youli quan & jerry m. harris stanford university

Post on 11-Feb-2016

70 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Stochastic Seismic Inversion using Waveform and Traveltime Data and Its Application to Time-lapse Monitoring. Youli Quan & Jerry M. Harris Stanford University. November 12, 2008. Outline . Introduction Motivations Kalman filter Seismic inversion with EnKF - PowerPoint PPT Presentation

TRANSCRIPT

Stochastic Seismic Inversion using Waveform and Traveltime Data and

Its Application toTime-lapse Monitoring

Youli Quan & Jerry M. HarrisStanford University

November 12, 2008

• Introduction • Motivations• Kalman filter

• Seismic inversion with EnKF

• An example of CO2 storage monitoring

• Conclusions

Outline

• Seismic inversion recovers subsurface elastic properties (e.g., acoustic impedance and velocity) from seismic data.

• Inversion using both waveform and traveltime improves the estimation of velocity.

• Estimation of absolute velocity helps quantitative interpretation of seismic data.

Introduction

Amplitude Traces Impedance Traces

-0.2 0 0.2

0

100

200

300

400

500

600

700

8000 0.5 1

0

100

200

300

400

500

600

700

800

SeismicInversion

• Images of seismic inversion may be more meaningful for interpretation.

• Deterministic inversion methods normally need less computation.

• Stochastic inversion uses more computing power but can integrate other information (e.g., sonic logs.)

• Ensemble Kalman Filter (EnKF) is a stochastic method used in this study for seismic inversion.

• Seismic monitoring

- To integrate time-lapse seismic data - Dynamic imaging

• Reservoir characterization

- Integration of sonic logs and seismic data

Motivations to Use EnKF

• Dynamic imaging

• Integration of sonic logs and seismic data

Kalman Filter

)( )()1()()1( tttt Gmdkmm

)(ˆ )()()( sonicseismicsonic Gmdkmm

1)( RGCGCGk TTKalman gain

Seismic Inversion with EnKF

],...,[ 1 NddD

],...,[ 1 NmmM

• Define observation function

• Create model & data ensembles using their probability distributions

)(md g

d – poststack seismic data in this case

)(md g

m dPoststack

Full waveform Convolution

Define observation function

Create model ensemble

ii εmm 0

0 1000 2000 3000 4000 5000 60000

0.2

0.4

0.6

0.8

1

1.2

1.4x 10

-3

Velocity (m/s)

f(m)

m0

],...,[ 1 NmmM

Create data ensemble

ii γdd

],...,[ 1 NddD

-1000 -500 0 500 10000

1

2

3

4x 10

-3

Aplitudef(m

)

m0d

• Estimate model parameters with EnKF

)]([ )()1()()1( tttt g MDKMM

K can be simply calculated from the ensemble covariance

It can handle large model and non-linear inverseThis is a Monte Carlo approach

)1/()]()][([ NEE TMMMMC

)1/()]()][([ NEE TDDDDR

)(Mg

and observation function

• CO2 sequestration provides a possible solution for reducing the green gas emission to the atmosphere.

• For safety and operational reasons, we need to monitor the containment of the CO2 storage in the subsurface.

An Example of CO2 Storage Monitoring

CO2 Sequestration

• Find model parameters from unmineable coalbeds in Powder River Basin

• Build a stationary geology model

• Run flow simulation with GEM

• Convert flow simulation results to time-lapse seismic velocity models

Creation of Time-lapse Models

Distance(m)

Dep

th(m

)

0 200 400 600 800

200

400

600

800

50

100

150

200

Distance(m)D

epth

(m)

0 200 400 600 800

200

400

600

800

Distance(m)

Dep

th(m

)

0 200 400 600 800

200

400

600

800

Four time-lapse P-wave velocity modes created based on CO2 flow simulation in the coalbeds. A: time=0; B: time=3 months; C: time=1 year; D: time=3 years.

Distance(m)

Dep

th(m

)

0 200 400 600 800

200

400

600

800

3000

4000

5000

Distance(m)

Dep

th(m

)

0 200 400 600 800

200

400

600

800

Distance(m)

Dep

th(m

)0 200 4000 600 800

200

400

600

800

Distance(m)

Dep

th(m

)

0 200 400 600 800

200

400

600

800

A Simple Synthetic Test

“Observed” data calculated by convolution

Distance(m)

Dep

th(m

)

0 500 1000

200

400

600

800

Distance(m)D

epth

(m)

0 500 1000

200

400

600

800

Distance(m)

Dep

th(m

)

0 500 1000

200

400

600

800

Distance(m)

Dep

th(m

)

0 500 1000

200

400

600

800

Inversion with Waveform Data

Inversion with Waveform and Travel Time Data

Use constant initial model

A Full Waveform Synthetic Test

• Run FD for time-lapse Vp models derived from flow simulation.

• Process complete shot gathers and get depth and time images.

• Extract wavelet.

• Use convolution as the modeling in the inversion.

• Perform seismic inversion with EnKF.

• Compare the inverted Vp with given models.

Tim

e (s

ec)

0

0.1

0.2

0.3

0.4

0.5

0.6

Samples of the shot gathers calculated using the finite difference

Distance(m)

Dep

th(m

)

220 380 580 780

100

200

300

400

500

600

700

800

Tim

e (s

ec)

Distance (m)100 300 500 700 900

0

0.1

0.2

0.3

0.4

0.5

0.6

Depth image Time image

Reflector 1 2 3 4 5

Depth (m) 270 310 550 670 750

Time (sec) 0.1675 0.1918 0.3340 0.4173 0.4595

Traveltime picks used for the inversion

Distance (m)200 400 600 800

2500

3000

3500

4000

4500

5000

v (m/s)Distance (m)

Dep

th (m

)

200 400 600 800

200

400

600

800

Dep

th (m

)

200

400

600

800

Time-lapse velocity models inverted using EnKF

time=0 time=3 months time= 1 year time=3 years

Vp differences between time-lapse models and base modelD

epth

(m)

200

400

600

800D

epth

(m)

200

400

600

800

Distance(m)

Dep

th(m

)

200 300 400 500 600 700 800

200

400

600

800

Distance(m)200 300 400 500 600 700 800

-200

-100

0

100

dv(m/s)

time=3 months time= 1 year time=3 years

True

Inverted

2000 3000 4000 5000

100

200

300

400

500

600

700

800

Velocity (m/s)

Dep

th (m

)

TrueInit.Inv.

A comparison between true model and inverted model

Solid black line: Ture model; Dash-dot blue line: inverted model;Dotted yellow line: Initial model; At distance x=500m

-0.5 0 0.5

100

200

300

400

500

600

700

800

Amplitude

Dep

th (m

)

GivenConv.

A comparison between “observed” data and modeled data

Solid line: “Observed” seismic trace Dotted line: Modeled seismic trace from inverted model

• The ensemble Kalman filter is a useful tool for stochastic seismic inversion, especially for dynamic inversion in seismic monitoring (field data tests will be done.)

• Integrating travetime data into the inversion makes the estimation of absolute velocity possible.

• Fast forward modeling and true amplitude processing are essential.

Conclusions

• We would like to thank the sponsors (ExxonMobil, General Electric, Schlumberger, and Toyota) of Global Climate & Energy Project at Stanford University for their support to this study.

• Eduardo Santos, Yemi Arogunmati, and Tope Akinbehinje helped for the creation of time-lapse velocity models.

Acknowledgements

top related