an introduction to tilings and delone systemsan introduction to tilings and delone systems samuel...

53
An Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit´ e de Picardie Jules Verne, France December 3, 2012 Samuel Petite An Introduction to tilings and Delone Systems

Upload: others

Post on 06-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

An Introduction to tilings and Delone Systems

Samuel Petite

LAMFA UMR CNRSUniversite de Picardie Jules Verne, France

December 3, 2012

Samuel Petite An Introduction to tilings and Delone Systems

Page 2: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Dan ShechtmanNobel Prize 2011 in Chemistry

D. Shechtman, I. Blech, D. Gratias, J. W. Cahn : Metallic phasewith long-range orientational order and no translational symmetry.Physical Review Letters. 53, 1984, S. 1951–1953,

Samuel Petite An Introduction to tilings and Delone Systems

Page 3: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Diffraction figure

Samuel Petite An Introduction to tilings and Delone Systems

Page 4: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Hauy

• Rene Just HAUY (1743 (Saint-Just en Chaussee)-1822 (Paris))Father of Modern Crystallography.

Samuel Petite An Introduction to tilings and Delone Systems

Page 5: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Unit cell of quartz

Samuel Petite An Introduction to tilings and Delone Systems

Page 6: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

An orderly, repeating pattern

PAVAGES DU PLAN 5

Figure 1. Deformation de la tuile standard d’un pavage

2. Pavages euclidiens

Oublions vite ces generalites, rappelons les trois theoremes de Bie-

berbach qui decrivent les pavages euclidiens periodiques et donnons

quelques exemples de pavages euclidiens aperiodiques. Ces theoremes

et exemples nous serviront de point de comparaison pour l’etude de

pavages plus generaux.

Dans cette partie, E est l’espace euclidien de dimension n et G est le groupe

des isometries de E : produits d’une application lineaire orthogonale par une

translation.

2.1. Pavages euclidiens periodiques

La description des groupes cristallographiques de l’espace euclidien

est donnee par les trois theoremes de Bieberbach qui datent des an-

nees 1910. Nous les enoncons sans demonstration.

Théorème 2.1 (Bieberbach). Pour tout groupe cristallographique ! de l’espace

euclidien E de dimension n, le sous-groupe !! forme des translations est d’in-

dice fini dans ! et est engendre par n translations lineairement independantes.

Remarques

– Le sous-groupe !! est donc un groupe isomorphe a Zn.

– L’image P ! d’un pavage euclidien periodique P par une bijection a"ne de

E est donc encore un pavage euclidien periodique. Notons cependant que les

groupes !P et !P ! ne sont pas en general isomorphes ; en voici un exemple bien

simple : prendre pour P un pavage carre et pour P ! un pavage rectangulaire.

The symmetry of the tiling are independant of the shape of thepattern.The set of Euclidean symmetries preserving this tiling is a

crystallographic group .

Samuel Petite An Introduction to tilings and Delone Systems

Page 7: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

An orderly, repeating pattern

PAVAGES DU PLAN 5

Figure 1. Deformation de la tuile standard d’un pavage

2. Pavages euclidiens

Oublions vite ces generalites, rappelons les trois theoremes de Bie-

berbach qui decrivent les pavages euclidiens periodiques et donnons

quelques exemples de pavages euclidiens aperiodiques. Ces theoremes

et exemples nous serviront de point de comparaison pour l’etude de

pavages plus generaux.

Dans cette partie, E est l’espace euclidien de dimension n et G est le groupe

des isometries de E : produits d’une application lineaire orthogonale par une

translation.

2.1. Pavages euclidiens periodiques

La description des groupes cristallographiques de l’espace euclidien

est donnee par les trois theoremes de Bieberbach qui datent des an-

nees 1910. Nous les enoncons sans demonstration.

Théorème 2.1 (Bieberbach). Pour tout groupe cristallographique ! de l’espace

euclidien E de dimension n, le sous-groupe !! forme des translations est d’in-

dice fini dans ! et est engendre par n translations lineairement independantes.

Remarques

– Le sous-groupe !! est donc un groupe isomorphe a Zn.

– L’image P ! d’un pavage euclidien periodique P par une bijection a"ne de

E est donc encore un pavage euclidien periodique. Notons cependant que les

groupes !P et !P ! ne sont pas en general isomorphes ; en voici un exemple bien

simple : prendre pour P un pavage carre et pour P ! un pavage rectangulaire.

The symmetry of the tiling are independant of the shape of thepattern.The set of Euclidean symmetries preserving this tiling is a

crystallographic group .

Samuel Petite An Introduction to tilings and Delone Systems

Page 8: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groups

• In 1891, the crystallographer et mathematicien Evgraf Fedorov(Russia) showedthere is, up to isomorphim, just 17 crystallographic groups of theplan.

• There are 219 crystallographic group in dimension 3

Samuel Petite An Introduction to tilings and Delone Systems

Page 9: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groups

• In 1891, the crystallographer et mathematicien Evgraf Fedorov(Russia) showedthere is, up to isomorphim, just 17 crystallographic groups of theplan.• There are 219 crystallographic group in dimension 3

Samuel Petite An Introduction to tilings and Delone Systems

Page 10: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groups

Theorem (Bieberbach, 1912)

In Rd , there is,up to isomorphism, just a finite number ofcrystallographic groups.

Question : what is this number ? Give explicitely the groups ?

Plesken & Schulz (2000) give an enumeration for n = 6

Samuel Petite An Introduction to tilings and Delone Systems

Page 11: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groups

Theorem (Bieberbach, 1912)

In Rd , there is,up to isomorphism, just a finite number ofcrystallographic groups.

Question : what is this number ? Give explicitely the groups ?

Plesken & Schulz (2000) give an enumeration for n = 6

Samuel Petite An Introduction to tilings and Delone Systems

Page 12: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groups

Theorem (Bieberbach, 1912)

In Rd , there is,up to isomorphism, just a finite number ofcrystallographic groups.

Question : what is this number ? Give explicitely the groups ?

Plesken & Schulz (2000) give an enumeration for n = 6

Samuel Petite An Introduction to tilings and Delone Systems

Page 13: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic group

cmm

Samuel Petite An Introduction to tilings and Delone Systems

Page 14: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Crystallographic groupcmm

Samuel Petite An Introduction to tilings and Delone Systems

Page 15: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Measuring instrument

A diffractometer

Samuel Petite An Introduction to tilings and Delone Systems

Page 16: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Diffraction figure of Shechtman et al.

Samuel Petite An Introduction to tilings and Delone Systems

Page 17: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Apparition

• Before 1982, paradigm : A discrete diffraction pattern comesonly from a periodic structure.

• In 1982 : D. Shechtman et al. observe a discret diffractionpattern of Al-Mn that with a five fold symmetry.

Samuel Petite An Introduction to tilings and Delone Systems

Page 18: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Apparition

• Before 1982, paradigm : A discrete diffraction pattern comesonly from a periodic structure.

• In 1982 : D. Shechtman et al. observe a discret diffractionpattern of Al-Mn that with a five fold symmetry.

Samuel Petite An Introduction to tilings and Delone Systems

Page 19: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Image

Samuel Petite An Introduction to tilings and Delone Systems

Page 20: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Alloy Al-Li-Cu

Samuel Petite An Introduction to tilings and Delone Systems

Page 21: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Alloy Al-Mg-Pb

Samuel Petite An Introduction to tilings and Delone Systems

Page 22: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Many quasicrystals in laboratory

• Al-Mn, Al-Cu-Fe, Al-Cu-Co, Al-Co-Ni, Al-Pd-Mn, Al4Mn,Al6Mn, Al6Li3Cu, Al78Cr17Ru5, Mg32(Al,Zn)49, Al70Pd20Re10,Al71Pd21Mn8.

• It is a new structure alloy.

• the name of this new alloy:A quasicrystal

Samuel Petite An Introduction to tilings and Delone Systems

Page 23: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

New definition

• A quasicrystal is a solid that have with a diffraction spectrumpurely discrete (like classical crystals) but with a non periodicstructure.

• In 1992, the Crystallographic International Union change thedefinition of a crystal to include quasicrystals:

A quasicrystal is a solid with a purely discrete diffraction spectrum

Samuel Petite An Introduction to tilings and Delone Systems

Page 24: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Natural quasicrystal• A natural quasicrystal (not made in a laboratory) has beendiscovered in 2009 in Koriakie’s montains (Russia).

Why they are stable ? Still unknown.

Samuel Petite An Introduction to tilings and Delone Systems

Page 25: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Natural quasicrystal• A natural quasicrystal (not made in a laboratory) has beendiscovered in 2009 in Koriakie’s montains (Russia).

Why they are stable ? Still unknown.Samuel Petite An Introduction to tilings and Delone Systems

Page 26: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Samuel Petite An Introduction to tilings and Delone Systems

Page 27: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Penrose’s tiling

Samuel Petite An Introduction to tilings and Delone Systems

Page 28: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problemTiling the plane ⇒ restrictions.

Samuel Petite An Introduction to tilings and Delone Systems

Page 29: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problemTiling the plane ⇒ restrictions.

Samuel Petite An Introduction to tilings and Delone Systems

Page 30: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 31: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 32: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 33: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 34: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 35: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 36: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n)

≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 37: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 38: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Combinatorial problem

TheoremThere exist no tiling of the Euclidean plane by a convex polyhedrawith p ≥ 7 edges.

Proof: by contradiction, suppose this tiling exists.Let Qn be a n × n square,Vn= ] vertices in Qn; En = ] edges in Qn; Fn=] faces in Qn.

2En + O(n) =∑v

deg(v) ≥ 3Vn

2En + O(n) ≥ pFn

Vn − En + Fn = O(n).

2En + O(n) ≥p(En − Vn)

2pVn + O(n) ≥2(p − 2)En + O(n) ≥ 3(p − 2)Vn

O(n) =(p − 6)Vn contradiction

Samuel Petite An Introduction to tilings and Delone Systems

Page 39: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Tiling the plane ⇐ restrictions ?

Wang’s ProblemGiven a set of tiles, can we decide if it tiles the plan ?

Can they tile the plan, s.t. tiles can only meet along a border withthe same color ?Subshift of Finite Type (SFT)

Samuel Petite An Introduction to tilings and Delone Systems

Page 40: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Tiling the plane ⇐ restrictions ?

Wang’s ProblemGiven a set of tiles, can we decide if it tiles the plan ?

Can they tile the plan, s.t. tiles can only meet along a border withthe same color ?Subshift of Finite Type (SFT)

Samuel Petite An Introduction to tilings and Delone Systems

Page 41: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Tiling the plane ⇐ restrictions ?

Theorem (Berger, 60’s)

There is no algorithm to decide the Wang’s problem

Theorem (Berger, 60’s)

There exits an explicit set of 20 426 tiles that can tile the plan, butonly in a nonperiodic way.

Example is simplified now (13 tiles).

Samuel Petite An Introduction to tilings and Delone Systems

Page 42: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Tiling the plane ⇐ restrictions ?

Theorem (Berger, 60’s)

There is no algorithm to decide the Wang’s problem

Theorem (Berger, 60’s)

There exits an explicit set of 20 426 tiles that can tile the plan, butonly in a nonperiodic way.

Example is simplified now (13 tiles).

Samuel Petite An Introduction to tilings and Delone Systems

Page 43: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?

Substitution

Samuel Petite An Introduction to tilings and Delone Systems

Page 44: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?

Chair tiling

Samuel Petite An Introduction to tilings and Delone Systems

Page 45: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?

Substitution

Samuel Petite An Introduction to tilings and Delone Systems

Page 46: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?Substitution

Samuel Petite An Introduction to tilings and Delone Systems

Page 47: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Substitution

Theorem (Thurston 1989, Kenyon 1996)

Given λ ∈ C. There is a primitive 2 dimensional self-similar tilingwith expansion λ if and only if λ is a complex Perron number:i.e. λ is an algebraic integer and any Galois conjugate λ′ 6= λ of λsatisfies |λ′| < λ.

Samuel Petite An Introduction to tilings and Delone Systems

Page 48: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?Matching rules (similar to SFT )

Penrose shows that any tiling made with these tiles is aperiodic.

Samuel Petite An Introduction to tilings and Delone Systems

Page 49: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?Cut and project scheme

Samuel Petite An Introduction to tilings and Delone Systems

Page 50: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?Cut and project scheme

Samuel Petite An Introduction to tilings and Delone Systems

Page 51: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

How to construct an aperiodic tiling ?Cut and project scheme

Samuel Petite An Introduction to tilings and Delone Systems

Page 52: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

Plan

I Topology on the tiling/Delone sets space.

I Geometry on the tiling/Delone sets space and Ergodic Theory.

I Linearly repetitive tilings/Delone sets.

Samuel Petite An Introduction to tilings and Delone Systems

Page 53: An Introduction to tilings and Delone SystemsAn Introduction to tilings and Delone Systems Samuel Petite LAMFA UMR CNRS Universit e de Picardie Jules Verne, France December 3, 2012

References

I Spaces of tilings, finite telescopic approximations andgap-labeling. Belissard J, Benedetti, R., Gambaudo,J-M. Comm. Math. Phys. 261 (2006), no. 1, 141

I Substitution, dynamical systems-spectral analysis. M.Queffelec, LNM, vol. 1294, 1987

I Symbolic Dynamics and Tilings of Rd . E. ArthurRobinson 81–119, Proc. Sympos. Appl. Math., 60, AMS

I Quasicrystals and Geometry M. Senechal. Cambridge Univ.press, 1995

Samuel Petite An Introduction to tilings and Delone Systems