve as the "reference plant" for the UAE program

• KEPCO design was not submitted for the UK Generic Design Assessment

10www.safetyinengineering.com

January 2012

Mitsubishi APWR

• 1700MWe, 4-loop design

• Generation III design

• 2 units were planned for construction at Tsuruga, Japan, but this

has been cancelled post-Fukushima.

• The design is undergoing certification by US authorities for possible

construction at Comanche Peak, Texas and North Anna, Virginia

• Mitsubishi has partnered with Iberdrola for possible APWR construction

In Europe

11www.safetyinengineering.com

January 2012

SNC Lavalin Advanced CANDU Reactor

(ACR-1000)• 1200 MWe

• horizontal fuel channel core

• heavy-water moderator

• on-power fuelling

• Was in UK’s Generic Design Assessment

• AECL withdrew from assessment

ACR development “has been put

on hold because there’s no market

demand” (Toronto Star 27th Oct 2011).

The older CANDU 6 design is still being

Differences from earlier CANDU designs:

• compact core design

• enriched fuel

• improved stability

• higher output

• light water coolant

• less heavy water than earlier CANDUs

• Not built anywhere yet but CANDU 6

(the preceding design) has been built

in South Korea and China.

The older CANDU 6 design is still being

offered, however.

• SNC Lavalin bought AECL in 2011.

12www.safetyinengineering.com

January 2012

Toshiba-Westinghouse AP1000

• 1100MWe PWR

• Passive safety systems

• Modular construction

• At least four units under construction in China

• Currently being evaluated in UK Generic Design Assessment

• Horizon Power (RWE/E.On) are considering AP1000 as an option to Areva EPR.

• One novel aspect is the use of explosive ‘squib’ valves

• These deliberately breach primary coolant circuit in accidents to enable passive cooling

• Design operation and maintenance of squib valves will be key aspects of safety approval

13www.safetyinengineering.com

January 2012