an improved method for utilizing high-throughput amplicon ... · 1 an improved method for utilizing...

32
1 An improved method for utilizing high-throughput amplicon sequencing to determine the 1 diets of insectivorous animals 2 3 Authors 4 Michelle A. Jusino 1 ++ *, Mark T. Banik 1 ++ , Jonathan M. Palmer 1 , Amy K. Wray 2,3 , Lei Xiao 4 , Emma 5 Pelton 3,5 , Jesse R. Barber 6 , Akito Y. Kawahara 4 , Claudio Gratton 3 , M. Zachariah Peery 2 , and 6 Daniel L. Lindner 1 * 7 8 ++ indicates shared first authorship based on equal contributions 9 * indicates corresponding authors 10 11 Affiliations 12 (1) United States Forest Service, Northern Research Station, Center for Forest Mycology 13 Research, One Gifford Pinchot Drive, Madison, Wisconsin, USA 14 (2) University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, 15 Wisconsin, USA 16 (3) University of Wisconsin-Madison, Department of Entomology, Madison, Wisconsin, USA 17 (4) McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 18 University of Florida, Gainesville, USA 19 (5) The Xerces Society for Invertebrate Conservation, Portland, Oregon, USA 20 (6) Department of Biological Sciences, Graduate Program in Ecology, Evolution and 21 Behavior, Boise State University, Boise, Idaho, USA 22 23 *Michelle A. Jusino: USFS NRS CFMR, One Gifford Pinchot Drive, Madison, WI, 53726 24 [email protected], [email protected] 25 *Daniel L. Lindner: USFS NRS CFMR, One Gifford Pinchot Drive, Madison, WI, 53726 26 [email protected], [email protected] 27 28 Running title: Improved HTS of insectivore diets 29 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

Upload: docong

Post on 25-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

1

Animprovedmethodforutilizinghigh-throughputampliconsequencingtodeterminethe1

dietsofinsectivorousanimals2

3

Authors4

MichelleA.Jusino1++*,MarkT.Banik1++,JonathanM.Palmer1,AmyK.Wray2,3,LeiXiao4,Emma5

Pelton3,5,JesseR.Barber6,AkitoY.Kawahara4,ClaudioGratton3,M.ZachariahPeery2,and6

DanielL.Lindner1*7

8++indicatessharedfirstauthorshipbasedonequalcontributions9

*indicatescorrespondingauthors10

11

Affiliations12

(1) UnitedStatesForestService,NorthernResearchStation,CenterforForestMycology13

Research,OneGiffordPinchotDrive,Madison,Wisconsin,USA14

(2) UniversityofWisconsin-Madison,DepartmentofForestandWildlifeEcology,Madison,15

Wisconsin,USA16

(3) UniversityofWisconsin-Madison,DepartmentofEntomology,Madison,Wisconsin,USA17

(4) McGuireCenterforLepidopteraandBiodiversity,FloridaMuseumofNaturalHistory,18

UniversityofFlorida,Gainesville,USA19

(5) TheXercesSocietyforInvertebrateConservation,Portland,Oregon,USA20

(6) DepartmentofBiologicalSciences,GraduatePrograminEcology,Evolutionand21

Behavior,BoiseStateUniversity,Boise,Idaho,USA22

23

*MichelleA.Jusino:USFSNRSCFMR,OneGiffordPinchotDrive,Madison,WI,5372624

[email protected],[email protected]

*DanielL.Lindner:USFSNRSCFMR,OneGiffordPinchotDrive,Madison,WI,5372626

[email protected],[email protected]

28

Runningtitle:ImprovedHTSofinsectivorediets 29

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

2

Abstract30

DNAanalysisofpredatorfecesusinghigh-throughputampliconsequencing(HTS)31

enhancesourunderstandingofpredator-preyinteractions.However,conclusionsdrawnfrom32

thistechniqueareconstrainedbybiasesthatoccurinmultiplestepsoftheHTSworkflow.To33

bettercharacterizeinsectivorousanimaldiets,weusedDNAfromadiversesetofarthropodsto34

assessPCRbiasesofcommonlyusedandnovelprimerpairsforthemitochondrialgene,35

cytochromeoxidaseCsubunit1(CO1).WecompareddiversityrecoveredfromHTSofbat36

guanosamplesusingacommonlyusedprimerpair“ZBJ”toresultsusingthenovelprimerpair37

“ANML”.Toparameterizeourbioinformaticspipeline,wecreatedanarthropodmock38

communityconsistingofsingle-copy(cloned)CO1sequences.Toexaminebiasesassociated39

withbothPCRandHTS,mockcommunitymemberswerecombinedinequimolaramountsboth40

pre-andpost-PCR.Wevalidatedoursystemusingguanofrombatsfedknowndietsandusing41

compositesamplesofmorphologicallyidentifiedinsectscollectedinpitfalltraps.InPCRtests,42

theANMLprimerpairamplified58of59arthropodtaxa(98%)whereasZBJamplified24of5943

taxa(41%).Furthermore,inanHTScomparisonoffield-collectedsamples,theANMLprimers44

detectednearlyfour-foldmorearthropodtaxathantheZBJprimers.Theadditionalarthropods45

detectedincludemedicallyandeconomicallyrelevantinsectgroupssuchasmosquitoes.46

ResultsrevealedbiasesatboththePCRandsequencinglevels,demonstratingthepitfalls47

associatedwithusingHTSreadnumbersasproxiesforabundance.Theuseofanarthropod48

mockcommunityallowedforimprovedbioinformaticspipelineparameterization.49

50

51

Keywords:arthropodmockcommunity,batguano,dietaryanalysis,insectivore,next-52

generationsequencing,NGS53

54

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

3

Introduction55

High-throughputampliconsequencing(HTS)hasbecomethepreferredmethodforrapid56

molecularidentificationofmembersofmixedecologicalcommunities.HTSisnowalso57

increasinglyusedtoidentifythearthropoddietarycomponentsofawidetaxonomicrangeof58

animalsincludingmammals(Busscheetal.2016;Clareetal.2014a;Clareetal.2014b;Mallott59

etal.2015;Rydelletal.2016;Vesterinenetal.2016),birds(Crisol-Martínezetal.2016;Jedlicka60

etal.2016;Trevellineetal.2016),reptiles(Kartzinel&Pringle2015),fish(Harms-Tuohyetal.61

2016),andarthropods(Krehenwinkeletal.2016).IdentificationoftheDNAofdietary62

componentsisaccomplishedby“metabarcoding”,whichinvolvesextractingDNAfromfecal63

samples,amplifyingoneormorebarcodingloci,preparingDNAlibraries,andfinallysequencing,64

bioinformatics,anddataanalysis.Eachofthesestepsinvolvesdecisionsandassumptionsthat65

significantlyaffectresults.Forexample,biasesareunavoidablewhenamplifyingenvironmental66

DNAwithPCR-basedmethods(Brooksetal.2015)andcarefulconsiderationshouldbe67

exercisedwhenselectingaprimerpairforHTS.Thus,whileDNAmetabarcodingisapowerful68

toolforstudyingtrophicinteractions,conclusionsshouldtakeintoaccounttheshortcomings69

andparametersofthetechniques(e.g.:Brooksetal.2015;D’Amoreetal.2016;Lindahletal.70

2013;Nguyenetal.2015;Pompanonetal.2012).71

ThemitochondrialcytochromeoxidaseCsubunit1locus(CO1)isthemostfrequently72

usedbarcodinglocusforidentifyingawiderangeoftaxonomicgroups,includingarthropods.73

BecauseCO1hasthemostextensivereferencelibraryforarthropods(BOLDsystems,74

Ratnasignham&Hebert,2007),itisthemostcommonlyusedlocusfordietarystudiesof75

insectivorousanimals(Clarkeetal.2014).TheentireCO1barcodingregionisabout658base76

pairs(bp)andcurrentlytoolongtobeusedwithmostHTSplatforms.Thereforeitisnecessary77

tosequenceshorterregionsoftheCO1locus,whichhasprovenchallengingduetoalackof78

conservedprimingsiteswithintheCO1region(Deagleetal.2014).Therefore,novelprimer79

pairsshouldbetestedagainstasmanyexpectedtargetDNAsequencesaspossible.80

Zealeetal.(2011)developedtheZBJ-ArtF1c/ZBJ-ArtR2c(hereafterZBJ)primerpairfor81

detectingarthropodpreyDNAinbatguanobyamplifyinga157bpfragmentoftheCO1region.82

Intheinitialstudy,whichemployedcloningandsequencingratherthanHTS,theZBJprimers83

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

4

amplified37taxafrom13arthropodorders,butdidnotamplifybatCO1DNA.TheZBJprimers84

weredesignedtotargetashortfragmentinordertoamplifythepresumablydegradedDNA85

presentinguanoandcoincidentallythelengthoftheamplicongeneratediscompatiblewith86

manyHTSplatforms.Subsequently,numerousresearchershaveemployedtheZBJprimersin87

HTSstudiesthatanalyzedietsofinsectivorousanimals,includingbats(Busscheetal.2016;88

Clareetal.2014a;Clareetal.2014b;Rydelletal.2016;Vesterinenetal.2016)andbirds89

(Crisol-Martínezetal.2016;Jedlickaetal.2016;Trevellineetal.2016).AlthoughtheZBJ90

primershavebeenwidelyutilized,thereareindicationsthattheyhaveanarrowtaxonomic91

range(Brandon-Mongetal.2015;Clarkeetal.2014;Mallottetal.2015).92

TheassumptionsandparameterscommonlyemployedinHTSenvironmentalDNA93

analyseshavealargeimpactontheoperationaltaxonomicunits(OTUs)thatarerecovered.94

Bioinformaticsclusteringalgorithmscaninfluenceapparentdiversitywithinasample,oran95

entirelibraryofsamples,andtrimmingandfilteringparameterscanimpacttheresulting96

communitycomposition(Deagleetal.2013).Avalidationorcontrolisneededtoparameterize97

bioinformaticspipelines;therefore,theuseofmockcommunitiesaspositivecontrolsinHTSis98

increasinglybecomingcommon,especiallyamongresearcherswhoworkwithfungaland99

bacterialcommunities(Bokulich&Mills2013;Bokulichetal.2013;Nguyenetal.2015).Mock100

communitiescanbeusedtoexaminebiases,startingatthesamplingstepandendingatthe101

bioinformaticsandcommunityanalysissteps.102

Hereweusedareferenceinsectcommunitytoidentifyspecificamplificationbiases103

associatedwiththreecommonlyusedprimerpairs,includingZBJ,andtwonovelprimerpairs,104

LCO1-1490/CO1-CFMRa(hereafterANML)andLCO1490/CO1-CFMRb(hereafterCFMRb),for105

theCO1region(Table1).Tofurthertestprimers,wecomparedHTSresultsfromtheZBJ106

primerstoournovelANMLprimerpairusingfield-collectedbatguanosamples.Wedesigned107

anarthropodmockcommunitybasedonsingle-copy(cloned)mitochondrialCO1sequences,108

whichcanserveasastandardinHTSsequencingandtohelpparameterizeabioinformatics109

pipeline.Finally,wevalidatedtheaccuracyofoursystemofnovelprimers,themock110

communitycontrol,andourbioinformaticspipelinebyusingguanofrombatsfedknowninsect111

dietsandcompositesamplesofmorphologicallyidentifiedarthropodsfrompitfalltraps.112

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

5

MethodsandMaterials113

Testingofprimerpairsagainstknowninsectsamples114

DNAwasextractedfrom67arthropodtaxa(Table2)followingtheprotocolinLindner&115

Banik(2009)withmodificationsforinsects(SupportingInformation,AppendixS1).Briefly,DNA116

wasextractedfromexcisedlegmusclesoflargerinsectsor,forsmallerinsects,thethoraxwas117

puncturedandtheentireinsectwasusedforextraction.Legmusclesandsmallinsectswith118

puncturedthoraxeswereplacedin100μLoffilteredcelllysissolution(CLS;Lindner&Banik119

2009)andfrozenat-20°C,andtheextractionproceeded.FollowingDNAextraction,the120

effectivenessofthefollowingfiveprimerpairsinamplifyingthe67purifiedDNAswas121

evaluated:LCO1490/HCO2198(Folmeretal.1994;Hebertetal.2003;hereafterCO1L/H),ZBJ-122

ArtF1c/ZBJ-ArtR2c(Zealeetal.2011;ZBJ),LCO1-1490/CO1-CFMRa(ANML),LCO1490/CO1-123

CFMRb(CFMRb),andLepF1/mLepR(Hebertetal.2004;Smithetal.2006;hereafterLEP).The124

CO1-CFMRaandCO1-CFMRbprimersdesignedforthisstudywerederivedfromtheZBJ-ArtR2c125

primerandhadsequencesof5’-GGWACTAATCAATTTCCAAATCC-3’and5’-126

GGNACTAATCAATTHCCAAATCC-3’,respectively.TheCO1-CFMRaandCO1-CFMRbprimingsites127

arelocatedintheCO1geneapproximately180bpawayfromtheLCO1490primingsite128

(SupportingInformation,FigureS1).AlistoftheprimersusedispresentedinTable1.129

AmplificationoftheextractedDNAusingallprimerpairs,exceptZBJ,usedthefollowing130

reagentvolumesper15LμLreaction:7.88μLDNA-freemoleculargradewater,3μLGreen131

GoTaq5xbuffer(Promega),0.12μLof20mg/mLBSA,0.3μLof10μMdNTPs,0.3μLofeach10132

μMprimer,0.1uLof5u/μLGoTaqpolymerase(Promega),and3μLofextractedarthropod133

templateDNA.TheZBJprimerpairwasusedwithtwodifferentreagentregimes.One,termed134

themodifiedprotocol,wasthesameasaboveexcept1.0μLofeach10μMprimerwasadded135

andthesecondregimewasthatdescribedbyoriginalauthors(Zealeetal.2011).The136

thermocyclerparametersfortheCO1L/H,ANML,andCFMRbprimerpairswerethosedescribed137

byHebertetal.(2003)withonemodification:thefinalextensionat72°Cwasincreasedfrom5138

to7minutes.TheLepfF-1/mLepR-5amplificationparameterswerethoseofSmithetal.(2006),139

whiletheZBJprimerpairamplificationparameterswerethosedescribedbyZealeetal.(2011).140

Followingamplification,3μLofproductwasrunina2%agarosegelfor20minutesat110V,141

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

6

stainedwithethidiumbromideandvisualizedusingUVlight.Presenceorabsenceofbandswas142

recordedforeachprimerpairandDNAcombination.Toprovidereferencesequencesforeach143

speciestheLCO1490/HCO2198PCRproductswereSangersequencedwithABIPrismBigDye144

(AppliedBiosystems)sequencingfollowingthemethodofLindner&Banik(2009).Theresulting145

sequencesweresubjectedtoanNCBIBLASTsearchtoconfirmtheidentitiesoftheinsect146

speciesoforigin.147

HTSoffield-collectedguanosamplesusingtwodifferentprimerpairs148

ThearthropodDNApresentinthreefield-collectedbatguanosampleswasanalyzed149

usingtheANMLandZBJprimerpairs.DNAwasextractedfromthreeMyotislucifugusguano150

samplesfromthreedifferentlocationsinsouthernWisconsin(allcollectionswereapprovedby151

theWisconsinDepartmentofNaturalResources).Onesamplecontaining100mgofguano,152

approximately10pellets,wasextractedfromeachsiteusingQIAampDNAstoolMiniKit153

followingtheprocedureinAppendixS2oftheSupportingInformation.TheDNAwasthen154

amplifiedusingprimersmodifiedformetabarcodingbyaddinganIonTorrentXpresstrP1155

adaptersequenceonthereverseprimerandbarcodesequenceandIonTorrentXpressA156

adaptersequenceoneachforwardprimer(seeSupportingInformation,TableS1forbarcoded157

primersequences).AmplificationconditionsfortheANMLpairfollowedtheprotocolusedfor158

theprimerpairtestandconditionsfortheZBJpairfollowedthemodifiedprotocolforZBJ159

describedintheprimerpairtest.Followingamplification,eachoftheuniquelybarcodedPCR160

productswaspurifiedviasizeselectingE-GelCloneWellGels(Invitrogen)atapproximately161

180bp.Thesize-selectedproductswerethenquantifiedonanInvitrogenQubit2.0Fluorometer162

andbroughttoaconcentrationof2000pMusingDNA-free,moleculargradewater.Wethen163

combinedtheproductsinequalamountstoproducethesequencinglibrary.Thelibrarywas164

dilutedto13pMpriortotemplatingontoionsphereparticles(ISPs)withtheIonOneTouch2165

system(LifeTechnologies)andaPGMHi-QOT2templatingkit(ThermoFisher#A27739),166

accordingtothemanufacturer'srecommendations.ThetemplatedISPswerethenpurifiedand167

thetemplatedDNAwassequencedusingtheIonTorrentPersonalGenomeMachine(PGM;168

ThermoFisher)withtheIonPGMHi-QSequencingKit(ThermoFisher#A25592)accordingtothe169

manufacturer'sprotocolfor400bpsequencing.170

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

7

Bioinformatics171

HTSdatawereprocessedusingthe‘DADA2’methodviatheAMPtkpipeline172

(https://github.com/nextgenusfs/amptk).Briefly,theAMPtkpipelineprocesses(de-173

multiplexes)HTSampliconsequencingreadsby:1)identifyingavalidbarcodeindexineach174

read,2)identifyingforwardandreverseprimersequences,3)trimmingbarcodeandprimer175

sequences,4)renamingthereadbasedonbarcodeindex,and5)trimming/paddingthereads176

toasetlength.TheDADA2algorithm(Callahanetal.2016)isanalternativetowidelyused177

sequence-clusteringalgorithms(e.g.,UPARSE,UCLUST,nearest-neighbor,SWARM,etc.)and178

functionsto“denoise”HTSsequencingreads.DADA2hasbeenshowntobeveryaccurateand179

issensitivetosinglebasepairdifferencesbetweensequences(Callahanetal2016).AMPtk180

implementsamodifiedDADA2algorithmthatproducesthestandard“inferredsequences”181

outputofDADA2aswellasclustersthe“inferredsequences”intobiologicallyrelevantOTUs182

usingtheUCLUST(Edgar2010)algorithmemployedinVSEARCH(Rognesetal.2016).The183

resultingAMPtkOTUtablescanbefilteredbasedonspike-inmockcommunities(described184

below).TaxonomyformtCO1isassignedinAMPtkusingacombinationofglobalsequence185

alignment,UTAX(http://www.drive5.com/usearch/manual/utax_algo.html),andSINTAX(Edgar186

2016)usingaCO1referencedatabase.ThecurrentCO1databasedistributedwithAMPtkwas187

derivedfromcollatingsequencesfromrepresentativebarcodeindexnumbers(BIN)from188

chordatesandarthropodsintheBarcodeofLifev4database(BOLD;Ratnasingham&Hebert189

2007)andisavailableat:190

https://github.com/nextgenusfs/amptk/blob/master/docs/reference_databases.md.191

Developmentandtestingofanarthropodmockcommunity192

ToproduceamockcommunitytoserveasacontrolforHTSdataanalysis,43ofthe193

arthropodtaxausedintheprimerpairtestwerechosenascandidates(Table2).DNAfromeach194

arthropodwasamplifiedusingLCO1490/HCO2198primersasdescribedpreviously.Toremove195

intragenomicvariation(Songetal.2008),theresultingampliconswereclonedintoE.coliusing196

thePromegapGem-Tvectorsystemfollowingthemanufacturer’sinstructionswiththe197

modificationsusedbyLindner&Banik(2009).Threeclonesofeacharthropodtaxonwere198

subsequentlySangersequencedtoverifythepresenceoftheCO1insertsequence.Twoofthe199

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

8

clonedarthropodsproducedclonedsequencevariants,andthesevariants(3total)werealso200

includedinthemockcommunity,bringingourmockcommunitytotalto46.Plasmidswere201

purifiedusingstandardalkalinelysisandtheresultantDNAwasthenquantifiedonan202

InvitrogenQubit2.0Fluorometerandbroughttoaconcentrationof1500pMusingDNA-free,203

moleculargradewater.Plasmidswerethendiluted1:20usingDNA-freemoleculargradewater204

andindividuallyamplifiedusingtheionANMLprimerswiththesamebarcode.Theindividual205

PCRproductswerethenvisualizedona2%agarosegel,cleanedandsizeselectedat≥150bp206

usingZymoResearchSelect-A-SizeDNAClean&Concentratorspincolumns,quantifiedand207

equilibratedto2000pMasdescribedpreviously,andsubsequentlycombinedinequal208

amounts.Thisampliconmixtureisreferredtoasour“post-PCRcombinedmockcommunity”,209

whichservesasacontroltovalidatesequencingefficiencyofeachmockmember.Tomeasure210

initialPCRbiasandtoparameterizeourbioinformaticspipeline,wealsocreated“apre-PCR211

combinedmockcommunity”bycombiningour1500pMplasmidsinequalamounts.Thepre-212

PCRcombinedmockcommunitywasthendilutedtoa1:8000concentrationpriorto213

amplificationwithANMLbarcodedprimers.TheresultingbarcodedPCRproductwasthen214

visualized,sizeselected,quantified,andbroughtto2000pMasdescribedbefore.Theresulting215

barcodedPCRproductswerethenpreparedandsequencedonanIonTorrentPGManddata216

werebioinformaticallyprocessedasdescribedabove.217

Testingofknownmixedsampleswithmockcommunityandourpipeline218

TotestpreyDNArecoveryfrombatguano,twobats,oneEptesicusfuscusandone219

Lasiuruscinerus,werefedknowndietsofGalleriamellonella,TenebriomolitorandAntheraea220

polyphemusaloneandincombination(Table4).Thebatswerefedeachknowndietforone221

day,andguanopelletswerecollectedduringthefollowing24hours(approvedbyBoiseState222

UniversityInstitutionalAnimalCareandUseCommittee006-AC14-018).Weanalyzedthree223

knowndietcombinationsfromtheE.fuscusindividualandtwoknowndietcombinationsfrom224

theL.cinerusindividual.DNAwasextractedfromguanosamplesusingQiagenQIAampmini225

Stoolkits,followingthemodifiedprotocoldescribedinZealeetal.(2011).DNAfromtheknown226

dietsampleswasamplifiedwithbarcodedANMLprimers,andtheresultingPCRproductswere227

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

9

thenvisualized,sizeselectedat≥150bpusingZymoResearchSelect-A-SizeDNAcleanand228

concentratorspincolumns,quantified,andbroughtto2000pMasdescribedbefore.229

Totesttheeffectivenessofthemethodoncomplexinsectcommunities,fivesamples230

frompitfalltrapsfromtheSnakeRiverBirdsofPreyConservationAreainKuna,Idahowere231

analyzed.Eachpitfalltrapconsistedofaglassjarcontainingpropyleneglycol.Trapswereleft232

outsidefor2-3days,atwhichpointthecontentsofthetrapswererinsedwith100%ethanol233

andsubsequentlytransferredtoglassvialscontaining100%ethanolforstorageatroom234

temperature.AlltrapsamplesweresenttotheFloridaMuseumofNaturalHistoryin235

Gainesville,Floridaforvisualidentificationtoarthropodfamilyandlong-termstorageat-20°C.236

Initialidentitiesofthearthropodspresentintheinsecttrapsampleswereobtainedusing237

traditionalmorphologicalkeys,andmostwereidentifiedbyeyetothefamilylevel,withthe238

followingexceptions:allspringtailswereidentifiedtoorder(Collembola),centipedeswere239

identifiedtoclass(Chilopoda)andmiteswereidentifiedtosubclass(Acari).240

ThesamplesweresenttotheUnitedStatesForestService,NorthernResearchStation,241

CenterforForestMycologyResearchinMadison,Wisconsin,wheretheywereprocessedfor242

molecularanalysis.ArthropodsfromthetrapsampleswererinsedinDNA-freemoleculargrade243

waterandpreparedforDNAextractionintwoways:(1)theexcisedlegmusclesoflarger244

arthropods,andsmallerarthropodswithopenthoraxeswerecombinedandsubmersedinCLS245

andvortexed(dissectedsample),or(2)theintactarthropodswereaddedto15mLCLSand246

maceratedwithasterilepestleandvortexed(maceratedsample).DNAextractionfollowed247

detailsdescribedinAppendixS1oftheSupportingInformation;metabarcodingPCR,andHTS248

thenproceededaspreviouslydescribed.Datawerebioinformaticallyprocessedasdescribed249

before.250

Results251

Testingofprimerpairsagainstknowninsectsamples252

Fifty-eightofthe59taxa(98%)amplifiedwiththeANML(LCO1490/CO1-CFMRa)and253

CFMRb(LCO1490/CO1-CFMRb)primerpairs,withbothpairsfailingtoamplifythesamecarabid254

beetle(Table2).Fifty-twoof59taxa(89%)amplifiedwiththeCO1L/Hprimerpairand48of59255

(81%)amplifiedwiththeLEPprimerpair;theLEPpairamplified100%oftheLepidopteransand256

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

10

Dipteranstested(Table2).TheZBJprimerpairamplified24ofthe59(41%)taxatestedwiththe257

Zealeetal.(2011)protocoland27ofthe59(46%)taxausingourmodifiedprotocol.TheZBJ258

primerpairsuccessfullyamplifiedatleastonerepresentativefromeacharthropodordertested259

(Table2).260

HTSoffield-collectedguanosamplesusingtwodifferentprimerpairs261

BoththeZBJandtheANMLprimersproducedanamplificationproductfromthethree262

Myotislucifugusguanosamples.Forbothprimersetscombined,atotalof64OTUs(Table3)263

weredetected,ofwhich59couldbeidentifiedtothefamilylevel,representing10orders264

comprisedof28families.TheANMLprimersdetected56OTUsandtheZBJprimersdetected15265

OTUs.Sevenofthe64totalOTUsweredetectedwithbothsetsofprimers,49weredetected266

onlywiththeANMLprimerswhile8wereonlydetectedwiththeZBJprimers.Representatives267

fromalltenordersand26familieswererecoveredusingtheANMLprimerpair,whiletheZBJ268

pairrecoveredrepresentativesfromthreeordersandeightfamilies.Themostoftendetected269

familywasthedipteranmidgefamilyChironomidae,with27OTUs,24ofwhichweredetected270

bytheANMLprimersand6byZBJ.Thesecondmostoftendetectedfamilyweremosquitoes271

(Family:Culicidae),with5OTUsdetectedbyANMLbutonlyonebyZBJ.Allbutoneofthe272

remainderofthefamilieswererepresentedbyonlyoneOTUeach.273

Developmentandtestingofanarthropodmockcommunity274

Theindividualplasmidcomponentsofourpost-PCRcombinedmockcommunity275

generatedreadcountsthatrangedfrom3740to4;themeanwas2119andstandarddeviation276

+/-799,with89%(41outof46)yieldinggreaterthan1500reads(Figure1;supplementaltable277

1).Allmockmembersinthepost-PCRcombinedcommunitywererecovered,although3278

generatedfinalreadcountsbelow100(range4to12).Incontrast,individualmembersofour279

pre-PCRcombinedmockcommunitygeneratedreadcountsthatrangedfrom10,577to0witha280

meanof2174andstandarddeviationof+/-2238,with54%(25of46)yieldingmorethan1500281

reads.Twoofourmockmembersdidnotgenerateanysequencesinthepre-PCRcombined282

communityandanadditional4generatedfinalreadcountsbelow100(range2to39).283

Testingofknownmixedsampleswithmockcommunityandourpipeline284

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

11

TheresultsoftheknowndietHTSsamplesaresummarizedinTable4.WedetectedDNA285

fromalloftheexpecteddietarycomponentsinall5oftheknowndietsamplestested.286

Additionally,wedetectedDNAfromtwopossibleaccidentaldietarycomponents(Empria287

takeuchiiandAgrotisipsilon)inbigbrownbat(Eptesicusfuscus)dietsamplesthatincluded288

bothGalleriaandTenebrioasdietarycomponents.WealsodetectedDNAfromaparasitoid289

wasp(Family:Ichneumonidae)in3of4(75%)dietsamplesthatincludedGallerialarvae.Finally,290

wedetectedbigbrownbat(E.fuscus)DNAin2ofthe3samplesfrombigbrownbats,and291

hoarybat(L.cinereus)DNAinboth(2of2)ofthesamplesfromhoarybats(Table4).Thesedata292

wereprocessedbioinformaticallywithDADA2,withandwithout97%clusteringappliedtothe293

inferredsequencetablethatresultedfromtheDADA2output.Withoutclustering,weobtained294

oneinferredsequenceforG.mellonella,Antheraeapolyphemus,E.takeuchii,A.ipsilonandE.295

fuscus,butobtained11inferredsequencesforTenebriomolitor,7fromIchneumonidae,and3296

forL.cinereus.Afterclusteringat97%,wemaintainedtheOTUnumberforalltaxathathadone297

OTUbeforeclustering,andobtained2OTUsforT.molitor,1OTUforIchneumonidae,and2298

OTUsforL.cinereus.299

Theresultsofthepitfalltrapsamplesaresummarizedbasedonpresenceorabsenceof300

familiesinTable5.Thereappearstobenosignificanteffectofthemethodinwhichthe301

communitieswereextracted(dissectedsamplesormaceratedsamples)ontheefficiencyof302

taxonrecovery.Overall,in5samples37familiesidentifiedusingconventionalmorphological303

methodswerealsorecoveredwithHTS,whileafurther18familiesmorphologicallyidentified304

werenotrecoveredwithHTSand16familieswereonlyrecoveredwithHTS.Ofthe18families305

missedbyHTS,9wereprobablyaresultofeitheramorphologicalorsequence306

misidentification,withtheremaining9mostlikelylostthroughsystembias.307

Discussion308

Throughanamplificationtestof5primerpairsagainstataxonomicallydiverse309

communityofarthropods,wedemonstratedthatourANMLandCFMRbprimerpairsamplified310

moretaxathanpreviouslydescribedprimerpairs(CO1L/H,ZBJ,andLEP)inastandardPCR.311

Throughadirectcomparisonoffield-collectedguanosamplessubjectedtoHTSwithtwoprimer312

pairs,ANMLandZBJ,wedemonstratedthattheANMLprimerpairamplifiedsubstantiallymore313

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

12

taxathantheZBJprimers,thecommonlyusedprimerpairforHTSstudiesexaminingthediets314

ofinsectivorousanimals.Whenweusedbothpairsonthesameenvironmentalsamples,the315

ANMLpairyieldedalmostfourtimesasmanyarthropodtaxathantheZBJpair.Wealso316

detectedchiropteran(bat)sequencesinfecalsamplesfrombatsusingtheANMLprimerpair,317

althoughthenumberofchiropteranDNAsequencesandOTUswasinsignificantcomparedto318

theoverallnumberofsequencesgenerated.Thus,theamplificationofchiropteranDNAdidnot319

significantlyimpacttherecoveryofarthropodDNA,afeaturethathelpsconfirmtheidentityof320

thebattargetspecies,aswellastheirdietarycomponents.ItislikelythattheCO1regionof321

othervertebratescouldalsobeamplifiedbytheANMLprimers,thushelpingtoconfirmthe322

identityoftheconsumerinarangeofsystems(e.g.othermammalspecies,reptiles,323

amphibians,andbirds).BecausetheyproducelongerPCRproducts,theANMLprimers(180bp324

product)alsoallowforbettertaxondelineationcomparedtotheZBJprimers(157bpproduct).325

Improveddetectionofpestspecies326

Insectivorousanimalsarevaluedasprovidersofpestcontrol;however,thetotal327

economicvalueofthisecosystemserviceisdifficulttoestimate(Boylesetal.2011;Clevelandet328

al.2006;Maine&Boyles2015;Williams-Guillénetal.2016).Determiningthefullvalueis329

dependentonthereliabledetectionofthepestspeciespresentinthedietsofinsectivorous330

animals.HTScanbeapowerfultoolforhelpingtobuildtheempiricalbasisnecessaryto331

estimateecosystemservices,butthesuccessofthisapproachdependsinpartonprimer332

efficacy.Basedonouranalyses,theANMLprimersareamajormethodologicalimprovement333

overexistingprimers,allowingforthedetectionofgreaterarthropoddiversityinthe334

environmentalsampleswetested,includingagreaterdiversityofknownpestssuchas335

mosquitoes(Family:Culicidae).Theprevalenceofmosquitoesisusuallyverylowinother336

molecularstudiesofbatguanothatrelyupontheZBJprimers(Clareetal.2014a;Clareetal.337

2014b;Gonsalvesetal.2013;Rolfeetal.2014),andsomehavegoneasfarastosaythat338

mosquitoesarenotimportantpreyitemsforbats(Fenton2012).Specifically,inourguano339

samples,theZBJpairwasonlyabletodetectAedesvexans,whiletheANMLpairdetectedA.340

vexansplusfourotherCulicidaespeciesinthesamesamples.Thus,theANMLprimersallowfor341

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

13

betterestimationoftheecosystemservicesofbats,andperhapsotherinsectivores,as342

predatorsofmosquitoesandothereconomicallyimportantpestspecies.343

Single-copyarthropodmockcommunity,sourcesofunexpectedvariationandsomesolutions344

WhilesomeauthorshavenotedthatHTSdataareunreliableasasourcetomeasure345

communitymemberabundance(Piñoletal.2015),manyHTSstudiesofenvironmentalsamples346

continuetouseabundancemetricsbasedonreadnumbers.Totestthevalidityofreadnumber347

asanestimateofrelativeabundance,wecombinedpre-andpost-PCRmockcommunitiesin348

equimolaramountspriortosequencing.Wepredictedthatiftheapproachisvalid,read349

numbersshouldbeequalacrosstaxa.Instead,eventhougheachmemberofthemock350

communityamplifiedwellinindividualPCRs,weobservedalargevariationinreadnumbersfor351

thepre-PCRcombinedmockcommunity,withsomemembersbeingabsent.Incontrast,the352

post-PCRcombinedmockwasfarlessvariable(Figure1).TheinitialPCRintroducedalarge353

amountoftaxonomicbiasbypreferentiallyamplifyingsometaxa,asinferredfromthe354

differenceinvariabilityinreadnumbersbetweenthepostandpre-PCRmixesofourarthropod355

mockcommunity.Sequencingitselfalsointroducedbiasresultingindifferencesinread356

numbersbetweenthemockmembersthatwerecombinedpost-PCR.Someofthevariationin357

readnumbersamongmockcommunitymemberswasprobablyinducedbymismatchesinthe358

primingsite,giventhatsomememberspossessingthreeormoreprimermismatches.While359

thisnumberofmismatchesdidnotinhibitamplificationinindividualPCRs,inacompetitive360

mixedPCRthemismatchescouldresultinanamplificationbias.Differencesinreadnumbers361

canalsobeattributedtosequencecharacteristicssuchashomopolymerregionsandGC362

content.Ourmockcommunitydatademonstratedthatusingreadnumbersasproxiesfor363

abundanceinenvironmentalsamplesisproblematic,especiallyincomplexsamples.364

Becauseourarthropodmockcommunityconsistsofsingle-copyclonedplasmids,we365

expectedtofindonlyoneOTUpermockmember,allowingtheconclusiveidentificationof366

spuriousorchimericsequencesgeneratedduringthesequencingprocess.Someofthese367

chimerasaretheresultofsimplebinningerrorsandothersaretruechimeras(i.e.,hybrid368

sequencesasaresultofPCRandsequencingerror).Acriticalcomponentofchimerafilteringis369

havingacurateddatabaseofreferencesequences.Weinitiallyattemptedtouseallavailable370

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

14

CO1sequencesinBOLD,butencounteredmanyinconsistencies;thus,wemanuallycurateda371

subsetofthosesequencestouseforreferencesequences.Thiscuratedreferencedatabaseis372

availableat373

https://github.com/nextgenusfs/amptk/blob/master/docs/reference_databases.md.As374

additionalwell-documentedsequencesareaddedtothedatabase,theabilitytoidentify375

chimericsequenceswillcontinuetoimprove,thusenhancingtheaccuracyofOTUidentification376

inHTSofCO1.377

Withouttheuseofamockcommunity,finalOTUcountsmaybegreatlyinflated378

becauseitisdifficulttoidentifyspuriousOTUs.SpuriousOTUsmayarisefromPCR-or379

sequencing-basedchimeraformationaswellaserrorsgeneratedbyclusteringalgorithms.380

Usingawidelyusedclusteringalgorithm(UPARSE;Edgar2013)andfine-tunedfiltering381

parameters,ourinitialOTUestimateforour46membersinglecopymockcommunitywas70,382

andthusinflatedbyatleast52%bythegenerationofspuriousOTUs.Throughmanual383

inspectionofthesequences,mostofthespuriousOTUsinthemockcommunitywerePCR-384

basedchimerasthatpassedthechimerafilterandwerenotobservedinanyothersample.385

Usingourmockcommunityasareference,wewereabletoassesstheefficacyofanalternative386

OTUpickingalgorithm,DADA2(Callahanetal.2016).UsingtheDADA2algorithmfollowedby387

97%UCLUSTclustering,wewereabletoreducethenumberofOTUsinourpre-PCRcombined388

mockcommunityfrom70to43.Thismethodisstillimperfect,asoneoftheOTUswas389

attributedtosequencingerrorandonewasachimera,thusreducingthefinalnumberto42.390

Twoofourmockmemberswerelostbecausetheydidnotsequencewell,andanadditional391

twowereintra-individualvariantsofothermockmembers(HarmoniaaxyridisandPhalangium392

opilio),andclusteredwiththeir“sibling”sequencesafterUCLUSTwasappliedtotheDADA2393

output.WhenweusedthecuratedreferencedatabaseforchimerafilteringwithUCHIMEin394

combinationwiththeDADA2algorithm,wewereabletoremoveallbutonespuriousOTUfrom395

ourmockcommunity,demonstratingthatclusteringalgorithmscanbefine-tunedtominimize396

spuriousOTUgenerationwiththeuseofsingle-copymockcommunities.397

Estimatesoftaxonomicrichnessmayalsobeinflatedbyintragenomicvariabilityin398

barcodingregions.Intragenomicvariabilityisknowninsomeofthemostcommonlyused399

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

15

barcodingregions,suchasthefungalITSregion(Lindner&Banik2011;Lindneretal.2013;400

Schochetal.2012),aswellasthemitochondrialCO1region(Songetal.2008).Therefore,401

intragenomicvariabilitycouldbeacommonissuewithmanyotherloci.Thepresenceofthis402

individual-levelvariationcanleadtotheinflationoftaxonnumbersbecauseintragenomic403

variantsareoftenmisclassifiedasseparateOTUs(Lindner&Banik2011;Songetal.2008).Two404

conditionsthatcancausethisapparentvariationintheCO1locus,specifically,are405

heteroplasmyandthepresenceofnuclearmitochondrialpseudogenes(numts),whichare406

piecesofmitochondrialDNAthathavebeenincorporatedintothegenome(Songetal.2008).407

Wedetectedintra-individualvariationintheCO1regioninHarmoniaaxyridisandPhalangium408

opilioviastandardcloningandsequencing,eventhoughalimitednumberofcloneswere409

sequenced(i.e.,twosequencevariantsweredetectedbysequencingonlythreeclonesfrom410

eachoftheseindividuals).Basedontheseobservationsfromaverylimitedsamplingof3clones411

perindividual,itseemslikelythatindividualsharbormanysuchvariantsandthatindividual-412

levelvariabilitycouldsignificantlyinflatediversityestimatesinHTSoftheCO1region.TheH.413

axyridisvariantsonlydifferedby2.1%(14of658bp)buttheP.opiliovariantsweremorethan414

threepercentdifferent(3.5%,or23of659bp).Manyofthesedifferencesoccurredinthe415

fragmentamplifiedbytheANMLprimersandthustraditionalclusteringwouldhaveidentified416

themasdistinctOTUs.BothvariantsofH.axyridisandP.opiliowereincludedinourarthropod417

mockcommunitytodetermineifourbioinformaticspipelinewouldbinthesequencevariants418

fromthesameindividualintoseparateinferredsequences.WhenweappliedtheDADA2419

algorithmwithoutclustering,thevariantsseparatedintoseparateOTUs.Afterweapplied97%420

clusteringtotheresultingDADA2inferredsequences,thevariantsweobservedinoursingle421

copymockcommunitybinnedtogether.Theuseofsingle-copyclonedplasmidDNAformock422

communitymembersiscrucialbecauseitremovescrypticsourcesofbiologicalvariationthat423

mightotherwiseoccurwithinthemockcommunity.424

ValidationoftheANMLprimerpairandmockcommunity425

WefurthervalidatedourprimersandHTSsystemusingtwotypesofsampleswith426

knowncomposition:(1)guanosamplesfrombatsfedknowndietsand(2)samplesfrominsect427

trapsthatwereidentifiedbymorphology.Fromtheguanosamples,werecoveredalltaxa428

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

16

includedintheknowndietsandalsorecoveredadditionalOTUs(Table4).TheinitialtotalOTU429

estimateforourfiveknowndietsampleswas42basedonUPARSEclustering,31inferred430

sequencesbasedonDADA2withoutclustering,and10OTUsbasedonDADA2with97%431

clustering.MuchofthetaxonomicreductionintheknowndietsamplesafterusingDADA2with432

clusteringcanbeattributedtosequencevariantsoftwotaxa,Tenebriomolitorand433

Ichneumonidaesp.Thesetwotaxayieldedupto11and7inferredsequencespersamplewith434

theDADA2algorithm,respectively,before97%clusteringwasapplied.However,after435

clusteringwasapplied,theyyieldeduptotwoOTUspersample.Thedegreetowhichthese436

variantsrepresentintra-individualsequencevariation,orvariantsamongindividuals,cannotbe437

determinedhere,butoffersaninterestingtopicforfutureinvestigation.Theestimatewith438

DADA2withclusteringismuchclosertotheexpectedrichnessof5OTUsthanotherestimates.439

SeveralOTUsdetectedfromtheknowndietsampleswereunexpected,butprobablyreal440

componentsofthebatdiet.TwooftheseOTUs,E.takeuchiiandAgrotisipsilon,arelikely441

contaminantsinthedietarycomponentsbecausetheirlarvalformsmayhavebeenmixedinto442

theG.mellonellalarvaethatcomprisedthediet.Wealsodetectedanichneumonidparasitoid443

wasp,whichwasperhapsparasitizingoneormoreoftheinsectsinthediet.Theunexpected444

taxacouldhavebeenanticipatedbysequencingasubsampleoftheknowndietarycomponents445

priortofeeding.446

HTSsuccessfullyrecoveredthemajorityofarthropodspresentinmixedsamplesfrom447

pitfalltraps(Table5).Aftertakingintoaccountprobablemorphologicalidentificationerrors,448

approximately80%ofthetaxaidentifiedbymorphologywerealsoidentifiedviaHTS.Those449

taxamissedbyHTSmayhavebeenmissedduetobiasesinthemolecularpipelinesuchasPCR450

biasesthataroseinthesecomplexcommunities,orperhapsthesetaxarequiremorespecific451

primers.TherewerealsotaxathatweredetectedwithHTSbutmissedbymorphological452

identification.Theseadditionaltaxamayhavebeenmayhavebeenconsumedbyorotherwise453

associatedwiththearthropodscollectedinthetraps,misidentifiedduringthemorphological454

identification,ormaybeDNAcontaminationofthetrapsorothercollectionequipment.455

Conclusion456

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

17

WedemonstratedthattheANMLprimerpairdetectsagreaternumberofarthropod457

taxathanotherfrequentlyusedCO1primerpairs.TheuseofHTSreadnumbersasameasure458

ofabundanceinenvironmentalsamplesisproblematicduetobiasesintroducedduringboth459

PCRandHTS.Thesebiasesmaybepartiallyalleviatedinthefuturebynon-PCRbased460

techniquessuchasshotgunmetagenomicsandtargetcapturetechniques.However,shotgun461

metagenomicsarecurrentlyfarmoreexpensivethanampliconsequencingandmaybecost-462

prohibitivetomostresearchers,andtargetcapturehasnotyetbeenthoroughlyevaluatedfor463

communitycharacterizationofenvironmentalsamples.Failingtouseappropriatepositive464

controlsforamplicon-basedstudiescanleadtoover-estimationofdiversity,andthe465

persistenceof“nonsensetaxa”.Thus,mockcommunitycontrolsarenecessarytoparameterize466

downstreambioinformatics,especiallyfordiversityandcommunitystructurerelatedquestions467

andweadvocatefortheinclusionofaspike-inmockcontrolineveryHTSrun.468

469

Acknowledgements470

FundingforthisworkwasprovidedbytheUSForestService,NorthernResearchStation471

andtheAgriculturalExperimentStationattheUniversityofWisconsin–MadisonviaHatch472

FormulaFunds,andNSFIOS-1121739toAYKandIOS-1121807toJRB.Wesincerelythank473

JamesSkeltonforinsightfuldiscussionthatimprovedpreviousversionsofthismanuscript,J.474

PaulWhiteandHeatherKaarakkaoftheWisconsinDepartmentofNaturalResourcesfor475

assistancewithcoordinatingfieldcollectionofguanosamples,MarceloFerreiradeMeloand476

ErinGreenforassistancewitharthropoddissections,andEliCintoMeijaandMitchLevenhagen477

forinsectcollectionfrompitfalltraps.478

479

References480

BokulichNA,MillsDA(2013)Improvedselectionofinternaltranscribedspacer-specificprimers481

enablesquantitative,ultra-high-throughputprofilingoffungalcommunities.Appliedand482

environmentalmicrobiology79,2519-2526.483

BokulichNA,SubramanianS,FaithJJ,etal.(2013)Quality-filteringvastlyimprovesdiversity484

estimatesfromIlluminaampliconsequencing.Naturemethods10,57-59.485

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

18

BoylesJG,CryanPM,McCrackenGF,KunzTH(2011)Economicimportanceofbatsin486

agriculture.Science332,41-42.487

Brandon-MongG-J,GanH-M,SingK-W,etal.(2015)DNAmetabarcodingofinsectsandallies:488

anevaluationofprimersandpipelines.Bulletinofentomologicalresearch105,717-727.489

BrooksJP,EdwardsDJ,HarwichMD,etal.(2015)Thetruthaboutmetagenomics:quantifying490

andcounteractingbiasin16SrRNAstudies.BMCmicrobiology15,1.491

BusscheRAVD,LeeDN,JudkinsME,etal.(2016)Moleculardietaryanalysisoftheendangered492

ozarkbig-earedbat(Corynorhinustownsendiiingens).ActaChiropterologica18,181-493

191.494

CallahanBJ,McMurdiePJ,RosenMJ,etal.(2016)DADA2:High-resolutionsampleinference495

fromIlluminaamplicondata.Naturemethods13,581-583.496

ClareEL,SymondsonWO,BrodersH,etal.(2014a)ThedietofMyotislucifugusacrossCanada:497

assessingforagingqualityanddietvariability.Molecularecology23,3618-3632.498

ClareEL,SymondsonWO,FentonMB(2014b)Aninordinatefondnessforbeetles?Variationin499

seasonaldietarypreferencesofnight-roostingbigbrownbats(Eptesicusfuscus).500

Molecularecology23,3633-3647.501

ClarkeLJ,SoubrierJ,WeyrichLS,CooperA(2014)Environmentalmetabarcodesforinsects:in502

silicoPCRrevealspotentialfortaxonomicbias.MolecularEcologyResources14,1160-503

1170.504

ClevelandCJ,BetkeM,FedericoP,etal.(2006)Economicvalueofthepestcontrolservice505

providedbyBrazilianfree-tailedbatsinsouth-centralTexas.FrontiersinEcologyandthe506

Environment4,238-243.507

Crisol-MartínezE,Moreno-MoyanoLT,WormingtonKR,BrownPH,StanleyD(2016)Usingnext-508

generationsequencingtocontrastthedietandexplorepest-reductionservicesof509

sympatricbirdspeciesinmacadamiaorchardsinAustralia.PloSone11,e0150159.510

D’AmoreR,IjazUZ,SchirmerM,etal.(2016)Acomprehensivebenchmarkingstudyofprotocols511

andsequencingplatformsfor16SrRNAcommunityprofiling.BMCgenomics17,1.512

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

19

DeagleBE,JarmanSN,CoissacE,PompanonF,TaberletP(2014)DNAmetabarcodingandthe513

cytochromecoxidasesubunitImarker:notaperfectmatch.Biologyletters10,514

20140562.515

DeagleBE,ThomasAC,ShafferAK,TritesAW,JarmanSN(2013)Quantifyingsequence516

proportionsinaDNA-baseddietstudyusingIonTorrentampliconsequencing:which517

countscount?MolecularEcologyResources13,620-633.518

EdgarR(2016)SINTAX:asimplenon-Bayesiantaxonomyclassifierfor16SandITSsequences.519

bioRxiv,074161.https://doi.org/10.1101/074161520

EdgarRC(2010)SearchandclusteringordersofmagnitudefasterthanBLAST.Bioinformatics521

26,2460-2461.522

EdgarRC(2013)UPARSE:highlyaccurateOTUsequencesfrommicrobialampliconreads.523

Naturemethods10,996-998.524

FentonMB(2012)Batsandwhite-nosesyndrome.ProceedingsoftheNationalAcademyof525

Sciences109,6794-6795.526

FolmerO,BlackM,HoehW,LutzR,VrijenhoekR(1994)DNAprimersforamplificationof527

mitochondrialcytochromecoxidaseSubunit1fromdiversemetazoaninvertebrates.528

MolecularMarineBiologyandBiotechnology3,294-299.529

GonsalvesL,BicknellB,LawB,WebbC,MonamyV(2013)Mosquitoconsumptionby530

insectivorousbats:doessizematter?PloSone8,e77183.531

Harms-TuohyCA,SchizasNV,AppeldoornRS(2016)UseofDNAmetabarcodingforstomach532

contentanalysisintheinvasivelionfishPteroisvolitansinPuertoRico.MarineEcology533

ProgressSeries558,181-191.534

HebertPD,CywinskaA,BallSL(2003)BiologicalidentificationsthroughDNAbarcodes.535

ProceedingsoftheRoyalSocietyofLondonB:BiologicalSciences270,313-321.536

HebertPD,PentonEH,BurnsJM,JanzenDH,HallwachsW(2004)Tenspeciesinone:DNA537

barcodingrevealscrypticspeciesintheneotropicalskipperbutterflyAstraptes538

fulgerator.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesof539

America101,14812-14817.540

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

20

JedlickaJA,VoA-TE,AlmeidaRP(2016)Molecularscatologyandhigh-throughputsequencing541

revealpredominatelyherbivorousinsectsinthedietsofadultandnestlingWestern542

Bluebirds(Sialiamexicana)inCaliforniavineyards.TheAuk134,116-127.543

KartzinelTR,PringleRM(2015)Moleculardetectionofinvertebratepreyinvertebratediets:544

trophicecologyofCaribbeanislandlizards.MolecularEcologyResources15,903-914.545

KrehenwinkelH,KennedyS,PekárS,GillespieRG(2016)Acost-efficientandsimpleprotocolto546

enrichpreyDNAfromextractionsofpredatoryarthropodsforlarge-scalegutcontent547

analysisbyIlluminasequencing.MethodsinEcologyandEvolution8,126-134.548

LindahlBD,NilssonRH,TedersooL,etal.(2013)Fungalcommunityanalysisbyhigh-throughput549

sequencingofamplifiedmarkers–auser'sguide.NewPhytologist199,288-299.550

LindnerDL,BanikMT(2009)Effectsofcloningandroot-tipsizeonobservationsoffungalITS551

sequencesfromPiceaglaucaroots.Mycologia101,157-165.552

LindnerDL,BanikMT(2011)IntragenomicvariationintheITSrDNAregionobscures553

phylogeneticrelationshipsandinflatesestimatesofoperationaltaxonomicunitsin554

genusLaetiporus.Mycologia103,731-740.555

LindnerDL,CarlsenT,HenrikNilssonR,etal.(2013)Employing454ampliconpyrosequencingto556

revealintragenomicdivergenceintheinternaltranscribedspacerrDNAregioninfungi.557

Ecologyandevolution3,1751-1764.558

MaineJJ,BoylesJG(2015)Batsinitiatevitalagroecologicalinteractionsincorn.Proceedingsof559

theNationalAcademyofSciences112,12438-12443.560

MallottE,MalhiR,GarberP(2015)High-throughputsequencingoffecalDNAtoidentifyinsects561

consumedbywildWeddell'ssaddlebacktamarins(Saguinusweddelli,Cebidae,562

Primates)inBolivia.Americanjournalofphysicalanthropology156,474-481.563

NguyenNH,SmithD,PeayK,KennedyP(2015)Parsingecologicalsignalfromnoiseinnext564

generationampliconsequencing.NewPhytologist205,1389-1393.565

PiñolJ,MirG,Gomez-PoloP,AgustíN(2015)Universalandblockingprimermismatcheslimit566

theuseofhigh-throughputDNAsequencingforthequantitativemetabarcodingof567

arthropods.MolecularEcologyResources15,819-830.568

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

21

PompanonF,DeagleBE,SymondsonWO,etal.(2012)Whoiseatingwhat:dietassessment569

usingnextgenerationsequencing.Molecularecology21,1931-1950.570

RatnasinghamS,HebertPD(2007)BOLD:TheBarcodeofLifeDataSystem(http://www/.571

barcodinglife.org).Molecularecologynotes7,355-364.572

RognesT,FlouriT,NicholsB,QuinceC,MahéF(2016)VSEARCH:aversatileopensourcetool573

formetagenomics.PeerJ4,e2584.574

RolfeAK,KurtaA,ClemansDL(2014)Species-levelanalysisofdietsoftwomormoopidbats575

fromPuertoRico.JournalofMammalogy95,587-596.576

RydellJ,BogdanowiczW,BoonmanA,etal.(2016)Batsmayeatdiurnalfliesthatrestonwind577

turbines.MammalianBiology-ZeitschriftfürSäugetierkunde81,331-339.578

SchochCL,SeifertKA,HuhndorfS,etal.(2012)Nuclearribosomalinternaltranscribedspacer579

(ITS)regionasauniversalDNAbarcodemarkerforFungi.ProceedingsoftheNational580

AcademyofSciences109,6241-6246.581

SmithMA,WoodleyNE,JanzenDH,HallwachsW,HebertPD(2006)DNAbarcodesreveal582

cryptichost-specificitywithinthepresumedpolyphagousmembersofagenusof583

parasitoidflies(Diptera:Tachinidae).ProceedingsoftheNationalAcademyofSciences584

oftheUnitedStatesofAmerica103,3657-3662.585

SongH,BuhayJE,WhitingMF,CrandallKA(2008)Manyspeciesinone:DNAbarcoding586

overestimatesthenumberofspecieswhennuclearmitochondrialpseudogenesare587

coamplified.ProceedingsoftheNationalAcademyofSciences105,13486-13491.588

TrevellineBK,LattaSC,MarshallLC,NuttleT,PorterBA(2016)Molecularanalysisofnestling589

dietinalong-distanceNeotropicalmigrant,theLouisianaWaterthrush(Parkesia590

motacilla).TheAuk133,415-428.591

VesterinenEJ,RuokolainenL,WahlbergN,etal.(2016)Whatyouneediswhatyoueat?Prey592

selectionbythebatMyotisdaubentonii.Molecularecology25,1581-1594.593

Williams-GuillénK,OlimpiE,MaasB,TaylorPJ,ArlettazR(2016)Batsintheanthropogenic594

matrix:challengesandopportunitiesfortheconservationofChiropteraandtheir595

ecosystemservicesinagriculturallandscapes.In:BatsintheAnthropocene:596

ConservationofBatsinaChangingWorld,pp.151-186.Springer.597

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

22

ZealeMR,ButlinRK,BarkerGL,LeesDC,JonesG(2011)Taxon-specificPCRforDNAbarcoding598

arthropodpreyinbatfaeces.MolecularEcologyResources11,236-244.599

600

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

23

TablesandFigures601

602

Table1:Sequencesandreferences,andprimerpairnamesfortheprimerstestedagainst603

knownarthropodsamples.604

605

Primername Primersequence Reference PairnameLCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ Folmeretal.1994 CO1L/HHCO2198 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ Folmeretal.2003 LEPF1 5’-ATTCAACCAATCATAAAGATATTGG-3’ Hebertetal.2004 LEPmLEPR 5’-CTTGTTCCAGCTCCATTTT-3’ Smithetal.2006 ZBJ-ArtF1c 5’-AGATATTGGAACWTTATATTTTATTTTTGG-3’ Zealeetal.2011 ZBJZBJ-ArtR2c 5’-WACTAATCAATTWCCAAATCCTCC-3’ Zealeetal.2011 LCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ Folmeretal.1994 ANMLCO1-CFMRa 5’-GGWACTAATCAATTTCCAAATCC-3’ Thisstudy LCO1490 5’-GGTCAACAAATCATAAAGATATTGG-3’ Folmeretal.1994 CFMRbCO1-CFMRb 5’-GGNACTAATCAATTHCCAAATCC-3’ Thisstudy

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

24

Table2:Resultsfromtestingthe5primerpairslistedinTable1onknowninsectsamples.Shadingandavalue606

of1indicateamplification;noshadingandavalueofzeroindicatenoamplification.Amplificationwas607

attemptedonavarietyofDNAconcentrationsforeachtemplateDNAsamplebeforeassigningavalueofzero608

(noamplification).ArthropodmockcommunitymembersareindicatedwiththesuperscriptIM.Anasterisk609

indicatesthattwodifferentclonedsequencevariantsofanindividualwereaddedtothearthropodmock610

community.**Indicatesthatthreedifferentclonedsequencevariantsofanindividualwereaddedtothe611

arthropodmockcommunity.612

Order Family Identity

ANML

CFMRb

CO1L/H

ZBJZealeetal.2011protocol

ZBJmodifiedprotocol LEP

Blattodea Blattidae PeriplanetafuliginosaIM 1 1 1 1 1 1Blattodea Ectobiidae SupellalongipalpaIM 1 1 1 0 0 1Coleoptera Cantharidae Chauliognathuspennsylvanicus 1 1 1 1 1 1Coleoptera Carabidae Carabidaesp. 0 0 0 0 0 0Coleoptera Cerambycidae Tetraopessp. 1 1 1 1 1 1Coleoptera Chrysomelidae PariafragariaeIM 1 1 1 1 1 1Coleoptera Coccinellidae HarmoniaaxyridisIM** 1 1 1 0 0 0Coleoptera Hydrophilidae Hydrophilidaesp.IM 1 1 1 0 1 1Coleoptera Meloidae Epicautasp. 1 1 1 0 0 1Coleoptera Scarabaeidae EuphoriafulgidaIM 1 1 1 0 0 1Coleoptera Tenebrionidae Tenebriomolitor 1 1 1 1 0 1Coleoptera unk.Coleoptera Polyphagasp.IM 1 1 1 0 0 1Dermaptera Forficulidae Forficulidaesp. 1 1 0 0 0 1Diptera Anthomyiidae DeliaplaturaIM 1 1 1 1 1 1Diptera Bombyliidae LepidophoraluteaIM 1 1 1 1 1 1Diptera Chironomidae Dicrotendipessp.IM 1 1 0 0 0 1Diptera Chironomidae Procladiussp.IM 1 1 1 1 1 1Diptera Culicidae AedesAlbopictusIM 1 1 1 0 0 1Diptera Culicidae AedesvexansIM 1 1 1 1 1 1Diptera Leptoceridae Oecetisinconspicua 1 1 1 0 0 1Diptera Tipulidae NephrotomaferrugineaIM 1 1 1 0 1 1Ephemeroptera Ephemeridae Hexagenialimbata1 1 1 1 0 0 1Ephemeroptera Ephemeridae Hexagenialimbata2IM 1 1 1 0 0 1Ephemeroptera Heptageniidae LeucrocutamaculipennisIM 1 1 1 1 1 1Ephemeroptera unk.Ephemeropotera Ephemeropterasp. 1 1 0 0 0 0Hemiptera Aphididae AphishelianthiIM 1 1 1 0 0 0Hemiptera Cicadellidae Osbornellusauronitens 1 1 1 0 0 0Hemiptera Cicadidae Cicadidaesp. 1 1 1 0 1 1Hemiptera Corixidae Corixidaesp. 1 1 0 0 0 1Hemiptera Corixidae SigaraalternataIM 1 1 1 1 1 1Hemiptera Pentatomidae AcrosternumhilareIM 1 1 1 0 0 0

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

25

Hymenoptera Apidae ApismelliferaIM 1 1 1 0 0 0Hymenoptera Crabonidae Spheciusconvallis 1 1 1 0 0 1Hymenoptera Eucharitidae Eucharitidaesp.IM 1 1 1 1 1 1Hymenoptera Formicidae Formicafusca 1 1 1 0 0 0Hymenoptera Formicidae Formicasp.IM 1 1 1 0 0 0Hymenoptera Tenthredinidae EmpriatakeuchiiIM 1 1 1 1 1 0Lepidoptera Crambidae CrambusagitatellusIM 1 1 1 1 0 1Lepidoptera Crambidae ElophilaobliteralisIM 1 1 1 0 1 1Lepidoptera Crambidae UdearubigalisIM 1 1 1 1 1 1Lepidoptera Depressariidae DepressariapastinacellaIM 1 1 1 1 1 1Lepidoptera Erebidae HypenascabraIM 1 1 1 1 1 1Lepidoptera Erebidae HyphantriacuneaIM 1 1 1 0 0 1Lepidoptera Erebidae IdiaaemulaIM 1 1 1 1 1 1Lepidoptera Erebidae ReniafactiosalisIM 1 1 1 1 1 1Lepidoptera Geometridae HaematopisgratariaIM 1 1 1 1 1 1Lepidoptera Noctuidae AgrotisipsilonIM 1 1 1 1 1 1Lepidoptera Tortricidae ChoristoneurarosaceanaIM 1 1 1 1 1 1Neuroptera Chrysopidae ChrysopaoculataIM 1 1 1 0 0 1Neuroptera Mantispidae Mantispidaesp.IM 1 1 1 0 1 1Opiliones Phalangiidae PhalangiumopilioIM* 1 1 1 0 0 1Orthoptera Acrididae MelanoplusfemurrubrumIM 1 1 1 0 0 1Orthoptera Tettigoniidae ScudderiacurvicaudaIM 1 1 1 0 0 1Orthoptera Tettigoniidae Tettigoniidaesp.IM 1 1 1 1 1 1Trichoptera Hydropsychidae Potamyiaflava 1 1 0 0 0 1Trichoptera Hydroptilidae Orthotrichiasp.IM 1 1 1 0 0 1Trichoptera Leptoceridae CeracleamaculataIM 1 1 1 1 1 1Trichoptera Leptoceridae LeptocerusamericanusIM 1 1 1 0 0 1Trichoptera unk.Trichoptera Trichopterasp. 1 1 0 0 0 0

Negativecontrol 0 0 0 0 0 0

Total 58 58 52 24 27 48

%Total 98.31 98.31 88.14 40.68 45.76 81.36

613

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

26

Table3:OperationalTaxonomicUnits(OTUs)recoveredusinghigh-throughputampliconsequencing(HTS)and614

eithertheANMLprimersortheZBJprimerson3field-collectedguanosamples.Numbers(0-3)and615

representativeshadingindicatethenumberofguanosampleseachOTUwasdetectedinforeachprimerpair.616

617

ANML ZBJ Phylum Class Order Family Genus species1 0 Arthropoda Arachnida Araneae Theridiidae Theridion Theridionfrondeum2 0 Arthropoda Arachnida Trombidiformes Limnesiidae Limnesia Limnesiasp.1 0 Arthropoda Arachnida Trombidiformes

Trombidiformessp.

1 0 Arthropoda Arachnida

Arachnidasp.1 0 Arthropoda Insecta Coleoptera Coccinellidae Harmonia Harmoniasp.2 0 Arthropoda Insecta Coleoptera Elateridae Melanotus Melanotussimilis1 0 Arthropoda Insecta Coleoptera Hydrophilidae Helocombus Helocombusbifidus1 0 Arthropoda Insecta Coleoptera Scarabaeidae

Scarabaeidaesp.

1 0 Arthropoda Insecta Coleoptera Tenebrionidae Tenebrio Tenebriosp.1 0 Arthropoda Insecta Coleoptera

Coleopterasp.

1 0 Arthropoda Insecta Diptera Bibionidae Bibio Bibiosp.1 0 Arthropoda Insecta Diptera Ceratopogonidae Bezzia Bezziasp.0 2 Arthropoda Insecta Diptera Chaoboridae Chaoborus Chaoboruspunctipennis1 1 Arthropoda Insecta Diptera Chironomidae Ablabesmyia Ablabesmyiaamericana1 0 Arthropoda Insecta Diptera Chironomidae Ablabesmyia Ablabesmyiaannulata1 0 Arthropoda Insecta Diptera Chironomidae Ablabesmyia Ablabesmyiasp.11 0 Arthropoda Insecta Diptera Chironomidae Ablabesmyia Ablabesmyiasp.23 0 Arthropoda Insecta Diptera Chironomidae Chironomus Chironomusplumosus1 1 Arthropoda Insecta Diptera Chironomidae Chironomus Chironomussp.10 2 Arthropoda Insecta Diptera Chironomidae Chironomus Chironomussp.21 0 Arthropoda Insecta Diptera Chironomidae Coelotanypus Coelotanypussp.1 0 Arthropoda Insecta Diptera Chironomidae Conchapelopia Conchapelopiasp.1 0 Arthropoda Insecta Diptera Chironomidae Cryptochironomus Cryptochironomussp.12 0 Arthropoda Insecta Diptera Chironomidae Cryptochironomus Cryptochironomussp.22 0 Arthropoda Insecta Diptera Chironomidae Dicrotendipes Dicrotendipestritomus2 1 Arthropoda Insecta Diptera Chironomidae Parachironomus Parachironomussp.11 0 Arthropoda Insecta Diptera Chironomidae Parachironomus Parachironomussp.21 0 Arthropoda Insecta Diptera Chironomidae Parachironomus Parachironomussp.32 0 Arthropoda Insecta Diptera Chironomidae Polypedilum Polypedilumsp.11 0 Arthropoda Insecta Diptera Chironomidae Polypedilum Polypedilumsp.22 2 Arthropoda Insecta Diptera Chironomidae Procladius Procladiussp.11 0 Arthropoda Insecta Diptera Chironomidae Procladius Procladiussp.21 0 Arthropoda Insecta Diptera Chironomidae Procladius Procladiussp.30 1 Arthropoda Insecta Diptera Chironomidae Procladius Procladiussp.41 0 Arthropoda Insecta Diptera Chironomidae Xenochironomus Xenochironomussp.3 0 Arthropoda Insecta Diptera Chironomidae

Chironomidaesp.1

1 0 Arthropoda Insecta Diptera Chironomidae

Chironomidaesp.22 0 Arthropoda Insecta Diptera Chironomidae

Chironomidaesp.3

2 0 Arthropoda Insecta Diptera Chironomidae

Chironomidaesp.4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

27

0 1 Arthropoda Insecta Diptera Chironomidae

Chironomidaesp.51 0 Arthropoda Insecta Diptera Culicidae Aedes Aedesabserratus1 0 Arthropoda Insecta Diptera Culicidae Aedes Aedesexcrucians1 0 Arthropoda Insecta Diptera Culicidae Aedes Aedesprovocans1 1 Arthropoda Insecta Diptera Culicidae Aedes Aedesvexans1 0 Arthropoda Insecta Diptera Culicidae Culiseta Culisetamelanura1 0 Arthropoda Insecta Diptera Hybotidae Platypalpus Platypalpussp.0 1 Arthropoda Insecta Diptera Limoniidae Shannonomyia Shannonomyialenta1 0 Arthropoda Insecta Diptera Psychodidae Psychoda Psychodaalternata1 1 Arthropoda Insecta Diptera Tachinidae

Tachinidaesp.

1 0 Arthropoda Insecta Diptera Tipulidae Nephrotoma Nephrotomaferruginea0 1 Arthropoda Insecta Diptera Tipulidae Tipula Tipulakennicotti1 1 Arthropoda Insecta Ephemeroptera Caenidae Caenis Caenisyoungi1 0 Arthropoda Insecta Ephemeroptera Palingeniidae Pentagenia Pentageniavittigera1 0 Arthropoda Insecta Ephemeroptera Siphlonuridae Siphlonurus Siphlonurustypicus1 0 Arthropoda Insecta Hemiptera Corixidae Trichocorixa Trichocorixaborealis1 0 Arthropoda Insecta Hemiptera Miridae Lygus Lyguslineolaris0 1 Arthropoda Insecta Lepidoptera Blastobasidae Blastobasis Blastobasisglandulella1 0 Arthropoda Insecta Lepidoptera Depressariidae Antaeotricha Antaeotrichaleucillana

1 0 Arthropoda Insecta Lepidoptera Tortricidae ArgyrotaeniaArgyrotaeniapinatubana

1 0 Arthropoda Insecta Lepidoptera

Lepidopterasp.1 0 Arthropoda Insecta Megaloptera Corydalidae Chauliodes Chauliodesrastricornis1 0 Arthropoda Insecta Trichoptera Hydroptilidae Oxyethira Oxyethiraserrata0 2 Arthropoda Insecta

Insectasp.

3 0 Chordata Mammalia Chiroptera Vespertilionidae Myotis Myotislucifugus 618

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

28

Table4:NumberofOTUsidentifiedfrombatsfedknowninsectdiets,brokendownbyexpecteddietarycomponents,possible619

accidentaldietarycomponents,andbatDNA.Blanksarezeros.DADA2isdatafromDADA2,withoutclustering.DADA297%clusteris620

datafromDADA2with97%clusteringappliedtotheOTUtable.Shadedcellsaredietarycomponentsthatwereexpected(i.e.known621

tobefedtothebat).EPFU1,EPFU2,andEPFU3arefromBigBrownBats(Eptesicusfuscus),andLACI1andLACI2arefromHoaryBats622

(Lasiuruscinereus).623

624

Expecteddietarycomponents Possibleaccidentaldietarycomponents BatDNA

Galleriamellonella

Tenebriomolitor

Antheraeapolyphemus

Empriatakeuchii

Agrotisipsilon Ichneumonidaesp.

Eptesicusfuscus

Lasiuruscinereus

DADA2 DADA297%

cluster

DADA2 DADA297%

cluster

DADA2 DADA297%

cluster

DADA2 DADA297%

cluster

DADA2 DADA297%

cluster

DADA2 DADA297%

cluster

DADA2

DADA297%

cluster

DADA2 DADA297%

clusterEPFU1 1 1 8 1 1 1 1 1 1 1 EPFU2 1 1 1 1 1 1 1 1 1 1 7 1 1 1 EPFU3 1 1 1 1 LACI1 1 1 7 1 3 2LACI2 11 2 3 2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

29

Table5:ComparisonofmorphologicalandHTSfamily-levelidentificationsofarthropods625

collectedfrom5pitfalltraps.Arthropodsfromtraps1and4weredissectedpre-extraction,and626

arthropodsfromtraps2,3,and5weremaceratedpre-extraction.A“+”indicatespresenceofa627

family.628

629

Trap1 Trap2 Trap3 Trap4 Trap5

Key NGS Key NGS Key NGS Key NGS Key NGS

TotalTaxa 7 10 17 13 17 19 4 5 10 7

Class Order/subclass Family

Insecta Blattodea Ectobiidae + Insecta Coleoptera Carabidae + + Insecta Coleoptera Elateridae + Insecta Coleoptera Melyridae + + + +

InsectaColeoptera

Ptinidae/

+

Anobiidae

Insecta Coleoptera Scarabaeidae + Insecta Coleoptera Silphidae + + Insecta Coleoptera Tenebrionidae + + Entognatha Collembola + + Insecta Diptera Anthomyiidae + + + + Insecta Diptera Bombyliidae + +

Insecta Diptera Calliphoridae + + + Insecta Diptera Cecidomyiidae + Insecta Diptera Culicidae + Insecta Diptera Dipterasp. + Insecta Diptera Heleomyzidae + Insecta Diptera Phoridae + + + Insecta Diptera Scathophagidae + + Insecta Diptera Sciaridae + Insecta Diptera Syrphidae + +

Insecta Hemiptera Aphididae + + + +

Insecta Hemiptera Cicadidae + + Insecta Hemiptera Cicadellidae + + + + + Insecta Hemiptera Geocoridae + Insecta Hemiptera Miridae + + Insecta Hemiptera Pentatomidae + + Insecta Hemiptera Psyllidae + + Insecta Hymenoptera Formicidae + + + + + + + +

Insecta Hymenoptera Braconidae +

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

30

Insecta Hymenoptera Ceraphronidae + Insecta Hymenoptera Chalcidoidea + Insecta Hymenoptera Crabronidae + Insecta Hymenoptera Dryinidae + Insecta Hymenoptera Halictidae + +

Insecta Hymenoptera Hymenopterasp. + Insecta Hymenoptera Ichneumonidae + + + Insecta Hymenoptera Pompilidae + + Insecta Lepidoptera Gelechiidae + + Insecta Lepidoptera Tortricidae + +

Insecta Neuroptera Chrysopidae + Insecta Orthoptera Acrididae + Insecta Orthoptera Tettigoniidae + Insecta Thysanoptera Thripidae + Insecta Thysanoptera Hydroptillidae + Arachnida Acari + + + + + + + + Arachnida Araneae Araneaesp. + Arachnida Araneae Gnaphosidae + + + + Arachnida Araneae Lycosidae + + Arachnida Araneae Pisauridae + Arachnida Araneae Salticidae + + + + Arachnida Araneae Thomisidae + Chilopoda + +

630

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

31

Figure1:Heatmapofthehigh-throughputampliconsequencingreadnumbersofthe631

arthropodmockcommunity,equilibratedandcombinedbothpre-andpost-PCR.Thepost-PCR632

combinedmockcommunitywasfarmoreevenandrepresentativeoftheequalamountsof633

DNAaddedforeachmockmemberthanthepre-PCRcombinedmockcommunity.634

635

636

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017

32

DataAccessibility637

ThecorrespondingdataforthispaperwasdepositedintheNCBISRA(SRAstudySRP102878;638

BioProjectPRJNA380665),andbarcodedprimerinformationisprovidedinthesupplemental639

information.640

641

AuthorContributions642

MAJ,MTB,andJMPwrotethepaper;MAJ,MTB,JMP,andDLLdesignedresearch;MAJ,MTB,643

JMP,AKW,andEPperformedresearch;AYK,LX,JRB,CG,andMZPcontributedsamples;MAJ,644

MTB,JMPanalyzedthedata;andMAJ,MTB,JMP,AKW,JRB,AYK,CG,MZP,andDLLedited645

draftsofthepaper.646

647

SupportingInformation648

AppendixS1–DNAextractiondetailsfortheCLSextractionforarthropods649

AppendixS2–DNAextractiondetailsforthemodifiedbatguanoextraction650

TableS1–SequencesforIonbarcodedprimers651

FigureS1–MitochondrialcytochromeoxidaseCsubunit1locus(CO1)primermap652

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3184v1 | CC BY 4.0 Open Access | rec: 24 Aug 2017, publ: 24 Aug 2017