an efficient multiscale method for time-domain waveform tomography c. boonyasiriwat 1, p. valasek 2,...

21
An Efficient Multiscale An Efficient Multiscale Method for Time-Domain Method for Time-Domain Waveform Tomography Waveform Tomography C. Boonyasiriwat C. Boonyasiriwat 1 1 , P. , P. Valasek Valasek 2 2 , P. Routh , P. Routh 2 , , W. Cao W. Cao 1 1 , G.T. Schuster , G.T. Schuster 1 1 , and , and B. Macy B. Macy 2 2 1 Department of Geology and Geophysics, University of Utah Department of Geology and Geophysics, University of Utah 2 Seismic Technology Development, ConocoPhillips Seismic Technology Development, ConocoPhillips

Upload: kathryn-stone

Post on 12-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

An Efficient Multiscale Method for An Efficient Multiscale Method for Time-Domain Waveform TomographyTime-Domain Waveform Tomography

C. BoonyasiriwatC. Boonyasiriwat11, P. Valasek, P. Valasek22, P. Routh, P. Routh22,,W. CaoW. Cao11, G.T. Schuster, G.T. Schuster11, and B. Macy, and B. Macy22

11 Department of Geology and Geophysics, University of Utah Department of Geology and Geophysics, University of Utah22 Seismic Technology Development, ConocoPhillips Seismic Technology Development, ConocoPhillips

Page 2: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

OutlineOutline

1

• IntroductionIntroduction

• Efficient multiscale waveform tomographyEfficient multiscale waveform tomography

• Synthetic data resultsSynthetic data results

• 1D Model1D Model

• 2D Model2D Model

• Field data resultsField data results

• ConclusionsConclusions

Page 3: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Cons:Cons:

Hamming window is a leaky, low-pass filter.Hamming window is a leaky, low-pass filter.

Arbitrary frequency bands were used.Arbitrary frequency bands were used.

2

IntroductionIntroduction

Pros and cons of the multiscale method proposed Pros and cons of the multiscale method proposed by Bunks et al. (1995):by Bunks et al. (1995):

Pros:Pros:

Partially overcome the local minima problem.Partially overcome the local minima problem.

Page 4: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

OutlineOutline

3

• IntroductionIntroduction

• Efficient multiscale waveform tomographyEfficient multiscale waveform tomography

• Synthetic data resultsSynthetic data results

• 1D Model1D Model

• 2D Model2D Model

• Field data resultsField data results

• ConclusionsConclusions

Page 5: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

4

Efficient Multiscale Waveform TomographyEfficient Multiscale Waveform Tomography

We propose:We propose:

• more efficient low-pass filtersmore efficient low-pass filters

• a strategy for choosing optimal frequency bandsa strategy for choosing optimal frequency bands

Page 6: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

0 0.5 1 1.5 2-1

-0.5

0

0.5

1

Time (s)

Am

plitu

de

a) Low-pass Filters in the Time Domain

0 10 20 30 40 50 6010

-10

10-5

100

Frequency (Hz)

Spe

ctra

l Am

plitu

de

b) Amplitude Spectra of Low-pass Filters

0 0.5 1 1.5 2-1

-0.5

0

0.5

1

Time (s)

Am

plitu

de

c) Original and Filtered Wavelets

0 10 20 30 40 50 6010

-10

10-5

100

Frequency (Hz)

Spe

ctra

l Am

plitu

de

d) Amplitude Spectra of Original and Filtered Wavelets

Efficient Low-Pass FiltersEfficient Low-Pass Filters

5

Hamming

Blackman-Harris

Ricker

Original

Page 7: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

6

Strategy for Choosing Optimal FrequenciesStrategy for Choosing Optimal Frequencies

Image from Sirgue and Pratt (2004)

Page 8: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Strategy for Choosing Optimal Frequency BandsStrategy for Choosing Optimal Frequency Bands

7

0 0.05 0.1 0.15 0.2-0.5

0

0.5

1

Time (s)

Am

plitu

de

a) 15-Hz peak-frequency Ricker wavelet

0 10 20 30 400

5

10

15

20

25

fmin

fmax

Frequency (Hz)

Am

plitu

de

b) Amplitude Spectrum of Ricker wavelet

Page 9: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Strategy for Choosing Optimal Frequency BandsStrategy for Choosing Optimal Frequency Bands

8

Page 10: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

OutlineOutline

9

• IntroductionIntroduction

• Efficient multiscale waveform tomographyEfficient multiscale waveform tomography

• Synthetic data resultsSynthetic data results

• 1D Model1D Model

• 2D Model2D Model

• Field data resultsField data results

• ConclusionsConclusions

Page 11: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

1D Model1D Model

10Offset (km)

Tim

e (s

)

b) Original Shot Gather

0 2 4

0

1

2

3

Offset (km)

Tim

e (s

)

c) Filtered Shot Gather

0 2 4

0

1

2

0 0.5 1 1.5 22100

2200

2300

2400

2500a) 1D Velocity Model

Depth (km)

Vel

ocity

(m

/s)

Page 12: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

0 0.5 1 1.5 2-100

0

100

200

300

Depth (km)

Vel

ocity

Per

turb

atio

n (m

/s)

a) Velocity Perturbation in Space Domain

0 10 20 300

1000

2000

3000

4000

Wavenumber (1/km)

Am

plitu

de

b) Velocity Perturbation in Wavenumber Domain

0 0.5 1 1.5 2-100

0

100

200

Depth (km)

Vel

ocity

Con

tribu

tion

(m/s

)

c) Velocity Contribution in Space Domain

0 10 20 300

1000

2000

3000

Wavenumber (1/km)

Am

plitu

de

d) Velocity Contribution in Wavenumber Domain

1D Model1D Model

11

Page 13: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

2D Model2D Model

12

Offset (km)

Tim

e (s)

b) Filtered Shot Gather

0 1 2 3 4

0

0.5

1

1.5

2

Offset (km)

Depth

(km

)

a) 2D Velocity ModelVelocity (m/s)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

2500

3000

3500

Offset (km)

Tim

e (s)

b) Original Shot Gather

0 1 2 3 4

0

0.5

1

1.5

2

3500

3000

2500

Page 14: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

2D Model2D Model

13

Page 15: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

OutlineOutline

14

• Goals of studyGoals of study

• Overview and introductionOverview and introduction

• Efficient multiscale waveform tomographyEfficient multiscale waveform tomography

• Synthetic data resultsSynthetic data results

• 1D Model1D Model

• 2D Model2D Model

• Field data resultsField data results

• ConclusionsConclusions

Page 16: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

515 Shots480 Hydrophones

12.5 mdt = 2 msTmax = 10 s

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)

Tim

e (s)

b) Original CSG 1

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)Tim

e (s)

a) Virtual CSG 1

15

Gulf of Mexico DataGulf of Mexico Data

Page 17: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Reconstructed VelocityReconstructed Velocity

16

Page 18: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Kirchhoff Migration ImagesKirchhoff Migration Images

17

Page 19: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

Comparing CIGsComparing CIGs

18

Page 20: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

OutlineOutline

19

• Goals of studyGoals of study

• Overview and introductionOverview and introduction

• Efficient multiscale waveform tomographyEfficient multiscale waveform tomography

• Synthetic data resultsSynthetic data results

• 1D Model1D Model

• 2D Model2D Model

• Field data resultsField data results

• ConclusionsConclusions

Page 21: An Efficient Multiscale Method for Time-Domain Waveform Tomography C. Boonyasiriwat 1, P. Valasek 2, P. Routh 2, W. Cao 1, G.T. Schuster 1, and B. Macy

20

ConclusionsConclusions

• An efficient MWT method was developed.An efficient MWT method was developed.

• Increased efficiency is achieved by using Increased efficiency is achieved by using efficient low-pass filters and optimal frequency efficient low-pass filters and optimal frequency bands.bands.

• The strategy for choosing frequency bands was The strategy for choosing frequency bands was validated in both 1D and 2D synthetic model validated in both 1D and 2D synthetic model experiments.experiments.

• Marine data results are promising.Marine data results are promising.