triple integrals - math 212triple integrals motivation example an object conforms to the shape of a...

Post on 01-Jun-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Triple IntegralsMath 212

Brian D. Fitzpatrick

Duke University

February 26, 2020

MATH

Overview

Triple IntegralsMotivationIterated IntegralsNonrectangular Regions

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

= mass of W

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx =

16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx =

128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors

∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors

∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz (z-slicing)

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

top related