an introduction to applied underwater · pdf filean introduction to applied underwater...

Download An Introduction to Applied Underwater · PDF fileAn Introduction to Applied Underwater Robotics ... UdG Robot Prototypes . Conclusion ... Fundamental Problems in Underwater Robotics

If you can't read please download the document

Upload: hoangdiep

Post on 06-Feb-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

  • Universitat de GironaComputer Vision and Robotics Group

    Presented by: Dr. Pere Ridao

    An Introduction to Applied Underwater Robotics

    Robtica submarina

    Anlisi dimatge

    Percepci 3D

    Visi submarina

    Hardware en temps real

    VICOROB Research Team

  • CIRS: Research Center in Underwater Robotics

    Conclusion

    Introduction

    Applications

    ICTINEUAUV, a research testbed

    Navigation & Mapping

    Future Work

    3

  • Introduction

    4

    OCEANS Exploration 71 % earth surface is covered by water

    37 % of the populations lives at less than 100 km form the coast

    Oceans are a source of food and resources

    Oceans play an important role in the clima

    Manned Submersibles

    ROVs AUVs

    Technology

    5

    155 m

    308 m

    600 m

    6000 m

    10,911 m

    Detph vs Technology

    Introduction

  • Introduction: Marine Robots

    ASC

    IAUV

    Survey AUV

    Hovering AUV

    ROV

    Glider Hybrid ROV/AUV

    ASCASCASC

    IAUVIAUV

    Survey AUV

    Hovering AUV

    ROROV V Survey

    GlGlididererd Hybriiybb

    ROV//AUVOV//A

    CIRS-UdG Robots

    1995 2001 2005 2006 2010

    Applications

    Industrial Scientific

    Introduction: UdG Robot Prototypes

  • Conclusion

    Introduction

    Applications

    ICTINEUAUV, a research testbed

    Navigation & Mapping

    Future Work

    8

    Pasteral dam

    Objective: Execute an inspection of a dam wall to search for cracks or other damages on the concrete.

    [P. Ridao et al., JFR10]

    9

    Applications: Dam Inspection

  • Pasteral dam Pasteral dam

    [P. Ridao et al., JFR10]

    10

    Applications: Dam Inspection

    Mequinenza dam

    Objective: Providing visual validation for a sonar-based system developed to detect zebra mussel colonies.

    [P. Ridao et al., WPDC10]

    11

    Applications: Habitat Mapping

  • Mequinenza dam

    [P. Ridao et al., WPDC10]

    12

    Applications: Habitat Mapping

    Dive 1 Dive 2

    Dive 4

    Dive 3

    AZORES Workshop

    FREESUBNET IN COOPERATION WITH FREESUBNET RTN NETWORK

    Applications: Seafloor Mapping

  • Dive 4

    Dive 3

    DiDiDiDiDiDDiDiDiDiDiDiDiDiDiDiDDiDiDDiDiDiDiDDiDiDiiDiiDiiDiDDiDDDDDDDDiDDiDiDDDDDDDDDDDDDDDDDDDDDDDDDDD veveveveveveveveveveveveveveveveveveveveeevvevveeevevevveveveeveveveeeveveeveeeeveeevveeeveeeeveeveeeveeevev 4444444444 4444444444444444 44 4 44444444444444444444444 4444444444444444444444

    DiDiDiDiDiDiDiDDDiDiDiDiDiDiDiDiDiDiDiDiDiDDiiDiDiDiDiDDDiDiDiDiDiDiDiDDiDiDDDiDDiDiDDiDDiDDDDiDiDiDiDDDDDiDDDDiDDDDiDiDDiDiiDDDiiiDDDDDDDDDiiiiiiDiiDDD vevevevevveveveveveveveveveveveeeeeeveeeveveveveveveevevveveeeevvvevevevveveeeveevevevvvvevevevevevevvevvevevveveeeeveveveevvevveeevevevveevvvevvvevevvevevevevvvvvvevv 33333333333 33333 333333 3333 33333 33 3 333333333333333333 333333333333333333333333333333333

    AZORES Workshop

    FREESUBNET IN COOPERATION WITH FREESUBNET RTN NETWORK

    20 m

    20 m

    5 m 5 m

    Dive 4

    Applications: Seafloor Mapping

    [Escartin et al., GGG08]

    Applications: Multimodal Mapping

    Multimodal Maps

    Image Mosaic & Bathymetry registration

    Eiffel Tower hydrothermal vent. Data from IFREMER

    Very Large Maps

    20.000 images mosaic (6 days of ROV survey)

    Lucky Strike Hydrothermal Vent site Data from WHOI 15

  • [Nicosivici et al. OCEANS08]

    Applications: Micro-Bathymetry & 3D Mosaicing

    3D Mosaics

    16

    Conclusion

    Introduction

    Applications

    ICTINEUAUV, a research testbed

    Navigation & Mapping

    Future Work

    17

  • How did it start ... (2006)

    ICTINEUAUV: A bit of history

    18

    [D. Ribas et al., ICRA07]

    How did it continue... (2006)

    ICTINEUAUV: A bit of history

    Pass the Gate Score the Cross

    Hit the target Recover

    4 Phases

    19

  • There are other ICTINEUS ...

    Breaking the Surface 2009

    ICTINEUAUV: A bit of history

    Narcs Monturiol 1819-1885

    ICTINEU II, Model Barcelona harbour

    ICTINEU3, Manned Submersible under

    development

    ICTINEUAUV, to pay homage to Narcs

    Monturiol

    20

    The Ictineu AUV

    Characteristics

    Open frame design

    Small form factor (74 x 46.5 x 52.4 cm)

    Lightweight (52 Kg)

    Complete sensor suite

    ROV/AUV

    ICTINEUAUV: The Robot

    21

  • The Ictineu AUV

    Teth

    ered

    B

    uoy

    Unt

    hete

    red

    ICTINEUAUV: The Robot

    22

    The Ictineu AUV

    Pressure vessels

    Power module (2 sealed 12V 12Ah lead acid batteries)

    Computer module (PC104 and Mini-ITX computers)

    23

    ICTINEUAUV: The Robot

  • The Ictineu AUV

    Thrusters

    2 vertical thrusters

    4 horizontal thrusters

    Motion controlled in 4 DoF (surge, sway, heave and yaw)

    24

    ICTINEUAUV: The Robot

    The Ictineu AUV

    Forward-looking color camera

    Downward-looking b&w camera

    Cameras

    DVL (Doppler Velocity Log)

    3D velocities (bottom/water)

    Pressure

    Range

    ICTINEUAUV: The Robot

  • The Ictineu AUV

    AHRS

    Heading, pitch, roll and heave acceleration.

    Fibre optic gyro

    Heading with low drift rate

    ICTINEUAUV: The Robot

    Generation of acoustic images of the surroundings

    360 scans around the vehicle

    Maximum range of 100 m

    The Ictineu AUV

    MSIS (Mechanically Scanned Imaging Sonar)

    27

    ICTINEUAUV: The Robot

  • Vehicle positioning

    Acoustic modem

    The Ictineu AUV

    USBL transponder

    28

    ICTINEUAUV: The Robot

    [Palomeras et al. MCMC09]

    ICTINEUAUV: The Software Architecture

    Software objects that dialog with the hardware

    Two types:

    Sensor objects

    Actuator objects

    Robot interface

    29

  • Navigator object: Estimate the position and velocity of the robot (EKF) Obstacle Detector: Determine the position of obstacles (wall, bottom, )

    Perception module

    [Palomeras et al. MCMC09]

    30

    ICTINEUAUV: The Software Architecture

    Receives sensor inputs and sends command outputs to the actuators. Behaviours:

    GoTo WallInspection Distance Heading Start/Stop Camera Check Water Check Temperature and Pressure

    Control module

    [Palomeras et al. MCMC09]

    31

    ICTINEUAUV: The Software Architecture

  • Defining the task execution flow to fulfill a mission

    Mission control

    [Palomeras et al. MCMC09]

    32

    ICTINEUAUV: The Software Architecture

    Conclusion

    Introduction

    Applications

    ICTINEUAUV, a research testbed

    Navigation & Mapping

    Future Work

    33

  • Fundamental Problems in Underwater Robotics...

    What path should I follow?

    Where am I? Where am I?Where am I?Navigation

    I f ll ?I follow?Path Planning

    Where are the amphoras? amphoras?amphoras? Mapping

    How should I steer To follow the desired

    path

    Control

    What force should I Apply to achieve the

    desired speed?

    Guidance

    Breaking the Surface 2009

    Navigation & Mapping

    Map Robot Pose Environment

    Localization Algorithms

    Mapping Algorithms

    SLAM: Simultaneous Localization And Mapping

  • Navigation & Mapping:

    The Navigation Problem

    NNavigation: Estimate the position, orientation and velocity of a vehicle

    From Gade 2008

    North Pole {E} {N} {L} {B}

    Origin at the centre of the earth. Earth fixed. Origin at P=[l, ] on the earth surface. Plane XY tg to earth surface. Axis pointing North-East-Down Same origine than N. Rotated wrt to zN a certain angle to avoid the singularity in the pole. Vehicle attached frame

    xb

    yb zb

    B

    Navigation & Mapping:

    Inertial Navigation Systems

    Navigation: Estimate the position, orientation and velocity of a vehicle

    Inertial Navigation Systems

    Inertial sensors are used for the navigation.

    3 Accelerometers are used for the linear motion estimation.

    3 Gyroscopes are used for the angular motion estimation.

    The sensors are expensive and require an accurate calibration.

    The position estimate drifts over time.

  • NNavigation: Estimate the position, orientation and velocity of a vehicle

    Inertial Navigation Systems

    Early INS were based on gyro-stabilized gimbaled platforms

    Strapdown systems avoid moving parts using virtual gyro-stabilization techniques

    Measure acceleration & angular velocity. Computer linear velocity, position and attitude.

    Navigation & Mapping:

    Inertial Navigation Systems

    Navigation: Estimate the position, orientation and velocity of a vehicle

    Inertial Navigation Systems (Strapdown)

    +!122#

    gravitationIB IB B IB

    Ff a g a

    m

    BIB Can be measured using a triad acc.

    DLc

    Sagnac effect (1925)

    Due to the rotation the light path is longer cw than acw.

    The phase delay is proportional to the

    Navigation & Mapping:

    Inertial Navigation Systems

  • NNavigation: Estimate the position, orientation and velocity of a vehicle

    Inertial Navigation Systems (Strapd